
International Technical Support Organization

OS/2 Debugging Handbook - Volume II
Using the Debug Kernel and Dump Formatter

February 1996

SG24-4641-00

International Technical Support Organization

OS/2 Debugging Handbook - Volume II
Using the Debug Kernel and Dump Formatter

February 1996

SG24-4641-00

IBML

Take Note!

Before using this information and the product it supports, be sure to read the general information under
“Special Notices” on page xv.

First Edition (February 1996)

This edition applies to IBM OS/2 Warp Version 3.0.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications
are not stocked at the address given below.

An ITSO Technical Bulletin Evaluation Form for reader′s feedback appears facing Chapter 1. If the form has been
removed, comments may be addressed to:

IBM Corporation, International Technical Support Organization
Dept. JLPC Building 014-1 Internal Zip 5220
1000 NW 51st Street
Boca Raton, Florida 33431-1328

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1996. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

The OS/2 Debugging Handbook Library

The following information describes the four volumes that comprise the OS/2
Debugging Handbook library. The graphic of the opened book denotes the
volume that you are currently reading.

 Volume I, Basic Skills and Diagnostic Techniques, SG24-4640.

This volume introduces the concepts of debugging with practical examples. Also
contained in this book is a CDROM version of the entire library, which is
viewable via the OS/2 INF View utility.

 Volume II, Using the Debug Kernel and Dump Formatter, SG24-4641.

This volume provides necessary information to set up and use the Kernel Debug
and Dump Formatter tools. Also this guide serves as a command reference for
these products.

 Volume III, System Trace Reference, SG24-4642.

This volume includes all system tracepoints contained within OS/2.

 Volume IV, System Diagnostic Reference, SG24-4643.

This volume provides details of internal structures used by OS/2.

 Copyright IBM Corp. 1996 iii

iv OS/2 Debugging

Abstract

This publication is volume two, which is one of four volumes that together
provide information and reference materials intended to help perform OS/2
debugging.

This volume provides details on how to set up and use the OS/2 Kernel Debug
and Dump Formatter utilities. A Kernel Debug and Dump Formatter command
reference is a major part of this book.

This document is intended for use by service personnel, system programmers
and software developers.

(299 pages)

 Copyright IBM Corp. 1996 v

vi OS/2 Debugging

Contents

The OS/2 Debugging Handbook Library . iii

Abstract . v

Special Notices . xv

Preface . xvii
How This Document is Organized . xvii
Related Publications . xvii
International Technical Support Organization Publications xviii
ITSO Redbooks on the World Wide Web (WWW) xix
Acknowledgments . xx

Chapter 1. Kernel Debugger User Guide . 1
1.1 Kernel Debugger Local Setup . 2

1.1.1 Installing the Debug Kernel . 2
1.1.2 Debug Terminal Setup . 3
1.1.3 The KDB.INI Initialization File . 5

1.2 Kernel Debugger Remote Setup . 6
1.2.1 Items Required to Setup a System for Remote Debugging 6
1.2.2 The Configuration Process . 7

1.3 Controlling the System from the Debugging Console 11
1.3.1 Controlling Output to the Debugging Console 14

1.4 Optional System Diagnostic Facilities . 14
1.4.1 Forcing a System Dump from the Kernel Debugger 14
1.4.2 Virtual Memory Management Lock Trace 18
1.4.3 Virtual Memory Management System Heap Validation 21
1.4.4 System Loader Logging Facility . 21
1.4.5 DosDebug Logging Facility . 37
1.4.6 DosPTrace Logging Facility . 38

1.5 Kernel Debugger Breakpoints . 38
1.6 Trap and Exception Processing . 44

1.6.1 Exception Registration Records . 47
1.6.2 OS/2 Exception Exception Management - Overview 48
1.6.3 Exception Handler Stack Frames . 49
1.6.4 Intercepting Exceptions and Traps . 50

Chapter 2. Dump Formatter User Guide . 51
2.1 Dump Formatter Installation . 51
2.2 Dump Decompression . 53
2.3 Presentation Manager Dump Formatter (PMDF) Installation 54
2.4 PMDF Menus and Options . 55

2.4.1 PMDF File Menu . 55
2.4.2 PMDF Edit Menu . 56
2.4.3 PMDF Options Menu . 57
2.4.4 PMDF Analyze Menu . 58
2.4.5 PMDF Help Menu . 60
2.4.6 PMDF Mouse Options . 61

2.5 PMDF REXX Interface . 62
2.5.1 The RUNCHAIN EXEC . 63
2.5.2 The PS EXEC . 64

 Copyright IBM Corp. 1996 vii

2.5.3 The TEMPLATE EXEC . 65
2.6 Process Dump Formatter . 67

Chapter 3. Kernel Debugger and Dump Formatter Command Reference . . . 71
3.1 Syntax Diagrams - Notation . 71
3.2 The Expression Evaluator . 73

3.2.1 String Expressions . 74
3.2.2 Arithmetic Expressions . 74

3.3 Internal Commands . 80
3.3.1 ? - Show Internal Command Help or Evaluate an Expression 82
3.3.2 B - Breakpoint Command Family . 84
3.3.3 BC - Clear Breakpoints . 84
3.3.4 BD - Disable Breakpoints . 85
3.3.5 BE - Enable Breakpoints . 85
3.3.6 BL - List Breakpoints . 86
3.3.7 BP - Set or Alter a Breakpoint . 87
3.3.8 BR - Set or Alter a Debug Register Breakpoint 89
3.3.9 BS - Show Timestamped Breakpoint Trace 90
3.3.10 BT - Set Timestamped Breakpoint Trace 91
3.3.11 C - Compare Memory . 93
3.3.12 D - Display Memory . 94
3.3.13 DA - Display Memory in ASCII Format 96
3.3.14 DB - Display Memory in Byte Format 96
3.3.15 DW - Display Memory in Word Format 96
3.3.16 DD - Display Memory in Doubleword Format 97
3.3.17 DG - Display Global Descriptor Table 97
3.3.18 DI - Display Interrupt Descriptor Table 100
3.3.19 DL - Display the Current Local Descriptor Table 101
3.3.20 DP - Display Page Directory and Table Entries 102
3.3.21 DT - Display a Task State Segment 104
3.3.22 DX - Display the 286 LoadAll Buffer 106
3.3.23 E - Enter Data into Memory . 107
3.3.24 F - Fill Memory with Repeated Data 108
3.3.25 G - GO . 109
3.3.26 H - Hex Arithmetic . 111
3.3.27 I - Input from an I/O Port . 113
3.3.28 J - Execute Commands Conditionally 114
3.3.29 K - Display Stack Trace from Address 116
3.3.30 L - List Maps, Groups and Symbols 118
3.3.31 M - Move a Block of Data in Memory 122
3.3.32 O - Output to an I/O Port . 123
3.3.33 P - PTrace Instruction Execution . 124
3.3.34 Q - Quit the Dump Formatter . 126
3.3.35 R - Set or Display Current CPU Registers 127
3.3.36 S - Search Memory for Data . 132
3.3.37 T - Trace Instruction Execution . 133
3.3.38 U - Unassemble . 137
3.3.39 V - Exception/Trap/Fault Vector Commands 139
3.3.40 W - Withmap Add/Remove . 143
3.3.41 Y - Set or Display Dump Formatter and Kernel Debugger Options 144
3.3.42 Z - Set, Execute or Display the Default Command 146

3.4 External Commands . 147
3.4.1 .? - Show External Command Help . 148
3.4.2 .A - Format the System Anchor Segment (SAS) 149
3.4.3 .B - Select the Communications Port and Speed 156

viii OS/2 Debugging

3.4.4 .C - Display the Common ABIOS Data Area 157
3.4.5 .D - Display an OS/2 System Structure 160
3.4.6 .I - Swap in Storage . 183
3.4.7 .H - Display Dump File Header Information 185
3.4.8 .I (DF) - Show Dump State . 186
3.4.9 .K - Display User Stack Trace . 188
3.4.10 .LM - Format Loader Structures (MTE, SMTE, OTE and STE) 190
3.4.11 .M - Format Memory Structures . 196
3.4.12 .MA - Format Memory Arena Records (VMAR) 197
3.4.13 .MC - Format Memory Context Records (VMCO) 204
3.4.14 .MK - Display Memory Lock Information Records (VMLKI) 206
3.4.15 .ML - Format Memory Alias Records (VMAL) 209
3.4.16 .MO - Format Memory Object Records (VMOB) 212
3.4.17 .MP - Format Memory Page Frame Structures (PFs) 225
3.4.18 .MV - Format Memory Virtual Page Structures (VPs) 230
3.4.19 .N - Display Dump Information Summary 235
3.4.20 .P - Display Process Status . 238
3.4.21 .PB - Display Blocked Thread Information 246
3.4.22 .PQ - Display Scheduler Queue Information 251
3.4.23 .PU - Display Thread User Space Information 256
3.4.24 .R - Display User′s Registers . 258
3.4.25 .REBOOT - Restart the System . 264
3.4.26 .S - Set or Display Default Thread Slot 265
3.4.27 .T - Dump the System Trace Buffer 267

Glossary . 273

List of Abbreviations . 291

Index . 293

Contents ix

x OS/2 Debugging

Figures

 1. Local 25-to-25 Pin Cable . 3
 2. Local 25-to-9 Pin Cable . 3
 3. Local 9-to-9 Pin Cable . 4
 4. Modem 25-to-25 Pin Cable . 7
 5. Modem 25-to-9 Pin Cable . 7
 6. NMI Switch . 13
 7. Presentation Manager Dump Formatter . 55
 8. PMDF File Pull-Down Menu . 56
 9. PMDF Edit Pull-down Menu . 57
10. PMDF Options Pull-Down Menu . 58
11. PMDF System Menu . 59
12. PMDF Process Menu . 59
13. PMDF Threads Menu . 60
14. PMDF Synopsis Menu . 60
15. PMDF Help Pull-down Menu . 61
16. PMDF Address Highlighted . 62
17. Process Dump Loaded PMDF Display . 68
18. Analyze Option Menu of the PMDF . 69
19. ASCII Format . 95
20. Byte Format . 95
21. Word Format . 95
22. DoubleWord Format . 96
23. List Absolute Symbols Defined in CMD.EXE and their Associated

Constants . 119
24. List Current MAP Status . 120
25. List Segment Groups Defined in CMD.EXE and their Associated

Addresses . 120
26. List Near Symbols and their Associated Addresses 120
27. List Symbols in the Current Group Encompassing Address %fff3f500 . 121
28. System File Table Entry . 161
29. Volume Parameter Block . 162
30. Drive Parameter Block . 163
31. (Part 1 of 2). Current Directory Structure 164
32. (Part 2 of 2). Current Directory Structure 165
33. (Part 1 of 2). Kernel Semaphore . 167
34. (Part 2 of 2). Kernel Semaphore . 168
35. (Part 1 of 2). Physical Device Driver Header 169
36. (Part 2 of 2). Physical Device Driver Header 170
37. (Part 1 of 2). Device Driver Request Packets 171
38. (Part 2 of 2). Device Driver Request Packets 172
39. (Part 1 of 2). Master File Table Entries 173
40. (Part 2 of 2). Master File Table Entries 174
41. (Part 1 of 2). File System Buffer (BUF) . 175
42. (Part 2 of 2). File System Buffer (BUF) . 176
43. BIOS Parameter Block (BPB) . 178
44. Three Types of Event Semaphore . 179
45. How to Determine Whether a BlockID Points to a 32-Bit Semaphore . 180
46. (Part 1 of 2). Mux Wait Semaphores . 181
47. (Part 1 of 2). Mux Wait Semaphores . 182
48. Free Arena Record Display . 199
49. Sentinel Arena Records . 199

 Copyright IBM Corp. 1996 xi

50. Boundary Sentinel Arena Record . 199
51. System arena records - Address Space Mapped by a GDT Selector . 200
52. System Arena Records - Address Space not Mapped by a GDT 200
53. Shared Arena, Shared Data . 201
54. Shared Arena, Instance Data . 201
55. Private Non-shared Data, Process Owned Arena Records 201
56. Private Shared Data, Process Owned Arena Records 202
57. Free Context Record Display . 205
58. Selector Busy Context Records . 205
59. Free Alias Record Display . 210
60. Selector Alias Record Display . 210
61. Linear Address Alias Record Display . 211
62. Normal Object Record Display . 214
63. Normal Object Record Display - Verbose Form 214
64. Pseudo-Object Record Display . 214
65. Free Object Record Display . 215
66. Example System Object Display . 215
67. Free Page Frame Structures . 226
68. Idle Page Frame Structures . 227
69. In-Use Page Frame Structures . 227
70. Free Virtual Page Structures . 231
71. In-Use Virtual Page Structures . 232
72. Command .P Output . 238
73. Scheduler Finite State Machine . 245

xii OS/2 Debugging

Tables

 1. Modem Troubleshooting Guide . 10
 2. Save Area Format . 17
 3. Descriptor Types . 98
 4. Descriptor Flags . 99
 5. mflags Interpretation . 191
 6. flags Assignments . 193
 7. flags Attribues . 194
 8. System Object IDs . 220
 9. Process States . 240
10. Thread States and Description . 252

 Copyright IBM Corp. 1996 xiii

xiv OS/2 Debugging

Special Notices

This publication is intended to help service personnel, system programmers and
software developers to understand the concepts and application of debugging
techniques. The information in this publication is intended as a supplement to
already published specifications of any programming interfaces that are provided
by IBM Warp OS/2 Version 3. See the PUBLICATIONS section of the IBM
Programming Announcement for IBM Warp OS/2 Version 3 for more information
about what publications are considered to be product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not intended
to state or imply that only IBM′s product, program, or service may be used. Any
functionally equivalent program that does not infringe any of IBM′s intellectual
property rights may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, NY 10594 USA.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The information about non-IBM
(VENDOR) products in this manual has been supplied by the vendor and IBM
assumes no responsibility for its accuracy or completeness. The use of this
information or the implementation of any of these techniques is a customer
responsibility and depends on the customer′s ability to evaluate and integrate
them into the customer′s operational environment. While each item may have
been reviewed by IBM for accuracy in a specific situation, there is no guarantee
that the same or similar results will be obtained elsewhere. Customers
attempting to adapt these techniques to their own environments do so at their
own risk.

Any performance data contained in this document was determined in a
controlled environment, and therefore, the results that may be obtained in other
operating environments may vary significantly. Users of this document should
verify the applicable data for their specific environment.

Reference to PTF numbers that have not been released through the normal
distribution process does not imply general availability. The purpose of
including these reference numbers is to alert IBM customers to specific
information relative to the implementation of the PTF when it becomes available
to each customer according to the normal IBM PTF distribution process.

 Copyright IBM Corp. 1996 xv

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

PC Direct is a trademark of Ziff Communications Company and is
used by IBM Corporation under license.

UNIX is a registered trademark in the United States and other
countries licensed exclusively through X/Open Company Limited.

Windows is a trademark of Microsoft Corporation.

Other trademarks are trademarks of their respective companies.

IBM OS/2
Presentation Manager Workplace Shell

MicroFocus Cobol MicroFocus Corporation

xvi OS/2 Debugging

Preface

This volume of the OS/2 Debugging Handbook Library details the setting up of
the OS/2 Kernel Debug and Dump Formatter utilities. Details of commands used
by both utilities are presented and explained in this book. Aided with the other
volumes in this series, the trained user will be able to perform debug operations
on OS/2 systems.

This document is intended for use by service personnel, system programmers
and software developers.

How This Document is Organized
The document is organized as follows:

• Chapter 1, “Kernel Debugger User Guide”

This chapter describes the set up and use of the Kernel Debugger.

• Chapter 2, “Dump Formatter User Guide”

This section provides information needed to use the Dump Formatter.

• Chapter 3, “Kernel Debugger and Dump Formatter Command Reference”

This section details internal and external commands used with the Kernel
Debugger and Dump Formatter.

Related Publications
Throughout this book we assume the availability and familiarity with two
co-requisite publications:

• The INTEL486 Microprocessor Programmer′s Reference Manual, ISBN
1-55512-159-4

• The Intel Pentium Family User′s Manual, Volume 3: Architecture and
Programming Manual, ISBN 1-55512-227-2

• The Design of OS/2 by H.M. Deitel and M.S. Kogan, ISBN 0-201-54889-5

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this document.

• The OS/2 Technical Library Control Program Programming Reference Version
2.00, S10G-6263-00

• OS/2 2.0 Proc Lang 2/REXX Ref, S10G-6268-00

• OS/2 2.0 Proc Lang 2/REXX User Guide, S10G-6269-00

• OS/2 WARP Control Program Programming Guide, G25H-7101-00

• OS/2 WARP Control Program Programming Ref, G25H-7102-00

• OS/2 WARP PM Basic Programming Guide, G25H-7103-00

• OS/2 WARP PM Advanced Programming Guide, G25H-7104-00

• OS/2 WARP GPI Programming Guide, G25H-7106-00

• OS/2 WARP GPI Programming Ref, G25H-7107-00

 Copyright IBM Corp. 1996 xvii

• OS/2 WARP Workplace Shell Programming Guide, G25H-7108-00

• OS/2 WARP Workplace Shell Programming Ref, G25H-7109-00

• OS/2 WARP IPF Programming Guide, G25H-7110-00

• OS/2 WARP Tools Reference, G25H-7111-00

• OS/2 WARP Multimedia App Programming Guide, G25H-7112-00

• OS/2 WARP Multimedia Subsystem Programming, G25H-7113-00

• OS/2 WARP Multimedia Programming Ref, G25H-7114-00

• OS/2 WARP PM Programming Ref Vol I, G25H-7190-00

• OS/2 WARP PM Programming Ref Vol II, G25H-7191-00

• Technical Reference - Personal Computer AT, Part Number 1502494

• PS/2 and PC BIOS Interface Technical Reference, Part Number 68X2341

International Technical Support Organization Publications
• OS/2 Warp Connect, GG24-4505

• OS/2 Warp Generation, Vol.1, SG24-4552

• OS/2 Warp Version 3 and BonusPak, GG24-4426

• Multimedia in Warp, GG24-2516

• The Technical Compendium Volume 1 - Control Program, GG24-3730

• The Technical Compendium Volume 2 - DOS and Windows Environment,
GG24-3731

• The Technical Compendium Volume 3 - Presentation Manager and Workplace
Shell, GG24-3732

• The Technical Compendium Volume 4 - Application Development, GG24-3774

A complete list of International Technical Support Organization publications,
known as redbooks, with a brief description of each, may be found in:

International Technical Support Organization Bibliography of Redbooks,
GG24-3070.

To get a catalog of ITSO redbooks, VNET users may type:

TOOLS SENDTO WTSCPOK TOOLS REDBOOKS GET REDBOOKS CATALOG

A listing of all redbooks, sorted by category, may also be found on MKTTOOLS
as ITSOCAT TXT. This package is updated monthly.

xviii OS/2 Debugging

How to Order ITSO Redbooks

IBM employees in the USA may order ITSO books and CD-ROMs using
PUBORDER. Customers in the USA may order by calling 1-800-879-2755 or by
faxing 1-800-445-9269. Most major credit cards are accepted. Outside the
USA, customers should contact their local IBM office. Guidance may be
obtained by sending a PROFS note to BOOKSHOP at DKIBMVM1 or E-mail to
bookshop@dk.ibm.com.

Customers may order hardcopy ITSO books individually or in customized
sets, called GBOFs, which relate to specific functions of interest. IBM
employees and customers may also order ITSO books in online format on
CD-ROM collections, which contain redbooks on a variety of products.

ITSO Redbooks on the World Wide Web (WWW)
Internet users may find information about redbooks on the ITSO World Wide Web
home page. To access the ITSO Web pages, point your Web browser (such as
WebExplorer from the OS/2 3.0 Warp BonusPak) to the following URL:

http://www.redbooks.ibm.com/redbooks

IBM employees may access LIST3820s of redbooks as well. Point your web
browser to the IBM Redbooks home page:

http://w3.itsc.pok.ibm.com/redbooks/redbooks.html

Preface xix

Acknowledgments
The authors of this book are:

Pete Guy
IBM SDO, Austin

Richard Moore
IBM PSP EMEA

Redbook project developed by:

Tim Sennitt
ITSO Boca Raton, Center

This book could not have reached publication without the encouragement, help
and support from a number of colleagues and friends. In particular we would
like to thank the following:

Tim Sennitt for his help in preparing the printed material and doing much of
the donkey-work to bring this to publication.

Joanne Rearnkham, Barry Bryan and David Jaramillo for their support in
enabling access to the materials necessary to produce this book.

Chris Perritt and Glen Brew for making available the original Design
Workbook and Functional Specifications for OS/2 2.0.

Charlie Schmitt for his original work on converting the kernel debugger code
into a dump formatter.

Jeff Mielke and David Jaramillo for their work on PMDF, the structure
compiler and continued work on the dump formatter.

Allen Gilbert for making available documentation on System Trace, which
has been reproduced in an edited form in this book. Also, for making
available an early version of the dump formatter without which it would not
have been possible to develop the original Dump Formatter class.

Doug Azzarito for supplying the material on Kernel Debugger Remote Debug
Setup.

James Taylor for providing the basis of the lab exercises relating to PM
hangs.

Marie Jazynka, one of the first OS/2 debuggers, for patient encouragement of
a great many OS/2 debugging people.

Our management teams, without whose foresight and support none of this
work would ever have started. These include:

• Hermann Lamberti General Manager for PSM EMEA; Gordon Bell -
director PSM EMEA Technical Marketing; Chris Brown - manager PSM
OEM and Enterprise Technical Marketing and Brian Rose - manager PSM
Project Office; Roy Aho - Director of the Solution Developer Technical
Support Center, for encouraging the beginnings of this several years ago;
Terry Gray, manager of Platform Competency and Operation, within
Solution Developer Technical Support, Austin.

Finally to Sarah-Jane and Shelly, for supporting many very extended working
days and weeks.

xx OS/2 Debugging

Chapter 1. Kernel Debugger User Guide

The Kernel Debugger is essentially a replacement OS/2 Kernel module that
contains an in-built debugger component. With the debugger one may halt
system execution, inspect and alter memory and registers and display system
control blocks. The debugger is controlled from a dump ASCII terminal (the
debugging console) which is connected to the machine under test (MUT), either
directly or via a modem-modem link, through one of its COMx ports. The
debugger supports a comprehensive command set, which is fully described in
the Chapter 3, “Kernel Debugger and Dump Formatter Command Reference” on
page 71 and in other sections of this book.

The debug kernel is distributed in two forms:

ALLSTRICT
This version of the kernel contains all optional self-diagnostic (otherwise
known as strict or assertion checking) code. Besides this functional
difference many of the system control blocks have extra accounting and
signature fields. This has a number of consequences that may affect
problem diagnosis:

1 Performance characteristics will be different since extra checking and
accounting is being performed.

2 Memory usage will be different because of extra diagnostic code,
extensions to system control blocks and in some cases additional space to
cause page faults rather than overlays by erroneous code.

3 Timing critical problems might not be recreatable under the ALLSTRICT
kernel.

4 Secondary problems may be detected or even introduced through the use
of additional diagnostic code.

HSTRICT
This version of the kernel is essentially the RETAIL kernel with the debugger
component. It contains only a limited set of strict checking code. The system
control blocks are of the same form as those used by in the RETAIL kernel.
The performance characteristics of the HSTRICT kernel are closer to those of
the RETAIL kernel than the ALLSTRICT kernel. For this reason the HSTRICT
kernel is recommended as a first choice when diagnosing application and
non-system problems.

The base version of the ALLSTRICT kernel is distributed with the OS/2
Developer′s Tool kit. Versions of the HSTRICT and ALLSTRICT kernels for fix
packs may be obtained from the following sources:

• The OS/2 Base product CDROM for Warp is distributed with the ALLSTRICT
kernel and Dump Formatter. (For the initial release of Warp this was only
available on the US version of Warp).

• The Developer Connection CDROM - this may be ordered through the
Developer Assistance Program (DAP) or the System Library Subscription
Service (SLSS).

• From your local IBM Marketing Representative.

 Copyright IBM Corp. 1996 1

 Information

Throughout this chapter the term debugger is used loosely to mean any of
the following where ambiguity is not a problem:

Debug Kernel (HSTRICT or ALLSTRICT).

The debugger component within the debug kernel.

The debugging console.

1.1 Kernel Debugger Local Setup
The following items are required to install and setup a local debug session:

Either the HSTRICT or ALLSTRICT kernel appropriate to the level of the MUT.

System symbol files. These are optional, but useful breakpoints and system
data are difficult to locate without them.

Application symbol files. These are only necessary if you intend to debug
complex applications where data and subroutines are difficult to locate
without them.

System Trace definition and Formatting files. These are only required if you
intend to trace kernel dynamic trace points while using the debug kernel.

A null modem cable.

An asynchronous ASCII dumb terminal or an emulator on another PC.
Softerm, which is distributed with OS/2 is suitable. PMDF, which is part of
the OS2PDP package distributed with this book also provides a terminal
emulator interface suitable for use with the Kernel Debugger. Other popular
emulators used with the Kernel Debugger include: PMDEBUG, DEBUGO and
LOGICOMM.

Confusion sometimes arises over the installation of the kernel debugger,
particularly as the OS/2 Developer′s Tool kit distributes debug versions of other
OS/2 modules. Note in particular:

The debug versions of OS2LDR, PMDD.SYS, PMGRE.DLL and PMWIN.DLL
are optional. These modules will route additional diagnostic information to
the debug console if they are installed.

No modification of CONFIG.SYS is required.

A secondary console attached to the MUT may not be used as a debug
console.

1.1.1 Installing the Debug Kernel
If you use the OS/2 Developer′s tool kit to install the debug kernel then the
installation is performed automatically using the supplied DBGINST command. If
you choose to install the debug kernel manually then perform the following
steps:

 1. Copy the debug kernel (OS2KRNLD or OS2KRNLB) to the root directory of
the boot drive.

 2. Copy the symbol files into the same directories as their corresponding load
modules. Usually system symbol files are distributed on a diskettes that
have the same directory structure as OS/2 system code. This conveniently

2 OS/2 Debugging

allows the UNPACK command to be used to copy all symbols files in one
operation (per diskette).

 3. Unhide the RETAIL kernel module using the following command:

ATTRIB -r -s -h OS2KRNL

 4. Rename the RETAIL kernel to something unique, for example, OS2KRNLR.

 5. Rename the ALLSTRICT or HSTRICT kernel to OS2KRNL. There is no need
to hide or make the replaced kernel read-only, unless you wish to protect
yourself against accidents!

The MUT is now ready to use in debug mode as soon as it is re-booted. Before
that happens the debug console needs to be set up.

Note: It is possible to run the MUT with the debug kernel installed without
setting up the debug console. This particularly useful when diagnosing
pervasive problems. If the COM port settings are correct when the
problem reoccurs then the debug console may be connected at that time.

1.1.2 Debug Terminal Setup
This section describes the connection and setup of the debugging console. You
may need to know the operational requirements of both your local COM port (on
the MUT) and dumb ASCII terminal. Fortunately the debug kernel does not
impose any form of hand-shaking or a fixed COM speed setting. In many cases
default settings apply. First we discuss the cable requirements.

A null modem cable is required to connect the MUT to the debug console. This
is essentially a 3-wire circuit that connects the two COM connectors together.
Some PCs are equipped with a 25-pin sockets, other 9-pin. A null modem cable
is a symmetric circuit so we do not distinguish which is the MUT and which the
console.

MUT/CONSOLE CONSOLE/MUT
DB25J DB25J

┌─┐ ┌─┐
│2├───────────┤3│
│3├───────────┤2│
│7├───────────┤7│
└─┘ └─┘

Figure 1. Local 25-to-25 Pin Cable

MUT/CONSOLE CONSOLE/MUT
DB25J DB9J

┌─┐ ┌─┐
│2├───────────┤2│
│3├───────────┤3│
│7├───────────┤5│
└─┘ └─┘

Figure 2. Local 25-to-9 Pin Cable

Chapter 1. Kernel Debugger User Guide 3

MUT/CONSOLE CONSOLE/MUT
DB9J DB9J

┌─┐ ┌─┐
│2├───────────┤3│
│3├───────────┤2│
│5├───────────┤5│
└─┘ └─┘

Figure 3. Local 9-to-9 Pin Cable

Note: The three connections involved are:

• RX (receive)

• TX (transmit)

• SG (Signal Ground)

The null modem cable essentially connects RX-TX and SG-SG. The pin
conventions for RX and TX on a 25-pin connector reverse those of a 9-pin
connect. Thus the 25-9 connection looks like a non-null circuit.

If you intend to debug on a number of different setups then it is worth equipping
yourself with the following items, which are commercially available:

• Standard modem cable

• A gender changer

• A null modem convertor

• A 25-9 pin convertor

With these items you should be able to cater for most variations and remote
connection as well.

The next thing to consider is the COM port settings. By default the debug kernel
will first select COM2. It that is in use then COM1. If you require the debugger
to use another COM port, or a non-standard I/O port address then you might
need to set this explicitly by using the .B command, which should be entered in
the KDB.INI initialization file.

By default the kernel debugger initializes the selected COM port to run at 9600
bits per second. If your debugging console requires a different speed setting
then you should convey this to the debug kernel using the .B command, again
entered in the KDB.INI file.

The default communications protocol uses 8 data bits, 1 stop bit and no parity. If
this needs to be different, then it may be set using the O command also enterd in
the KDB.INI file.

Finally some COM ports require the DTR signal to be held high before allowing
communication. If this is necessary then it can be set using the debug kernel to
write to the I/O port that controls the COM port setup register. This may be
done using the the O command entered in the KDB.INI file.

Examples of using these commands in KDB.INI is given in the next section.

4 OS/2 Debugging

Having set up the COM port requirements on the MUT, the debug console must
be setup to match. Precisely how this is done will depend on whether a dumb
terminal or terminal emulator software is used. If you use emulator software
under OS/2 you may need to use the OS/2 MODE command to select compatible
COM port settings for the debugging console′s COM port.

1.1.3 The KDB.INI Initialization File
The debug kernel normally only accepts commands entered at the debugging
console. However, during system initialization it will accept commands entered
into a text file, which if used, must be called KDB.INI and reside in the root
directory of the boot drive.

The KDB.INI file is read after the kernel has loaded and the kernel symbols are
loaded and the system is running in protect mode.

 Attention

The content of the KDB.INI file is somewhat sensitive. If you make a syntax
or format error then you may hang the system and have to re-boot from
installation diskettes to recover.

On most systems the use of a KDB.INI file is not required to establish correct
operation of the COM port and should be avoided.

Each command must be terminated with a <CR><LF> pair except the last in
the file.

The KDB.INI is most easily created using:

COPY CON: KDB.INI

Enter the commands you require, using the <RETURN> key after each
command except the last. For the final command, terminate it using the
sequence: Ctr l-Z <RETURN>.

Note: Use of an editor for creating KDB.INI may not be suitable if the
<CR><LF> sequence cannot be suppressed from the last l ine.

The following example hows how to select COM3 at 1200 bps, with DTR held high
and to prepare the debugger to intercept any ring 2 or 3 traps.

.b 1200t 3e8
O 3ec 1
vsf *
g

Notes:

Since the default arithmetic base for the debugger is hexadecimal a t
suffix is required if the COM port speed is specified in decimal as in the
example.

We have assumed a standard port address assignment for COM3, namely
3e8 for data register and 3ec for control register.

The VSF command causes the debugger to intercept all ring2 and ring3
traps and give control to the debug console.

Chapter 1. Kernel Debugger User Guide 5

The G command is required unless you want to enter the debugger as
soon as the kernel has entered protect mode, loaded its symbol file and
executed the KDB.INI file.

1.2 Kernel Debugger Remote Setup
This section describes how to use the kernel debugger remotely, that is with a
modem-modem link between the machine under test (MUT) and the debugging
console.

The first step is to install the debug kernel and symbols files on the MUT as
described preceding section, (see 1.1, “Kernel Debugger Local Setup” on page 2
for more information.)

Although the Debug Kernel will work with nearly any modem; the configuration
details are unique to each modem. This topic describes the setup of several
modems, and gives general guidelines for setting up others.

1.2.1 Items Required to Setup a System for Remote Debugging
To complete the installation, you will need:

• The RETAIL and either the HSTRICT or ALLSTRICT Kernel

• A modem

• A modem data cable

• An analog dial-in telephone line

• Communications software

1.2.1.1 Modem
Most asynchronous modems currently available will be suitable for use as a
remote-debug modem. For best performance, the modem should:

• Support auto-answer operation

• Support locked DTE speed at 9600 bps

• Allow connections at CCITT V.32 (9600 bps), and V.22bis (2400 bps)

• Support error-correction (MNP or V.42)

• Save configuration so a power-outage does not lose settings

1.2.1.2 Modem Data Cable
The configuration of the cable used to connect the modem to the MUT is not
important. Any serial data cable should have the connections required by the
debug kernel. Just make sure you don′ t use a null-modem cable. You will either
need a 25-to-25 pin cable (for connection to the built-in serial port on a PS/2), or
a 25-to-9 pin cable (for connection to a 9-pin serial port).

Required connections for remote debug cable:

6 OS/2 Debugging

MODEM COMPUTER
DB25P DB25J

┌─┐ ┌─┐
│2├───────────┤2│
│3├───────────┤3│
│7├───────────┤7│
└─┘ └─┘

Figure 4. Modem 25-to-25 Pin Cable

MODEM COMPUTER
DB25P DB9J

┌─┐ ┌─┐
│2├───────────┤3│
│3├───────────┤2│
│7├───────────┤5│
└─┘ └─┘

Figure 5. Modem 25-to-9 Pin Cable

Notice the 25-to-9 pin cable reverses pins 2 and 3. Do not confuse this with a
null-modem cable - the signals on a 25-to-9 pin cable are normally reversed.

1.2.1.3 Analog Dial-in Telephone Line
In order to call the modem and connect to the MUT, you will need a standard
voice-grade telephone line that can be direct-dialed. A connection can be made
if the line must go through a switchboard, but it makes it more difficult for the
person doing the debugging. Digital telephone lines won′ t work at all with the
modem.

1.2.1.4 Communications Software
Any terminal software that can communicate at 9600 bps will suffice. OS/2 2.0
comes with a program (Softerm Custom) that is adequate. PMDF, which is part
of the OS2PDP package on the CDROM that accompanies this book, also
provides a terminal emulation facility. In addition it provides REXX support that
allows Kernel Debugger command sequences to be automated.

1.2.2 The Configuration Process
After you have assembled the required items, follow these steps to prepare the
MUT for remote debugging:

 1. Connect the Modem to the MUT.

Connect one end of the data cable to the modem, and the other end to the
serial port on the MUT. If the MUT has more than one serial port, connect
the cable to the port configured as COM2 (the debug kernel uses COM2 by
default). On PS/2 systems, the reference diskette can tell you which port is
configured as COM2. Connect the telephone line to the modem, and power
the modem on.

 2. Program the modem for debug operation:

Chapter 1. Kernel Debugger User Guide 7

Programming the modem may be a complex process, depending on the type
of modem and the intended use. There are two ways to program the
modem:

• Quick programming for single debug use

• Full programming for ″permanent″ debug use

The quick method is simple, but the modem will not be programmed to
recover from loss of power or repeated calls. The full method allows the
modem to be programmed once, and then used whenever debugging is
needed.

The quick programming is performed by the debug kernel itself through use
of the KDB.INI file. In addition to containing startup commands for the
debugger, KDB.INI can also contain modem initialization strings coded as
operands to the Kernel Debugger ? command. For this reason, the modem
must be connected and powered on when the MUT is booted, and cannot be
powered off until debugging is complete.

The first lines of the KDB.INI may will be COM port selection and parameters
if defaults are not suitable, for example:

.B 1200t 1
(Set debugger for 1200 bps, COM port 1)

Following this are the modem initialization strings, which are unique to each
type of modem. The commands in the initialization string must:

• Activate auto-answer

• Lock the DTE at 9600 bps

• Activate XON/XOFF flow control

• Ignore the DTR signal (not supplied by the debug kernel)

• Suppress result codes

The remaining lines of the KDB.INI file may contain other debugging
commands. The last of these is normally G.

The quick programming strings for several popular modems are as follows.

? ″AT&F E0 Q1 &B1 &H2 &I2 &D0 S0=1″
US Robotics HST and Dual Standard

? ″AT&F2 E0 Q2 &D0 &K4 S0=1″
Supra FAX/Modem V.32bis

? ″AT&F E0 Q1 &D0 \Q1 S0=1″
Intel 14.4EX

An alternative quick technique for entering the Hayes modem initialization
commands, which avoids the use of KDB.INI is illustrated by the following
example. This example assumes that the default COM2 port is to be used:

1. In CONFIG.SYS add the following line

RUN=C:OS2CMD.EXE /K C:MODEM.CMD

2. Edit a file called MODEM.CMD and enter the following two lines

MODE COM2:9600,N,8,1
COPY MODEM COM2

3. Edit a file called MODEM and enter the following line

8 OS/2 Debugging

AT&K4&D0S0=1&W

To use Full programming, you will configure the modem with the same
features as in quick programming, but the settings will be stored in the
modem ′s firmware (or set in modem switches). Determining how to store
these settings can be difficult. A thorough study of the modem manual may
be required. To program the modem, use a terminal emulation program (for
example, the Softerm program that is supplied with OS/2). When
programming the modem, set the terminal program for 9600 BPS operation,
and type the appropriate modem string. Since the initialization string
instructs the modem to suppress result codes, the modem will not return a
response. The FULL programming strings for several modems are:

AT&F &B1 &H2 &I2 &W
US Robotics HST and Dual Standard

AT&F2 E0 Q2 &D0 &K4 S0=1 &W
Supra FAX/Modem V.32bis

AT&F E0 Q1 &D0 \Q1 S0=1 &W
Intel 14.4EX

Note: The US Robotics HST Dual Standard does not store all settings, but
has external switches instead. After programming the modem, set
the switches as follows:

 1=ON
(DTR forced ON)

 2=don ′ t care
(result code type)

 3=OFF
(result code suppressed)

 4=ON
(command echo suppressed)

 5=OFF
(auto-answer enabled)

 6=do not care
(carrier detect function)

 7=ON
(result code in originate mode only)

 8=ON
(AT commands enabled)

 9=ON
(do not d isconnect for +++)

10=OFF
(load NVRAM at power-on)

QUAD=OFF
(normal connect - ON if null modem cable used)

Once the modem is connected, and programmed, the system should be ready for
remote debugging. Re-boot the system with the debug kernel installed. When

Chapter 1. Kernel Debugger User Guide 9

the telephone rings, the debug modem should answer the phone, and establish
connection with the caller. The modem-to-kernel speed should remain at 9600
bps (the default speed used by the debug kernel), but the modem-to-modem
speed can be whatever is used by the remote modem. If both modems support
error correction, correction will be used.

1.2.2.1 Using Low Speed Modems
If a 9600 bps modem is not available, a slower modem can be used with the
debug kernel. If the modem supports speed conversion (a 2400 bps modem with
error-correction and compression will support speed conversion), setup is
straightforward. Construct the proper initialization string for the modem, making
sure that the modem′s DTE speed (modem-to-debugger) speed is locked at 9600
bps. If the modem does not support speed conversion, construct an initialization
string for the modem, and create a KDB.INI file that resets the debugger to the
speed supported by the modem. For example, use .B 2400t 2 for a 2400 bps
modem. In this case, the person calling the debugger will have to use the speed
supported by the modem.

1.2.2.2 Limitations of this Setup
Since the modem communicates with the MUT at 9600 bps, but can communicate
with the remote modem at any speed, the modem must use flow control to avoid
data overruns. The only flow control supported by the debug kernel is
XON/XOFF. The only problem this causes is when the remote user wants to
pause a continuous data display by pressing Ctrl-S. If the modem has also sent
a Ctrl-S, the one from the user will be ignored. You may have to press Ctrl-S
several times before the display pauses. This is not a problem if the remote
user ′s communications program supports a scroll-back buffer, in which case
there is no reason to pause the display with Ctrl-S.

1.2.2.3 Troubleshooting
If, after following these directions, you cannot establish a remote debug
connection, this guide may help:

Table 1. Modem Troubleshooting Guide

Symptom Problem Solution

Modem rings, but doesn′ t answer. Modem not set for auto-answer. Check modem programming, look
for AA light on modem.

... ″ ... ″ ... Phone line not connected to
modem.

Plug in telephone line to modem.

Modem answers, but no response
from debug kernel.

Retail kernel installed. Remove RETAIL kernel and
install DEBUG kernel.

... ″ ... ″ ... Data cable not connected
properly.

Connect data cable from modem
to MUT. Plug into COM2 if MUT
has more than one serial port.

User at the remote modem sees
garbage on screen, unable to
control debug session.

Modem not locked at 9600 bps. Check modem configuration.

... ″ ... ″ ... Debug Kernel not operating at
9600 bps.

Add .B 9600T to KDB.INI file
(create file if needed, in root
directory of boot drive). Re-boot
MUT.

10 OS/2 Debugging

1.3 Controlling the System from the Debugging Console
Having setup the Kernel Debugger for a Local or Remote debug session the
system is ready to be controlled from the debugging console. The console is
used in two modes, which for convenience we refer to as:

Monitor mode

Command mode

In Monitor mode the console acts merely as an output device for displaying
diagnostic messages from the debug kernel and debug versions any other of
system modules that write messages to the debugger′s COM port. In this mode
it is not possible to enter Kernel Debugger commands without having first
switched to command mode. In monitor mode the system runs more or less as
a retail system except for the performance overheads imparted by the additional
diagnostic code.

Monitor mode is in effect initially unless a KDB.INI file is defined.

The console switches to monitor mode after G command is executed.

In Command mode normal system execution is suspended. The debug
component of the kernel monitors the debugging console for command input and
indicates this with using one of the following command prompts:

> Signifies that the system has been suspended while in real mode.

Signifies that the system has been suspended while in protect mode with
paging disabled.

- Signifies that the system has been suspended while in V86 mode with
paging disabled.

Signifies that the system has been suspended while in protect mode with
paging enabled.

-- Signifies that the system has been suspended while in V86 mode with
paging enabled.

In addition to these prompts the Kernel Debugger also uses a data prompt when
a command require additional input. This is signified by a single colon prompt
′:′. Commands such as R and E may use a data prompt.

Command mode is entered when one of the following events occur:

A fatal exception while executing in ring 0
Any unrecoverable exception occurring in a device driver, file system driver
or the OS/2 kernel, will result in a fatal error if it is allowed to be intercepted
by the system exception handlers. When this occurs it is usually not
possible to restore the system to a running state.

The VTF command may be used to intercept potentially fatal exceptions
before the system′s exception handlers receive control. If the exception
condition is corrected manually, then the system may continue to run after
the G command is entered. See Trap and Exception Processing for further
information.

An Internal Processing Error (IPE) occurs
Internal processing errors are unrecoverable conditions that are detected by
the OS/2 kernel. Some of these are exceptions (described in the previous

Chapter 1. Kernel Debugger User Guide 11

bullet); others are inconsistencies that arise from invalid logical conditions or
invalid system data. Under the retail kernel IPEs result in the system halting.
Under the debug kernel, the console enters command mode after an error
message is displayed. IPE messages may be suppressed from displaying as
a hard error popups by setting the byte at symbol: fDebugOnly to a non-zero
value. Under the debug kernel some IPEs are generated for recoverable
conditions and allow the system to continue execution after the G command
is entered. An example of a recoverable IPE is where the loader detects a
bad or mismatched symbol file for a module it is loading. When this occurs
the system displays message:

Internal Symbol Error

Command mode is entered. If the G command is subsequently issued the
system will be allowed to continue execution without the bad symbol file
being activated.

A sticky breakpoint fires
Sticky breakpoints are set using the BP and BR commands. The system may
be returned to a running state after the G command is entered.

An unhandled non-maskable interrupt (NMI)
NMIs normally signal hardware error conditions. Under the RETAIL kernel
these usually result in TRAP 2 fatal exceptions unless an NMI handler has
been registered by a device driver. Under the debug kernel, unhandled
NMIs cause control to be given to the debugging console from which it is
possible to return the system to a running state using the G command.

NMIs are may be generated from several sources, which include:

Channel check
This occurs when an I/O card activates the channel check signal.

Memory parity error
This occurs when memory capable of parity bit generation, detects a
parity discrepancy as memory is fetched from RAM.

DMA bus time-out
This occurs when a DMA-driven device uses the bus for longer than the
maximum allowed period of 7.8 microseconds.

The watchdog timer interrupt
This occurs when the NMI watchdog (NWD) is enabled and timer
interrupts (IRQ 0) are disabled causing loss of timer ticks. OS/2
maintains an NWD count, which If exceeds a maximum value then an IPE
is generated. Some hardware/BIOS also maintains an NWD counter, but
the precise details of the NWD mechanism are machine specific. For
some systems the NWD may not be supported. For further information
refer to the appropriate hardware and BIOS reference literature for the
machine type under consideration.

Unless the NMI is masked off by setting the mask bit 0x80 in I/O port to 0x70,
the NMI channel check provides a means of breaking into the system even
when it is disabled for (maskable) interrupts, that is, when the CLI instruction
has been used to clear the interrupt flag in the EFLAGS register. An an
ISA-bus system a prototype card may be used to implement the following
circuit, which provides an NMI push button switch:

12 OS/2 Debugging

(-IOCHK)
A1 ────────────┐

│
├─ (NMI Push switch)

│
B1 ────────────┘

(Ground)

Figure 6. NMI Switch

Note: OS/2 normally only disables NMIs during system initialization and
when the Kernel Debugger is running in command mode. However,
the Kernel Debugger will allow only one attempt to break in using a
channel check NMI, after which NMIs are disabled until the system is
re-booted.

An INT 3 instruction is executed
INT 3 instructions are used by the system to implement tracing and software
breakpoints. (see the System Trace Facility for additional information).
However any program may use INT 3 instructions freely under the Kernel
Debugger to cause system execution to be suspended and the debugging
console to switch to command mode.

Note: Under the RETAIL kernel, INT 3 instructions other than those
implemented by the system for tracing cause code to be terminated
with a TRAP 3 exception.

The user enters Ctrl-C from the debugging console.
Unless the system is in a disabled state, the user may type Ctrl-C from the
debugging console at any time to cause immediate suspension of normal
system execution and the console to switch to command mode.

The user holds down the r-key from the debugging console at system
initialization time.
If the r-key is held down at system initialization time the debugging console
will switch to command mode shortly after the OS2KRNL has entered
real-mode for the first time. At this time no symbols have been loaded,
paging has never been enabled and the KDB.INI file has not been processed.

Note: In real-mode many of the Kernel Debugger external commands are
not available (because they rely on Virtual Memory Management to
be initialized). Attempts to use them may cause unpredictable results
or even total system failure.

The user holds down the p-key at the debugging console at system initialization
time.
If the p-key is held down at system initialization time the debugging console
will switch to command mode shortly after the OS2KRNL has entered
protect-mode for the first time. At this time no symbols have been loaded,
paging is disabled and the KDB.INI file has not been processed.

The user holds down the Space-bar from the debugging console at system
initialization time.
If the space-bar is held down at system initialization time the debugging
console will switch to command mode shortly after the OS2KRNL has
entered protect-mode and fully initialized. At this time OS2KRNL symbols
have been loaded and paging is enabled but the KDB.INI file has not been
processed.

Chapter 1. Kernel Debugger User Guide 13

The KDB.INI file is processed.
If the KDB.INI file is present then the Kernel Debugger effectively enters
command mode by executing Kernel Debugger commands from the KDB.INI
file. After the last command is executed, the command prompt appears at
the debugging console, unless that last command was a G command.

1.3.1 Controlling Output to the Debugging Console
In both monitor and command mode the following control key sequences are
supported:

Ctrl-C
Will cancel the currently running command and return the console to
command mode.

Ctrl-S
Will temporarily suspend output to the debugging console and suspend
system execution.

Ctrl-Q
Will resume system execution and output to the debugging console.

Note: Ctrl-Q and Ctrl-S correspond to the ASCII asynchronous communications
control characters: XON and XOFF. These may be used by any terminal
emulator, which interfaces with the the Kernel Debugger, as a data
pacing mechanism.

1.4 Optional System Diagnostic Facilities
Several system components implement optional diagnostic facilities under the
debug kernel. These cause additional checking and in some cases detailed
information to be displayed at the debugging console when certain debug flags
switches are set.

Note: Debugging switches are not a formally architected feature of the OS/2
operating system. They are provided primarily for use by OS/2
developers in debugging and testing the system. They are therefore
subject to change or withdrawal without any notice whatsoever.

In this section the following logging facilities are described:

1.4.1, “Forcing a System Dump from the Kernel Debugger.”

1.4.2, “Virtual Memory Management Lock Trace” on page 18.

1.4.3, “Virtual Memory Management System Heap Validation” on page 21.

1.4.4, “System Loader Logging Facility” on page 21.

1.4.5, “DosDebug Logging Facility” on page 37.

1.4.6, “DosPTrace Logging Facility” on page 38.

1.4.1 Forcing a System Dump from the Kernel Debugger
Sometimes the situation arises where neither a kernel debug session or a
system dump alone are sufficient to analyze a problem. Typically this occurs
with problems where evidence of the cause has been removed from the system
before the problem occurrence becomes recognized but the problem itself
requires lengthy analysis even when the causal conditions are intercepted.
Examples of this are problems where:

14 OS/2 Debugging

Storage overlays, may not be noticed until the valid owner of the storage
traps at some later time.

A program terminates apparently normally, but unexpectedly.

A deadlock or hang occurs because a resource owner. forgets to release
ownership of a shared resource.

If the problem is such the there are readily identifiable criteria that allow it to be
intercepted closer to its cause, for example by using breakpoints under the
Kernel Debugger, then being able to take a dump at such a point can be
advantageous.

The simplest technique for initiating a system dump is to type the dump key
sequence (Ctrl-Alt-NumLock-NumLock) from the keyboard of the system
undertest while the debugger is in console mode. Then type the G command
from the debug console. The keyboard interrupt will be serviced and the
stand-alone dump procedure initiated.

In an unattended situation a manually initiated dump may not be feasible. The
following techniques discuss how to initiate the system dump in a more
automated fashion. In some cases it may be possible to set up the command
automation from the KDB.INI initialization file.

The system dump is initiated when the kernel routine RASRST (RAS restart) is
called. Normally this occurs from ring 0 when exception management intercepts
a trap and TRAPDUMP is coded in the CONFIG.SYS file or when the keyboard
device driver (KDB.SYS) intercepts a Ctrl-Alt-NumLock-NumLock or
Ctrl-Alt-F10-F10 sequence. From ring 3 RASRST is called indirectly via the
Dos32ForceSystemDump API since RASRST is not addressable from any user
code selectors. The Kernel Debugger G command allows an address to be
specified where execution is to continue from, which provides a means calling
the system dump routine from the debugging console. Before using this
technique, the following points must be understood:

RASRST is not addressable from user code selectors since they have an
upper address boundary of at most 512MB.

RASRST requires to be executed using a 16-bit code selector.

RASRST requires a ring 0 stack selector to be active

Dos32ForceSystemDump requires a 32-bit code selector, such as 5b.

On some early versions of OS/2 2.1 Dos32ForceSystemDump is unreliable.

The symbol Dos32ForceSystemDump occurs in both DOSCALL1.DLL and the
callgate entry point in OS2KRNL.

From ring 0 the following command will generally be successful in initiating a
system dump:

g =rasrst

From ring 2 or ring 3, 32-bit code the following commands will be successful
providing Dos32ForceSystemDump is working correctly. The address of
DOSCALL1:DOS32FORCESYSTEMDUMP is determined first, then a call to
Dos32ForceSystemDump is made:

Chapter 1. Kernel Debugger User Guide 15

ln dos32forcesystemdump
%1a027c78 doscall1:FLAT32:DOS32FORCESYSTEMDUMP

g =1a027c78

For 16-bit application code the CS register must be to to a value that will address
DOSCALL1.DOS32FORCESYSTEMDUMP. A suitable selector would be 5b for
ring-3 code and 5a for ring-2. So, for 16-bit code this procedure becomes:

ln dos32forcesystemdump
%1a027c78 doscall1:FLAT32:DOS32FORCESYSTEMDUMP
r cs 5b (or r cs 5a)

g =1a027c78

If TRAPDUMP is in effect then a dump can be forced by causing an immediate
trap. The most effective way to achieve this is to set the current SS selector to 0
using the R command. For example:

r ss=00
g

If you wish to trap an application the very next time it runs in user mode then
use .R to determine the user registers and set a breakpoint on CS:EIP in the
context of the application′s thread slot and specify that SS be set to zero when
the breakpoint fires. For example:

.p 2d
Slot Pid Ppid Csid Ord Sta Pri pTSD pPTDA pTCB Disp SG Name
 002d 000b 0002 000b 0001 blk 0200 7b700000 7b8c68fc 7b8acb60 1eb8 14 mrfilepm

##.r 2d
eax=00000000 ebx=00000000 ecx=0000aa37 edx=0000a9ef esi=00090bff edi=00090000
eip=0000272d esp=0000b228 ebp=0009b230 iopl=2 -- -- -- nv up ei ng nz na pe nc
cs=d02f ss=004f ds=a9ef es=be47 fs=150b gs=0000 cr2=1704b000 cr3=001d9000
doscall1:CONFORM16:postDOSSEMWAIT:
002d|d02f:0000272d c9 leave ;br0

##bp d02f:272d,″j wo(tasknumber)==2d,′ . r;r ss=0;g′ ; g″
##g

eax=00000000 ebx=00000014 ecx=0009a9ef edx=0000a9ef esi=00090bff edi=00090006
eip=0000272d esp=0000b230 ebp=0009b230 iopl=2 -- -- -- nv up ei ng nz na pe nc
cs=d02f ss=004f ds=a9ef es=be47 fs=150b gs=0000 cr2=01550000 cr3=001d9000
d02f:0000272e ca0800 retf 0008
Symbols linked (calc)
DelayHardError SYS3171: 4 string(s):
 Pid 000b Tid 0001 Slot 002d HobMte 03be
 C:\OS2TOOLS\MRFILEPM.EXE
c0000005
1a05272d
P1=00000008 P2=6d640000 P3=XXXXXXXX P4=XXXXXXXX
EAX=00000000 EBX=00000014 ECX=0009a9ef EDX=0000a9ef
ESI=00090bff EDI=00090006
DS=a9ef DSACC=00f3 DSLIM=00000fff
ES=be47 ESACC=00f3 ESLIM=000017f5
FS=150b FSACC=00f3 FSLIM=00000030
GS=0000 GSACC=**** GSLIM=********
CS:EIP=d02f:0000272d CSACC=00df CSLIM=000054a3

16 OS/2 Debugging

SS:ESP=0000:0000b230 SSACC=**** SSLIM=********
EBP=0009b230 FLG=00002386

DOSCALL1.DLL 0005:0000272d

This technique will successfully terminate an application. If TRAPDUMP is set
appropriately then a system dump will be taken.

If TRAPDUMP is not correctly set for taking dumps, it may be dynamically
modified from the debugging console. Symbol DumpDevice specifies the dump
partition or drive letter (without the colon) and DUMP_ON is a flag byte that take
values 0, 1 or 2 to specify whether TRAPDUMP is OFF, ON or R0 respectively.
Use the E command to modify to these fields according to needs. For example,
if we wish to set the equivalent of TRAPDUMP R0,F after system initialization
then the following command sequence would achieve this:

e dump_on 2
e dumpdevice ″F″

When examining a dump taken by calling RASRST, directly or indirectly, using
the G command then the registers at the time the Kernel Debugger was last
entered can be found at label _RegSA. The format of this save area is as
follows:

Table 2 (Page 1 of 2). Save Area Format

Offset Register mnemonic

+ 0 EAX

+ 4 EBX

+ 8 EXC

+ c EDX

+ 1 0 ESP

+ 1 4 EBP

+ 1 8 ESI

+ 1 c EDI

+ 2 0 ES

+ 2 2 SS

+ 2 4 DS

+ 2 6 FS

+ 2 8 GS

+ 2 a EIP

+ 2 e CS

+ 3 0 reserved

+ 3 4 EFLAGS

+ 3 8 MSW

+ 3 c GTD limit

+ 3 e GTD base

+ 4 2 reserved

+ 4 4 IDT l imit

+ 4 6 IDT base

Chapter 1. Kernel Debugger User Guide 17

Table 2 (Page 2 of 2). Save Area Format

Offset Register mnemonic

+ 4 a reserved

+ 4 c LDTR

+ 4 e TR

+ 5 0 CR2

+ 5 4 CR3

+ 5 8 DR0

+ 5 c DR1

+ 6 0 DR2

+ 6 4 DR3

+ 6 8 DR4

+ 6 c DR5

+ 7 0 DR6

+ 7 4 DR7

+ 7 8 reserved

+ 7 c TR6

+ 8 0 TR7

1.4.2 Virtual Memory Management Lock Trace
Virtual Memory Management implements a logging function that records
successful attempts to lock and unlock memory pages.

Memory locking and unlocking is implemented by the Memory Management
routines: VMLockMem and VMUnlock. This routine is available directly to all
kernel components and indirectly to device drivers through the following:

DevHlp _Lock

DevHlp _Unlock

DevHlp _VMLock

DevHlp _VMUnlock

It is also available to file system drivers through the following:

MFSH_Lock

MFSH_Unlock

The VM lock trace is activated by setting bit 0 of the VM log flag doubleword to 1.
The flag doubleword is located at symbol: _VMLogFlags. Since no function is
currently assigned to the other bit positions so the lock log may be effectively
turned on by setting the byte a _VMLogFlags to 0xff as in the following example:

e _vmlogflags
%fff0127c 00.
ff
##g
L base fff32 size 2 flags 1 hob 16 hptda 3b9 ret fff3e551
L base 15e0 size 1 flags 4 hob 4a4 hptda 91 ret fff5a93c
L base 3f size 1 flags 4 hob 188 hptda 91 ret fff5a93c

18 OS/2 Debugging

U base 15e0 size 1 flags 4 hob 4a4 hptda 91 ret fff5a983
U base 3f size 1 flags 4 hob 188 hptda 91 ret fff5a983
L base 15e0 size 1 flags 4 hob 4a4 hptda 91 ret fff5a93c
L base 3f size 1 flags 4 hob 188 hptda 91 ret fff5a93c
U base 15e0 size 1 flags 4 hob 4a4 hptda 91 ret fff5a983
U base 3f size 1 flags 4 hob 188 hptda 91 ret fff5a983
L base fff35 size 3 flags 1 hob 16 hptda 4a4 ret fff3e551
L base fe79c size 4 flags 0 hob 3 hptda 380 ret fff49ec6
U base fe79c size 4 flags 0 hob 3 hptda 380 ret fff3d173

The fields displayed in each lock trace entry are formatted from the constituent
parts of the corresponding lock handle. They are defined as follows:

L Indicates a lock request

U Indicates an unlock request

base
The virtual page number (that is the high order 5 digits of the address) of the
page(s) to be locked or unlocked

size
The number of pages being locked or unlocked

flags
The following bit settings are defined:

hob
The hob of the memory object whose pages are being locked or unlocked

hptda
The hptda of the process that requested the memory lock or unlock

ret The return address from VMLockMem , that is, the address of the caller

Note:

The return address is unfortunately of limited use since most calls to
VMLockMem are made via a limited number of interface routines. In
particular, DevHlp lock requests are made via dhw_VMLock and
SegLockDM. Unless one can trace in addition the SS:ESP on entry to
VMLock, the lock trace alone will be insufficient to solve memory
locking problem. One possible way of providing more information is
to supplement the lock trace with following breakpoint commands:

##bp _vmunlock+1,″k ss:sp;g″
##bp _vmlockmem+1,″k ss:sp;g″
##g
0170:fff3e551 fff32d68 00001281 10000000 ffe0068f CodeLockProc + 7c
L base fff32 size 2 flags 1 hob 16 hptda 3b9 ret fff3e551
0170:fff5a93c 015f0000 0000000e 40000000 fe7958c6 _dhw_VMLock + dc
0170:fff3db40 40000000 015f0000 0000000e fe7958c6
0170:00000155 01550000 62d61a84 00000003 5ab40000
L base 15f0 size 1 flags 4 hob 5de hptda 91 ret fff5a93c

Bit Value Description

0x01 Lock is a long-term

0x02 Verify lock call

0x04 Lock originated from a DevHlp

Chapter 1. Kernel Debugger User Guide 19

0170:fff5a93c 0003f198 0000000b 40000000 fe795be0 _dhw_VMLock + dc
0170:fff3db40 40000000 0003f198 0000000b fe795be0
0170:00000055 00550000 62d61a84 00000003 5ab40000
L base 3f size 1 flags 4 hob 196 hptda 91 ret fff5a93c
0170:fff5a983 fe7958c6 00002796 083082fc fe7958c6 _dhw_VMUnlock + 3a
0170:fff3db4c fe7958c6 00001af0 00001100 00000056
0170:00000003 5b030000 08300000 f2a40000 08489254
U base 15f0 size 1 flags 4 hob 5de hptda 91 ret fff5a983
0170:fff5a983 fe795be0 000008c6 0830823f fe795be0 _dhw_VMUnlock + 3a
0170:fff3db4c fe795be0 00001af0 00001100 0000ff56
0170:00000003 5b030000 08300000 f2a40000 08489254
U base 3f size 1 flags 4 hob 196 hptda 91 ret fff5a983
0170:fff5a93c 015f0000 00000dd6 40000000 fe7958c6 _dhw_VMLock + dc
0170:fff3db40 40000000 015f0000 00000dd6 fe7958c6
0170:00000155 01550000 62d61a84 00000003 5ab40000
L base 15f0 size 1 flags 4 hob 5de hptda 91 ret fff5a93c
0170:fff5a93c 0003f198 0000000b 40000000 fe795be0 _dhw_VMLock + dc
0170:fff3db40 40000000 0003f198 0000000b fe795be0
0170:00000055 00550000 62d61a84 00000003 5ab40000
L base 3f size 1 flags 4 hob 196 hptda 91 ret fff5a93c
0170:fff5a983 fe7958c6 00002796 083082fc fe7958c6 _dhw_VMUnlock + 3a
0170:fff3db4c fe7958c6 00001af0 00001100 0000ff56
0170:00000003 5b030000 08300000 f2a40000 08489254
U base 15f0 size 1 flags 4 hob 5de hptda 91 ret fff5a983
0170:fff5a983 fe795be0 000008c6 0830823f fe795be0 _dhw_VMUnlock + 3a
0170:fff3db4c fe795be0 00001af0 00001100 0000ff56
0170:00000003 5b030000 08300000 f2a40000 08489254
U base 3f size 1 flags 4 hob 196 hptda 91 ret fff5a983
0170:fff3e551 fff351dc 000022f5 10000000 ffe0053f CodeLockProc + 7c
L base fff35 size 3 flags 1 hob 16 hptda 3b9 ret fff3e551
0170:fff4a218 ffe0053f ffe0052b 00082006 00000000 _CodeLockHook + 2c
0170:fff42df7 ffffffff ffffffff 7b71ff40 7b71ff40 KMDispatchHook + a3
U base fff35 size 3 flags 1 hob 16 hptda 3b9 ret fff4a218
0170:fff4a218 ffe0068f ffe0067b 00082006 00000006 _CodeLockHook + 2c
0170:fff42df7 ffffffff ffffffff 7b71ff40 7b71ff40 KMDispatchHook + a3
U base fff32 size 2 flags 1 hob 16 hptda 3b9 ret fff4a218

Given that the K command rapidly looses synchronization with the
correct stack frame pointer one may have to resort to using:

##bp _vmunlock+1,″dw ss:sp l80;g″
##bp _vmlockmem+1,″dw ss:sp l80;g″

Refer to the Kernel Debugger K command and BP command for further
information.

Related information on memory locking may be found under the description of
the Kernel Debugger .MO command.

The latest versions of OS/2 2.11 and OS/2 3.0 have implemented a new Kernel
Debugger command that facilitates an alternative method for analyzing memory
locking problems. See the Kernel Debugger .MK command for details.

20 OS/2 Debugging

1.4.3 Virtual Memory Management System Heap Validation
The system will perform additional validation of the kernel heap structures under
the debug kernel if the byte at label _vmkhGflags is set to a non-zero value.

There is a noticeable performance overhead when this option is activated.
Therefore it is recommended that it is only used when a heap corruption
problem is suspected.

The system will validate the linkages between various heap structures. If an
error is detected, then an IPE is generated with one of the following messages:

VMKSH: Invalid hint pointers

VMKSH: Invalid number of ksh descriptors

VMKSH: Invalid number of ksh blocks

Invalid heap block header at address: ssss:oooooooo

Preceding block at address: ssss:oooooooo

No preceding block

1.4.4 System Loader Logging Facility
The system loader provides optional logging and checking under the debug
kernel. These optional facilities may be activated selectively by setting bits in
the _LdrDebugFlags flags doubleword as follows:

Note: The flags described are those implemented in OS/2 Warp V3.0. Slightly
different, but similar messages are generated for earlier releases of OS/2.

0x00000001
This will cause the loader to break into the debugger using an INT 3
instruction if any of the following error conditions are detected:

Not enough memory

Caching error

Invalid Ordinal

Procedure not found

Bad EXE format

Invalid segment number

Invalid CALLGATE

Network Disconnected

1

The term loader applies to two distinct components under OS/2:

OS2LDR This is the OS2KRNL loader. One of its functions is to load the OS2KRNL module at boot time.
After the system has booted OS2LDR provides the CBIOS layer for the kernel.

System Loader This is a component of the kernel. It is responsible for loading program modules, DLLs, Device
Drivers and File System Drivers.

The logging facility discussed in this section applies to the System Loader.

Chapter 1. Kernel Debugger User Guide 21

0x00000002
This will generate log entries when LDRGetPage exits with a non-zero return
code. LDRGetPage is called to demand load a page within a object of a load
module. The message logged is of the following form:

ldrGP bad cr2=nnnnnnnn rc=mmmmmmmm

c r 2 = is the page fault address and r c = is the LDRGetPage return code.

0x00000004
This generates log entries when LDRGetPage is called to demand load a
page within a object of a load module. The message logged is of the form:

ldrGP cr2=nnnnnnnn hMTE=hhhh bno=oo
name=pppppppppppppppp

c r 2 = Is the page fault address.

hMTE= Is the module′s hmte.

b n o = Is page number within the module.

n a m e = is the module′s full name taken from the SMTE.

0x00000018
This switch causes log information to be generated when DLL modules are
loaded and initialized. The following messages are logged:

ldrDLM entry - slot ssss ptda pppppppp

ldrDLM name - slot ssss name nnnnnnnn

ldrDLM free - slot ssss

ldrDLM exit - slot ssss

tk SD has-init slot=ssss

tk SD no-init slot=ssss

tk SD pre-inc slot=ssss cnest=nnnn

tk IN pre-dec slot=ssss cnest=nnnn

tk LIn slot=ssss cnest=nnnn

slot Is the thread slot in which the DLL is being processed,

ptda Is the address of the PTDA for this slot

name Is the DLL module name

cnest Nesting counter for TKLibiStartDispatch

ldrDLM entry Marks entry to w_loadmodule, the DosLoadModule worker
routine.

ldrDLM name Marks the successful request for the DLL initialization mutex
semaphore (&ptdadlmsem.).

ldrDLM free Marks the release of the mutex semaphore. Exit marks the
exiting of w_loadmodule.

ldrDLM exit Marks the exit from w_loadmodule.

tk SD Marks events in TKLibiStartDispatch.

22 OS/2 Debugging

tk IN and tk LIn Mark events in TKLiniInitNextDLL

0x00000080
This switch requests that import initialization be recorded. Messages of the
following format are generated:

lpi, Recording init hMTE=hhhh, flags1=ffffffff, name=nnnnnnnnn

lpi, Skipping init hMTE=hhhh, flags1=ffffffff, name=nnnnnnnnn

lpi, Processing imports slot=ssss, module=nnnnnnnnn

lrm, Recording init hMTE=hhhh, flags1=ffffffff, name=nnnnnnnn

lrm, Skipping init hMTE=hhhh, flags1=ffffffff, name=nnnnnnnnn

hMTE Is the module handle

flags1 Are the flags MTE flags field. (See the .LM command for details).

name Is the full module name taken from the SMTE.

module Is the full module name taken from the SMTE.

lpi, Recording init
Logs the processing of system DLL imports from the system DLL names
table in EXE file loading.

lpi, Skipping init
Logs system DLL names not imported in EXE file loading.

lpi, Processing imports
Logs the processing of DLL initialization as the result of imports being
present in an EXE module.

lrm, Recording init
Logs imported DLL initialization being recorded.

lrm, Skipping init
Logs imported DLLs skipping initialization.

0x00000100
Logs when the loader cannot load an object at the compiler/linker
designated base address. The message logged appears as follows:

Cannot load nnnnnnnn at the requested base address

where nnnnnnnn is the module name.

0x00000800
Logs the processing of the DLL import tree. The following messages appear:

lpi, Processing imports slot=ssss, module=nnnnnnnnn

ldr walking tree hMTE=hhhh, name=nnnnnnnn

ldr walking tree going down

ldr walking tree going up

lpi, Processing imports
marks the initiation of the process for slot ssss and module nnnnnnnn .

Chapter 1. Kernel Debugger User Guide 23

ldr walking tree hMTE=hhhh, name=nnnnnnnn
marks the processing of an imported DLL, whose handle is hhhh and
name is nnnnnnnn

ldr walking tree going up
marks a backward progression through the import tree.

ldr walking tree going down
marks a forward progression through the import tree.

1.4.4.1 Example loader log
The following is an example of a loader log where all logging options have been
activated. This illustrates the loader activity recorded when the FAXWORK.EXE
icon was clicked on:

lpi Processing imports slot=0022, module=H:\FAXWORKS\FAXWORKS.EXE
ldr walking tree hMTE=05e1, name=H:\FAXWORKS\FAXWORKS.EXE
ldr walking tree going down
ldr walking tree hMTE=029a, name=H:\OS2\DLL\PMWIN.DLL
ldr walking tree going down
ldr walking tree hMTE=0281, name=H:\OS2\DLL\PMMERGE.DLL
ldr walking tree going down
ldr walking tree hMTE=0293, name=H:\OS2\DLL\PMGPI.DLL
ldr walking tree going up
ldr walking tree hMTE=0281, name=H:\OS2\DLL\PMMERGE.DLL
ldr walking tree going down
ldr walking tree hMTE=029b, name=H:\OS2\DLL\MOUCALLS.DLL
ldr walking tree going up
ldr walking tree hMTE=0281, name=H:\OS2\DLL\PMMERGE.DLL
ldr walking tree going down
ldr walking tree hMTE=01e5, name=H:\OS2\DLL\VIOCALLS.DLL
ldr walking tree going up
ldr walking tree hMTE=0281, name=H:\OS2\DLL\PMMERGE.DLL
ldr walking tree going down
ldr walking tree hMTE=0262, name=H:\OS2\DLL\NLS.DLL
ldr walking tree going up
ldr walking tree hMTE=0281, name=H:\OS2\DLL\PMMERGE.DLL
ldr walking tree going down
ldr walking tree hMTE=029c, name=H:\OS2\DLL\PMSHAPI.DLL
ldr walking tree going up
ldr walking tree hMTE=0281, name=H:\OS2\DLL\PMMERGE.DLL
ldr walking tree going down
ldr walking tree hMTE=0111, name=H:\OS2\DLL\SESMGR.DLL
ldr walking tree going up
ldr walking tree hMTE=0281, name=H:\OS2\DLL\PMMERGE.DLL
ldr walking tree going up
ldr walking tree hMTE=029a, name=H:\OS2\DLL\PMWIN.DLL
ldr walking tree going up
ldr walking tree hMTE=05e1, name=H:\FAXWORKS\FAXWORKS.EXE
ldr walking tree going down
ldr walking tree hMTE=02b8, name=H:\OS2\DLL\PMSPL.DLL
ldr walking tree going down
ldr walking tree hMTE=0104, name=H:\OS2\DLL\MSG.DLL
ldr walking tree going up
ldr walking tree hMTE=02b8, name=H:\OS2\DLL\PMSPL.DLL
ldr walking tree going down
ldr walking tree hMTE=02be, name=H:\OS2\DLL\SPL1B.DLL
ldr walking tree going up
ldr walking tree hMTE=02b8, name=H:\OS2\DLL\PMSPL.DLL

24 OS/2 Debugging

ldr walking tree going up
ldr walking tree hMTE=05e1, name=H:\FAXWORKS\FAXWORKS.EXE
ldr walking tree going down
ldr walking tree hMTE=0419, name=H:\OS2\DLL\HELPMGR.DLL
ldr walking tree going up
ldr walking tree hMTE=05e1, name=H:\FAXWORKS\FAXWORKS.EXE
ldr walking tree going down
ldr walking tree hMTE=02ac, name=H:\OS2\DLL\PMDRAG.DLL
ldr walking tree going down
ldr walking tree hMTE=02a3, name=H:\OS2\DLL\PMCTLS.DLL
ldr walking tree going up
ldr walking tree hMTE=02ac, name=H:\OS2\DLL\PMDRAG.DLL
ldr walking tree going up
ldr walking tree hMTE=05e1, name=H:\FAXWORKS\FAXWORKS.EXE
ldr walking tree going down
ldr walking tree hMTE=0279, name=H:\OS2\DLL\PMWP.DLL
ldr walking tree going down
ldr walking tree hMTE=029d, name=H:\OS2\DLL\IMP.DLL
ldr walking tree going up
ldr walking tree hMTE=0279, name=H:\OS2\DLL\PMWP.DLL
ldr walking tree going down
ldr walking tree hMTE=02a8, name=H:\OS2\DLL\SEAMLESS.DLL
ldr walking tree going down
ldr walking tree hMTE=02b1, name=H:\OS2\DLL\PMVIOP.DLL
ldr walking tree going up
ldr walking tree hMTE=02a8, name=H:\OS2\DLL\SEAMLESS.DLL
ldr walking tree going up
ldr walking tree hMTE=0279, name=H:\OS2\DLL\PMWP.DLL
ldr walking tree going down
ldr walking tree hMTE=02ad, name=H:\OS2\DLL\SOM.DLL
ldr walking tree going up
ldr walking tree hMTE=0279, name=H:\OS2\DLL\PMWP.DLL
ldr walking tree going up
ldr walking tree hMTE=05e1, name=H:\FAXWORKS\FAXWORKS.EXE
ldr walking tree going up
lrm, Skipping init hMTE=05e1, flags1=20903150, name=H:\FAXWORKS\FAXWORKS.EXE
lrm, Skipping init hMTE=0279, flags1=e498b394, name=H:\OS2\DLL\PMWP.DLL
lrm, Skipping init hMTE=02ad, flags1=e498b396, name=H:\OS2\DLL\SOM.DLL
lrm, Recording init hMTE=02a8, flags1=e098b395, name=H:\OS2\DLL\SEAMLESS.DLL
lrm, Skipping init hMTE=02b1, flags1=a498b395, name=H:\OS2\DLL\PMVIOP.DLL
lrm, Skipping init hMTE=029d, flags1=2098b398, name=H:\OS2\DLL\IMP.DLL
lrm, Skipping init hMTE=02ac, flags1=a498b388, name=H:\OS2\DLL\PMDRAG.DLL
lrm, Skipping init hMTE=02a3, flags1=e498b394, name=H:\OS2\DLL\PMCTLS.DLL
lrm, Skipping init hMTE=0419, flags1=a098b39a, name=H:\OS2\DLL\HELPMGR.DLL
lrm, Skipping init hMTE=02b8, flags1=e498b394, name=H:\OS2\DLL\PMSPL.DLL
lrm, Skipping init hMTE=02be, flags1=a098b398, name=H:\OS2\DLL\SPL1B.DLL
lrm, Skipping init hMTE=0104, flags1=2098b388, name=H:\OS2\DLL\MSG.DLL
lrm, Skipping init hMTE=029a, flags1=2098b388, name=H:\OS2\DLL\PMWIN.DLL
lrm, Skipping init hMTE=0281, flags1=e498b394, name=H:\OS2\DLL\PMMERGE.DLL
lrm, Skipping init hMTE=0111, flags1=2098b388, name=H:\OS2\DLL\SESMGR.DLL
lrm, Skipping init hMTE=029c, flags1=2098b388, name=H:\OS2\DLL\PMSHAPI.DLL
lrm, Skipping init hMTE=0262, flags1=2098b388, name=H:\OS2\DLL\NLS.DLL
lrm, Skipping init hMTE=01e5, flags1=2098b388, name=H:\OS2\DLL\VIOCALLS.DLL
lrm, Skipping init hMTE=029b, flags1=2098b388, name=H:\OS2\DLL\MOUCALLS.DLL
lrm, Recording init hMTE=0293, flags1=e498b394, name=H:\OS2\DLL\PMGPI.DLL
lpi, Recording init hMTE=0279, flags1=e498b394, name=H:\OS2\DLL\PMWP.DLL
lpi, Recording init hMTE=02ad, flags1=e498b396, name=H:\OS2\DLL\SOM.DLL
lpi, Recording init hMTE=02b1, flags1=a498b395, name=H:\OS2\DLL\PMVIOP.DLL
lpi, Recording init hMTE=02a3, flags1=e498b394, name=H:\OS2\DLL\PMCTLS.DLL

Chapter 1. Kernel Debugger User Guide 25

lpi, Recording init hMTE=02ac, flags1=a498b388, name=H:\OS2\DLL\PMDRAG.DLL
lpi, Recording init hMTE=02b8, flags1=e498b394, name=H:\OS2\DLL\PMSPL.DLL
lpi, Recording init hMTE=0281, flags1=e498b394, name=H:\OS2\DLL\PMMERGE.DLL
lpi, Recording init hMTE=00f2, flags1=8498b794, name=H:\OS2\DLL\DOSCALL1.DLL
ldrGP cr2=ffe3b000 hMTE=5e1 bno=85

name = H:\FAXWORKS\FAXWORKS.EXE
tk SD has-init slot=22
ldrGP cr2=13fa0000 hMTE=f2 bno=2b

name = H:\OS2\DLL\DOSCALL1.DLL
ldrGP cr2=13fa1000 hMTE=f2 bno=2c

name = H:\OS2\DLL\DOSCALL1.DLL
ldrGP cr2=13fc0000 hMTE=f2 bno=2e

name = H:\OS2\DLL\DOSCALL1.DLL
ldrGP cr2=13e30000 hMTE=281 bno=106

name = H:\OS2\DLL\PMMERGE.DLL
ldrDLM entry - slot 36 ptda ab99a000
ldrDLM name - slot 36 name H:\OS2\DLL\PMATM.DLL
lpi Processing imports slot=0036, module=H:\OS2\DLL\PMATM.DLL
ldr walking tree hMTE=0354, name=H:\OS2\DLL\PMATM.DLL
ldr walking tree going down
ldr walking tree hMTE=029c, name=H:\OS2\DLL\PMSHAPI.DLL
ldr walking tree going down
ldr walking tree hMTE=0281, name=H:\OS2\DLL\PMMERGE.DLL
ldr walking tree going down
ldr walking tree hMTE=0293, name=H:\OS2\DLL\PMGPI.DLL
ldr walking tree going up
ldr walking tree hMTE=0281, name=H:\OS2\DLL\PMMERGE.DLL
ldr walking tree going down
ldr walking tree hMTE=029a, name=H:\OS2\DLL\PMWIN.DLL
ldr walking tree going up
ldr walking tree hMTE=0281, name=H:\OS2\DLL\PMMERGE.DLL
ldr walking tree going down
ldr walking tree hMTE=029b, name=H:\OS2\DLL\MOUCALLS.DLL
ldr walking tree going up
ldr walking tree hMTE=0281, name=H:\OS2\DLL\PMMERGE.DLL
ldr walking tree going down
ldr walking tree hMTE=01e5, name=H:\OS2\DLL\VIOCALLS.DLL
ldr walking tree going up
ldr walking tree hMTE=0281, name=H:\OS2\DLL\PMMERGE.DLL
ldr walking tree going down
ldr walking tree hMTE=0262, name=H:\OS2\DLL\NLS.DLL
ldr walking tree going up
ldr walking tree hMTE=0281, name=H:\OS2\DLL\PMMERGE.DLL
ldr walking tree going down
ldr walking tree hMTE=0111, name=H:\OS2\DLL\SESMGR.DLL
ldr walking tree going up
ldr walking tree hMTE=0281, name=H:\OS2\DLL\PMMERGE.DLL
ldr walking tree going up
ldr walking tree hMTE=029c, name=H:\OS2\DLL\PMSHAPI.DLL
ldr walking tree going up
ldr walking tree hMTE=0354, name=H:\OS2\DLL\PMATM.DLL
ldr walking tree going up
lrm, Recording init hMTE=0354, flags1=6498b3c5, name=H:\OS2\DLL\PMATM.DLL
lrm, Skipping init hMTE=029c, flags1=2098b388, name=H:\OS2\DLL\PMSHAPI.DLL
tk SD has-init slot=36
tk SD pre-inc slot=36 cnest=1
ldrDLM free - slot 36
ldrDLM exit - slot 36
tk LIn slot=36 cnest=1

26 OS/2 Debugging

ldrDLM entry - slot 36 ptda ab99a000
ldrDLM name - slot 36 name DISPLAY
lpi Processing imports slot=0036, module=H:\OS2\DLL\DISPLAY.DLL
ldr walking tree hMTE=034b, name=H:\OS2\DLL\DISPLAY.DLL
ldr walking tree going down
ldr walking tree hMTE=0281, name=H:\OS2\DLL\PMMERGE.DLL
ldr walking tree going down
ldr walking tree hMTE=0293, name=H:\OS2\DLL\PMGPI.DLL
ldr walking tree going up
ldr walking tree hMTE=0281, name=H:\OS2\DLL\PMMERGE.DLL
ldr walking tree going down
ldr walking tree hMTE=029a, name=H:\OS2\DLL\PMWIN.DLL
ldr walking tree going up
ldr walking tree hMTE=0281, name=H:\OS2\DLL\PMMERGE.DLL
ldr walking tree going down
ldr walking tree hMTE=029b, name=H:\OS2\DLL\MOUCALLS.DLL
ldr walking tree going up
ldr walking tree hMTE=0281, name=H:\OS2\DLL\PMMERGE.DLL
ldr walking tree going down
ldr walking tree hMTE=01e5, name=H:\OS2\DLL\VIOCALLS.DLL
ldr walking tree going up
ldr walking tree hMTE=0281, name=H:\OS2\DLL\PMMERGE.DLL
ldr walking tree going down
ldr walking tree hMTE=0262, name=H:\OS2\DLL\NLS.DLL
ldr walking tree going up
ldr walking tree hMTE=0281, name=H:\OS2\DLL\PMMERGE.DLL
ldr walking tree going down
ldr walking tree hMTE=029c, name=H:\OS2\DLL\PMSHAPI.DLL
ldr walking tree going up
ldr walking tree hMTE=0281, name=H:\OS2\DLL\PMMERGE.DLL
ldr walking tree going down
ldr walking tree hMTE=0111, name=H:\OS2\DLL\SESMGR.DLL
ldr walking tree going up
ldr walking tree hMTE=0281, name=H:\OS2\DLL\PMMERGE.DLL
ldr walking tree going up
ldr walking tree hMTE=034b, name=H:\OS2\DLL\DISPLAY.DLL
ldr walking tree going up
lrm, Recording init hMTE=034b, flags1=2498b394, name=H:\OS2\DLL\DISPLAY.DLL
tk SD has-init slot=36
tk SD pre-inc slot=36 cnest=1
ldrDLM free - slot 36
ldrDLM exit - slot 36
ldrGP cr2=13ef0000 hMTE=34b bno=6

name = H:\OS2\DLL\DISPLAY.DLL
tk LIn slot=36 cnest=1
ldrDLM entry - slot 36 ptda ab99a000
ldrDLM name - slot 36 name IBMS332
lpi Processing imports slot=0036, module=H:\OS2\DLL\IBMS332.DLL
ldr walking tree hMTE=0362, name=H:\OS2\DLL\IBMS332.DLL
ldr walking tree going down
ldr walking tree hMTE=0368, name=H:\OS2\DLL\PMGRE.DLL
ldr walking tree going down
ldr walking tree hMTE=0281, name=H:\OS2\DLL\PMMERGE.DLL
ldr walking tree going down
ldr walking tree hMTE=0293, name=H:\OS2\DLL\PMGPI.DLL
ldr walking tree going up
ldr walking tree hMTE=0281, name=H:\OS2\DLL\PMMERGE.DLL
ldr walking tree going down
ldr walking tree hMTE=029a, name=H:\OS2\DLL\PMWIN.DLL

Chapter 1. Kernel Debugger User Guide 27

ldr walking tree going up
ldr walking tree hMTE=0281, name=H:\OS2\DLL\PMMERGE.DLL
ldr walking tree going down
ldr walking tree hMTE=029b, name=H:\OS2\DLL\MOUCALLS.DLL
ldr walking tree going up
ldr walking tree hMTE=0281, name=H:\OS2\DLL\PMMERGE.DLL
ldr walking tree going down
ldr walking tree hMTE=01e5, name=H:\OS2\DLL\VIOCALLS.DLL
ldr walking tree going up
ldr walking tree hMTE=0281, name=H:\OS2\DLL\PMMERGE.DLL
ldr walking tree going down
ldr walking tree hMTE=0262, name=H:\OS2\DLL\NLS.DLL
ldr walking tree going up
ldr walking tree hMTE=0281, name=H:\OS2\DLL\PMMERGE.DLL
ldr walking tree going down
ldr walking tree hMTE=029c, name=H:\OS2\DLL\PMSHAPI.DLL
ldr walking tree going up
ldr walking tree hMTE=0281, name=H:\OS2\DLL\PMMERGE.DLL
ldr walking tree going down
ldr walking tree hMTE=0111, name=H:\OS2\DLL\SESMGR.DLL
ldr walking tree going up
ldr walking tree hMTE=0281, name=H:\OS2\DLL\PMMERGE.DLL
ldr walking tree going up
ldr walking tree hMTE=0368, name=H:\OS2\DLL\PMGRE.DLL
ldr walking tree going up
ldr walking tree hMTE=0362, name=H:\OS2\DLL\IBMS332.DLL
ldr walking tree going up
lrm, Skipping init hMTE=0362, flags1=2098b398, name=H:\OS2\DLL\IBMS332.DLL
lrm, Skipping init hMTE=0368, flags1=2098b388, name=H:\OS2\DLL\PMGRE.DLL
tk SD no-init slot=36
ldrDLM free - slot 36
ldrDLM exit - slot 36
ldrDLM entry - slot 36 ptda ab99a000
ldrDLM name - slot 36 name H:\OS2\DLL\IBMS332.DLL
tk SD no-init slot=36
ldrDLM free - slot 36
ldrDLM exit - slot 36
ldrDLM entry - slot 36 ptda ab99a000
ldrDLM name - slot 36 name dspres
lpi Processing imports slot=0036, module=H:\OS2\DLL\DSPRES.DLL
ldr walking tree hMTE=036a, name=H:\OS2\DLL\DSPRES.DLL
ldr walking tree going up
lrm, Skipping init hMTE=036a, flags1=2098b388, name=H:\OS2\DLL\DSPRES.DLL
tk SD no-init slot=36
ldrDLM free - slot 36
ldrDLM exit - slot 36
ldrDLM entry - slot 36 ptda ab99a000
ldrDLM name - slot 36 name H:\OS2\DLL\COMETDLL.DLL
lpi Processing imports slot=0036, module=H:\OS2\DLL\COMETDLL.DLL
ldr walking tree hMTE=037e, name=H:\OS2\DLL\COMETDLL.DLL
ldr walking tree going down
ldr walking tree hMTE=0368, name=H:\OS2\DLL\PMGRE.DLL
ldr walking tree going down
ldr walking tree hMTE=0281, name=H:\OS2\DLL\PMMERGE.DLL
ldr walking tree going down
ldr walking tree hMTE=0293, name=H:\OS2\DLL\PMGPI.DLL
ldr walking tree going up
ldr walking tree hMTE=0281, name=H:\OS2\DLL\PMMERGE.DLL
ldr walking tree going down

28 OS/2 Debugging

ldr walking tree hMTE=029a, name=H:\OS2\DLL\PMWIN.DLL
ldr walking tree going up
ldr walking tree hMTE=0281, name=H:\OS2\DLL\PMMERGE.DLL
ldr walking tree going down
ldr walking tree hMTE=029b, name=H:\OS2\DLL\MOUCALLS.DLL
ldr walking tree going up
ldr walking tree hMTE=0281, name=H:\OS2\DLL\PMMERGE.DLL
ldr walking tree going down
ldr walking tree hMTE=01e5, name=H:\OS2\DLL\VIOCALLS.DLL
ldr walking tree going up
ldr walking tree hMTE=0281, name=H:\OS2\DLL\PMMERGE.DLL
ldr walking tree going down
ldr walking tree hMTE=0262, name=H:\OS2\DLL\NLS.DLL
ldr walking tree going up
ldr walking tree hMTE=0281, name=H:\OS2\DLL\PMMERGE.DLL
ldr walking tree going down
ldr walking tree hMTE=029c, name=H:\OS2\DLL\PMSHAPI.DLL
ldr walking tree going up
ldr walking tree hMTE=0281, name=H:\OS2\DLL\PMMERGE.DLL
ldr walking tree going down
ldr walking tree hMTE=0111, name=H:\OS2\DLL\SESMGR.DLL
ldr walking tree going up
ldr walking tree hMTE=0281, name=H:\OS2\DLL\PMMERGE.DLL
ldr walking tree going up
ldr walking tree hMTE=0368, name=H:\OS2\DLL\PMGRE.DLL
ldr walking tree going up
ldr walking tree hMTE=037e, name=H:\OS2\DLL\COMETDLL.DLL
ldr walking tree going down
ldr walking tree hMTE=0104, name=H:\OS2\DLL\MSG.DLL
ldr walking tree going up
ldr walking tree hMTE=037e, name=H:\OS2\DLL\COMETDLL.DLL
ldr walking tree going up
lrm, Recording init hMTE=037e, flags1=e098b396, name=H:\OS2\DLL\COMETDLL.DLL
lrm, Skipping init hMTE=0104, flags1=2098b388, name=H:\OS2\DLL\MSG.DLL
lrm, Skipping init hMTE=0368, flags1=2098b388, name=H:\OS2\DLL\PMGRE.DLL
lrm, Skipping init hMTE=029a, flags1=2098b388, name=H:\OS2\DLL\PMWIN.DLL
tk SD has-init slot=36
tk SD pre-inc slot=36 cnest=1
ldrDLM free - slot 36
ldrDLM exit - slot 36
ldrGP cr2=13b30000 hMTE=37e bno=7

name = H:\OS2\DLL\COMETDLL.DLL
tk LIn slot=36 cnest=1
ldrDLM entry - slot 36 ptda ab99a000
ldrDLM name - slot 36 name PMSPL
tk SD no-init slot=36
ldrDLM free - slot 36
ldrDLM exit - slot 36
ldrGP cr2=13d90000 hMTE=2b8 bno=31

name = H:\OS2\DLL\PMSPL.DLL
ldrGP cr2=13940000 hMTE=2a3 bno=7b

name = H:\OS2\DLL\PMCTLS.DLL
ldrDLM entry - slot 36 ptda ab99a000
ldrDLM name - slot 36 name PMSDMRI
lpi Processing imports slot=0036, module=H:\OS2\DLL\PMSDMRI.DLL
ldr walking tree hMTE=02c6, name=H:\OS2\DLL\PMSDMRI.DLL
ldr walking tree going up
lrm, Skipping init hMTE=02c6, flags1=2098b388, name=H:\OS2\DLL\PMSDMRI.DLL
tk SD no-init slot=36

Chapter 1. Kernel Debugger User Guide 29

ldrDLM free - slot 36
ldrDLM exit - slot 36
ldrGP cr2=13c65000 hMTE=2ad bno=1c

name = H:\OS2\DLL\SOM.DLL
ldrGP cr2=13f60000 hMTE=279 bno=bf

name = H:\OS2\DLL\PMWP.DLL
ldrGP cr2=13f40000 hMTE=279 bno=ba

name = H:\OS2\DLL\PMWP.DLL
ldrGP cr2=13f7d000 hMTE=279 bno=cf

name = H:\OS2\DLL\PMWP.DLL
tk LIn slot=36 cnest=0
ldrGP cr2=47000 hMTE=5e1 bno=38

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=e6000 hMTE=5e1 bno=55

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=54000 hMTE=5e1 bno=45

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=4a000 hMTE=5e1 bno=3b

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=ec000 hMTE=5e1 bno=5b

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=f0000 hMTE=5e1 bno=5f

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=48000 hMTE=5e1 bno=39

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=52000 hMTE=5e1 bno=43

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=e8000 hMTE=5e1 bno=57

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=f8000 hMTE=5e1 bno=67

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=e7000 hMTE=5e1 bno=56

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=f1000 hMTE=5e1 bno=60

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=ee000 hMTE=5e1 bno=5d

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=49000 hMTE=5e1 bno=3a

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=ed000 hMTE=5e1 bno=5c

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=13000 hMTE=5e1 bno=4

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=115000 hMTE=5e1 bno=84

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=32000 hMTE=5e1 bno=23

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=e1000 hMTE=5e1 bno=50

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=33000 hMTE=5e1 bno=24

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=4c000 hMTE=5e1 bno=3d

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=4b000 hMTE=5e1 bno=3c

name = H:\FAXWORKS\FAXWORKS.EXE
ldrDLM entry - slot 36 ptda ab99a000
ldrDLM name - slot 36 name H:\FAXWORKS\FX044.LOL
lpi Processing imports slot=0036, module=H:\FAXWORKS\FX044.LOL
ldr walking tree hMTE=060b, name=H:\FAXWORKS\FX044.LOL

30 OS/2 Debugging

ldr walking tree going up
lrm, Skipping init hMTE=060b, flags1=2098b1c8, name=H:\FAXWORKS\FX044.LOL
ldrDLM free - slot 36
ldrDLM exit - slot 36
ldrDLM entry - slot 36 ptda ab99a000
ldrDLM name - slot 36 name SND
lpi Processing imports slot=0036, module=H:\MMOS2\DLL\SND.DLL
ldr walking tree hMTE=00fe, name=H:\MMOS2\DLL\SND.DLL
ldr walking tree going down
ldr walking tree hMTE=029a, name=H:\OS2\DLL\PMWIN.DLL
ldr walking tree going down
ldr walking tree hMTE=0281, name=H:\OS2\DLL\PMMERGE.DLL
ldr walking tree going down
ldr walking tree hMTE=0293, name=H:\OS2\DLL\PMGPI.DLL
ldr walking tree going up
ldr walking tree hMTE=0281, name=H:\OS2\DLL\PMMERGE.DLL
ldr walking tree going down
ldr walking tree hMTE=029b, name=H:\OS2\DLL\MOUCALLS.DLL
ldr walking tree going up
ldr walking tree hMTE=0281, name=H:\OS2\DLL\PMMERGE.DLL
ldr walking tree going down
ldr walking tree hMTE=01e5, name=H:\OS2\DLL\VIOCALLS.DLL
ldr walking tree going up
ldr walking tree hMTE=0281, name=H:\OS2\DLL\PMMERGE.DLL
ldr walking tree going down
ldr walking tree hMTE=0262, name=H:\OS2\DLL\NLS.DLL
ldr walking tree going up
ldr walking tree hMTE=0281, name=H:\OS2\DLL\PMMERGE.DLL
ldr walking tree going down
ldr walking tree hMTE=029c, name=H:\OS2\DLL\PMSHAPI.DLL
ldr walking tree going up
ldr walking tree hMTE=0281, name=H:\OS2\DLL\PMMERGE.DLL
ldr walking tree going down
ldr walking tree hMTE=0111, name=H:\OS2\DLL\SESMGR.DLL
ldr walking tree going up
ldr walking tree hMTE=0281, name=H:\OS2\DLL\PMMERGE.DLL
ldr walking tree going up
ldr walking tree hMTE=029a, name=H:\OS2\DLL\PMWIN.DLL
ldr walking tree going up
ldr walking tree hMTE=00fe, name=H:\MMOS2\DLL\SND.DLL
ldr walking tree going down
ldr walking tree hMTE=0104, name=H:\OS2\DLL\MSG.DLL
ldr walking tree going up
ldr walking tree hMTE=00fe, name=H:\MMOS2\DLL\SND.DLL
ldr walking tree going up
lrm, Recording init hMTE=00fe, flags1=6098b396, name=H:\MMOS2\DLL\SND.DLL
lrm, Skipping init hMTE=0104, flags1=2098b388, name=H:\OS2\DLL\MSG.DLL
lrm, Skipping init hMTE=029a, flags1=2098b388, name=H:\OS2\DLL\PMWIN.DLL
lrm, Skipping init hMTE=029c, flags1=2098b388, name=H:\OS2\DLL\PMSHAPI.DLL
lrm, Skipping init hMTE=0262, flags1=2098b388, name=H:\OS2\DLL\NLS.DLL
tk SD has-init slot=36
tk SD pre-inc slot=36 cnest=1
ldrDLM free - slot 36
ldrDLM exit - slot 36
ldrGP cr2=13310000 hMTE=fe bno=12

name = H:\MMOS2\DLL\SND.DLL
ldrGP cr2=13311000 hMTE=fe bno=13

name = H:\MMOS2\DLL\SND.DLL
tk LIn slot=36 cnest=1

Chapter 1. Kernel Debugger User Guide 31

ldrDLM entry - slot 36 ptda ab99a000
ldrDLM name - slot 36 name PMCTLS
ldrDLM free - slot 36
ldrDLM exit - slot 36
ldrGP cr2=45000 hMTE=5e1 bno=36

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=4e000 hMTE=5e1 bno=3f

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=178f5000 hMTE=60b bno=6

name = H:\FAXWORKS\FX044.LOL
ldrGP cr2=e2000 hMTE=5e1 bno=51

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=178f6000 hMTE=60b bno=7

name = H:\FAXWORKS\FX044.LOL
ldrGP cr2=178f5000 hMTE=60b bno=6

name = H:\FAXWORKS\FX044.LOL
ldrGP cr2=80000 hMTE=5e1 bno=49

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=3c000 hMTE=5e1 bno=2d

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=39000 hMTE=5e1 bno=2a

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=fc000 hMTE=5e1 bno=6b

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=f9000 hMTE=5e1 bno=68

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=fa000 hMTE=5e1 bno=69

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=e4000 hMTE=5e1 bno=53

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=e5000 hMTE=5e1 bno=54

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=fb000 hMTE=5e1 bno=6a

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=2a000 hMTE=5e1 bno=1b

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=2c000 hMTE=5e1 bno=1d

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=27000 hMTE=5e1 bno=18

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=4d000 hMTE=5e1 bno=3e

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=55000 hMTE=5e1 bno=46

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=e0000 hMTE=5e1 bno=4f

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=10b000 hMTE=5e1 bno=7a

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=10c000 hMTE=5e1 bno=7b

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=f7000 hMTE=5e1 bno=66

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=1f000 hMTE=5e1 bno=10

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=20000 hMTE=5e1 bno=11

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=ef000 hMTE=5e1 bno=5e

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=25000 hMTE=5e1 bno=16

32 OS/2 Debugging

name = H:\FAXWORKS\FAXWORKS.EXE
ldrDLM entry - slot 36 ptda ab99a000
ldrDLM name - slot 36 name H:\FAXWORKS\Fax.adp
lpi Processing imports slot=0036, module=H:\FAXWORKS\FAX.ADP
ldr walking tree hMTE=0618, name=H:\FAXWORKS\FAX.ADP
ldr walking tree going down
ldr walking tree hMTE=029a, name=H:\OS2\DLL\PMWIN.DLL
ldr walking tree going down
ldr walking tree hMTE=0281, name=H:\OS2\DLL\PMMERGE.DLL
ldr walking tree going down
ldr walking tree hMTE=0293, name=H:\OS2\DLL\PMGPI.DLL
ldr walking tree going up
ldr walking tree hMTE=0281, name=H:\OS2\DLL\PMMERGE.DLL
ldr walking tree going down
ldr walking tree hMTE=029b, name=H:\OS2\DLL\MOUCALLS.DLL
ldr walking tree going up
ldr walking tree hMTE=0281, name=H:\OS2\DLL\PMMERGE.DLL
ldr walking tree going down
ldr walking tree hMTE=01e5, name=H:\OS2\DLL\VIOCALLS.DLL
ldr walking tree going up
ldr walking tree hMTE=0281, name=H:\OS2\DLL\PMMERGE.DLL
ldr walking tree going down
ldr walking tree hMTE=0262, name=H:\OS2\DLL\NLS.DLL
ldr walking tree going up
ldr walking tree hMTE=0281, name=H:\OS2\DLL\PMMERGE.DLL
ldr walking tree going down
ldr walking tree hMTE=029c, name=H:\OS2\DLL\PMSHAPI.DLL
ldr walking tree going up
ldr walking tree hMTE=0281, name=H:\OS2\DLL\PMMERGE.DLL
ldr walking tree going down
ldr walking tree hMTE=0111, name=H:\OS2\DLL\SESMGR.DLL
ldr walking tree going up
ldr walking tree hMTE=0281, name=H:\OS2\DLL\PMMERGE.DLL
ldr walking tree going up
ldr walking tree hMTE=029a, name=H:\OS2\DLL\PMWIN.DLL
ldr walking tree going up
ldr walking tree hMTE=0618, name=H:\FAXWORKS\FAX.ADP
ldr walking tree going down
ldr walking tree hMTE=0104, name=H:\OS2\DLL\MSG.DLL
ldr walking tree going up
ldr walking tree hMTE=0618, name=H:\FAXWORKS\FAX.ADP
ldr walking tree going up
lrm, Recording init hMTE=0618, flags1=6090b1c6, name=H:\FAXWORKS\FAX.ADP
lrm, Skipping init hMTE=0104, flags1=2098b388, name=H:\OS2\DLL\MSG.DLL
lrm, Skipping init hMTE=029a, flags1=2098b388, name=H:\OS2\DLL\PMWIN.DLL
lrm, Skipping init hMTE=029c, flags1=2098b388, name=H:\OS2\DLL\PMSHAPI.DLL
lrm, Skipping init hMTE=0262, flags1=2098b388, name=H:\OS2\DLL\NLS.DLL
tk SD has-init slot=36
tk SD pre-inc slot=36 cnest=1
ldrDLM free - slot 36
ldrDLM exit - slot 36
ldrGP cr2=178de000 hMTE=618 bno=f

name = H:\FAXWORKS\FAX.ADP
ldrGP cr2=178df000 hMTE=618 bno=10

name = H:\FAXWORKS\FAX.ADP
ldrGP cr2=10e72000 hMTE=618 bno=1c

name = H:\FAXWORKS\FAX.ADP
ldrGP cr2=178e6000 hMTE=618 bno=17

Chapter 1. Kernel Debugger User Guide 33

name = H:\FAXWORKS\FAX.ADP
ldrGP cr2=178e0000 hMTE=618 bno=11

name = H:\FAXWORKS\FAX.ADP
ldrGP cr2=10e73000 hMTE=618 bno=1d

name = H:\FAXWORKS\FAX.ADP
ldrGP cr2=10e74000 hMTE=618 bno=1e

name = H:\FAXWORKS\FAX.ADP
ldrGP cr2=178e5000 hMTE=618 bno=16

name = H:\FAXWORKS\FAX.ADP
tk LIn slot=36 cnest=1
ldrGP cr2=178d1000 hMTE=618 bno=2

name = H:\FAXWORKS\FAX.ADP
ldrGP cr2=13e51000 hMTE=281 bno=118

name = H:\OS2\DLL\PMMERGE.DLL
ldrGP cr2=178db000 hMTE=618 bno=c

name = H:\FAXWORKS\FAX.ADP
ldrGP cr2=10e70000 hMTE=618 bno=1a

name = H:\FAXWORKS\FAX.ADP
ldrGP cr2=114000 hMTE=5e1 bno=83

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=26000 hMTE=5e1 bno=17

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=14000 hMTE=5e1 bno=5

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=13f7e000 hMTE=279 bno=d0

name = H:\OS2\DLL\PMWP.DLL
ldrDLM entry - slot 36 ptda ab99a000
ldrDLM name - slot 36 name COMETDLL
ldrDLM free - slot 36
ldrDLM exit - slot 36
ldrGP cr2=178c2000 hMTE=5e1 bno=91

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=178c0000 hMTE=5e1 bno=86

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=11000 hMTE=5e1 bno=2

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=3b000 hMTE=5e1 bno=2c

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=178c6000 hMTE=60b bno=7

name = H:\FAXWORKS\FX044.LOL
ldrGP cr2=178c7000 hMTE=60b bno=8

name = H:\FAXWORKS\FX044.LOL
ldrGP cr2=178c0000 hMTE=60b bno=1

name = H:\FAXWORKS\FX044.LOL
ldrGP cr2=178c0000 hMTE=60b bno=1

name = H:\FAXWORKS\FX044.LOL
ldrGP cr2=178c0000 hMTE=60b bno=1

name = H:\FAXWORKS\FX044.LOL
ldrGP cr2=178c0000 hMTE=5e1 bno=86

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=178c1000 hMTE=5e1 bno=87

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=178c1000 hMTE=5e1 bno=87

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=178c1000 hMTE=5e1 bno=87

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=f6000 hMTE=5e1 bno=65

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=178c1000 hMTE=5e1 bno=87

34 OS/2 Debugging

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=178c1000 hMTE=5e1 bno=87

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=178c1000 hMTE=5e1 bno=87

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=178c2000 hMTE=5e1 bno=88

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=178c6000 hMTE=60b bno=7

name = H:\FAXWORKS\FX044.LOL
ldrGP cr2=178c7000 hMTE=60b bno=8

name = H:\FAXWORKS\FX044.LOL
ldrGP cr2=13c80000 hMTE=419 bno=34

name = H:\OS2\DLL\HELPMGR.DLL
ldrDLM entry - slot 36 ptda ab99a000
ldrDLM name - slot 36 name HPMGRMRI
lpi Processing imports slot=0036, module=H:\OS2\DLL\HPMGRMRI.DLL
ldr walking tree hMTE=062a, name=H:\OS2\DLL\HPMGRMRI.DLL
ldr walking tree going up
lrm, Skipping init hMTE=062a, flags1=2098b18a, name=H:\OS2\DLL\HPMGRMRI.DLL
ldrDLM free - slot 36
ldrDLM exit - slot 36
ldrGP cr2=178c7000 hMTE=62a bno=8

name = H:\OS2\DLL\HPMGRMRI.DLL
ldrGP cr2=10000 hMTE=5e1 bno=1

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=113000 hMTE=5e1 bno=82

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=21000 hMTE=5e1 bno=12

name = H:\FAXWORKS\FAXWORKS.EXE
ldrDLM entry - slot 36 ptda ab99a000
ldrDLM name - slot 36 name H:\OS2\DLL\HELV.FON
lpi Processing imports slot=0036, module=H:\OS2\DLL\HELV.FON
ldr walking tree hMTE=035e, name=H:\OS2\DLL\HELV.FON
ldr walking tree going up
lrm, Skipping init hMTE=035e, flags1=2098b3c8, name=H:\OS2\DLL\HELV.FON
ldrDLM free - slot 36
ldrDLM exit - slot 36
ldrGP cr2=28000 hMTE=5e1 bno=19

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=178c2000 hMTE=60b bno=3

name = H:\FAXWORKS\FX044.LOL
ldrGP cr2=42000 hMTE=5e1 bno=33

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=44000 hMTE=5e1 bno=35

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=41000 hMTE=5e1 bno=32

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=178c0000 hMTE=60b bno=1

name = H:\FAXWORKS\FX044.LOL
ldrGP cr2=178c6000 hMTE=60b bno=7

name = H:\FAXWORKS\FX044.LOL
ldrGP cr2=178c7000 hMTE=60b bno=8

name = H:\FAXWORKS\FX044.LOL
ldrGP cr2=43000 hMTE=5e1 bno=34

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=40000 hMTE=5e1 bno=31

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=29000 hMTE=5e1 bno=1a

Chapter 1. Kernel Debugger User Guide 35

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=53000 hMTE=5e1 bno=44

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=3d000 hMTE=5e1 bno=2e

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=112000 hMTE=5e1 bno=81

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=12000 hMTE=5e1 bno=3

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=178c2000 hMTE=5e1 bno=91

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=178c2000 hMTE=5e1 bno=91

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=178c0000 hMTE=5e1 bno=8f

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=178c0000 hMTE=5e1 bno=8f

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=178c0000 hMTE=5e1 bno=8f

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=178c0000 hMTE=5e1 bno=8f

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=178c0000 hMTE=5e1 bno=8f

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=178c0000 hMTE=5e1 bno=8f

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=178c0000 hMTE=5e1 bno=8f

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=178c1000 hMTE=5e1 bno=90

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=178c2000 hMTE=5e1 bno=91

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=178c1000 hMTE=5e1 bno=90

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=178c1000 hMTE=5e1 bno=90

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=178c1000 hMTE=5e1 bno=90

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=178c1000 hMTE=5e1 bno=90

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=178c1000 hMTE=5e1 bno=90

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=178c1000 hMTE=5e1 bno=90

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=178c1000 hMTE=5e1 bno=90

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=178c1000 hMTE=5e1 bno=90

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=178c2000 hMTE=5e1 bno=91

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=178c2000 hMTE=5e1 bno=91

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=178c6000 hMTE=60b bno=7

name = H:\FAXWORKS\FX044.LOL
ldrGP cr2=178c6000 hMTE=60b bno=7

name = H:\FAXWORKS\FX044.LOL
ldrGP cr2=22000 hMTE=5e1 bno=13

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=24000 hMTE=5e1 bno=15

36 OS/2 Debugging

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=37000 hMTE=5e1 bno=28

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=23000 hMTE=5e1 bno=14

name = H:\FAXWORKS\FAXWORKS.EXE
ldrGP cr2=13e52000 hMTE=281 bno=119

name = H:\OS2\DLL\PMMERGE.DLL
ldrGP cr2=13e53000 hMTE=281 bno=11a

name = H:\OS2\DLL\PMMERGE.DLL
ldrGP cr2=13e54000 hMTE=281 bno=11b

name = H:\OS2\DLL\PMMERGE.DLL

The following shows the loader sequence when FAXWORKS.EXE is terminated:

ldrGP cr2=178c6000 hMTE=60b bno=7
name = H:\FAXWORKS\FX044.LOL

ldrGP cr2=178c7000 hMTE=60b bno=8
name = H:\FAXWORKS\FX044.LOL

ldrGP cr2=178c6000 hMTE=60b bno=7
name = H:\FAXWORKS\FX044.LOL

ldrGP cr2=178c6000 hMTE=60b bno=7
name = H:\FAXWORKS\FX044.LOL

ldrGP cr2=50000 hMTE=5e1 bno=41
name = H:\FAXWORKS\FAXWORKS.EXE

ldrGP cr2=178e4000 hMTE=618 bno=15
name = H:\FAXWORKS\FAX.ADP

1.4.5 DosDebug Logging Facility
The kernel worker routines for the DosDebug API implement a number of logging
functions for use in debugging errors in DosDebug itself. These are activated by
setting bits in the double-word at symbol: _DBGbugbug.

The following flags bits are defined:

0x01000000
Display input to DosDebug

0x02000000
Display output from DosDebug

0x00000010
Display exceptions in DosDebug processing

0x10000000
Display execution flow in debugger processing

0x20000000
Display execution flow in debugger processing

0x40000000
Display execution flow in watchpoint and debug register processing

Chapter 1. Kernel Debugger User Guide 37

1.4.6 DosPTrace Logging Facility
The kernel worker routines for the DosPTrace API implement a number of
logging functions for use in debugging errors in DosPTrace itself. These are
activated by setting bits in the doubleword at symbol: _PTbugbug.

Note: DosPTrace internally thunks to DosDebug therefore DosDebug Logging
Facility may be a useful diagnostic aid with DosPTrace.

The following flags bits are defined:

0x01000000
Display output buffer setup passed to user

0x02000000
Display input buffer setup passed from user

0x04000000
Display conversion routine flow

0x08000000
Display alias conversion routine flow

0x10000000
Display input and output return codes only

0x20000000
Display processing of notifications from DosDebug

0x00000001
Display floating point information

1.5 Kernel Debugger Breakpoints
The breakpoint command set of the Kernel Debugger provides a mechanism for
intercepting the execution of code through a particular path. For debugging
application programs, breakpoints are generally required within the application
itself or on call to or return from one or more system APIs.

Each system API results either in a call to a system DLL or to the Kernel through
a Call Gate. The name of a system interface that is called when an application
uses an API is either identical to the API name or may be determined from one
of the following conventions:

DosI name Kernel Call Gate name corresponding to API Dosname.

Dos32name DOSCALL1 32-bit entry point corresponding to API Dosname.

Dos16name DOSCALL1 16-bit entry point corresponding to API Dosname .

Other system DLLs such as PMWIN.DLL, PMMERGE.DLL, etc. adopt similar
conventions, for example, API WinCreateWindow calls Win32CreateWindow in
PMMERGE.DLL.

In nearly all cases the system entry points have corresponding system trace
points with the entry point name prefixed with either pre or post. So the System
Tracepoints Reference (Volume 4) provides a comprehensive source for for
deriving API related breakpoints.

38 OS/2 Debugging

Physical Device Driver helper routines pass through a common router, then to
specific worker routines. Worker entry point names generally adhere to the
following convention:

DosHlp _name worker routine dh_name.

Virtual Device Driver helper routines have entry points in the kernel with
identical names (folded to uppercase) to the helper name.

File system driver and mini-file system driver helper routines have entry points
in the kernel with identical names to the helper name.

In addition to API and driver helper related breakpoints, the following system
labels may also prove useful when intercepting errors or program initiation:

_tkSchedNext
This routine is called when a new thread is selected for scheduling. The
out-going thread slot number is recorded in variable Tasknumber.

_tkSchedNext exits from one of two points:

SchedNextRet A new thread slot is selected.

SchedNextRet2 The same thread slot is selected.

These labels maybe used to obtain a trace of dispatching activity. This is
particularly useful when trying to establish the scope of hang conditions.

The following example illustrates how to obtain a trace of dispatched tasks
using this breakpoint.

##bp _tkschednext,″ .p #;g″
##g
Slot Pid Ppid Csid Ord Sta Pri pTSD pPTDA pTCB Disp SG Name
*0033# 0019 0000 0019 0001 blk 081e 7b98c000 7bb4b288 7bb2d394 1bf8 10 wkstahlp
Slot Pid Ppid Csid Ord Sta Pri pTSD pPTDA pTCB Disp SG Name
*0034# 0018 0000 0018 0002 run 021f 7b98e000 7bb4aa5c 7bb2d548 1ea8 10 wksta
Slot Pid Ppid Csid Ord Sta Pri pTSD pPTDA pTCB Disp SG Name
*0008# 0006 0001 0006 0001 blk 0500 7b936000 7bb460d0 7bb28a58 1eb8 01 pmshell
Slot Pid Ppid Csid Ord Sta Pri pTSD pPTDA pTCB Disp SG Name
*0034# 0018 0000 0018 0002 blk 021f 7b98e000 7bb4aa5c 7bb2d548 1f00 10 wksta
Slot Pid Ppid Csid Ord Sta Pri pTSD pPTDA pTCB Disp SG Name
*0038# 0018 0000 0018 0003 blk 0200 7b996000 7bb4aa5c 7bb2dc18 1eb8 10 wksta
Slot Pid Ppid Csid Ord Sta Pri pTSD pPTDA pTCB Disp SG Name
*0008# 0006 0001 0006 0001 blk 0500 7b936000 7bb460d0 7bb28a58 1eb8 01 pmshell
Slot Pid Ppid Csid Ord Sta Pri pTSD pPTDA pTCB Disp SG Name
*000b# 0004 0000 0004 0001 blk 080b 7b93c000 7bb45078 7bb28f74 1cf0 00 landll
Slot Pid Ppid Csid Ord Sta Pri pTSD pPTDA pTCB Disp SG Name
*0008# 0006 0001 0006 0001 blk 0500 7b936000 7bb460d0 7bb28a58 1eb8 01 pmshell
Slot Pid Ppid Csid Ord Sta Pri pTSD pPTDA pTCB Disp SG Name
*0008# 0006 0001 0006 0001 blk 0500 7b936000 7bb460d0 7bb28a58 1eb8 01 pmshell
Slot Pid Ppid Csid Ord Sta Pri pTSD pPTDA pTCB Disp SG Name
*0008# 0006 0001 0006 0001 blk 0500 7b936000 7bb460d0 7bb28a58 1eb8 01 pmshell
Slot Pid Ppid Csid Ord Sta Pri pTSD pPTDA pTCB Disp SG Name
*0008# 0006 0001 0006 0001 blk 0500 7b936000 7bb460d0 7bb28a58 1eb8 01 pmshell
Slot Pid Ppid Csid Ord Sta Pri pTSD pPTDA pTCB Disp SG Name
*0008# 0006 0001 0006 0001 blk 0500 7b936000 7bb460d0 7bb28a58 1eb8 01 pmshell
Slot Pid Ppid Csid Ord Sta Pri pTSD pPTDA pTCB Disp SG Name
*0008# 0006 0001 0006 0001 blk 0500 7b936000 7bb460d0 7bb28a58 1eb8 01 pmshell

Note: The status is blocked since _tkSchedNext has been called because
the current thread is giving up its time-slice.

Chapter 1. Kernel Debugger User Guide 39

DosLibIDisp
This API is called to initiate DLL initialization whenever a new module is
loaded into memory. Since this is called for every .EXE at load time, in the
context of the new process and thread, it provides an excellent breakpoint
for intercepting the loading of a new module in a new process.

When DosLibIDisp receives control MTE and SMTE have been created and
the program module has been loaded. From the SMTE we can determine
the entry point of the new module and thus set a breakpoint on this address.

The following example illustrates how to set a breakpoint on entry to a new
module.

>> Add breakpoint at DosLibIDisp, then start CMD.EXE

##bp doslibDisp
##g
eax=00000000 ebx=000029f4 ecx=00000010 edx=00000014 esi=00000bc8 edi=00000c0a
eip=00000294 esp=0000773c ebp=00007752 iopl=2 -- -- -- nv up ei pl nz na po nc
cs=ffd7 ss=001f ds=ffa7 es=ffaf fs=150b gs=0000 cr2=1fc70490 cr3=001d0000
doscall1:CODE16_GROUP:DOSLIBIDISP:
ffd7:00000294 b80100 mov ax,0001 ;br0

##.p#
Slot Pid Ppid Csid Ord Sta Pri pTSD pPTDA pTCB Disp SG Name
*0044# 002c 0006 002c 0001 run 0400 7b9ae000 7bb4fc14 7bb2f088 1f48 19 cmd

>> The hmte for the current process is found in the PTDA at
>> ptda_module

##dw ptda_module l1
0030:0000ffaa 03a1

##.lmo 3a1
hmte=03a1 pmte=%fe97ebe4 mflags=84903152 c:\os2\cmd.exe
obj vsize vbase flags ipagemap cpagemap hob sel
0001 0000c6a8 00010000 80001025 00000001 0000000d 03a0 000f r-x shr alias
0002 00007efa 00020000 80001025 0000000e 00000008 03a2 0017 r-x shr alias
0003 00009730 00030000 80001043 00000016 00000002 0000 001f rw- prel alias

>> Now dump the MTE and SMTE, whose address is at MTE+0x4

##dd %fe97ebe4 l8
%fe97ebe4 03a10002 fd4341d0 fe97ec1c fe9a143c
%fe97ebf4 84903152 00000007 00060050 fe908e74

##dd %fd4341d0
%fd4341d0 00000017 00000002 000044fa 00000003
%fd4341e0 00007790 00000009 000005d9 fd434261
%fd4341f0 00000003 fd4342a9 00000a00 00000000
%fd434200 00000000 fd434361 fd434368 fd434369
%fd434210 fd4343c9 fd4348f1 fd434924 00000a00
%fd434220 00000000 00000000 00000003 00000000
%fd434230 00000000 00001fa0 fd434252 00000000
%fd434240 00000000 00003f40 00000000 0000000e

40 OS/2 Debugging

>> SMTE+0x4 is the entry point object number
>> SMTE+0x8 is the entry point offset offset
>> For CMD.EXE this is 2:44fa
>> Since object 2 starts at %20000, we can define a breakpoint on
>> entry to CMD.EXE at %20000+44fa

##bp %00020000 +44fa

##bl
0 e ffd7:00000294 [DOSLIBIDISP]
1 e %000244fa [__astart]

>> Disable BP 0 since DosLibIDisp is called for every DLL that will be
>> initialised in the new process.

##bd 0
##g
eax=00000027 ebx=00000491 ecx=00009730 edx=0000f834 esi=00001fa0 edi=000003a1
eip=000044fa esp=00007790 ebp=00000000 iopl=2 -- -- -- nv up ei pl nz na po nc
cs=0017 ss=001f ds=001f es=0000 fs=150b gs=0000 cr2=00063ffe cr3=001d0000
cmd:_TEXT3:__astart:
0017:000044fa fc cld ;br2

VMLockMem
This breakpoint is on entry to the memory locking subroutine of Virtual
Memory Management. It may be used in conjunction with the VM Lock
Trace.

_XCPTBuildR3DispatcherStack
This routine is called whenever a process fatal exception is generated,
regardless of whether exception handlers are registered. It therefore makes
a stronger method than VSF * for intercepting fatal user exceptions.

Exception management and how to intercept exceptions is discussed in more
detail in the Trap and Exception Processing section.

_xcptR3ExceptionDispatcher
Whenever an exception (that is not fatal to the system), the Ring 3 Exception
Dispatcher is called to dispatch registered exceptions. It does this by
locating exception registration records from the TIB at +0x0. :1i.Thread
Information Block

On entry to the Ring 3 Exception Dispatcher, ESP+0x4 and EXP+0x8 point
to the exception report record and exception context record, respectively.

The exception report record contains the exception number, and exception
address.

The exception context record contains all register values at the time of
exception.

The layout for both these records is given in the BSEXCPT.H header file of
the OS/2 Programmer′s Toolkit.

Most exceptions are generated from a hardware detected exception such as
a trap. These are readily intercepted by using the Kernel Debugger VSF
command. Exceptions may also be generated by the DosRaiseException
API. Whatever the source all exceptions will eventually result in a call to
_xcptrR3ExceptionDispatcher. This makes this label an excellent breakpoint

Chapter 1. Kernel Debugger User Guide 41

for intercepting and filtering any exception that will drive a user′s exception
handler.

The following example illustrates the use of this breakpoint, where the
system generates a C0000005 exception following a Trap E in an application
program.

>> Beak on entry to the Ring 3 Exception Handler Dispatcher
##bp _xcptr3exceptiondispatcher

>> Intercept all fatal exceptions
##vsf *
##g
Symbols linked (trape)
Trap 14 (0EH) - Page Fault 0004, Not Present, Read Access, User Mode
eax=00000000 ebx=00000000 ecx=0002059c edx=000a0000 esi=00000000 edi=00000000
eip=0001011c esp=00022e6c ebp=00022e74 iopl=2 rf -- -- nv up ei pl nz ac pe nc
cs=005b ss=0053 ds=0053 es=0053 fs=150b gs=0000 cr2=00000000 cr3=001d0000
005b:0001011c 8b00 mov eax,dword ptr [eax] ds:00000000=invalid

>> A fatal exception has been intercepted at %1011c
>> Now GT and see the exception dispatcher called.

##gt
eax=00022d18 ebx=00000000 ecx=0002059c edx=000a0000 esi=00000000 edi=00000000
eip=1ff9c8d8 esp=00022bf0 ebp=00022d04 iopl=2 -- -- -- nv up ei pl zr na pe nc
cs=005b ss=0053 ds=0053 es=0053 fs=150b gs=0000 cr2=00000000 cr3=001d0000
doscall1:FLAT32:_xcptR3ExceptionDispatcher:
005b:1ff9c8d8 55 push ebp ;br0

>> %ESP+4 points to the exception report record
>> %ESP+8 points to the exception context record

##dd %esp
%00022bf0 1ff9c7e9 00022d18 00022d3c 00000000
%00022c00 00000000 2c1a0002 154b0000 00100000
%00022c10 00010002 00000000 032b0000 ffa72212
%00022c20 0058ffaf 2c520066 154b0000 033e0002
%00022c30 52110000 ff9f3130 00000000 00172c52
%00022c40 e91f0000 e9270116 ffa70066 3029ffa7
%00022c50 0008ffa7 e9170000 00570000 00000019
%00022c60 00008000 00000000 00f80000 80000000

>> The exception report record contains the exception code at
>> offset +0x0 (in this case C0000005).
>> At offset +0xc is the address at which the exception occurred.
>> This agrees with the address seen after VSF intercepted the fatal
>> exception.

##dd %00022d18
%00022d18 c0000005 00000000 00000000 0001011c
%00022d28 00000002 00000001 00000000 7bb4fc94
%00022d38 ffdf9264 00000007 0000699c fff5416b
%00022d48 00000433 ffdf9264 7b9afe0c ffdf6378
%00022d58 00000433 000069bc fff54ef2 ffdf9264
%00022d68 ff1f5a50 fe86106c 00000000 fed022d0
%00022d78 00000000 00006a04 fff6d8d9 00000053
%00022d88 00000000 7b9afe3c ff1f5a50 7cf8014c

42 OS/2 Debugging

>> The context record contains the registers at time of exception.
>> Note the cs:eip at +0xa0 and +0x9c. Also the ss:esp at +0xbc abd
>> +0xb8 and ebp at +0x98.

##dd %00022d3c
%00022d3c 00000007 0000699c fff5416b 00000433
%00022d4c ffdf9264 7b9afe0c ffdf6378 00000433
%00022d5c 000069bc fff54ef2 ffdf9264 ff1f5a50
%00022d6c fe86106c 00000000 fed022d0 00000000
%00022d7c 00006a04 fff6d8d9 00000053 00000000
%00022d8c 7b9afe3c ff1f5a50 7cf8014c 7cf80088
%00022d9c 00000001 7cf80088 00000001 7bb2fdb2
%00022dac 00000000 0000150b 00000053 00000053
##d
%00022dbc 00000000 00000000 00000000 00000000
%00022dcc 0002059c 000a0000 00022e74 0001011c
%00022ddc 0000005b 00012216 00022e6c 00000053
%00022dec 00060210 00000000 00000000 000205fc
%00022dfc 000205fc 00020a40 00000000 00000000
%00022e0c 00000000 00000000 00000000 000a0000
%00022e1c 00002000 00000000 00090000 00022e50
%00022e2c 00011fa8 000205fc 00090000 00000000

Dos32Exit and DosR3ExitAddr
Both these labels provide good breakpoints to catch an application
terminating normally.

Dos32Exit is the entry point for the DosExit API.

DosR3ExitAddr is the entry point in DOSCALL1.DLL, called when an
application issues the return statement to return to the system.

Win32SetErrorInfo
This API is called by PM whenever it needs to record a PM error. When this
is used as a breakpoint, the doubleword at %esp+0x4 contains the PM error
code about to be recorded.

NWDHandler
This symbol is the entry point to the Trap 2 interrupt handler. The IDT entry
for Trap 2 contains a Task Gate that points to NWDHandler. When
NWDHandler receives control the Task Register will contain the selector for
the current TSS. The link field of the current TSS will contain the previous
value of the TR, where the processor saved the current registers when the
interrupt occurred.

Frequently NMI interrupts are associated with disabled code and obscure
hardware or software problems. If can be useful on these occasions to set
up a KDB.INI file with the following commands to display information when
the trap 2 occurs. This is particularly advantageous when dealing with NMI
interrupts caused by the NMI Watch Dog timer firing.

bp nwdhandler,″? ′curr tss′ ; dt tr:0;? ′ prev tss′ ; dt #(wo(tr:0)):0″

Note: When the first NMI occurs, the following would be displayed:

Chapter 1. Kernel Debugger User Guide 43

curr tss

eax=00000000 ebx=00000000 ecx=00000000 edx=00000000 esi=00000000 edi=00000000
eip=fff4074c esp=00000400 ebp=00000000 iopl=0 -- -- -- nv up di pl nz na po nc
cs=0170 ss=1ea0 ds=0168 es=0168 fs=0000 gs=0000 cr3=001dd000
ss0=0000 esp0=00000000 ss1=0000 esp1=00000000 ss2=0000 esp2=00000000
ldtr=0000 link=0010 tflags=0000 i/o map=ffff
ports trapped: 0-ffff
prev tss

eax=000002ff ebx=139b0000 ecx=00000400 edx=00009ae8 esi=139b993c edi=139d0400
eip=1b7228fe esp=0006eeaa ebp=0006eee0 iopl=2 -- -- -- nv up ei pl nz na po nc
cs=005a ss=004a ds=0053 es=0053 fs=150b gs=0000 cr3=001dd000
ss0=0030 esp0=00006d80 ss1=0000 esp1=00000000 ss2=0036 esp2=0000f000
ldtr=0028 link=0000 tflags=0000 i/o map=dfff
ports trapped: 0-ffff
##

The register values when the NMI occurred are displayed under the label
prev tss.

After NWDHandler has processed the NMI, the NMI TSS is edited and the
entry point on subsequent NMI is approximately NWDHandler+25. This
may be used as an indication that an NMI has previously occurred.

1.6 Trap and Exception Processing
The fine detail of exception management by OS/2 is complex. However the
principles are easy to grasp. This section gives an overview of OS/2 exception
management sufficient to provide the reader with a technique for intercepting
exceptions in user code under the Kernel Debugger.

Exception Definition

Exceptions may be summarized as follows:

• Exceptions refer either to:

Hardware Traps and Faults - INTEL defined.

Software generated exceptions - OS/2 and user defined.

• Each hardware exception has an associated vector, which the processor
uses to index the IDT to give control to the appropriate system exception
handler.

• OS/2 converts traps and faults to software exceptions. For example, Traps
0xd and 0xe are converted to exception 0xc0000005.

• Software exceptions are generated from three sources:

 1. Converted hardware Traps and Faults.

 2. Software signals.

 3. Software exceptions from DosRaiseException

• Exceptions occur for both normal and abnormal reasons. In the normal case
additional processing is required to be executed in a manner transparent to
the main line code. Examples of this are:

Page Fault exceptions.

44 OS/2 Debugging

Trap 1 and 3 for system trace

387 co-processor emulation

VDM privileged instruction emulation

In the abnormal case, an error condition has been detected. If the error
cannot be corrected then either a process or the system dies depending on
whether the error can be isolated to a particular process. Usually traps and
faults in ring 0 code result in system termination. Bad parameters passed in
system APIs may cause the kernel to trap. The system recovers by directing
an exception 0xc0000005 to a process. Unless the process can handle this
exception, it dies.

• Full details of OS/2 defined exceptions are given in OS/2 System Exception
Codes.

Exception Logic

The essential logic for exception handling is as follows:

• If the processor generates a hardware exception then control is given to the
first level exception handler pointed to by the IDT descriptor that
corresponds to the hardware exception vector.

• If the Kernel Debugger Vector Commands have been specified without the
fatal flag then first level exception handlers have been replaced by the
Kernel Debugger routines. These may give control to the debugging console
or enter the normal system handlers if interception criteria are not satisfied.

• The non-debugger first level routines perform any specific processing for the
current exception, for example processing single step and breakpoint traps.

• If full recovery is possible then the first level routines exit with an IRET
instruction.

• In most cases control passes from the first level trap handlers to
TrapCommonFaultEntry. This performs common processing for all hardware
exceptions. If recovery is possible, for example by satisfying a page fault or
making a segment present, then this is done and control returned to the
interrupted code.

If recovery is not directly possible or further special processing is required
then control passes to one of the following second level exception handlers:

V8086 emulation for instruction emulation.

VDM exception handler to reflect non-fatal exceptions back to the VDM
using its IDT.

Process fatal fault handler (_TRAPProcessFatalFault) for non-kernel mode
code (InDos=0).

Kernel fault handler for kernel code (InDos=1)

Special handlers for co-processor handling, NMIs etc..

• The kernel fault handler checks for the presence of a local fault handler by
inspecting TSDpfnFault. If this is non-zero then passes control to the local
fault handler, otherwise it passes to the system fatal fault handler
(SystemFatalFault).

• Ths system fatal fault handler will enter the Kernel Debugger (if in a
non-RETAIL kernel), otherwise it will call and device drivers that have
registered for notification of fatal system faults, then exit to the panic routine

Chapter 1. Kernel Debugger User Guide 45

with a formatted message - usually the IPE trap screen. Once in panic the
system will not dispatch any more threads. If TRAPDUMP or REIPL are
specified then these are acted on otherwise the system waits to be
re-booted.

• The process fatal fault handler will check for fatal fault interception by the
Kernel Debugger and enter the kernel debugger if interception criteria are
satisfied. Otherwise DelayHardErr is called to build the trap screen and
wake the hard error process. Control then passes to the
_XCPTBuildR3DispatcherStack.

• _XCPTBuildR3DispatcherStack is responsible for massaging the users stack
so that when the kernel exits, control returns to the exception dispatcher
(_xcptr3ExceptionDispatcher in DOSCALL1.DLL). If no exception registration
records exist for the current thread then the thread enters termination and
the exception dispatcher is not called.

• The exception dispatcher runs the chain of exception registration records,
anchored from the TIB of the current thread. Each registered user exception
handler is called in turn (via an intermediate routine,
_xcptExecuteUserExceptionHandler). The return code passed back by the
exception handle is examined. If it specifies XCPT_CONTINUE_EXECUTION
then control returns to the kernel via Dos32ExceptionCallBack, whereupon
the thread′s stack is prepared for returning to the interrupted program. If
XCPT_CONTINUE_SEARCH is specified then the next exception handler in the
chain is dispatched. When the last exception handler has been dispatched
(and all have returned XCPT_CONTINUE_SEARCH) then control passes to the
kernel via Dos32ExceptionCallBack and the thread is terminated.

• Local Fault Handlers are exception handlers registered by kernel routines.
Typically one is registered on entry to the kernel by an API call, and
de-registered on exit. If a local fault handler cannot resolve the fault then it
will call panic if a serious system fault has occurred, or
_XCPTBuildR3DispatcherStack if user code is at fault. For example, when a
bad parameter supplied to an API by an application program causes the
kernel to Trap.

• Unlike user exception handlers, local exception handlers are not allowed to
recurse and at most, only one can be registered. When the system calls a
local exception handler, TSDpfnFault is zeroed, thereby de-registering it.
Local exception handlers are always deregistered on exiting the kernel.

• The DosRaiseException API is called to create a user exception. This passes
control to _XCPTBuildR3ExceptionDispatcher and normal user exception
processing follows.

These details are summarized in the following diagrams:

1.6.1, “Exception Registration Records” on page 47.

1.6.2, “OS/2 Exception Exception Management - Overview” on page 48.

1.6.3, “Exception Handler Stack Frames” on page 49.

46 OS/2 Debugging

1.6.1 Exception Registration Records

Chapter 1. Kernel Debugger User Guide 47

1.6.2 OS/2 Exception Exception Management - Overview

48 OS/2 Debugging

1.6.3 Exception Handler Stack Frames

Chapter 1. Kernel Debugger User Guide 49

1.6.4 Intercepting Exceptions and Traps
The following list provides guidelines for intercepting Traps and exceptions
under the Kernel Debugger for various circumstances:

Fatal exceptions occurring in application ring 2/3 code.
BP _XCPTBuildR3DispatcherStack will trap every software and hardware
exception. The breakpoint is in the kernel, so use .R to display the registers
at the time of the exception. This break-point works regardless of whether
exception handlers are registered.

Note: If the exception is generated through use of an API (bad parameter or
DosRaiseException) then the CS:EIP will point after the call gate
instruction.

Fatal hardware traps and faults in application ring 2/3 code.
VSF * will intercept all such exceptions at the point of the exception.

Fatal hardware traps and faults in ring 0 code.
VTF * will intercept all such exceptions at the point of the exception,
providing no Local Fault Handler has been registered.

All ring 0-3 traps and faults.
VT * will intercept them all.

All application ring 2/3 code traps and faults.
VS * will intercept them all.

Exceptions in application ring 2/3 code that will drive exception handlers.
BP _xcptr3ExceptionDispatcher will be intercepted if any are registered, but
this will be called once to process the entire chain.

Each User Exception Handler.
BP _xcptExecuteUserExceptionHandler will be called to dispatch each
exception handler. Alternatively use the registration records from the TIB to
locate the entry point of a given exception handler.

Note: User exception handlers can be disabled under the Kernel Debugger by
locating the TIB, then storing 0xffffffff at offset 0x0, which is the pointer to
the exception registration record chain. The chain is terminated by
0xffffffff and can be re-worked manually for debugging purposes - provided
that the system is not already processing an exception for this thread.

2 Throughout this chapter the term debugger . is used loosely to mean any of the following where ambiguity is not a problem:

Debug Kernel (HSTRICT or ALLSTRICT).

The debugger component within the debug kernel.

The debugging console.

50 OS/2 Debugging

Chapter 2. Dump Formatter User Guide

The Dump Formatter is an interactive line-mode utility that supports a variety of
commands for extracting and displaying information from a system dump. There
are two versions of the Dump Formatter:

DF_RET.EXE The Dump Formatter for dumps from systems running either the
RETAIL or HSTRICT kernels.

DF_DEB.EXE The Dump Formatter for dumps from systems running the
ALLSTRICT kernel.

Note: Refer to the Chapter 1, “Kernel Debugger User Guide” on page 1 for a
discussion on the different OS/2 Kernels.

Each of the two Dump Formatters is generated for each build of the OS/2 kernel.
Thus the Dump Formatter is system level and FixPak level dependent, in a
similar way to the debug kernels. Several base versions of the Dump Formatters
are distributed with the OS2PDP package. For versions that correspond to a
particular FixPak, contact your local IBM Service Representative.

The Dump Formatter has a named pipe interface that allow it to be controlled
from another program. This is exploited by the PMDF program, which is also
distributed with the OS2PDP package.

PMDF provides:

• A PM interface to the Dump Formatter

• Automatic Dump Formatter version management

• The ability to log output to a file

• Use of Drag and Drop on Dump Formatter output to the PMDF commands
line

• A REXX interface that allows REXX EXECs to issue Dump Formatter
commands and capture their output

• Process Dump Formatting

The command set supported by Dump Formatter is very similar to that of the
Kernel Debugger. In many cases they share common commands. These are
documented in Chapter 3, “Kernel Debugger and Dump Formatter Command
Reference” on page 71.

2.1 Dump Formatter Installation
The Dump Formatter may be installed together with PMDF by using the
installation procedure supplied with the OS2PDP package. Alternatively copy the
*.EXE files to either a private directory or a directory in your current PATH. The
only files the Dump Formatter accesses implicitly are symbol files, which if used,
are convenient to have installed in the same directory as the .EXE program files.

 Copyright IBM Corp. 1996 51

The command line syntax for the Dump Formatter is as follows:

��──┬─ DF_RET ─┬─ dumpfile ─┬───────────────┬─────────────────��
│ │ └─ -P pipname ──┘
└─ DF_DEB ─┘

The parameters have the following meaning:

dumpfile
The file name of the (decompressed) dump to be analyzed. If a path is not
prepended to the file name then the Dump Formatter assumes the current
path. See 2.2, “Dump Decompression” on page 53.

-Ppipename
The name of a named pipe through which Dump Formatter output and
commands are channeled.

Note: This parameter is intended for use when DF&US.RET.EXE or
DF&US.DEB.EXE is started from another program using the
DosExecPgm API.

Note:

If no parameters are entered then the Dump Formatter give a syntax
message. This message implies that a COM port may also be used as an
interface, but this has not been implemented.

When the Dump Formatter is started it displays the build level of the system from
which the dump was taken and then the build level of the formatter. If these do
not match unpredictable, results may occur. However, if the levels are close
then it is probably safe to use the Dump Formatter, though not guaranteed.

If the incorrect type of Dump Formatter is used, for example, RETAIL Dump
Formatter with a ALLSTRICT dump, then the Dump Formatter will probably trap.
If it does not, then an error message will appear.

In general the Dump Formatter traps for one of three reasons:

• The reasons stated above, where there are type and level mismatches.

• The dump file is incomplete or corrupted.

• The Dump Formatter stack overflows.

The latter problem usually occurs when the .P is used. This is sometimes
circumventable by using the EXEDHR utility to increase the stack size of the
Dump Formatter. Another approach is to use the %PS REXX to display each
thread slot individually.

As part of the initialization sequence, the Dump Formatter attempts to load
symbol files, from the current directory, for each module that was loaded on the
dumped system.

Notes::

Windows, WINOS2 and DOS symbol files are not usable under the
Dump Formatter However, the SYMLST REXX exec in the tools
directory of the accompanying CD-ROM may be used to list a symbol
file. This can sometimes be used in conjunction with the Dump

52 OS/2 Debugging

Formatter provided that at least one location of a module or its data
can be determined absolutely.

Symbol files not present in the current directory may be manually
loaded using the WA command. The syntax and function of this
command differs subtly from the Kernel Debugger equivalent:

• Under Dump Formatter names are symbol file names unlike
Kernel Debugger where they are symbol map names. This allows
relative path names to be used.

• Under Dump Formatter WA reads the symbol file, whereas under
Kernel Debugger it is just marked active provided it was loaded
when the module was loaded.

The Dump Formatter prompts for command input with a single # sign. Unlike the
Kernel Debugger this is not used to signify the processor mode or whether
paging is enabled. Consequently the Dump Formatter always assumes that the
current processor mode is Protect Mode with Paging Enabled. The user must
therefore explicitly prefix segment:offset addresses in Virtual 8089 mode with an
ampersand (&).

Commands may be interrupted by pressing the Esc key.

2.2 Dump Decompression
Dumps may be taken either to a dedicated FAT hard disk partition or to diskette.
For details on setting up the dump partition refer to the TRAPDUMP CONFIG.SYS
command description.

Dumps taken to a hard disk partition may be used directly by Dump Formatter or
PMDF.

Dumps taken to diskette have their data compressed and have to be
decompressed to produce a single dump file. This may be done directly from
within PMDF by selecting the New option of the File pull-down menu. PMDF
offers the additional facility of decompressing diskette dumps directly from
diskette images created by OS2IMAGE. See 2.4.1, “PMDF File Menu” on
page 55 for details. Sometimes PMDF fails to decompress a dump, in which
case, the NDCOMP utility may be used.

NDCOMP has a better tolerance for missing dump data or corrupted dumps. The
syntax for NDCOMP is as follows:

��──── NDCOMP ───┬──────┬─ source drive ─── file name ─────────────��
└─ /f ─┘

/f

source drive
Specifies the drive where the DUMPDATA.nnn file will be found. This may
specify either a hard disk drive or a diskette drive. The DUMPDATA.nnn files
from a diskette dump may be copied to a hard drive root directory before
using the NDCOMP utility.

file name
The target dump file name including path information.

Chapter 2. Dump Formatter User Guide 53

2.3 Presentation Manager Dump Formatter (PMDF) Installation
PMDF provides a convenient front-end to the Dump Formatter. By installing
PMDF in an appropriate directory structure it is able to select automatically the
correct version of Dump Formatter for the dump to be analyzed.

PMDF is installed by using the installation of the OS2PDP package. The
resulting directory structure is as follows:

 \PMDF\ ─────────── PMDF.EXE ─ PMDF.INF ─ PMDF.HLP ─ PMDFMSG.DLL ─ PMDFVERS.LST ─ *.CMD
│
├──── \GA21\ ──── DF_RET.EXE ── DF_DEB.EXE ── *.SYM ─ *.SDF
│
├──── \GA21MR1\ ─ DF_RET.EXE ── DF_DEB.EXE ── *.SYM ─ *.SDF
│
├──── \Warp\ ──── DF_RET.EXE ── DF_DEB.EXE ── *.SYM ─ *.SDF
│
├──── \Warp_fp\ ─ DF_RET.EXE ── DF_DEB.EXE ── *.SYM ─ *.SDF
│
│ .
│ .

.
. .
. .

Each version of OS/2 is represented by a subdirectory containing the Dump
Formatters and symbol files and structure definition files for that version.

The home directory contains the PMDF executables and help files, the version
control file PMDFVERS.LST, and any REXX EXECs to be installed in their default
directory.

PMDFVERS.LST

More versions of the Dump Formatter may be installed by creating a new
subdirectory for the new Dump Formatter and adding an entry to the
PMDFVERS.LST file. Each entry of this file corresponds to an OS/2 build level or
version. The format of an entry is as follows:

relative path:build level:descriptive text

Notes:: The path is relative to the home directory.

The build level is the internal system build level and may be determined
either by browsing the OS2KRNL load module and searching for the text
@#IBM:n.nnn#@
near the end of the module, or by using the BLDLEVEL utility in the OS2
directory. The VER /R command is not reliable since it only reports the
base version level, not the fix-pack version level, in some releases.

The directory structure in the example above would be represented by the
following entries:

ga21:6.514;OS/2 2.1 General Availability
ga21mr1:6.617:OS/2 2.11 MR1
warp:8.162:Warp
warp_fp:8.200:Warp Full Pack

54 OS/2 Debugging

2.4 PMDF Menus and Options
PMDF offers a number of facilities from its pull-down menus and also from the
mouse buttons.

From the Keyboard Ctrl-C and Esc serve to interrupt the Dump Formatter.

 Warning

Do not use the Dump Formatter Q command. Under PMDF this will cause
PMDF to hang. To terminate the Dump Formatter either quit PMDF from the
system menu or select another dump for processing.

The PMDF screen appears as follows:

Figure 7. Presentation Manager Dump Formatter

2.4.1 PMDF File Menu
The File pull-down menu offers the following options:

New Dump
Select this option to decompress a new dump.

Notes:: For diskette dumps the DUMPDATA.nnn files may be copied for a
directory on the hard drive and decompressed from there.

PMDF has the ability to decompress diskette images created by
OS2IMAGE without re-creating the original diskettes. To use this
facility each of the image file must be named image.nnn where nnn is
a numeric sequence number that corresponds to the disk number.

Open Dump
This option prompts the user for the dump file name and then invokes Dump
Formatter.

Log Output
This option prompts the user to start or stop logging output to a file. Data
may be appended to an existing log file.

Chapter 2. Dump Formatter User Guide 55

Save Output
This option allows the user to save all output displayed in the PMDF
scrollable window.

Connect
Connect allows PMDF to be used as a terminal emulator to drive a Kernel
Debugger session. See Chapter 1, “Kernel Debugger User Guide” on
page 1 for more information.

Disconnect
Disconnect terminated the communications session with the Kernel
Debugger.

The following diagram illustrates the File pull-down menu options.

Figure 8. PMDF File Pull-Down Menu

2.4.2 PMDF Edit Menu
The Edit pull-down menu offers the following options:

Search String
Locates text within the scrollable window.

Undo
Reverse the previous Edit Cut action.

Copy
Copy marked text to the clipboard.

Cut
Move marked text to the clipboard.

Clear Screen
Clears the scrollable window of all text. This is not a reversible action.

The following diagram illustrates the Edit pull-down menu options.

56 OS/2 Debugging

Figure 9. PMDF Edit Pul l-down Menu

2.4.3 PMDF Options Menu
The Options pull-down menu offers the following options:

Font Settings
This allows font selection for displayed output.

Function Keys
This provides a menu to predefine function keys as strings of Dump
Formatter command strings. Commands may be separated by a semicolon.

Terminal Settings
Allows the communications parameters to be specified for when the Connect
option of the File pull-down is selected.

Save Settings
This will save the current options in the PMDF.INI file for use the next time
PMDF is started.

The following diagram illustrates the Options pull-down menu options.

Chapter 2. Dump Formatter User Guide 57

Figure 10. PMDF Options Pull-Down Menu

2.4.4 PMDF Analyze Menu
The Analyze pull-down menu offers four selections, each of which displays its
own menu selection. Where parameters are required they should be highlighted
by double-clicking mouse button 1 on text in the scrollable window.

 Caution

The output from the Analyze options needs to interpreted with care. Some
options are precise in that the follow control block chains anchored from the
SAS such as the Physical Device Driver Chain and Kernel Heap. Others
depend on correct symbols being loaded for correct results. Some options,
for example those that display stacks, are more speculative in what they
display.

Before these facilities are relied on, the user should thoroughly acquaint
themselves with the manual techniques that belie their function. This
information is available in the course materials that comprise the first few
chapters of this handbook.

The following selections are available:

System
The System menu displays the following options:

58 OS/2 Debugging

Figure 11. PMDF System Menu

Process
The Process menu displays the following options:

Figure 12. PMDF Process Menu

Threads
The Threads menu dumps stacks related to a given thread. The following
menu is displayed:

Chapter 2. Dump Formatter User Guide 59

Figure 13. PMDF Threads Menu

Synopsis
This offers a miscellaneous collection of options, the most important of which
is the Trap Screen display. The following menu is displayed:

Figure 14. PMDF Synopsis Menu

2.4.5 PMDF Help Menu
The Help pull-down menu offers standard help facilities.

The following diagram illustrates the Help pull-down menu options.

60 OS/2 Debugging

Figure 15. PMDF Help Pull-down Menu

2.4.6 PMDF Mouse Options
Standard CUA mouse selection and highlighting are implemented. Marked items
may be dragged and dropped onto the command line.

A double-click with mouse button 1 will highlight a blank delimited string.

A single click with mouse button 2 will display a pop-up menu whose items take
the highlighted text in the scrollable output window as input.

The following diagram shows an example of the mouse pop-up menu. In this
example the Structures option is displayed. This particular option acts as a
supplement to the Dump Formatter .D command. For it to work correctly, the
Structure Definition Files (*.SDF) are required to be present in the same directory
as the Dump Formatter. These files are build level dependent and will only
display correct information if matched to the dump level. There is no validation
performed by these displays. The user must ensure that an appropriate input
address is highlighted.

Chapter 2. Dump Formatter User Guide 61

Figure 16. PMDF Address Highlighted

2.5 PMDF REXX Interface
PMDF provides a REXX interface that allows REXX EXECs to issue Dump
Formatter commands and capture their output in REXX variables. EXECs are
able to display output on PMDF′s scrollable output window.

EXECs are invoked by entering the REXX execname, with optional directory
information, prefixed with a ′ % ′ character from the PMDF command window. If
the EXEC is not installed in a directory in the PATH or in the same directory as
PMDF, then it must be prefixed with the fully qualified path name. For example:

%SEGTAB 123

%C:\MYEXECS\TEST1 parm1 parm2

It is also possible to use relative path expressions thus:

%..SEGATB 123

If a path has to be specified when passing an exec name as a parameter to
another exec then quotation marks around the path and file name will be
required.

PMDF implements its interface to the Dump Formatter by creating a REXX
subcommand environment. The REXX address instruction allows an EXEC to
execute and capture the output from a Dump Formatter command by addressing
this subcommand environment.

The syntax and parameters for this implementation of the address instruction
are:

address df ′ CMD′ <output> <df_cmd>

Where:

62 OS/2 Debugging

< o u t p u t >
is the name of a stem to a REXX compound variable that will be assigned to
capture output from the Dump Formatter command.

″output.0″ will be set to the number of lines. ″output.n″ will contain the nth
line of output.

< d f _c m d >
is the dump formatter command and parameters.

Parameters following the EXEC name will be passed to the EXEC as a one
parameter string.

A number of general purpose EXECs are provided in the OS2PDP package on the
CD-ROM accompanying this book. These are:

RUNCHANIN Generalized Control Chain Running EXEC

PS Generalized EXEC for executing Dump Formatter commands per
thread slot

TEMPLATE A Template EXEC containing a collection of subroutines useful
for writing other EXECs

There are also a number of example EXECs that format control blocks and
illustrate how to use the REXX interface and the subroutines contained in
TEMPLATE.

2.5.1 The RUNCHAIN EXEC
Syntax

RUNCHAIN <addr> link(<offset>,<s>) stopvalue(<stop>) chain(<nnn>) exec(<cmd>)
print(<file>)

This exec provides a generalized control block chaining facility, where at each
hop of the chain a command or exec may be executed. The starting address
and link offset are required. Other parameters are optional. The parameters to
RUNCHAIN are:

< a d d r > Is an address expression of the start of the chain

<o f f se t> Specifies the decimal or hexadecimal offset of the linking address.
Default is 0

< s > Specifies the length of the linking field as: D (double) or W (word) -
Default is D

< s t o p > Specifies a termination value for the linking field. This take
precedence over <chain> and may be specif ied as a hexadecimal
or decimal value.

< n n n > Specifies the maximum number of chain hops to traverse. Default is
10

< c m d > Specified a command to be executed at each hop. If the command is
prefixed with a % then an exec is executed. @L will cause the linear
address of the current block to be substituted. Default is DD @L L4.

< f i l e > Specifies a print file to which the output will be copied.

Note: Hexadecimal values are specified as ′nn ′x

Chapter 2. Dump Formatter User Guide 63

As an example, suppose the linear address of an MTE is %fff2bde0. MTEs are
linked at +c in os2 2.1. To run the chain of MTEs displaying 8 double words do
the following:

%RUNCHAIN %fff2bde0 link(c) exec(DB @L L40)

The resulting output would be appear thus:

Block 1 at %FFF2BDE0

%fff2bde0 00060002 fff2bdfc fff2bfc3 fe0a1dac
%fff2bdf0 0000b980 00000000 00010000 00000000

Block 2 at %fe0a1dac

%fe0a1dac 02600002 fcace908 fe0a1dfc fe083e40
%fe0a1dbc 4498b1c6 0000000d 0000003a fe0addf0

Block 3 at %fe083e40

%fe083e40 024e0002 fcac52f0 fe083e70 fe0adef8
%fe083e50 4498b1c6 00000005 00000038 fdf40fac

Block 4 at %fe0adef8

%fe0adef8 01aa0002 fcac07a0 fe0adf14 fdf61cc8
%fe0adf08 0498b1c8 00000000 00000035 4d495405

Block 5 at %fdf61cc8

%fdf61cc8 01a80002 fca9ad58 fdf61ce4 fdf61d68
%fdf61cd8 0498b1c8 00000000 00000036 53595307
Chain run successfully for 5 hops

To format the first 40 MTEs in the chain enter the following:

%RUNCHAIN %fff2bde0 link(c) exec(.lmo @L) chain(40)

2.5.2 The PS EXEC
Syntax

PS <s1> <s2> <cmd> <parms> <;cmd> <parms>

This is the Per-Slot exec. It will repeatedly execute a DF command string or
REXX EXEC for each thread slot in the range specified. The linear addresses of
slot related control blocks (TCB, PTDA and TSD) may be specified symbolically
in the command string so that the correct address will be substituted for each
slot traversed by PS.

The parameters to PS are:

< s 1 > Starting (hexadecimal) slot number

< s 2 > Ending (hexadecimal) slot number or *, which signifies highest active
slot in the system.

< c m d > Is any string of DF commands separated by a semicolon ′;′ or a single
REXX EXEC prefixed by %.

64 OS/2 Debugging

< p a r m s > Are any valid parms where @TCB, @PTDA and @TSD are substituted
with their corresponding linear addresses. @disp is the scheduler′s
ESP relative to the TSD. N.B @disp is only defined when page table
entries are present for the TSD.

Example 1:

Display priority information (on a 2.11 system) for slots 30 to 33 where priority
class is at TCB+e4, priority delta is at TCB+e5 and dispatching priority is a
word at TCB+e8.

Enter:

%PS 30 33 DB @TCB+e4 L2; DW @TCB+e8 L1

Slot 30
Warning: not all addresses are present
DB %7BA8FE78+E4 L2; DW %7BA8FE78+E8 L1

%7ba8ff5c 02 0f ..
%7ba8ff60 020f

Slot 31
DB %7BA9002C+E4 L2; DW %7BA9002C+E8 L1

%7ba90110 02 00 ..
%7ba90114 0200

Slot 32
Warning: not all addresses are present
DB %7BA9002C+E4 L2; DW %7BA9002C+E8 L1

%7ba90110 02 00 ..
%7ba90114 0200

Slot 33
DB %7BA90394+E4 L2; DW %7BA90394+E8 L1

%7ba90478 03 00 ..
%7ba9047c 0800
ps ended rc: 0

Note: For slot 30 a warning message is issued because in this instance .s30
gave an error because slot 30 page tables were swapped out.

2.5.3 The TEMPLATE EXEC

TEMPLATE is not intended to be executed. Rather, it is a model for creating new
EXECs. It contains a number of generally useful subroutines used in other
EXECs.

Currently included in TEMPLATE are the following subroutines:

l inaddr <address>
Converts an address expression to a linear address (without the % prefix). If
storage cannot be referenced then a null string is returned.

Chapter 2. Dump Formatter User Guide 65

getstor < h > , < a > , < s > , < f >
Retrieve a byte, word or double word from storage. If storage can not be
retrieved, then the DF error msg is returned.

< h > Is a dump handle

< a > Is a DF address expression

< s > Is the size specified as: B, W or D

< f > Is the optional output format, which may be specified as C for
character, N for decimal or X for hexadecimal string. X is the
default.

g e t h x s t r < h > , < a > , < l >
Retrieve a string of hex bytes from storage. If storage can′ t be retrieved
then a null string is returned. The string is returned as a concatenated
string of bytes.

< h > Is a dump handle

< a > Is a DF address expression

< l > Is the length of storage to retrieve

g e t b y t e s < h > , < a > , < l >
Retrieve a one or more bytes from storage. If storage can′ t be retrieved
then a null string is returned. The string is returned as a string of bytes
separated by blanks.

< h > Is a dump handle

< a > Is a DF address expression

< l > Is the length of storage to retrieve

g e t w o r d s < h > , < a > , < l >
Retrieve a one or more words from storage. If storage can′ t be retrieved
then a null string is returned.

< h > Is a dump handle

< a > Is a DF address expression

< l > Is the length of storage to retrieve

g e t d w o r d s < h > , < a > , < l >
Retrieve a one or more double words from storage. If storage can′ t be
retrieved then a null string is returned.

< h > Is a dump handle

< a > Is a DF address expression

< l > Is the length of storage to retrieve

g e t q w o r d s < h > , < a > , < l >
Retrieve a one or more quadruple words from storage. If storage can′ t be
retrieved then a null string is returned.

< h > Is a dump handle

< a > Is a DF address expression

< l > Is the length of storage to retrieve

66 OS/2 Debugging

format < n a m e > , < o f f s e t > , < b a s e > , < t y p e > , < d e s c >
Format a field from a control block and returns the value of the field.

< n a m e > Is the field name.

<o f f se t> Is a relative hex offset (prefix with + or -)

< b a s e > Is the base address of the control block

< t y p e > Is the f i led type (b=byte, w=word, d=double word)

< d e s c > Is a description of the filed.

fm tb lock <name> ,<o f f se t> ,<base> ,< t ype> ,<number> ,<desc>
Formats a table of bytes, words or double words imbedded in a control
block.

< n a m e > Is the field name.

<o f f se t> Is a relative hex offset (prefix with + or -)

< b a s e > Is the base address of the control block

< t y p e > Is the f i led type (b=byte, w=word, d=double word)

< n u m b e r > Is the number of entries in the table

< d e s c > Is a description of the filed.

2.6 Process Dump Formatter
PMDF provides a process Dump Formatter facility which is invoked automatically
when the Open option of the File pull-down menu is selected against a Process
Dump.

The Process Dump Formatter offers a limited subset of the full Dump Formatter
command set. These are:

.D Display storage in Bytes, Words or Double-Words.

DL Display LDT entries.

L List, Symbols, Maps and Symbol Groups

.LM and .LMO Display Module Table Entries and Object Tables

.MA Display Arena Records for storage dumped.

.MO Display Object Records for storage dumped.

.ML Display Information on Dumped Memory.

Note: This command does not perform the same function as the
similarly named Kernel Debugger .ML command, which formats
VM Alias Records.

.P Display threads.

Note: Unlike the Dump Formatter and Kernel Debugger version of
this command, .P is used to select the thread ordinal within
the dumped process. Thus for single thread processes .P 1 is
the only valid combination.

.PB Display thread Block IDs.

Note: Unlike the Dump Formatter and Kernel Debugger version of
this command, .PB is used to select the thread ordinal within

Chapter 2. Dump Formatter User Guide 67

the dumped process. Thus for single thread processes .PB 1
is the only valid combination.

R Display registers for each thread.

.S Set default thread slot.

Note: Unlike the Dump Formatter and Kernel Debugger version of
this command, .S is used to select the thread ordinal within
the dumped process. Thus for single thread processes .S 1 is
the only valid combination.

W Load and Unload Symbol files

? Syntax help for internal commands

.? Syntax help for external (dot) commands.

Note: Except where noted above, the command set for the Process Dump
Formatter does not support any of the optional parameters supported by
their equivalent Kernel Debugger commands.

When a Process Dump is loaded, PMDF displays the following screen:

Figure 17. Process Dump Loaded PMDF Display

Note: The data and time of the dump are displayed.

If the dump was created because of a trap then the trap number is
displayed otherwise the trap number is shown as ffffffff .

The current thread slot and register are shown last.

The Analyze pull-down menu differs from the standard PMDF Analyze facility.
This offers the following choices:

Registers
This performs the R command for each thread dumped.

68 OS/2 Debugging

Task Summary
This performs a .P command followed by an R command for each thread
dumped.

Local Descriptors
This performs a DL command.

Virtual Memory Control Blocks
This performs a .MA and .MO command.

Module Table
This is a much more extensive version of the .LMO command. The entire
MTE and SMTE for each module dumped is formatted.

Process Synopsis
This formats the entire Process Dump, including dumping all memory in byte
format.

The Analyze option menu appears as follows:

Figure 18. Analyze Option Menu of the PMDF

For information on taking and controlling Process Dumps see the following:

The CONFIG.SYS DUMPPROCESS command

The DosProcessDump API

Chapter 2. Dump Formatter User Guide 69

70 OS/2 Debugging

Chapter 3. Kernel Debugger and Dump Formatter Command
Reference

The Kernel Debugger and Dump Formatter share a common subset of
commands, which comprises the vast majority of the combined command set.
The following symbols will be used to denote to which tool commands are
applicable:

Dump Formatter

Kernel Debugger

References to some system control offsets blocks are made in the descriptions
of the commands. For the sake of brevity, the ALLSTRICT version of the OS/2
WARP 3.0 kernel is assumed and in some cases the equivalent RETAIL and
HSTRICT kernel offsets are given in parentheses. For example:

JFN_pTable (PTDA +0x5b8 (H/R: +0x5b0))

The reader should refer to the System Reference Manual, Volume 4 of the OS/2
Debugging Library for control block layouts of the ALLSTRICT, HSTRICT and
RETAIL kernels for OS/2 WARP 3.0 and OS/2 2.11 kernels.

Commands are categorized into two classes:

Internal Internal commands begin with an alphabetic character. They are
control program independent in the sense that they relate only to the
Intel 80x86 hardware architecture.

External External commands are prefixed with a period. They relate to the
software environment under analysis and are dependent on the data
structures of the operating system environment.

For a description of the conventions used in the syntax diagrams, see 3.1,
“Syntax Diagrams - Notation.”

Complex expressions may be used where substituted values are required. The
rules governing expressions are described in 3.2, “The Expression Evaluator” on
page 73.

3.1 Syntax Diagrams - Notation
The command syntax descriptions for the Dump Formatter and Kernel Debugger
use a graphical notation, which is now in common use. The diagrams should be
read as a road map starting at the sign:

��──

and ending at the sign:

─��

The command verb and options are shown in uppercase type.

 Copyright IBM Corp. 1996 71

Parameter values to be supplied by the user are shown in lowercase. The rules
governing the use of complex expressions are described under 3.2, “The
Expression Evaluator” on page 73.

Continuation of the syntax diagram is shown by:

─�

at the break, and:

�─

at the beginning of the continuation line.

Expansion of syntax into detailed subsections is indicated as follows:

─┤ section name ├─

Expanded section begins:

section name:
├─

Expanded section ends:

─┤

See below for a more detailed description and example of subsections.

Mutually exclusive options where a non-mandatory selection is required are
shown as follows:

───────┬─────┬────────
├─ A ─┤
├─ B ─┤
└─ C ─┘

Here at most one of A, B or C may be selected.

Mutually exclusive options where a mandatory choice is required are shown as
follows:

───────┬─ A ─┬────────
├─ B ─┤
└─ C ─┘

Multiple selections are shown as follows:

┌───────┐ ┌───────┐
� │ � │

────┬─────┬┴─── ───┬─ D ─┬┴────
├─ A ─┤ ├─ E ─┤
├─ B ─┤ └─ F ─┘
└─ C ─┘

One or more of A, B or C is optional, whereas at least one of D, E or F is
required.

If a separator is required between parameters, then it is shown in the diagram.
For example, a comma is required between each selection in the following:

72 OS/2 Debugging

┌── , ──┐ ┌── , ──┐
� │ � │

────┬─────┬┴─── ───┬─ D ─┬┴────
├─ A ─┤ ├─ E ─┤
├─ B ─┤ └─ F ─┘
└─ C ─┘

For the Dump Formatter and Kernel Debugger spaces between parameters
options are optional.

Ordered non-exclusive selection lists and parameters are shown in the order
they must be specified.

┌── , ──┐ ┌── , ──┐
� │ � │

── X ────┬─────┬┴─────────┬─ D ─┬┴──────┬─────┬─── = value ───
├─ A ─┤ ├─ E ─┤ ├─ H ─┤
├─ B ─┤ └─ F ─┘ └─ I ─┘
└─ C ─┘

Here, X must be specified first, followed optionally by none, one or more of A, B
or C separated by commas, followed by at least one of D, E or F separated by
commas, followed optionally by H or I and finally by the character = and a
quantity substituted for value.

The following examples would be correct interpretations of this last syntax
diagram:

X D = 55
XA,B I=444

Where complex diagrams require splitting into multiple sections, the sections are
identified by a lowercase italic name. For example:

──────────┬───────────────────┬─────────────
│ │
├──┤ section 1 ├────┤
│ │
└──┤ section 2 ├────┘

section 1:

├─────────────┬─────┬────┬─────┬───────────┤
└─ A ─┘ ├─ B ─┤

└──C ─┘

In this example the syntax for section 1 is exclusive with section 2. The options
for section 1 are shown at the label section 1 :

3.2 The Expression Evaluator
The Kernel Debugger and Dump Formatter expression evaluator supports a
variety of arithmetic, Boolean and addressing operators to form a value to be
substituted into a command parameter may be derived. The atomic entities
used within expressions may be string or numeric in type. Arithmetic
expressions may be used with addressing separators to represent a physical,

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 73

linear, selector:offset or segment:offset address. Certain conventional values
may be represented in expressions by mnemonics.

Symbols defined by symbol files may also be used to represent either their
equivalent address operator and address arithmetic value combination or
constant arithmetic value in command line expressions.

3.2.1 String Expressions
These are identified by being enclosed in either single or double quotes. A
string may contain any keyboard character including quotation marks, which
must be duplicated so as not to act as a string terminator. Examples are:

′ this is a sting′
′ That′ ′ s an other example′
″and so is this″

Where there is no ambiguity, the terminating quote may be omitted.

3.2.2 Arithmetic Expressions
The expression evaluator will accept numeric values in a decimal, hexadecimal,
binary and octal notation. These are indicated as follows:

nnnnnnY
Binary number nnnnnn

nnnnnnO
Octal number nnnnnn

nnnnnnQ
Alternative notation for octal number nnnnnn

nnnnnnT
Decimal number nnnnnn

nnnnnnH
Hexadecimal number nnnnnn

The base suffix may be in uppercase or lowercase.

The default base when a suffix is omitted is hexadecimal.

The following represents the same number, expressed in each of the permissible
forms:

31
31t
1fh
37o
37q
10001111y

Arithmetic expressions are of the following three types:

Absolute An arithmetic expression that resolves to a numeric value.

Absolute expressions may be formed from numeric values using
arithmetic binary and unary operators and built-in functions together
with parentheses (), to influence evaluation order.

74 OS/2 Debugging

Boolean Boolean expressions are ones that resolve to either a TRUE or FALSE
value.

Boolean expression may be formed from arithmetic expressions using
boolean binary and unary operators together with parentheses (), to
influence evaluation order.

Boolean expressions may be used as absolute values in arithmetic
expressions, where TRUE assumes the value 1 and FALSE 0.

Address An arithmetic expression that resolves to one or two numeric values
that represent a linear, physical, segment:offset or selector:offset
address.

Address expressions are formed from absolute expressions using
addressing separators.

Note: The expression evaluator allows arithmetic values to be expressed in
hexadecimal. A potential conflict may occur where symbol names exist
that begin with letters a - f. For example, a linear address expressed as
%fe1234 may be rejected with the message:

Invalid expression

where a symbol f or fe is defined. To avoid this conflict prefix the
hexadecimal numeric value with a zero, as follows:

%0fe1234

If the same error message persists, then the address refers to either
paged out or unallocated virtual memory.

3.2.2.1 Binary Operators
Arithmetic operators:

The following binary operators are permissible in any arithmetic expression:

* Multiplication

/ Integer division

MOD
Modulo or remainder operator

+ Addition

- Subtraction

AND
Bitwise AND

XOR
Bitwise exclusive OR

OR
Bitwise OR

Boolean operators:

The following binary operators are permissible in any Boolean expression:

> Greater than

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 75

< Less than

> =
Greater than or equal to

= =
Logical equality

! = Logical inequality

&&
Logical AND

| | Logical OR

3.2.2.2 Unary Operators
Arithmetic operators:

The following unary operators are permissible in any arithmetic expression:

NOT
Bitwise ones complement

_ Bitwise twos complement

Boolean operators:

The following unary operator is permissible in any Boolean expression:

! Logical negation

3.2.2.3 Built-in Functions
The following built-in functions operate in a single address expression operand:

SEG
Returns the segment or selector portion of an address that resolves to either
a &segment:offset or #selector:offset form.

OFF
Returns the offset of an address the resolves to either a &segment:offset or
#selector:offset form.

BY
Returns one byte from an address location.

WO
Returns one word from an address location.

DW
Returns one doubleword from an address location.

POI
Returns one doubleword far pointer (selector:offset or segment:offset
address) from an address location. The low order word returned is treated
as the offset. The high order word returned is treated as a selector or
segment based, depending on the default addressing mode. See the D
command for more information.

76 OS/2 Debugging

PORT
Returns one byte from an 8-bit I/O port address.

WPROT
Returns one word from a 16-bit I/O port address.

Example:

DD %(dw(%7abcde0+10))

Display the storage whose linear address is at location %7abcdf0.

3.2.2.4 Address Separators and Address Expressions
The following separators may be used with absolute expressions to form
elements of an address:

& Segment prefix

Selector prefix

% Linear address prefix

% %
Physical address prefix

: A segment/offset address separator

| Thread slot number qualifier

Where virtual addresses map to different physical addresses in different
processes (typically private arena data and shared arena instance data) then
| may be used to qualify the address by thread slot number.

Note: This qualifier is ignored by the Dump Formatter.

Examples:

%ebp

The value of EBP assumed to be a linear address.

%%10034

The physical address at location 10034.

38 | #1f:0

The selector:offset address 1f:0 in the context of slot 38.

3.2.2.5 Evaluation Order
Expression are evaluated left to right by applying the following order of
precedence to operators, separators and built-in functions:

 1. ()

 2. | :

 3. & # % % % _ ! NOT SEG OFF BY WO DW POI PORT WPORT

 4. * / MOD

 5 . + -

 6 . > < > = < =

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 77

 7 . = = ! =

 8. AND XOR OR

 9. && | |

3.2.2.6 Mnemonics and Symbols
Symbols defined in symbol files may be used in any arithmetic expression.
Absolute symbols (that is, symbols of constants) are treated as absolute
expressions. Other symbols are treated as address expressions. Symbols are
activated using the WA command.

The built-in register mnemonics supported by the Kernel Debugger and Dump
Formatter are:

• 16-bit registers:

ax, bx, cx, dx, si, di, bp, ip, pc

• 32-bit registers:

eax, ebx, ecx, edx, esi, edi, ebp, eip

• Segment registers:

cs, ds, es, fs, gs, ss

• Flag registers:

flg, eflg

• Control registers:

cr0, cr2, cr3

• GDTR register:

gdtb, gdtl

• IDTR register:

idtb, idtl

• Task control registers:

tr, ldtr, msw

• Debug registers:

dr0, dr1, dr2, dr3, dr4, dr5, dr6

• Test registers:

tr6, tr7

These may be used as absolute expressions for the current register value. See
the R command for information on displaying and setting current register values
and for the definition of the register mnemonics.

The Kernel Debugger also defines mnemonics:

• br0, br1, br2,, br9

to represent the addresses of breakpoints defined by the BP and BR commands.

The expression evaluator allows the prefix @ to a symbol name to distinguish it
from a similarly named mnemonic name. For example, @ax refers to the
symbol ax, whereas ax refers to the ax register value.

78 OS/2 Debugging

Similar conflicts may also arise between hexadecimal values and symbols.
These may be avoided by prefixing the hexadecimal numeric value with a zero.

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 79

3.3 Internal Commands
The following comprise the set of internal commands:

? Display internal command help

B Breakpoint command family

BC Clear breakpoint

BD Disable breakpoint

BE Enable breakpoint

BL List breakpoints

BP Set or change a breakpoint

BR Set a debug register breakpoint

BS Show timestamped breakpoint trace

BT Set timestamped breakpoint trace

C Compare memory

D Dump memory data (default)

DA Dump memory ASCII data

DB Dump memory byte data

DD Dump memory double-word data

DG Dump global descriptor table

DI Dump interrupt descriptor table

DL Dump local descriptor table

DP Dump Page Tables

DT Dump Task State Segment

DW Dump memory word data

DX Dump 80286 Loadall buffer

E Enter memory data

F Fill memory

G Go

H Perform hexadecimal arithmetic

I Input from 16-bit I/O port

J Execute commands conditionally.

K Display current stack

.L List maps, groups and symbols

M Move memory data

O Output to 16-bit I/O port

P Process Trace

Q Quit the Dump Formatter

R Set or Display Current CPU Registers

80 OS/2 Debugging

S Search

T Trace

U Unassemble

V Trap Vectors Command family

W Withmap Add or Remove

Y Set Kernel Debugger options

Z Set/list/execute the default command

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 81

3.3.1 ? - Show Internal Command Help or Evaluate an Expression

Display help for internal Kernel Debugger and Dump Formatter commands and
evaluate complex expressions.

Syntax:

�───── ? ──┬─────────────────┬──────────────────────────────────��
├─── expr ───┤
└─── string ───┘

Parameters:

(default) Displays a help summary for most of the Dump Formatter and Kernel
Debugger internal commands.

Note: Some of the information displayed is out-of-date.

Two pages of information are displayed with an intervening --More--
prompt.

expr An expression that resolves to either a simple numeric value or an
address using any of the expression evaluation operators. Symbols
of addresses and symbols of absolute values may be specified.

string A string enclosed in single or double quotes.

Results and Notes:

If an expression is specified, then it is evaluated. If it resolves to an address,
then it is displayed in equivalent forms, as follows:

sel:offset %linaddr %%physaddr

Where:

sel:offset Specifies the selector and offset form of the address if the expression
resolves to a sel:offset form.

%linaddr Specifies the linear address equivalent of the expression if it resolves
to either a sel:offset or %linaddr form.

%physaddr Specifies the physical address equivalent of the expression. If the
expression resolves to a virtual address then the page tables must be
present to perform the address translation.

See the DP command for information on displaying page table entries
and the .I command for information on paging in memory.

If the evaluated expression resolves to an absolute value then it is displayed in
hexadecimal, decimal, octal, binary, character and Boolean forms. For example:

82 OS/2 Debugging

� �
##? 5
05H 5T 5Q 00000101Y ′ . ′ TRUE
? bmp_segsize
12H 18T 22Q 00010010Y ′ . ′ TRUE� �

 Notes

Each arithmetic value is suffixed with a modifier that indicates the base used:

H Signifies hexadecimal

T Signifies decimal (Tens)

Q Signifies octal (Qctal?)

Y Signifies binary (Yes/no?)

In the previous example, bmp_segsize is an absolute symbol of value 0x0012
defined in map OS2KRNL.

If a string expression is displayed, then it is echoed back to the console. For
example:

� �
##? ″This is a way of annotating the debug log from this session′ s analysis″
This is a way of annotating the debug log from this session′ s analysis

##� �

Note: Evaluation of simple expressions involving two absolute expressions may
be done using the H command.

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 83

3.3.2 B - Breakpoint Command Family

The breakpoint family of eight commands provide a means of defining and
managing sticky breakpoints.

Syntax:

��──── B ───────────────────────┬── C ──┬───┬─────────────┬───��
├── D ──┤ └── options ──┘
├── E ──┤
├── L ──┤
├── P ──┤
├── R ──┤
├── S ──┤
└── T ──┘

Parameters:

C Clear breakpoints.

See the BC command for options.

D Disable breakpoints.

See the BD command for options.

E Enable breakpoints.

See the BE command for options.

L List breakpoints.

See the BL command for options.

P Set or change breakpoints.

See the BP command for options.

R Set a debug register breakpoint.

See the BR command for options.

S Set a timestamped breakpoint trace.

See the BS command for options.

T Display a timestamped breakpoint trace.

See the BT command for options.

options See the associated command for details.

3.3.3 BC - Clear Breakpoints

Clear 1 or more breakpoints.

Syntax:

84 OS/2 Debugging

┌─── , ───┐
� │

��──── BC ───────────────────┬───── n ──┴──┬──────────────────��
└───── * ─────┘

Parameters:

n Breakpoint number to be cleared.

* may be specified to clear all breakpoints.

See the breakpoint commands for information on listing and setting
breakpoints.

Results and Notes:

The specified breakpoints are cleared. No information is displayed.

3.3.4 BD - Disable Breakpoints

Disable 1 or more breakpoints.

Syntax:

┌─── , ───┐
� │

��──── BD ───────────────────┬───── n ──┴──┬──────────────────��
└───── * ─────┘

Parameters:

n Breakpoint number to be disabled.

* may be specified to disable all breakpoints.

See the breakpoint commands for information on listing and setting
breakpoints.

Results and Notes:

The specified breakpoints are disabled. No information is displayed.

3.3.5 BE - Enable Breakpoints

Enable 1 or more breakpoints.

Syntax:

┌─── , ───┐
� │

��──── BE ───────────────────┬───── n ──┴──┬──────────────────��
└───── * ─────┘

Parameters:

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 85

n Breakpoint number to be enabled.

* may be specified to enable all breakpoints.

See the breakpoint commands for information on listing and setting
breakpoints.

Results and Notes:

The specified breakpoints are enabled. No information is displayed.

3.3.6 BL - List Breakpoints

List all breakpoints defined by the BP and BR commands.

Syntax:

��──── BL ──��

Parameters: none.

Results and Notes:

BL lists the definitions of all currently defined breakpoints. An example of this
follows:

� �
bl
0 e 0158:00005874 [DOSOPEN] 5 (5) ″ .P*;G″
1 d 0158:00007384 [DOSHOLDSIGNAL]
2 e %fff461a4 [_tkSchedNext] 12 (15) ″ .P*″
3 dT %fff474e4 [_PGSwitchContext]
4 d %1a022298 [DOS32WRITE] 10 (10)
5 e W2 0030:0000ffcc [Ppid]
6 dI E1 0000:00000000 5 (5) ″DW TASKNUMBER L1″
##� �

Breakpoint definitions are of the following two forms:

 1. The general layout of the BP breakpoint definition is:

n st addr [symbol] pc (mc) ″cmd, cmd,″

 2. The general layout of the BR breakpoint definition is:

n st tn addr [symbol] pc (mc) ″cmd, cmd,″

Each of the fields has the following meaning:

n The breakpoint number assigned to the given breakpoint.

st The status of the breakpoint:

86 OS/2 Debugging

d Disabled breakpoint. See the BD command.
e Enabled breakpoint. See the BE command.

The suffix T signifies that the breakpoint is a timestamp
breakpoint created using the BT command

The suffix I indicates that the address has become invalid.

addr The address at which the breakpoint is defined.

[symbol] The breakpoint offset to the nearest symbolic address, if it exits. See
the LN and WA commands for information on listing and loading
symbol definitions.

pc The remaining passcount for this breakpoint. If a passcount is not
defined then this value is not displayed. See the BP and BR
commands for more information on passcounts.

(mc) The initial passcount defined for this breakpoint. If no passcount was
defined then this value is not displayed. See BP and BR commands
for more information on passcounts.

″cmd, cmd, ″ A list of commands to be executed when the breakpoint fires.
Each command is separated by commas and the entire string is
enclosed in quotes. If no command string is defined then this field is
not displayed. See the BP, BR and Z commands for more information
on breakpoint command lists.

3.3.7 BP - Set or Alter a Breakpoint

Set or re-specify a software sticky breakpoint. by inserting an INT 3 instruction.

Syntax:

��───┬─ BP ─┬─ addr ──┬───────────────┬─┬───────────────────┬──��
└─ BPn ─┘ └── passcount ──┘ ├─────── cmd ───────┤

└─ ″ ─── cmd ─┬─ ″ ─┘
� │
└── ; ──┘

Parameters:

n Explicitly specifies a breakpoint number to be assigned to this
breakpoint. A value from 0 to 9 may be specified. If specified there
must be no space between the number and the BP command.

The default is to assign the lowest available number. If all 10
breakpoint numbers have been assigned then the following message
appears:

Too many breakpoints

addr The address of the breakpoint.

The Kernel Debugger saves the byte of storage at the location
specified by addr and inserts an INT 3 instruction in its place.

Notes: Whenever the Kernel Debugger is entered the storage
overlayed by any breakpoints is temporarily restored. When

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 87

the Kernel Debugger gives control back to the system, enabled
breakpoints are re-instated.

If addr specifies the address of an existing breakpoint then the
existing breakpoint is updated with the new parameters.

Each breakpoint address is recorded with its associated
process context. For shared data this is of no consequence.
However for private addresses, especially those in the private
arena the addr may be qualified by slot number by using the |
operator. This acts as a shorthand to save changing contexts
using the .S command in order to set the breakpoint correctly.
For example, suppose the current slot is 8, then:

BP 31 | %10032

Is equivalent to:

.S 31
BP 31 | %10032
.S 8

passcount Specifies the number of times the breakpoint may be passed before
the Kernel Debugger is entered. Each time the breakpoint is passed
the count is decremented by 1 until 1 is reached. When the
breakpoint is encountered with a count of 1 then it will fire and the
Kernel Debugger will be entered. Thus if passcountis 5 then the
breakpoint will fire on the 5th encounter.

The default passcount is 1, that is, the breakpoint will fire on first
encounter.

cmd Specifies a command to be executed when the breakpoint fires. More
than one command may be specified by using a semicolon separator
and enclosing the entire command list in single or double quotes.

If no command string is specified then the default command string, as
specified by the Z command will be executed.

Results and Notes:

If the specified address is valid then the breakpoint definition is accepted.
Otherwise one of the following messages is generated:

Invalid linear address: %nnnnnnnn
Invalid selector: selector:offset
Past end of segment selector:offset

If the breakpoint is successfully defined then the built-in mnemonic BRn, where n
corresponds to the breakpoint number, takes the value of the breakpoint
address. This may be used in any address expression or any command.

Note: Since BP breakpoints are implemented by the insertion of INT 3
instructions, it is possible for such breakpoints to become discarded if the
page of code is discarded and subsequently paged back into memory.

If the .I command is used to swap in a page of code, then the
breakpoints are automatically restored. (In earlier versions of OS/2 it was
necessary to specify the B option of .I).

88 OS/2 Debugging

This complexity may be avoided by setting register breakpoints with the
BR command.

3.3.8 BR - Set or Alter a Debug Register Breakpoint

Set or alter a sticky breakpoint, using the debug registers.

Syntax:

��───┬─ BR ─┬─┬─ E ─┬─ addr ─┬──────┬─┬─────────────────────┬─��
└─ BRn ─┘ ├─ Wb ─┤ └─ pc ─┘ ├─── , ─── cmd ───────┤

└─ Rb ─┘ └─ , ″ ─── cmd ─┬─ ″ ─┘
� │
└── ; ──┘

Parameters:

n Explicitly specifies a breakpoint number to be assigned to this
breakpoint. A value from 0 to 9 may be specified but from this range
only a total of 4 may specify enabled debug register breakpoints.

If a value n is specified there must be no space between the number
and the BR command.

The default is to assign the lowest available number. If all 10
breakpoint numbers have been assigned then the following message
appears:

Too many breakpoints

If all four debug registers are in use, then the following message:

Out of debug registers

is displayed.

Note: A disabled debug register breakpoint does not commit the use
of a debug register. Thus more that 4 debug register
breakpoints may be defined, but only a maximum of 4 enabled
at any one time.

See the BE and BD commands for information on enabling and
disabling breakpoints.

E Specifies that the breakpoint is to fire when an instruction at the
breakpoint address is fetched for execution.

This is mutually exclusive with the W and R parameters.

Rb Specifies that the breakpoint is to fire when storage at the breakpoint
address, for length b is referenced. b may specify 1, 2 or 4 bytes and
defaults to 1 byte if left blank.

This is mutually exclusive with the W and E parameters.

Wb Specifies that the breakpoint is to fire when storage at the breakpoint
address, for length b is stored. b may specify 1, 2 or 4 bytes and
defaults to 1 byte if left blank.

This is mutually exclusive with the R and E parameters.

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 89

addr The address of the breakpoint.

The Kernel Debugger converts the address to a linear address before
setting up the debug registers. If the address is invalid the definition
is retained but marked disabled and invalid.

Note: Real addresses may not be used with debug register
breakpoints.

passcount Specifies the number of times the breakpoint may be passed before
the Kernel Debugger is entered. Each time the breakpoint is passed
the count is decremented by 1 until 1 is reached. When the
breakpoint is encountered with a count of 1 then it will fire and the
Kernel Debugger will be entered. Thus if passcount is 5 then the
breakpoint will fire on the 5th encounter.

The default passcount is 1, that is the breakpoint will fire on first
encounter.

cmd Specifies a command to be executed when the breakpoint fires. More
than one command may be specified by using a semicolon separator
and enclosing the entire command list in single or double quotes.

If no command string is specified then the default command string, as
specified by the Z command will be executed.

Note: The command list must be preceded by a comma, unlike the
BP command where the comma is optional.

Results and Notes:

If the specified address is valid then the breakpoint definition is accepted and
enabled. Otherwise it is accepted but disabled and one of the following
messages is generated:

Invalid selector: selector:offset
Past end of segment selector:offset

If the breakpoint is successfully defined then the built-in mnemonic BRn , where n
corresponds to the breakpoint number, takes the value of the breakpoint
address. This may be used in any address expression or any command.

3.3.9 BS - Show Timestamped Breakpoint Trace

Show the timestamped breakpoint trace.

Syntax:

��──── BS ──��

Parameters:

None.

Results and Notes:

90 OS/2 Debugging

The timestamp trace buffer is formatted in LIFO order. The following is an
example of the formatted trace:

Number of entries = 4284
BP0 381e6ae1a (hex)
BP4 381e68292 (hex)
BP0 381e658d1 (hex)
BP4 381e40559 (hex)
BP0 381e3da7d (hex)

Notes: The number of entries is the total accumulated number of timestamp
trace events regardless of wrapping of the (4096 entry) timestamp trace
buffer.

Each entry show the breakpoint number that corresponds to the
timestamped breakpoint that fired, the high resolution time stamp in
microseconds and a reminder that this value is in hexadecimal.

For information on defining a timestamp breakpoint see the BT command.

3.3.10 BT - Set Timestamped Breakpoint Trace

Set a timestamped breakpoint trace.

Syntax:

��──┬─ BT ─┬─ addr ──��
└─ BTn ─┘

Parameters:

n Explicitly specifies a breakpoint number to be assigned to this
breakpoint. A value from 0 to 9 may be specified. If specified, there
must be no space between the number and the BT command.

The default is to assign the lowest available number. If all 10
breakpoint numbers have been assigned then the following message
appears:

Too many breakpoints

addr The address of the breakpoint.

The Kernel Debugger saves the byte of storage at the location
specified by addr and inserts an INT 3 instruction in its place.

Notes: Whenever the Kernel Debugger is entered the storage
overlayed by any breakpoints is temporarily restored. When
the Kernel Debugger gives control back to the system, enabled
breakpoints are re-instated.

If addr specifies the address of an existing breakpoint then the
existing breakpoint is updated with the new parameters.

Results and Notes:

If the address is valid then the breakpoint definition is accepted and enabled.
When enabled, the timestamp breakpoint causes the current high resolution

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 91

system time to be saved in a timestamp circular trace buffer whenever the
breakpoint address is executed.

The trace buffer will record up to 4K of entries before wrapping.

Unlike the BP and BR commands, BT does not return control to user when the
breakpoint is encountered.

The timestamp trace may be displayed using the BS command.

92 OS/2 Debugging

3.3.11 C - Compare Memory

Compare up to 64K bytes of memory at two locations in storage.

Syntax:

��──── C ─── addr1 ───── n ──── addr2 ─────────────────────��

Parameters:

addr1 The address of the beginning of the first location to compare with the
second. This address is assumed to be in #selector:offset format. If
the selector is omitted then the current DS selector is assumed.

n The offset from addr1 of the last byte to compare (that is, the length of
the range less 1).

addr2 The address of the beginning of the second location to compare with
the first. An address expression may be specified. This address is
assumed to be in #selector:offset format. If the selector is omitted
then the current DS selector is assumed.

Results and Notes:

Storage is compared, if no differences are found then the command prompt is
displayed. If either of the addresses is invalid then an error message is
displayed.

Where differences are found in the address range, they are displayed in the
following way:

001f:00000000 57 4f 001f:00000003
001f:00000001 50 32 001f:00000004
001f:00000003 57 4f 001f:00000006

The addresses of the two differing locations are displayed outermost and the
bytes at those locations are displayed in columns 2 and 3.

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 93

3.3.12 D - Display Memory

Display a range of memory from a given address.

Syntax:

��───┬─ D ──┬───┬──────────────────┬───────────────────────────��
├─ DA ──┤ └── addr ──┬───────┤
├─ DB ──┤ └─ Ln ──┘
├─ DW ──┤
└─ DD ──┘

Parameters:

(default) Display memory using the current display format. When the user
breaks into the Kernel Debugger the current format is set to byte
display. If the user subsequently executes a DW, DA or DD command
then the current format is set to words, ASCII or doublewords,
respectively. Byte format default may be restored by using DB.

A Force memory to be displayed in ASCII format and set the current
display format to ASCII. The display is terminated as soon as the first
null byte (0x00) is reached or the length specification is reached.

Note: The current display address is not updated when in ASCII
format.

B Force memory to be displayed in byte format and set the current
display format to byte.

W Force memory to be displayed in word format and set the current
display format to word.

D Force memory to be displayed in doubleword format and set the
current display format to doubleword.

addr The address of the memory location to display. When the user
breaks into the Kernel Debugger this defaults the current DS selector,
offset 0. If a display command other than DA is executed then the
current display address is updated to the last displayed address + 1 .

An address expression may be specified.

Ln The number of bytes, words or doublewords to display, depending
upon the current display format. If not specified this defaults to 128
bytes, 64 words and 32 doublewords respectively.

Results and Notes:

Memory is displayed according to the selected display format providing the
address is valid. If it is not, but the address represents pageable storage then
this may be paged in to memory using the .I command.

The following examples show output in the four different formats.

94 OS/2 Debugging

� �
##da 1f:0

001f:00000000 WP_OBJHANDLE=177110

� �
Figure 19. ASCII Format

� �
##db 1f:0

001f:00000000 57 50 5f 4f 42 4a 48 41-4e 44 4c 45 3d 31 37 37 WP_OBJHANDLE=177
001f:00000010 31 31 30 00 55 53 45 52-5f 49 4e 49 3d 43 3a 5c 110.USER_INI=C:\
001f:00000020 4f 53 32 5c 4f 53 32 2e-49 4e 49 00 53 59 53 54 OS2\OS2.INI.SYST
001f:00000030 45 4d 5f 49 4e 49 3d 43-3a 5c 4f 53 32 5c 4f 53 EM_INI=C:\OS2\OS
001f:00000040 32 53 59 53 2e 49 4e 49-00 4f 53 32 5f 53 48 45 2SYS.INI.OS2_SHE
001f:00000050 4c 4c 3d 43 3a 5c 4f 53-32 5c 43 4d 44 2e 45 58 LL=C:\OS2\CMD.EX
001f:00000060 45 00 41 55 54 4f 53 54-41 52 54 3d 54 41 53 4b E.AUTOSTART=TASK
001f:00000070 4c 49 53 54 2c 46 4f 4c-44 45 52 53 00 52 45 53 LIST,FOLDERS.RES

� �
Figure 20. Byte Format

� �
##dw 1F:0

001f:00000000 5057 4f5f 4a42 4148 444e 454c 313d 3737
001f:00000010 3131 0030 3555 5245 495f 494e 433d 5c3a
001f:00000020 534f 5c32 534f 2e32 4e49 0049 5953 5453
001f:00000030 4d45 495f 494e 433d 5c3a 534f 5c32 534f
001f:00000040 5332 5359 492e 494e 4f00 3253 535f 4548
001f:00000050 4c4c 433d 5c3a 534f 5c32 4d43 2e44 5845
001f:00000060 0045 5541 4f54 5453 5241 3d54 4154 4b53
001f:00000070 494c 5453 462c 4c4f 4544 5352 5200 5345

� �
Figure 21. Word Format

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 95

� �
##dd 1f:0

001f:00000000 4f5f5057 41484a42 454c444e 3737313d
001f:00000010 00303131 52455355 494e495f 5c3a433d
001f:00000020 5c32534f 2e32534f 00494e49 54535953
001f:00000030 495f4d45 433d494e 534f5c3a 534f5c32
001f:00000040 53595332 494e492e 32534f00 4548535f
001f:00000050 433d4c4c 534f5c3a 4d435c32 58452e44
001f:00000060 55410045 54534f54 3d545241 4b534154
001f:00000070 5453494c 4c4f462c 53524544 53455200

� �
Figure 22. DoubleWord Format

3.3.13 DA - Display Memory in ASCII Format

Display a range of memory from a given address in ASCII format.

Syntax:

��───── DA ──────┬──────────────────┬───────────────────────────��
└── addr ──┬───────┤

└─ Ln ──┘

See the D command for a full description.

3.3.14 DB - Display Memory in Byte Format

Display a range of memory from a given address in byte format.

Syntax:

��───── DB ──────┬──────────────────┬───────────────────────────��
└── addr ──┬───────┤

└─ Ln ──┘

See the D command for a full description.

3.3.15 DW - Display Memory in Word Format

Display a range of memory from a given address in word format.

Syntax:

96 OS/2 Debugging

��───── DW ──────┬──────────────────┬───────────────────────────��
└── addr ──┬───────┤

└─ Ln ──┘

See the D command for a full description.

3.3.16 DD - Display Memory in Doubleword Format

Display a range of memory from a given address in Doubleword format.

Syntax:

��───── DD ──────┬──────────────────┬───────────────────────────��
└── addr ──┬───────┤

└─ Ln ──┘

See the D command for a full description.

3.3.17 DG - Display Global Descriptor Table

Display entries from the Global Descriptor Table.

Syntax:

��───┬─ DG ──┬──┬─────────────────┬──────────────────────────��
└─ DGA ──┘ └─ s ────┬──────┬─┘

└─ Ln ─┘

Parameters:

(Default) Display valid GDT entries only.

A Display all GDT entries including invalid descriptors.

s Display descriptor for selector number s.

Notes: Since bit 2 of the selector determines whether the descriptor
is local or global the correct table entry will be displayed
regardless of whether the DG or DL command is used. If an LDT
descriptor is specified then the following message is displayed:

LDT

The requestor priority level (RPL) bits (bits 0 and 1 of the
selector) are ignored by DG. Thus: DG 8 displays the same
information as DG 9, DG a and DG b.

If the s parameter is omitted then the entire GDT is displayed.

Ln The number of descriptor entries to display from and including
selector s. The default is to display one descriptor entry.

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 97

Results and Notes:

One or more descriptor table entries are displayed. An example display follows:

� �
##dga
0000 Invalid Bas=00000000 Lim=00000000 DPL=0 NP
0008 Invalid Bas=00000000 Lim=00000000 DPL=0 NP
0010 TSS32 Bas=ffe05dfc Lim=00000067 DPL=0 P B
0018 Data Bas=ffe00150 Lim=000003ff DPL=0 P RW A UV
0020 Data Bas=ffe4a000 Lim=000003ff DPL=0 P RW A UV
0028 LDT Bas=7ab27000 Lim=0000ffff DPL=0 P
0030 Data Bas=ffde08a4 Lim=0000575b DPL=0 P RW ED A UV
003b Data Bas=7c38ba8c Lim=00000073 DPL=3 P RW
0040 Data Bas=ffe49400 Lim=000003bf DPL=0 P RW UV
004a Data Bas=00000000 Lim=1bffffff DPL=2 P RW A G4k BIG UV
0053 Data Bas=00000000 Lim=1bffffff DPL=3 P RW A G4k BIG UV
005a Code Bas=00000000 Lim=1bffffff DPL=2 P RE C A G4k C32 UV
0063 Data Bas=00000000 Lim=1fffffff DPL=3 P RW G4k BIG UV
006b Data Bas=00000000 Lim=1bffffff DPL=3 P RW A G4k BIG UV� �

For a detailed explanation of the descriptor table entry format see 3.3.17.1,
“Descriptor formats.”

3.3.17.1 Descriptor formats
The Kernel Debugger and Dump Formatter format descriptor table entries in
either of two forms depending on whether the descriptor describes a segment of
memory or a gate:

dddd type Bas=bbbbbbb Lim=llllllll DPL=p flags

dddd type Sel:Off=ssss:oooooooo DPL=p flags

Each of these fields has the following meaning:

dddd Descriptor number

type Descriptor type. The following are defined:

Table 3 (Page 1 of 2). Descriptor Types

Type Type Numbers Description

Code - Code segment

Data - Data segment

Invalid 0 or 8 Invalid descriptor

TSS 1 or 3 Available or Busy 80286 TSS

LDT 2 system descriptor for an LDT

CallG 4 Call Gate

TaskG 5 Task Gate

IntG 6 80286 Interrupt Gate

TrapG 7 80286 Trap Gate

Reserve 10 or 13 Reserved descriptor types

98 OS/2 Debugging

Table 3 (Page 2 of 2). Descriptor Types

Type Type Numbers Description

TSS32 9 or 11 Available or Busy Intel486 CPU TSS

CallG32 12 Inter486 CPU Call Gate

IntG32 14 Intel486 CPU Interrupt Gate

TrapG32 15 Intel486 CPU Trap Gate

Bas=bbbbbbbb Segment base address.

Lim=llllll l l Segment limit address.

DPL=p Descriptor priority level. Only 0, 2 and 3 are used in OS/2.

Sel=ssss:Off=oooooooo selector:offset transfer address for a task, interrupt,
trap or call gate descriptor.

flags Interpretation of the various descriptor flags. The following
abbreviations are used:

Table 4. Descriptor Flags

Flag Bits Description

NP ¬ 15 Not present

P 15 Present

RW 9 Read/Write data segment

RO ¬ 9 Read-only data segment

ED 10 Expand-down data segment

C 10 Conforming code segment

G4k 23 4K granularity segment l imit

BIG 22 32-bit offsets used for this data segment

C32 22 32-bit operands used for this code segment

RES 21 reserved

UV 20 Available bit. Used in OS/2 to indicate a UVIRT mapping.

W C = w 0 Word count of a 16-bit call gate

D W C = w 0 Doubleword count of a 32-bit call gate

RE 9 Read/Execute code segment

EO ¬ 9 Read-only code segment

A 8 Code or Data segment accessed

NB - TSS/TSS32 not busy (available)

B - TSS/TSS32 busy

Notes: The bit offsets given above are relative to the second
doubleword of the descriptor viewed as 2 doublewords. The
INTEL programmer′s Reference shows the descriptor format as
a quad-word, but uses the same offsets specified above.

See the INTEL Pentium User′s Reference or the INTEL x86
Programmer ′s References for further information.

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 99

3.3.18 DI - Display Interrupt Descriptor Table

Display entries from the Interrupt Descriptor Table.

Syntax:

��───┬─ DI ──┬──┬─────────────────┬──────────────────────────��
└─ DIA ──┘ └─ i ────┬──────┬─┘

└─ Ln ─┘

Parameters:

(Default) Display valid IDT entries only.

A Display all IDT entries including invalid descriptors.

i Display descriptor for interrupt vector i .

Ln The number of descriptor entries to display from and including
selector i . The default is to display one descriptor entry.

Results and Notes:

One or more descriptor table entries are displayed. An example display follows:

� �
##dia
0000 TrapG32 Sel:Off=0170:fff47e64 DPL=0 P
0001 IntG32 Sel:Off=0170:fff47f10 DPL=3 P
0002 TaskG Sel:Off=1e38:00000000 DPL=0 P
0003 IntG32 Sel:Off=0170:fff480cc DPL=3 P
0004 TrapG32 Sel:Off=0170:fff48158 DPL=3 P
0005 TrapG32 Sel:Off=0170:fff48164 DPL=0 P
0006 TrapG32 Sel:Off=0170:fff48170 DPL=0 P
0007 TrapG32 Sel:Off=005a:1a090911 DPL=0 P
0008 TaskG Sel:Off=0088:00000000 DPL=0 P
0009 TrapG32 Sel:Off=0170:fff48258 DPL=0 P
000a TrapG32 Sel:Off=0170:fff48268 DPL=0 P
000b TrapG32 Sel:Off=0170:fff48270 DPL=0 P
000c TrapG32 Sel:Off=0170:fff48278 DPL=0 P
000d TrapG32 Sel:Off=0170:fff48280 DPL=0 P
000e TrapG32 Sel:Off=0170:fff4853c DPL=0 P
000f TrapG32 Sel:Off=0170:fff48544 DPL=0 P
0010 TrapG32 Sel:Off=0170:fff4854c DPL=0 P� �

For a detailed explanation of the descriptor table entry format see 3.3.17.1,
“Descriptor formats” on page 98.

100 OS/2 Debugging

3.3.19 DL - Display the Current Local Descriptor Table

Display entries from the Local Descriptor Table of the default thread slot. See
the .S command for information on changing the default thread slot.

Syntax:

��───┬─ DL ──┬──┬─────────────────┬──────────────────────────��
├─ DLA ──┤ └─ s ────┬──────┬─┘
├─ DLP ──┤ └─ Ln ─┘
├─ DLS ──┤
└─ DLH ──┘

Parameters:

(Default) Display valid LDT entries only.

A Display all LDT entries including invalid descriptors.

P Obsolete option. Was used to display only valid private arena LDT
descriptors where bits 3 and 4 of the selector number are 0.

S Obsolete option. Was used to display only valid shared arena LDT
descriptors where bits 3 and 4 of the selector number are non-zero.

H Obsolete option. Was used to display only huge segment LDT
descriptors.

s Display descriptor for selector number s.

Notes: Since bit 2 of the selector determines whether the descriptor
is local or global the correct table entry will be displayed
regardless of whether the DL or DG command is used. If an
GDT descriptor is specified then the following message is
displayed:

GDT

The requestor priority level bits (bits 0 and 1 of the selector)
are ignored by DL. Thus DL 7 displays the same information as
DL 6, DL 5 and DL 4.

If the s parameter is omitted then the entire LDT is displayed.

Ln The number of descriptor entries to display from and including
selector s. The default is to display one descriptor entry.

Results and Notes:

One or more descriptor table entries are displayed. An example display follows:

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 101

� �
##dl
0007 Data Bas=7ab27000 Lim=0000ffff DPL=3 P RO
000f Code Bas=00010000 Lim=000005ff DPL=3 P RE
0017 Data Bas=00020000 Lim=0000005b DPL=3 P RW
001f Data Bas=00030000 Lim=0000fa1f DPL=3 P RW A
0027 Data Bas=00040000 Lim=00000276 DPL=3 P RW A
002f Data Bas=00050000 Lim=00000fff DPL=3 P RW
0036 Data Bas=00060000 Lim=00003fff DPL=2 P RW A
003f Data Bas=00070000 Lim=00000fff DPL=3 P RW A
0047 Data Bas=00080000 Lim=00000fff DPL=3 P RW
004f Data Bas=00090000 Lim=0000ffff DPL=3 P RW A
0056 Code Bas=000a0000 Lim=00000af7 DPL=2 P RE C
005f Data Bas=000b0000 Lim=0000ffff DPL=3 P RW� �

For a detailed explanation of the descriptor table entry format see 3.3.17.1,
“Descriptor formats” on page 98.

3.3.20 DP - Display Page Directory and Table Entries

Display entries from the page tables of the default thread slot. See the :S
command for information on changing the default thread slot.

Syntax:

��───┬─ DP ──┬──┬─────────────────┬──────────────────────────��
└─ DPD ──┘ └─ addr ─┬──────┬─┘

DPA └─ Ln ─┘

Parameters:

A Display both page table and page directory entries. This is the
default.

D Display only page directory entries.

addr The linear or virtual address whose page directory and table entries
are to be displayed. If not specified DP displays the entire page
directory and its page tables.

An address expression may be specified.

Ln The number of page table entries to display starting with the entry for
addr . The default is to display the all page table entries from this
entry assigned to addr .

 Note

Due to a bug in some versions of the Kernel Debugger an extra
zero is required for this parameter.

Results and Notes:

102 OS/2 Debugging

One or more page and directory table entries are displayed. An example
display follows:

� �
DP %90000 L50

linaddr frame pteframe state res Dc Au CD WT Us rW Pn state
%00090000* 012f3 frame=012f3 2 0 D A U W P resident
%00090000 vp id=00a76 0 0 c u U W n pageable
%000a0000 000b8 vp id=000b8 1 0 D u U W n uvirt
%000b0000 00888 frame=00888 0 0 D A U W P pageable
%000c0000 vp id=00b8f 0 0 c u U W n pageable
%000d0000 vp id=00b92 0 0 c u U W n pageable
##� �

Output from the DP command is presented in tabular form. Each of the columns
shown is described as follows:

linaddr Linear address of virtual memory whose page directory and table
entries are being formatted. Those lines corresponding to directory
entries have an * flag suffixed to the linear address. Page table
entries for a given directory entry are formatted following the
directory entry.

In the example above the linear address %90000 has its page table
located in physical frame 12f3, that is at physical %%12f3000 . The
page table entry corresponding to virtual memory at %90000 is
described in the second line. Each of the following lines are
consecutive entries from page table 12f3.

frame The real storage frame number that contains either the page table (*
suffix to linaddr) or page frame corresponding to the linaddr . If this
field is blank then the frame has been discarded. If it contains a
frame number then the contents are still valid even though the page
table entry no longer points to a page frame. See pteframe field for
further discussion.

pteframe For table entries with the present bit set the this field shows the page
frame number pointed to by this table entry. This is shown as
f rame= fffff . Use the frame number with the .MP command to obtain
information on allocation and ownership of this this frame of real
storage.

For decommitted pages the table entry contains the Virtual Page ID.
This is shown as vp id= vvvvv . Use the .MV command with the virtual
page Id to obtain information on allocation and ownership of this
memory.

Notes: The vp id is not valid to use with .MV if the state of the table
entry is uvirt.

If the frame has been decommitted but the frame field still
shows a frame number then the frame contents are still valid
for reclaiming without a page-in operation from the swap file.
The corresponding virtual page will be queued from the idle
list. See .MV and .MP commands for more information on page
management.

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 103

state State information is stored in the available bits (9 - 11) of the page
table entry. These are interpreted on the right-hand end of the
display. The following values may appear:

State Value Description

pageable 0 Storage may be paged-out to the swap file

uvir t 1 Physical to virtual mapping reservation only.

resident 2 Non-pageable fixed storage

uvir t 3 Physical to virtual mapping reservation only.

Res Reserved page table entry bits. Should always be zero

Dc Set to D if the page is dirty, otherwise c (clean).

Au Set to A if the page has been accessed, otherwise u (unaccessed).

CD Set to CD if the TLB cache-disable bit is set, else blank.

WT Set to WT if the TLB cache write-transparent bit is set, else blank.

Us Set to U if the page is for user storage, otherwise s (supervisor).

rW Set to r if the page is read-only, otherwise W (writeable).

Pn Set to P if the page is present, otherwise n (not present).

Refer to the following for more information on page and memory management:

.M family of Kernel Debugger and Dump Formatter commands

Intel Pentium User′s Guide

Intel x86 Programmer′s Reference

3.3.21 DT - Display a Task State Segment

Format a task state segment.

Syntax:

��────── DT ───────┬─────────┬──────────────────────────────────��
└─ addr ──┘

Parameters:

addr The address of the task state segment to be formatted. If not
specified then the current TSS pointed to by the TR (task register) is
used.

Results and Notes:

The TSS is formatted as follows:

104 OS/2 Debugging

� �
##dt 10:0
eax=00000000 ebx=00000000 ecx=00000000 edx=00000000 esi=00000000 edi=00000000
eip=00000000 esp=00000000 ebp=00000000 iopl=0 -- -- -- nv up di pl nz na po nc
cs=0000 ss=0000 ds=0000 es=0000 fs=0000 gs=0000 cr3=001d1000
ss0=0030 esp0=000066fc ss1=0000 esp1=00000000 ss2=0866 esp2=00001000
ldtr=0028 link=0000 tflags=0000 i/o map=dfff
ports trapped: 0-ffff� �

Each of the fields displayed has the following meaning:

Note: Some of the TSS fields are set at task creation and other when a task
switch occurs.

e a x = Saved EAX register when a task switch occurs.

e b x = Saved EBX register when a task switch occurs.

e c x = Saved ECX register when a task switch occurs.

e d x = Saved EDX register when a task switch occurs.

e s i = Saved ESI register when a task switch occurs.

e d i = Saved EDI register when a task switch occurs.

e i p = Saved EIP register when a task switch occurs.

e s p = Saved ESP register when a task switch occurs.

e b p = Saved EBP register when a task switch occurs.

i op l= Saved EGLAGS iopl and flag settings when a task switch occurs. See
the .R command for an explanation of the flag abbreviations.

c s = Saved CS register when a task switch occurs.

s s = Saved SS register when a task switch occurs.

d s = Saved DS register when a task switch occurs.

e s = Saved ES register when a task switch occurs.

f s = Saved FS register when a task switch occurs.

g s = Saved GS register when a task switch occurs.

c r 3 = CR3 register at task creation.

Note: This provides the real address of the Page Directory Table,
which never alters under OS/2.

ss0= Ring 0 SS register used for ring 0 privilege transitions.

esp0= Ring 0 ESP register used for ring 0 privilege transitions.

ss1= Ring 1 SS register used for ring 1 privilege transitions.

esp1= Ring 1 ESP register used for ring 1 privilege transitions.

Note: Ring 1 is not used under OS/2.

ss2= Ring 2 SS register used for ring 2 privilege transitions.

esp2= Ring 1 ESP register used for ring 2 privilege transitions.

l d t r= LDTR register at task creation.

l i nk= TR register value of previous nested task′s TSS.

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 105

t f lags= The debug trap bit for this task.

i /o maps= Offset to the I/O permission map from the beginning of this TSS.

Note: It is permissible for the I/O map offset to point beyond the TSS
segment. This signifies that no I/O permissions are granted
and all ports will be trapped.

ports trapped: List the range of I/O port addresses that will generate traps if
accessed by this task.

Notes: For performance reasons hardware implemented task switching is used
only in a limited way in OS/2. TSSs defined by OS/2 include:

Protect mode code (TSS selector 10)

Virtual DOS Machines

Non-Maskable Interrupt handling (trap 2, TSS selector 1E38)

Double Fault handling (trap 8, TSS selector 88)

All protect-mode processes run under a common top-level task using
selector 10 as the TSS selector.

The seltss (PTDA +0x2f0) field of the PTDA records the top-level task′s
TSS selector used by a given process; thus it may be used to find the TSS
selector for Virtual DOS Machines.

Refer to Intel Pentium User′s Guide and Intel x86 Programmer′s Reference for
more information on the Task State Segment and Hardware architected
multitasking.

3.3.22 DX - Display the 286 LoadAll Buffer

Formats the 286 LoadAll buffer from physical address %%800 in memory.

Syntax:

��────── DX ──��

Parameters:

None.

Results and Notes

This command applies to the Intel 286 processor and is now obsolete. The
results are meaningless.

106 OS/2 Debugging

3.3.23 E - Enter Data into Memory

Enter data into a memory location.

Syntax:

┌──────────────────┐
│ │
� │

��──── E ────┬────────────┬───────┬──────────────┬─┴────────────��
└─── addr ───┘ ├── value ──┤

└── string ──┘

Parameters:

addr The address of the memory location to be changed. If not specified
this defaults to DS:00000000 where DS is established by the most
recent register display.

An address expression may be specified. See the R and .R
commands for information on establishing default addresses.

value A numerical byte value to be entered into memory. One or more
values may be specified separated commas or blanks. These may be
mixed with ″string ″ values.

string A character sting enclosed in quotes. Each character is treated as a
byte value and entered into memory separately, no terminating 0x00
value is stored. No folding of characters to upper or lower case
occurs. One or more strings may be specified separated by commas
or blanks. These may be mixed with numerical values .

Results and Notes:

If memory is present values are entered into storage otherwise an Invalid
Address message is generated. If this should happen, valid storage may be
paged into memory by means of the .I command.

If no value or string parameter is specified the Kernel Debugger prompts the
user a byte at a time for replacement values by displaying the original value
followed by a colon. In prompt mode, the user may proceed as follows:

Type a replacement byte value in hexadecimal, or

Accept the original value and move on to the next location by pressing the
space-bar, or

Back up to the previous location by entering a - (minus) character, or

Terminate prompt mode by pressing carriage return (with or without a
replacement value).

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 107

3.3.24 F - Fill Memory with Repeated Data

Fill memory with repeated data.

Syntax:

┌──────────────────┐
│ │
� │

��──── F ──────── addr ──── Ln ────────┬── value ──┬─┴─────��
└── string ──┘

Parameters:

addr The address of the memory location to be changed.

An address expression may be specified.

Ln The number (n) of bytes to fill with data.

value A numerical byte value to be entered into memory. One or more
values may be specified separated commas or blanks. These may be
mixed with ″string ″ values.

string A character sting enclosed in quotes. Each character is treated as a
byte value and entered into memory separately, no terminating 0x00
value is stored. No folding of characters to upper or lower case
occurs. One or more strings may be specified separated by commas
or blanks. These may be mixed with numerical values .

Results and Notes:

The list of values and strings is repeated up to the length Ln and used to fill
memory at the specified address. If the fill data is shorter than the length then it
is repeated; if it is longer, it is truncated.

If memory is present the storage is updated. Otherwise an Invalid Address
message is generated. If this should happen, valid storage may be paged into
memory by means of the .I command.

108 OS/2 Debugging

3.3.25 G - GO

Cause execution to continue from a given point and optionally set 1 or more go
breakpoints.

Syntax:

��───┬─ G ──┬──┬─────────────────────┬──┬─────────────────┬──��
├─ GS ──┤ └─ = ─── start-addr ──┘ └─── break-addr ─┬┘
└─ GT ──┘ 	 │

└───── , ──────┘

Parameters:

(Default) Continue execution from the current CS:EIP .

S The go-special command causes the high-resolution time interval to
be recorded from the point GS command is issued to the point that the
Kernel Debugger is re-entered as the result of a breakpoint firing.

Notes: No account is taken of the Kernel Debugger overhead when
calculating the time interval.

When the Kernel Debugger re-enters, for whatever reason, the
interval timer is cancelled until another GS command is
executed.

If the reason for entry is for reasons other than the firing of a
sticky or go breakpoint then in addition to cancelling the
interval timer no time message displayed.

T This option causes the Kernel Debugger′s trap vector handlers to be
removed temporarily from the IDT and the system′s re-instated until
after then next instruction has executed. After execution of the next
instruction the the Kernel Debugger′s V commands are re-instated.

This is a convenience option that saves manually unhooking a Kernel
Debugger trap vector handlers from the IDT, using a command
sequence similar to:

VC n
T
VS n
G

start-addr The address from which execution is to continue. This must be a
valid address for the current context. If start-addr is omitted then
execution continues from the current CS:EIP, as shown by the R
command.

 Information

Be very careful to ensure that the start address is valid for the
privileged level and addressability of the code and data selectors
in use. If the Kernel Debugger attempts to load a segment
register that is invalid, the system may trap in the debugger code.

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 109

break-addr Up to ten go breakpoints may be specified. These are temporary
breakpoints set in addition to any sticky breakpoints set by the B
commands. When the Kernel Debugger is next entered, for whatever
reason, all go breakpoints are cleared.

If break-addr is omitted then the system continues execution until:

A fatal exception occurs

An Internal Processing Error (IPE) occurs.

A sticky breakpoint fires

A non-maskable interrupt occurs

An INT 3 instruction is executed

The user enters Ctrl-C from the debugging console

Results and Notes:

The system continues execution until the Kernel Debugger is re-entered. If the
reason for entry is other than a breakpoint firing then the R command is
automatically executed followed by one of the following command prompts:

> (signifies a command prompt in real mode)

(signifies a command prompt in protect mode with paging disabled)

- (signifies a command prompt in V86 mode with paging disabled)

(signifies a command prompt in protect mode with paging enabled)

-- (signifies a command prompt in V86 mode with paging enabled)

If an error situation caused entry to the Kernel Debugger then a diagnostic
message may be generated by the failing code writing directly, to the Kernel
Debugger ′s communications port.

If entry was caused by a Kernel Debugger trap handler receiving control then a
message from the trap handler will be displayed. See the V command for
details.

If a breakpoint caused the Kernel Debugger to receive control then commands
associated with the breakpoint that fired will execute. See the B commands for
details.

If a go-special was interrupted by a breakpoint firing then the following message
appears before any output associated with the breakpoint:

Go Time (tics) = 017fb (hex) = 5145 (uSec)

This shows the time interval in both timer-ticks and equivalent number of
micro-seconds.

110 OS/2 Debugging

3.3.26 H - Hex Arithmetic

Display the sum, difference, product, quotient and remainder of two absolute
expressions.

Syntax:

�───── H ───── abs-expr1 ───── abs-expr2 ──────────────────────��

Parameters:

abs-expr1 An expression that resolves to a simple numeric value using any of
the expression evaluator operators. Symbols of absolute values may
be specified in the expression, but symbols of relocatable addresses
may not.

abs-expr2 An expression that resolves to a simple numeric value using any of
the expression evaluator operators. Symbols of absolute values may
be specified in the expression, but symbols of relocatable addresses
may not.

Results and Notes:

Each of the expressions is evaluated. If either does not resolve to a simple
numeric value then the following message is displayed:

Expression error

Having resolved each of the expressions then the sum, difference, product and
quotient of the pair is displayed as in the following examples:

� �
##h 2 3
+0005 -ffff *0006 0000 /0000 0002
#h 10t 5
+000f -0005 *0032 0000 /0002 0000
##h 7fff 5
+8004 -7ffa *7ffb 0002 /1999 0002
5*4 2*3
+001a -000e *0078 0000 /0003 0002
##h bmp_segsize 5
+0017 -000d *005a 0000 /0003 0003
##h� �

Notes: Calculations are performed using 16-bit signed arithmetic.

The operation performed is shown prefixing the result.

The product is shown as a two word value, the low word followed by the
high word.

The division is shown as two words, the quotient followed by the
remainder.

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 111

In the last example, bmp_segsize is an absolute symbol of value 0x0012
defined in map OS2KRNL.

Evaluation of complex expressions involving relocatable addresses may
be done using the ? command.

 Information

A simple numeric expression is one that resolves to a single integer value,
for example:

-4
55c7

Compare this with an address expression that has in addition an address
operator (&, %, %%, #) and possibly involves more than one integer value,
for example:

&1fc:45
#1f:445
%30045
%%15c

112 OS/2 Debugging

3.3.27 I - Input from an I/O Port

Input a byte of data from a 16-bit I/O port.

Syntax:

��──── I ──── port ──��

Parameters:

port A 16-bit I/O port address. This may be specified as a simple numeric
expression.

Results and Notes:

The byte of data is read from the requested I/O port and displayed in
hexadecimal at the console. For example:

� �
##I 2f8
0d

� �

See 3.3.32, “O - Output to an I/O Port” on page 123 for related information.

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 113

3.3.28 J - Execute Commands Conditionally

Conditionally execute one of two lists of commands depending on whether an
expression evaluates to TRUE (non-zero) or FALSE (zero).

Syntax:

��── J ─ expression ─┬───────────────────┬─┬────────────────┬─��
├────── cmd1 ───────┤ └── ; ─ cmd2 ──┬─┘
└─ ″ ── cmd1 ─┬─ ″ ─┘ 	 │

	 │ └────────────┘
└── ; ──┘

Parameters:

expression An expression that resolves to either a simple numeric value or an
address using any of the expression evaluation operators. Symbols
of addresses and symbols of absolute values may be specified.

cmd1 Specifies a command to be executed if the expression evaluates to
TRUE (non-zero). More than one command may be specified if each
is separated by a semi-colon and the entire command list is enclosed
in single or double quotes.

If cmd1 is omitted, control is returned to the debugging console when
the expression is TRUE.

cmd2 Specifies a command to be executed if the expression evaluates to
FALSE (non-zero). More than one command may be specified. Each
cmd2 must be prefixed by a semicolon, even if only one is specified.
Quotes are not required to encompass a list of

If cmd2 is omitted, control is returned to the debugging console when
the expression is FALSE.

Results and Notes:

If the expression resolves to one of the following forms, it is considered to be
FALSE:

0
0:0
&0:0
%0
%%0

Any other resolution is regarded as TRUE.

The J command is primarily intended to be used with the BP and BR commands
to enable conditional breakpoints to be defined.

Examples of this usage are:

114 OS/2 Debugging

� �
BP #f:12d5 ″J ax!=10t,g″

BP #f:12d5 ″J ax==10t;g″

BP SchedNextRet ″J wo(Tasknumber)==8,′ . p*;.r′ ; g″

BP DOSOPEN ″J wo(Tasknumber)==32,′ da #(wo(ss:sp+20)):(wo(ss:sp+1e));g′ ; g″

� �

The first example shows a breakpoint set at address #f:12d5 . When this
breakpoint fires the J command tests the condition of the AX register not equal
to decimal 10. If this is true, the G command is executed. Since no cmd2 is
specified the J command returns control to the debugging console when the
condition is FALSE (AX equal to decimal 10).

The second example is has the same effect as the first but is implemented by
testing the logically opposite condition.

The third example shows one method of stopping the system when a thread
switch to a particular thread slot has just occurred. In this case the debugging
console gains control when thread slot 8 is selected, whereupon .P* and .R
commands are automatically executed. The breakpoint SchedNextRet is one of
two exit points from the scheduler (_tkSchedNext). The other, SchedNextRet2 is
taken when the same thread slot is selected for re-dispatch. The global variable
Tasknumber contains the current and therefore out-going slot number on entry to
the scheduler; and in-coming slot number on exit from the dispatcher.

Note: The kernel calls one of the KMExitKmode routines before giving control to
user code. During this kernel exit processing the Resched and (TCB and
PTDA) force flags are checked again and if set the scheduler/dispatcher
sequence is invoked. It is possible therefore, that even though a thread is
selected to run, and achieves run state, it is put back on the ready queue
before being given any user processing time.

The fourth example illustrates a method of tracing resources that are opened by
a specific thread slot (in this case slot 32) without giving control to the debugging
console. DOSOPEN is the kernel′s entry point for open processing. At this point
words 0x0f and 0x10 contain the offset and selector that points to the resource
name.

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 115

3.3.29 K - Display Stack Trace from Address

Display the stack-trace from a given stack frame address.

Syntax:

��─┬── K ──┬──┬──────────────────┬─┬──────────────────────┬────��
├── KS ──┤ └── stack-frame ──┘ └── selector:offset ──┘
└── KB ──┘

Parameters:

K Display stack frame trace assuming the default operation size from
the code descriptor specified by selector:offset

KS Display frame trace assuming an operation size of 16-bits
(small-model).

KB Display frame trace assuming an operation size of 32-bits (big-model).

stack-frame Address of the starting stack-frame. If not specified then this
defaults to the current SS:EBP or SS:BP as set by the last register
display.

See the R and .R commands for information on changing the default
register values.

An address expression may be specified.

selector:offset The selector:offset address of the code that is in effect when the
starting Stack-frame address was created. If not specified this
defaults to the current CS:EIP or CS:IP as displayed by the the R
command.

The code selector associated with this address is used for two
purposes:

 1. To determine the default operand size in effect from the code
segment descriptor.

 2. To attempt to distinguish between near and far calls at the
starting stack-frame address.

Results and Notes:

The K command displays the stack trace, threading through the BP or EBP chain
until either an invalid chain pointer is encountered or the command is
interrupted by the user. For each stack-frame, the return address and for
parameter words or doublewords are displayed. The symbol associated with the
return address is displayed after the parameter words. An example is given
below:

116 OS/2 Debugging

� �
##.S 8
##.R
eax=c7c00000 ebx=00000014 ecx=003acd7 edx=0000aff7 esi=00030bff edi=00030000
eip=0000272d esp=0003f8b8 ebp=0003f8c0 iopl=2 -- -- -- nv up ei ng nz na pe nc
cs=d02f ss=001f ds=aff7 es=be47 fs=150b gs=0000 cr2=1701d000 cr3=001d9000
doscall1:CONFORM16:postDOSSEMWAIT:
d02f:0000272d c9 leave
##K SS:BP CS:IP

bdef:0000711e ffff ffff 06d6 0a23 SEEPSMQ + 67
bdef:0000e1df ffff ffff 0bff f91c GETMSGNOINPUT + 4a
be1f:00000271 8001 ffff 0000 0000 THK16_CALLUSERTHUNKPROC + 12
be1f:00000003 05ae 0001 0001 0003 THUNKTOINITMOVECURSOR + 30020:00000003 0001 0001
0020:00000000 02af 1a03 0197 0000
##� �

Notes:

 1. The K command is insensitive to the unconventional use of the stack,
such as where subroutine returns are affected explicitly by setting the
stack pointer and jumping back to the calling code or in optimized
code where the EBP or BP registers are not used as stack-frame
pointers.

Such possibilities exist within the system when for example the kernel
returns to user code and also within some Presentation Manager
components.

 2. No attempt is made to trace correctly through thunking layers where
the default operand size changes.

 3. The stack trace is insensitive to any explicit segment operand
overrides that may be active.

 4. No attempt is made to examine the descriptor of the SS register to
determine whether EBP or BP should be used. In a lot of 32-bit code
both the 16-bit and 32-bit data descriptors are created by the system
for calls to 16-bit subroutines.

In the example above the stack-frame address has been explicitly
overridden to use BP since the 16-bit stack selector (1f) is in effect
rather than the 32-bit 53 selector.

 5. Unlike the default stack-frame address the default code selector:offset
is taken from the register values on entry to the Kernel Debugger.

 Attention

In consequence of these points, it recommended that the stack-frame and
code selector:offset addresses be explicitly coded when using the K
command, as in the example above. In addition, the stack trace should be
verified with a memory dump of the stack.

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 117

3.3.30 L - List Maps, Groups and Symbols

List maps, groups and symbols from loaded symbol files.

See the W command for related information.

Syntax:

��──── L ───┬─ A ─┬───┬──────────────┬──────────────────────────��
├─ M ─┤ └── map-name ──┘
├─ G ─┘
│
│
├─ S ─────┬──────────┬──────────────────────────────��
│ └── addr ──┘
│
│
└─ N ─────┬────────────┬────────────────────────────��

├── addr ──┤
└── symbol ──┘

Parameters:

A List absolute symbol definitions for the specified map-name or for all
active maps.

M List all active maps or the status of the specified map.

G List groups defined in all active maps of the specified map.

N When addr is specified this option lists the nearest symbols to the
address. If an exact match is found, symbols are listed; otherwise,
the nearest symbol before and after addr is listed.

When symbol is specified the address, map and group corresponding
to the symbol is listed.

If neither addr nor symbol is specified then the default disassembly
address is assumed. See the .R and U commands for related
information.

S List all symbols defined in the group that encompasses addr for all
active maps. If addr is not specified then the value of CS:EIP on entry
to the debugger is assumed, as displayed by the R command.

map-name Specifies the link edit map-name from which information is to be
displayed.

addr Specifies an explicit address expression.

symbol Specifies a publicly defined symbol name from a program source
code.

Results and Notes:

Symbol maps are obtained from symbol files (*.SYM), which are generated using
the linkage editor and the MAPSYM utility. Under the Kernel Debugger they are
loaded from the same directory as their corresponding load module when that is

118 OS/2 Debugging

loaded by the system. When this happens the Symbols linked (map-name)
message appears. When a load module is deleted from the system, its map is
removed and the message Symbols unlinked (map-name) appears.

Under the Dump Formatter symbol files are loaded for each MTE in the dump,
during initialization, from the current directory (usually the directory the Dump
Formatter is running from).

Under the Dump Formatter conforming segments are not checked. Thus a ring 2
selector:offset address may not be recognized, whereas the ring 3 selector is. If
LN does not find a symbol for a ring 2 selector, try specifying the same selector
with the ring 3 RPL specified. For example, specify d0fe:1234 as d0ff:1234 .

Under the Dump Formatter LN does not check equivalences of the selector:offset
and linear forms of an address. Therefore it may be necessary to apply the
CRMA to an address if the LN command fails to find any near symbols.

Loaded symbol maps may be active or inactive, depending on whether the
corresponding load module is (potentially) active in the current context. In the
case of private executable modules erroneous symbolic information may be
associated with a private storage location. For this reason maps may be
manually activated and removed using the W command.

Maps for WIN-OS2 and Windows components are supported under the Kernel
Debugger only. These are automatically activated and deactivated according to
whether the Kernel Debugger default thread slot is a Windows or WIN-OS2
environment.

Output from each of the L subcommands is more or less self explanatory.
Examples follow:

� �
##la
cmd:
9876 __acrtmsg
9876 __acrtused
d6d6 __aDBused
d6d6 __aDBdoswp� �

Figure 23. List Absolute Symbols Defined in CMD.EXE and their Associated Constants

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 119

� �
##lm
cmd is active
kernel [0040, 003f]
minxobj is active
wpprint is active
nwiapi is active
rexxinit is active
pmmle is active
fka is active
ibmdevr is active
ibmvgar is active
pmpre is active
os2krnl is active� �

Figure 24. List Current MAP Status

Note: The Windows Kernel is not active, but loaded in thread slots 40 and 3f.
The additional active slot number information is only provided with
Windows and WIN-OS2 environment map files.

� �
##lg cmd
cmd:
000f:00000000 _TEXT1
0017:00000000 _TEXT3
001f:00000000 DGROUP� �

Figure 25. List Segment Groups Defined in CMD.EXE and their Associated Addresses

� �
##ln %20000
%00020000 cmd:_TEXT3:_eChcp
##ln _tkschednext
%fff4521c os2krnl:DOSHIGH32CODE:_tkSchedNext
##ln
0170:fff44695 os2krnl:DOSHIGH32CODE:HaltInst + 1
0170:fff44787 postSchedNext - f1� �

Figure 26. List Near Symbols and their Associated Addresses

Note: In this example three uses of LN are shown:.

 1. Address %20000 is shown to coincide with _eChcp in the _TEXT3
group of CMD.EXE.

 2. Symbol _tkschednext is shown to be at address %fff4521c in the
DOSHIGH32CODE of OS2KRNL .

 3. The current CS:EIP is at + 1 byte from HaltInst in group
DOSHIGH32CODE of module OS2KRNL and -f1 bytes before
postSchedNext in the same group and module.

120 OS/2 Debugging

� �
##ls %fff3f500
%fff3f4a4 DevWOHandle
%fff3f4ac g_CodeLockProc
%fff3f4b1 CodeLockProc
%fff3f5a4 g_CodeUnlockProc
%fff3f5a9 CodeUnlockProc
%fff3f614 _FSAbortVDM
%fff3f62c FS32IREAD
%fff3f638 FS32IWRITE
%fff3f644 w_Big32IO
%fff3f6c0 w_SetFileLocks
%fff3f6c8 w_ProtectSetFileLocks
.
.
.� �

Figure 27. List Symbols in the Current Group Encompassing Address %fff3f500

See the W command for related information.

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 121

3.3.31 M - Move a Block of Data in Memory

Move a block of contiguous data from one memory location to another. This
command guarantees to duplicate the source data even when the source and
destination overlap.

Syntax:

��──── M ── source-addr ──── Ln ─────── target-addr ────────────��

Parameters:

source-addr The source address of the memory location to be moved (copied).

An address expression may be specified.

Ln The number (n) of bytes to move.

target-addr Target address of the memory move operation.

An address expression may be specified.

Results and Notes:

Memory content is copied from the source to the target address. If the source
and target overlap then the source will be updated; however, the move operation
is conducted from highest to lowest address or vice versa depending on whether
the target address is higher or lower than the source, thereby guaranteeing a
faithful copy of the original source.

If memory is present, the storage is updated; otherwise an Invalid Address
message is generated. If this should happen, valid storage may be paged into
memory by means of the .I command.

122 OS/2 Debugging

3.3.32 O - Output to an I/O Port

Output a byte of data to a 16-bit I/O port

Syntax:

��──── O ──── port ──── data ──────────────────────────────��

Parameters:

port 16-bit I/O port address.

data A byte of data expressed numerically. This may be specified as a
simple numeric expression.

Results and Notes:

The byte is sent to the requested I/O port.

Note: This command may be used to set the debugging communication port
parameters from the Kernel Debugger initialization command file
(KDB.INI) as in the following example:

� �
Set COM2 DTR line (assume standard port assignment for COM2 that is, 2f8):
##O 2fc 1

Set COM1 DTR line (assume standard port assignment for COM1 that is, 3f8):
##O 3fc 1� �

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 123

3.3.33 P - PTrace Instruction Execution

Trace instruction execution within a single procedure. This command is very
similar to the T command, except that the CALL, loop and string repeat
instructions are traced as single instructions (even though allowed to execute
correctly).

Syntax:

��────── P ────┬───────┬──┬────────────────────┬───┬─────────┬──��
├─ N ─┤ └─ = ── start-addr ──┘ └─ count ─┘
└─ T ─┘

Parameters:

(Default) Trace instruction execution by single-stepping, treating CALL, loop
and string repeat instructions as single events.

Note: Certain areas of the system are known to cause problems if
traced. Attempts to trace these areas are intercepted by the
Kernel Debugger. See below for further information.

N Trace instructions suppress the register display after each instruction
is executed.

T This option causes the Kernel Debugger′s trap vector handlers to be
removed temporarily from the IDT and the system′s re-instated until
after the next instruction has executed. After execution of the next
instruction the Kernel Debugger′s V commands are re-instated.

This is a convenience option that saves manually unhooking a Kernel
Debugger trap vector handlers from the IDT using a command
sequence similar to:

VC n
P
VS n

start-addr The address from which the execution is to continue. This must be a
valid address for the current context. If start-addr is omitted, then
execution continues from the current CS:EIP, as shown by the R
command.

count The number of instructions to trace before re-entering the Kernel
Debugger, unless one of the following conditions is encountered:

A fatal exception occurs.

An Internal Processing Error (IPE) occurs.

A sticky breakpoint fires.

A non-maskable interrupt occurs.

An INT 3 instruction is executed.

The user enters Ctrl-C from the debugging console.

If omitted then count defaults to one instruction.

Results and Notes:

124 OS/2 Debugging

The Ptrace commands trace the execution of machine instructions, and by
default, display the current registers and next instruction to execute at each step.
For the purposes of the displayed trace, the CALL instruction does not have the
called routine traced, but tracing resumes on return. Loop and string repeat
instructions are also treated as atomic entities with the instruction following the
loop or repeat shown as the next to execute. INT 3 instructions are stepped over
to avoid a double breakpoint at the same address even though they appear as
the next instruction to execute.

The following system routines are known to causes inconsistency or even
system failure if traced. Consequently Ptrace will suspend tracing until after
execution leaves these routines.

_Debug_CtrlC32 through _EndCtrlC32
_DebugLoadSymMTE through EndDebugLoadSymMTE
_PGSwitchContext through pgSwitchRet

See the TX command for information on tracing these routines.

PN suppresses the register display from the automatic R command, but still
displays an unassembled next instruction for each traced instruction. If the ZS
command has been used to specify a different default command then PN behaves
exactly as the P command.

An example of the output from PN is as follows:

� �
##PN 5
0170:fff4521f 803d9e53e0ffff cmp byte ptr [InterruptLevel (ffe0539e)],ff
0170:fff45226 75b4 jnz fff451dc
0170:fff45228 803d9643e0ff00 cmp byte ptr [_cTKNoBlock (ffe04396)],00
0170:fff4522f 75be jnz fff451ef
0170:fff45231 0f01e1 smsw cx
##� �

Note: The last traced instruction is the next to be executed.

 Attention

If any of the PTrace commands is interrupted, the Kernel Debugger may
leave a temporary breakpoint active. This will result in a Trap 1 when the
system is next given control. If this occurs then either of the PT or GT
commands will clear this condition.

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 125

3.3.34 Q - Quit the Dump Formatter

Quit the Dump Formatter.

Syntax:

��─── Q ──��

Parameters:

None

Results and Notes:

The Dump Formatter is terminated.

 Attention

Do not use this command when the Dump Formatter is invoked from PMDF.
This will cases PMDF to hang. To terminate the Dump Formatter either quit
PMDF from the system memu or select another dump for processing.

126 OS/2 Debugging

3.3.35 R - Set or Display Current CPU Registers

Display or set the current CPU registers saved on entry to the Kernel Debugger.
Set default addresses for the E, D, K and U commands.

Under the Dump Formatter this command is implemented as an alias to the .R
command. The remaining discussion in the section applies to the Kernel
Debugger.

Syntax:

��──── R ───┬─────────────────────┬──────────────────────────────��
│ │
├── T ──┤
│ │
├─┤ flag register ├─┤
│ │
├─┤ 2-bit register ├─┤
│ │
├─┤ 16-bit register ├─┤
│ │
├─┤ 24-bit register ├─┤
│ │
└─┤ 32-bit register ├─┘

flag register:

┌─────────────────────────┐
� │

├─┬─ F ─┬─────┬────────────────────┬──┴──────────────────────────┤
├─ EF ─┘ └── flag mnemonics ──┘
│
│ ┌─────────────────────────────┐
│ � │
├─ CR0 ──────┬────────────────────────┬──┴──────────────────────┤
│ └── cr0 flag mnemonics ──┘
│ ┌─────────────────────────────┐
│ � │
└─ MSW ──────┬────────────────────────┬──┴──────────────────────┤

└── msw flag mnemonics ──┘

2-bit register:

├─── IOPL ─┬──────┬───┤
└─ pl ─┘

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 127

16-bit register:

├──┬─ GDTL ─┬─────┬──────────────────┬────────────────────────────┤
├─ IDTL ─┤ │ │
├─ AX ─┤ └── 16-bit value ──┘
├─ BX ─┤
├─ CX ─┤
├─ DX ─┤
├─ SI ─┤
├─ DI ─┤
├─ SP ─┤
├─ BP ─┤
├─ IP ─┤
├─ PC ─┤
├─ ES ─┤
├─ CS ─┤
├─ DS ─┤
├─ SS ─┤
├─ FS ─┤
├─ GS ─┤
├─ TR ─┤
└─ LDTR ─┘

24-bit register:

├──┬─ GDTB ─┬─────┬──────────────────┬────────────────────────────┤
└─ IDTB ─┘ │ │

└── 24-bit value ──┘

32-bit register:

├──┬─ EAX ─┬─────┬──────────────────┬────────────────────────────┤
├─ EBX ─┤ │ │
├─ ECX ─┤ └── 32-bit value ──┘
├─ EDX ─┤
├─ ESI ─┤
├─ EDI ─┤
├─ ESP ─┤
├─ EBP ─┤
├─ EIP ─┤
├─ CR2 ─┤
├─ CR3 ─┤
├─ DR0 ─┤
├─ DR1 ─┤
├─ DR2 ─┤
├─ DR3 ─┤
├─ DR6 ─┤
├─ DR7 ─┤
├─ TR6 ─┤
└─ TR7 ─┘

Parameters:

(Default)
Displays the current CPU registers on entry to the Kernel Debugger and sets
default addresses for E, D and U commands.

128 OS/2 Debugging

Register mnemonics are assigned the values displayed for use in address
expressions and operands of other Kernel Debugger and Dump Formatter
commands.

Note: The .SS command may be used to change the displayed values of CS,
EIP, SS and ESP. It does not affect the values restored then the
Kernel Debugger returns control to the system.

T Toggle register display mode between terse and non-terse forms. The terse
form suppresses display of the test, debug, control, descriptor table and task
registers.

This option affects both the R and .R commands.

flag register
Specifies one of the flag registers to be modified. The following mnemonics
may be used:

F 80286 FLAGS register

EF 80486 EFLAGS register

MSW Machine status word

CR0 Control register 0

Each of the flag bits is specified by a mnemonic. More than one flag may be
specified, with the order being unimportant. The Kernel Debugger processes
the flags from left to right; if an invalid flag is encountered processing stops,
but those flags already processed remain in effect.

Some flags are toggled by specifying a single mnemonic, others use a one
mnemonic; for the set condition and a another of the reset condition.

If replacements flags are omitted then the user is prompted for values.

flag mnemonics
Specifies one or more updated flag values for the FLAGS or EFLAGS
registers.

The following mnemonics are defined. The value of t implies the flag value is
toggled when the mnemonic is specified:

Flag Bit Value Description

VM 17 t Virtual 8086 Mode (EFLAGS only)

RF 16 t Resume Flag - Disable Debug Exceptions (EFLAGS
only)

NT 14 t Nested Task

OV 11 1 Overf low

NV 11 1 ¬ Overflow

DN 10 1 Direction Down

UP 10 0 Direction Up

EI 9 1 Enable Interrupts

DI 9 0 Disable Interrupts

NG 7 1 Negative Sign

PL 7 0 Plus Sign

ZR 6 1 Zero Result

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 129

Flag Bit Value Description

NZ 6 0 Non-zero Result

AC 4 1 Auxil iary Carry

NA 4 0 ¬ Auxil iary Carry

PE 2 1 Parity Even

PO 2 0 Parity Odd

CY 0 1 Carry

NC 0 0 ¬ Carry

cr0 flag mnemonics
Specifies one or more updated flags values for the CR0 register.

The following mnemonics are defined:

Bit Value Flag Description

PG 31 1 Paging Enabled

ET 4 1 Extension Type Flag - x87 support

TS 3 1 Task Switch Flag

EM 2 1 Emulation exception

MP 1 1 Math Present

PM 0 1 Protect Mode Enabled

msw flag mnemonics
Specifies one or more updated flags values for the MSW register.

The following mnemonics are defined:

Flag Bit Value Description

TS 3 1 Task Switch Flag

EM 2 1 Emulation exception

MP 1 1 Math Present

PM 0 1 Protect Mode Enabled

2-bit register
This option is used to specify that the IOPL field of the FLAGS or EFLAGS
register should be updated with the specified replacement 2-bit value . The
mnemonic IOPL is coded to specify this option.

If the replacement value is not specified then the user is prompted for a
value.

16-bit register
This option is used to set the value of a register where 16-bit register
specifies either one of the standard INTEL register mnemonics or:

GDTL The GDT limit.

IDTL The IDT limit.

PC The program counter. This is synonymous with IP.

130 OS/2 Debugging

This option implies a request to update a register value. If the corresponding
new 16-bit value is not specified then the prompted for a replacement value.

24-bit register
This option is used to set the base address of either the GDT or IDT. using
GDTB and IDTB as mnemonics for these registers, respectively.

This option implies a request to update a register value. If the
corresponding new 16-bit value is not specified then the prompted for a
replacement value.

32-bit register
This option is used to set the value of a register where 16-bit register
specifies one of the standard INTEL register mnemonics.

This option implies a request to update a register value. If the
corresponding new 16-bit value is not specified then the prompted for a
replacement value.

2-bit value
Specifies the 2-bit replacement value for the IOPL .

16-bit value
Specifies the 16-bit replacement value for a given 16-bit register.

24-bit value
Specifies the 24-bit replacement value for a given 24-bit register.

32-bit value
Specifies the 32-bit replacement value for a given 32-bit register.

Results and Notes:

The register information is stored in a special save area which the Kernel
Debugger uses when entered and restores from this area when control returns
to the system.

When no operands are specified the R command operates in display mode in
exactly the same manner as the .R command.

When operands are specified, the R command operates in alter mode. If no
replacement value is supplied on the command then the user is prompted with
the current value followed by a colon prompt character. For example:

##R SS
0030
:

Flag register value prompts have their current flag setting interpreted using the
mnemonics described above. For example:

##R EF
--(rf) --(vm) --(nt) nv(ov) up(dn) ei(di) pl(ng) nz(zr) na(ac) po(pe) nc(cy)
:

This example shows mnemonics for current settings followed by their negating
mnemonic in brackets. For example:

RF is not in effect, but since it is a toggle flag, the value RF specified at the
prompt would set RF.

NV is in effect. To negate it, specify OV at the prompt.

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 131

3.3.36 S - Search Memory for Data

Search a memory range for occurrences of a list of bytes.

Syntax:

┌──────────────────┐
│ │
� │

��──── S ──────── addr ──── Ln ────────┬── value ──┬─┴─────��
└── ″string″ ──┘

Parameters:

addr The address of the memory location to be searched.

Ln The number (n) of bytes to search.

value A numerical byte value to be searched into memory. One or more
values may be specified separated commas or blanks. These may be
mixed with ″string ″ values.

string A character string enclosed in single or double quotes. Each
character is treated as a list byte values to search memory, no
terminating 0x00 value is stored. No folding of characters to upper or
lower case occurs. One or more strings may be specified separated
by commas or blanks. These may be mixed with numerical values.

Results and Notes:

The list of values and strings is used as a combined search argument. Only
precise matches against the entire search argument are reported. The search is
repeated for every byte location in the range specified. If no matches are found
then nothing is displayed. Where matches are found the search command
displays a list of storage addresses. For example:

� �
##s ptda_start l1000 ″TD″
0030:0000fffe
ln 30:fffe
0030:0000fffe os2krnl:TASKAREA:ptda_signature� �

If memory is present, the storage is updated; otherwise an Invalid Address
message is generated. If this should happen, valid storage may be paged into
memory by means of the .I command.

132 OS/2 Debugging

3.3.37 T - Trace Instruction Execution

Trace instruction execution singly or for a specific number or instructions or to a
specific address.

Syntax:

��───┬─ T ──┬──┬────────────────────┬───┬─────────┬──────────��
├─ TX ──┤ └─ = ── start-addr ──┘ └─ count ─┘
├─ TN ──┤
├─ TT ──┘
│
│
├─ TA ──┬──┬────────────────────┬───── break-addr ───────��
├─ TC ──┤ └─ = ── start-addr ──┘
└─ TS ──┘

Parameters:

(Default) Trace one or more instructions, excluding known bad areas (see X
subcommand below.)

A Trace all instructions to break-addr .

This option requires break-addr to be specified.

C Counts all instructions executed until break-addr is reached.

Note: Counting is suspended when the system switches out of the
current context in which the TC command was executed. It is
resumed when that context switches back.

This option requires break-addr to be specified.

N Trace instructions but suppress the register display after each
instruction is executed.

S The trace special option is similar to TC except that an intermediate
instruction count is displayed before execution of each CALL
instruction and after each return.

This option requires break-addr to be specified.

Notes: Counting is suspended when the system switches out of the
current context in which the TS command was executed. It is
resumed when that context switches back.

TS does not attempt to match CALL with RET instructions.
Instead it inserts a temporary breakpoint at the instruction
address following the CALL. In addition the TS command
maintains a stack of return addresses and always checks the
most recent two entries, as it single-instruction steps through
the traced code, for a matching return address. This technique
enables code that uses JMP instructions to return from a call
to be better detected.

This is not a foolproof technique, especially where mutually
recursive code is traced.

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 133

T This option causes the Kernel Debugger′s trap vector handlers to be
removed temporarily from the IDT and the system′s re-instated until
after then next instruction has executed. After execution of the next
instruction the Kernel Debugger′s V commands are re-instated.

This is a convenience option that saves manually unhooking a Kernel
Debugger trap vector handlers from the IDT using a command
sequence similar to:

VC n
T
VS n

X This option forces the Kernel Debugger to trace areas of system code
that are known to be unsuitable for tracing. Normally, this occurs
when Trace encounters one of the following routines:

_Debug_CtrlC32 through _EndCtrlC32
_DebugLoadSymMTE through EndDebugLoadSymMTE
_PGSwitchContext through pgSwitchRet

A temporary breakpoint is inserted at the routine′s return address
and the system is allowed to go to that address uninterruptedly.
When TX is used the Kernel Debugger will attempt to trace
instructions within these routines.

The consequence of forcing tracing in these routines may be at worst,
the system is left in an unrecoverable state, and at best certain
Kernel Debugger commands will give erroneous information.

start-addr The address from which execution is to continue. This must be a
valid address for the current context. If start-addr is omitted then
execution continues from the current CS:EIP, as shown by the R
command.

 Attention

Be very careful to ensure that the start address is valid for the
privileged level and addressability of the code and data selectors
in use. If the Kernel Debugger attempts to load a segment
register that is invalid, the system may trap in the debugger code.

break-addr This is the address at which tracing will stop and the Kernel
Debugger will be re-entered unless one of the following conditions is
encountered:

A fatal exception occurs.

An Internal Processing Error (IPE) occurs.

A sticky breakpoint fires.

A non-maskable interrupt occurs.

An INT 3 instruction is executed.

The user enters Ctrl-C from the debugging console. The
break-addr only remains in effect until the Kernel Debugger is
next re-entered.

count This is the number of instructions to trace before re-entering the
Kernel Debugger, unless one of the following conditions is
encountered:

134 OS/2 Debugging

A fatal exception occurs.

An Internal Processing Error (IPE) occurs.

A sticky breakpoint fires.

A non-maskable interrupt occurs.

An INT 3 instruction is executed.

The user enters Ctrl-C from the debugging console.

If omitted then, count defaults to one instruction.

Results and Notes:

Except for TN, TC and TS the default command is executed when control returns to
the debugging console. This defaults to the R command unless respecified
through use of the ZS command.

TN suppresses the register display from the automatic R command, but still
displays an unassembled next instruction for each traced instruction. If the ZS
command has been used to specify a different default command then the TN
command behaves exactly as T.

An example of the output from the TN command is as follows:

� �
##TN 5
0170:fff4521f 803d9e53e0ffff cmp byte ptr [InterruptLevel (ffe0539e)],ff
0170:fff45226 75b4 jnz fff451dc
0170:fff45228 803d9643e0ff00 cmp byte ptr [_cTKNoBlock (ffe04396)],00
0170:fff4522f 75be jnz fff451ef
0170:fff45231 0f01e1 smsw cx
##� �

Note: The last traced instruction is the next to be executed.

TC displays the total number of instructions traced in the following message:

Total traced instructions: nnnn (decimal)

where nnnn is the number of traced instructions.

Following this message the default command is executed. See the Z command
for details.

TS displays a variety of different messages, examples of which are:

--
Instruction Count: 101

d0df:0000f319 9a0000c810 call 10c8:0000

Accumulated number of instructions executed before the CALL instruction.

--
Exit:

Accumulated number of instructions executed when the return address is
encountered.

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 135

Note: This does not include the instruction at the return address.

--
 ...Special exit follows...
 Exit: 360

Accumulated number of instructions executed when the second most recent
return address is encountered. In this case the most recent return address is
discarded from the stack.

Note: This does not include the instruction at the return address.

--
Switching context...

...Back in context

Signifies context switching occurring and the suspension and resumption of
instruction counting.

--
Total traced instructions: nnnn (decimal)

The total number of instructions traced when the break-addr is encountered.

Notes: REP and REPNE string instruction prefixes are handled differently to
other instructions when single stepping. The Kernel Debugger generates
a temporary breakpoint following the repeated string instructions (MOVS,
CMPS, SCAS, LODS and STOS) and returns control to the system until the
temporary breakpoint fires.

INT 3 instructions encountered when single-stepping are reported but in
actual fact stepped over, thereby avoiding a double breakpoint at the
same address.

 Attention

If any of the Trace commands is interrupted, the Kernel Debugger may leave
a temporary breakpoint active. This will result in a Trap 1 when the system
is next given control. If this occurs then either of the TT or GT commands will
clear this condition.

136 OS/2 Debugging

3.3.38 U - Unassemble

Unassemble storage at a given address.

Syntax:

��──── U ───────────────────┬──────────┬───────────────────────��
└── addr ──┘

Parameters:

addr The address of the storage location to be unassembled.

Results and Notes:

The U command unassembles storage from the address given. No attempt is
made to distinguish between code and data storage. If no addr is given then the
default address is determined in order of precedence as follows:

• The last unassembled address + 1 , or

• The CS:EIP of the last explicitly executed .R command, R command or

• The address of the next instruction to be executed.

Output from the U command is in two forms depending on whether the storage
address was set in the context of the default (Kernel Debugger′s or Dump
Formatter′s current) thread slot or another slot. In the former case output
appears as in the following example:

� �
##u
0170:fff4521f 803d9e53e0ffff cmp byte ptr [InterruptLevel (ffe0539e)],ff
0170:fff45226 75b4 jnz fff451dc
0170:fff45228 803d9643e0ff00 cmp byte ptr [_cTKNoBlock (ffe04396)],00
0170:fff4522f 75be jnz fff451ef
0170:fff45231 0f01e1 smsw cx
0170:fff45234 66f7c10200 test cx,0002
0170:fff45239 0f8552050000 jnz fff45791
0170:fff4523f fa cli� �

In the latter case the context is shown by prefixing the thread slot to the address
as in the following example:

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 137

� �
##.p*

Slot Pid Ppid Csid Ord Sta Pri pTSD pPTDA pTCB Disp SG Name
*0022# 0013 0003 0013 0001 blk 0300 7b6ea000 7b8c7128 7b8ab820 1eb8 18 epm
##.r 34

eax=00000000 ebx=000007f4 ecx=00000000 edx=0003ace7 esi=d02f4ef0 edi=000011ec
eip=0000272d esp=0000755e ebp=00007566 iopl=2 -- -- -- nv up ei ng nz na pe nc
cs=d02f ss=001f ds=bccf es=ace7 fs=150b gs=000 cr2=15b20000 cr3=001d9000
doscall1:CONFORM16:postDOSSEMWAIT:
0034|d02f:0000272d c9 leave
##u

doscall1:CONFORM16:postDOSSEMWAIT:
0034|d02f:0000272d c9 leave
0034|d02f:0000272e ca0800 retf 0008
0034|d02f:00002731 87db xchg bx,bx
0034|d02f:00002733 90 nop
doscall1:CONFORM16:DOSSEMSET:
0034|d02f:00002734 c8040000 enter 0004,00
0034|d02f:00002738 8b4608 mov ax,word ptr [bp+08]
0034|d02f:0000273b 3d0200 cmp ax,0002
0034|d02f:0000273e 7448 jz 2788
0034|d02f:00002740 250300 and a,0003
0034|d02f:00002743 3d0100 cmp ax,0001
0034|d02f:00002746 7415 jz 275d
0034|d02f:00002748 8b4608 mov ax,word ptr [bp+08]
##� �

Note: The unassembled instruction mnemonics may be toggled between
uppercase and lowercase by use of the Y command.

138 OS/2 Debugging

3.3.39 V - Exception/Trap/Fault Vector Commands

This group of commands manipulates IDT entries 0 through e to point to Kernel
Debugger supplied interrupt handlers. By this means the Kernel Debugger may
selectively be made to intercept each system exception before the system is
allowed to process the exception. When a system exception is intercepted the
Kernel Debugger gives control to the user. The original IDT entries are retained
so that they may be re-instated, or given control following an exception which
the Kernel Debugger has intercepted. See the GT and TT commands for
information in returning control to the system exception handlers.

Syntax:

��────── V ─┬── L ──┬──┬───────┬───┬────────────────────┬─────��
├── S ──┤ ├── R ──┤ ├──── interrupt ──┬──┤
├── T ──┤ ├── V ──┤ │ 	 │ │
└── C ──┘ ├── P ──┤ │ └───── , ──────┘ │

├── F ──┤ └──────── * ─────────┘
└── N ──┘

Parameters:

L The List subcommand list active Kernel Debugger trap and interrupt
vectors.

Only a category specification (R, V, P, F or N) may be optionally
specified with the List subcommand.

S The Set subcommand activates a Kernel Debugger exception vector
according to criteria specified in the remaining parameters. Vectors
set using this option cause the Kernel Debugger to receive control
only when the corresponding exceptions are generated in ring 2 and 3
code.

T The Trap subcommand activates a Kernel Debugger exception vector
according to criteria specified in the remaining parameters. Vectors
set using this option cause the Kernel Debugger to receive control
whenever the corresponding exceptions are generated regardless of
the current privileged level.

C The Clear subcommand re-instates one or more system exception
handlers according to the criteria specified in the remaining
parameters.

R This option refines the exception criteria to real-mode exceptions
only.

If no refining category is specified then the vector subcommand being
executed applies to the R, V, P and F options simultaneously.

V This option refines the exception criteria to V86-mode exceptions only.

P This option refines the exception criteria to protect-mode exceptions
only.

F This option refines the exception criteria to those exceptions that
would be fatal to a process or the system. If a Local (system)
exception handler is registered then the exception is not intercepted.

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 139

User exception handlers do not affect the operation of the Vector
command. Local exception handlers protect the system from
recoverable errors, in particular bad parameters passed in API calls.
If a parameter causes the system to trap, the local exception handler
is given control and the application is terminated. VSF will not
intercept such traps. For further information on exception handling
and how to intercept exceptions in general, see 1.6, “Trap and
Exception Processing” on page 44.

N This option causes the Kernel Debugger exception handler to beep
continuously instead of giving control to the user. The user may then
break into the Kernel Debugger by entering Ctrl-C at the debugging
console.

The N option works in conjunction with the four refining categories;
that is, it does not by itself cause an interrupt to be trapped but
instead specifies an action when that event occurs.

The N option must be explicitly specified for all four subcommands (L
S, T and C) when required.

interrupt This allows one or more interrupt vectors, separated by commas, to
be specified with the vector command as a refining criterion.

It is not valid with the List subcommand.

The abbreviation * may be specified as an alternative to the following
interrupts, in each of the refining categories:

Real-mode: 0,1,2,3,4,5,6

V86-mode: 0,1,3,4,5,6,7,9,a,b,c,d,e

Protect-mode: 0,1,3,4,5,6,7,9,a,b,c,d,e

Fail option: 0,1,2,3,4,5,6,7,8,9,a,b,c,d,e

Noise option: 0,1,2,3,4,5,6,7,8,9,a,b,c,d,e

Results and Notes:

Only the List subcommand gives immediate output, which is of the form in the
following example:

� �
##VL
R 0 1 2 3 4 5 6
V
P d
F e d� �

As can be seen from this example, each category is shown with its one-letter
abbreviation followed by a list of interrupt vectors currently being intercepted by
the Kernel Debugger

Note: The N option must be specified explicitly to be listed.

All other subcommands only cause output to appear when an interrupt is
intercepted. When this happens the following events occur:

 1. The N option is checked; if enabled the Kernel Debugger emits a continuous
beep until the user breaks in through the debugging console.

140 OS/2 Debugging

 2. A trap message is issued if the default command is set to the R command.

 3. The default command is executed.

The following figure shows the format of the trap messages issued by the Kernel
Debugger exception handlers:

Trap 0 - Divide Error Exception
Trap 1 - Unexpected trace interrupt
Trap 2 - NMI Interrupt
Trap 4 - INTO Detected Overflow Exception
Trap 5 - BOUND Range Exceeded Exception
Trap 6 - Invalid Opcode Exception
Trap 7 - Processor Extension Not Available Exception
Trap 8 - Double Exception Detected nnnn
Trap 9 - Processor Extension Segment Overrun
Trap 10 (0AH) - Invalid TSS nnnn, mmmmmmmm
Trap 11 (0BH) - Segment Not Present nnnn, mmmmmmmm
Trap 12 (0CH) - Stack Segment Overrun or Not Present nnnn, mmmmmmmm
Trap 13 (0DH) - General Protection Fault nnnn, mmmmmmmm
Trap 14 (0EH) - Page Fault nnnn, mmmmmmm

In the messages above nnnn is substituted with the Intel exception code and
mmmmmmmm is substituted with an interpretation of the Intel error code flags.
For Trap 10 , Trap 11 , Trap 12 and Trap 13 the error code flags are interpreted as:

External External event

IDT Gate IDT gate selector error

GDT GDT selector error

LDT LDT Selector error

For Trap 14 the error code flags are interpreted as a combination of:

Not Present Page not present

Read Access Read Access failure

Write Access Write Access Failure

User mode Fault occurred when executing in User mode

Supervisor Fault occurred when executing in Supervisor mode

If a trap occurs in the debugger component of the Kernel Debugger, the trap
message will be appended with:

- In Debugger

If this happens then the only hope of recovering the system is to set the
registers, using the R command, to a known consistent set of values.

See the INTEL x86 Programmer′s Reference or the INTEL Pentium User′s Guide
for further information on exceptions and error codes.

Notes: Trap 1 normally occurs as part of the operation of the Kernel Debugger.
Therefore, only unexpected Trap 1 exceptions are reported.

When a Trap 1 is generated through the use of the Debug Registers, then
the Kernel Debugger signals this with the message Debug register hit .

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 141

Trap 3 occurs through use of the INT 3 instruction. This is used both by
the Kernel Debugger and user programs in implementing breakpoints.
User programs may use the INT 3 instruction as a program controlled
technique for breaking into the debugger. In these cases a trap message
is not displayed.

142 OS/2 Debugging

3.3.40 W - Withmap Add/Remove

Add or remove a symbol map. Under the Kernel Debugger this merely activates
or deactivates a symbol map. Under the Dump Formatter a symbol file may be
re-loaded using the Withmap command.

Syntax:

��──┬─ WA ──┬──┬─────────────────┬──────────────────────────────��
└─ WR ──┘ ├── map-name ──┤

├── symbol-file │
└── * ──┘

Parameters:

A Activate 1 or all symbol maps.

Note: If the corresponding load module is not active then the map
will remain deactivated. See the L command for more
information on displaying map status.

R Remove 1 or all symbol maps.

L (not shown) This subcommand applied only to the Dump Formatter and has
been superseded by the .LM command.

map-name The symbol map name to be activated or deactivated

symbol-file The symbol file name, with optional path and extension, to be loaded
or removed.

Note: This operand applied only to the Dump Formatter.

* Specifies all the maps or symbol files should be loaded or removed.

Results and Notes:

An error message is displayed only if the specified map-name is not loaded.

See the L command for related information.

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 143

3.3.41 Y - Set or Display Dump Formatter and Kernel Debugger Options

Set or display Dump Formatter and Kernel Debugger disassembly and register
options.

Syntax:

��─┬── Y? ──��
│
│ ┌──────────────────────┐
│ │ │
│ � │
└── Y ──────┬─────────────────┬──┴───────────────────────────��

├─── 386ENV ───┤
├─── REGTERSE ───┤
└─── DISLWR ───┘

Parameters:

(Default) Display current option settings.

? Display help for the Y command.

386ENV Force the Kernel Debugger and Dump Formatter to toggle the
environment setting between 286 and 386 modes.

This affects the way in which commands interpret the register set.
For example, in 286 mode, general registers are assumed, by default,
to be 16-bit registers. Under rare circumstances it is necessary to
force a particular mode to obtain a correct disassembly listing from
the U command. Mostly this occurs in system code that is
multi-modal and has juxtaposed sections of 32-bit and 16-bit code.

The initial setting is 386 mode under OS/2 V2.0 and above.

REGTERSE This has the same effect as the RT command.

The initial setting is for terse register display.

DISLWR This option toggles uppercase and lowercase display of assembler
mnemonics from the U command.

The initial setting is for lowercase mnemonics.

Results and Notes:

No information is displayed when setting options.

When querying options, those in effect are displayed, for example:

� �
##y
386env dislwr regterse

� �

144 OS/2 Debugging

This shows that the 386 environment is assumed, lowercase disassembly is in
effect and terse register display is active. If any one of these settings is toggled,
then the corresponding flag is not displayed.

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 145

3.3.42 Z - Set, Execute or Display the Default Command

Set, execute or display the default command.

Syntax:

�───── Z ──┬─────┬──��
├─ L ─┘
│
│
│ ┌── ; ───┐
│ � │
└─ S ──┬─────┬── cmd ─┴─┬─────┬────────────────────��

└─ ″ ─┘ └─ ″ ─┘

Parameters:

(Default) Execute the default command string.

L Display the default command string

S Set the default command string.

cmd Specifies a Dump Formatter or Kernel Debugger commands to be
used in the default command string. If the command string comprises
more than one command, then each must be separated by commas
and the entire string enclosed in quotes.

Results and Notes:

The default command string is executed automatically at breakpoints (where no
other command string is associated with the breakpoint), after instruction tracing
or when exception vectors are trapped. See the following commands for more
information:

3.3.2, “B - Breakpoint Command Family” on page 84

3.3.25, “G - GO” on page 109

3.3.33, “P - PTrace Instruction Execution” on page 124

3.3.37, “T - Trace Instruction Execution” on page 133

3.3.39, “V - Exception/Trap/Fault Vector Commands” on page 139

When the Kernel Debugger and Dump Formatter are initialized the default
command string is set to ″R″.

Note: When the user breaks into the Kernel Debugger with Ctrl-C the R
command is executed regardless of the default command setting.

146 OS/2 Debugging

3.4 External Commands
The following list comprises the set of external commands:

.? Display external command help

.A Display the SAS structure

.B Set COM Parameters

.C Display the Common ABIOS Data Area

.D Display an OS/2 System Structure

.H Display Dump File Header Information

.I (KDB) Swap in Storage

.I (DF) Display Dump State

.K Display Ring 3 stack

.LM Format Loader structures (MTE, OTE, STE)

.M Formate Memory Structures

.MA Format Memory Arena records (VMAR)

.MC Format Memory Context Records (VMCO)

.MK Format Memory Lock Information Records (VMLI)

.ML Format Memory Alias Records (VMAL)

.MO Format Memory Object Records (VMOB)

.MP Format Memory Physical Page Frame Tables

.MV Format Memory Virtual Frame Tables

.N Display Dump Header Information

.P Display Process Status

.PB Display Blocked Thread Information

.PQ Display Scheduler Thread Queuing Information

.PU Display Thread User Space Information

.R Display Ring 2/3 Registers

.REBOOT Reboot the System Under Test

.S Switch Default Thread Slot

.T Format the System Trace Buffer

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 147

3.4.1 .? - Show External Command Help

Display help for internal Kernel Debugger and Dump Formatter commands.

Syntax:

�───── .? ──��

Parameters:

None.

Results and Notes:

Displays a help summary for most of the Dump Formatter and Kernel Debugger
external commands.

Note: Some of the information displayed is out-of-date.

Two pages of information are displayed with an intervening --More-- prompt.

148 OS/2 Debugging

3.4.2 .A - Format the System Anchor Segment (SAS)

Format the System Anchor Segment (SAS).

Syntax:

��────.A ───��

Parameters:

None

Results and Notes:

The SAS is located from either GTD selector 70 or 78.

iod.A displays the following information:

--- SAS Base Section ---
SAS signature: SAS

offset to tables section: 0016
FLAT selector for kernel data: 0168

offset to configuration section: 001E
offset to device driver section: 0020
offset to Virtual Memory section: 002C

offset to Tasking section: 005C
offset to RAS section: 006E

offset to File System section: 0074
offset to infoseg section: 0080

--- SAS Protected Modes Tables Section ---
selector for GDT: 0008
selector for LDT: 0000
selector for IDT: 0018

selector for GDTPOOL: 0100
--- SAS Device Driver Section ---

offset for the first bimodal dd: 0CB9
offset for the first real mode dd: 0000

sel for Drive Parameter Block: 04C8
sel for ABIOS prot. mode CDA: 0000
seg for ABIOS real mode CDA: 0000

selector for FSC: 00C8
--- SAS Task Section ---

selector for current PTDA: 0030
FLAT offset for process tree head: FFF10910

 FLAT address for TCB address array: FFF06BB6
offset for current TCB number: FFDFFB5E

offset for ThreadCount: FFDFFB62
--- SAS File System Section ---

handle to MFT PTree: FE72CFBC
selector for System File Table: 00C0
sel. for Volume Parameter Bloc: 0788

sel. for Current Directory Struc: 07B8

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 149

selector for buffer segment: 00A8
--- SAS Information Segment Section ---

selector for global info seg: 0428
address of curtask local infoseg: 03C80000

address of DOS task′ s infoseg: FFFFFFFF
selector for Codepage Data: 07CB

--- SAS RAS Section ---
selector for System Trace Data Area: 04B0
 segment for System Trace Data Area: 04B0

offset for trace event mask: 0B28
--- SAS Configuration Section ---

offset for Device Config. Table: 0D50
--- SAS Virtual Memory Mgt. Section ---

Flat offset of arena records: FFF13304
Flat offset of object records: FFF1331C
Flat offset of context records: FFF1330C

Flat offset of kernel mte records: FFF0A891
Flat offset of linked mte list: FFF07934
Flat offset of page frame table: FFF11A70
Flat offset of page range table: FFF111EC
Flat offset of swap frame array: FFF03BAC

Flat offset of Idle Head: FFF10090
Flat offset of Free Head: FFF10080
Flat offset of Heap Array: FFF11B78

Flat offset of all mte records: FFF12E04

Each of the items displayed has the following significance:

--- SAS Base Section ---
Marks the beginning of the SAS header section.

SAS signature
SAS signature from SAS_signature (SAS+0x0). Always set to
character value ″SAS ″.

offset to tables section
Offset from SAS selector to the protected mode tables section.

Taken from SAS_tables _data (SAS+0x4).

FLAT selector for kernel data
Selector for 4G Read/Write addressability.

Taken from SAS_flat _sel (SAS+0x6).

offset to configuration section
Offset from SAS selector to the configuration tables section.

Taken from SAS_config _data (SAS+0x8).

offset to device driver section
Offset from SAS selector to the device driver section.

Taken from SAS_dd_data (SAS+0xa).

offset to Virtual Memory section
Offset from SAS selector to the Virtual Memory section.

Taken from SAS_vm_data (SAS+0xc).

offset to Tasking section
Offset from SAS selector to the Tasking section.

Taken from SAS_task _data (SAS+0xe).

150 OS/2 Debugging

offset to RAS section
Offset from SAS selector to the RAS data section.

Taken from SAS_RAS_data (SAS+0x10).

offset to File System section
Offset from SAS selector to the File System section.

Taken from SAS_file _data (SAS+0x12).

offset to infoseg section
Offset from SAS selector to the Infoseg section.

Taken from SAS_info _data (SAS+0x1e).

--- SAS Protected Modes Tables Section ---
Marks the beginning of the protected mode tables section

selector for GDT
GDT selector that maps the GDT.

Taken from SAS_tbl _GDT (SAS_tables_sect ion+0x0).

selector for LDT
No longer used.

Taken from SAS_tbl _LDT (SAS_tables_sect ion+0x2).

selector for IDT
GDT selector that maps the IDT

Taken from SAS_tbl _IDT (SAS_tables_sect ion+0x4).

selector for GDTPOOL
First GTD selector in selector pool. That is, first non-predefined GDT
selector.

Taken from SAS_tbl _GDTPOOL (SAS_tables_sect ion+0x6).

--- SAS Device Driver Section ---
Marks the beginning of the Device Driver Section

offset for the first bimodal dd
Offset from SAS selector to the first device driver header in the
device driver chain.

See the .D command for formatting device driver headers.

Taken from SAS_dd_bimodal _chain (SAS_dd_sect ion+0x0).

offset for the first real mode dd
No longer used.

Taken from SAS_dd_real_chain (SAS_dd_sect ion+0x2).

sel for Drive Parameter Block
Selector that points to the head of the DPB chain.

See the .D command for formatting DPBs .

Taken from SAS_dd_DPB_segment (SAS_dd_sect ion+0x4).

sel for ABIOS prot. mode CDA
Selector for ABIOS protect mode CDA.

See the .C command for displaying CDA information.

Taken from SAS_dd_CDA_anchor _p (SAS_dd_sect ion+0x6).

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 151

seg for ABIOS real mode CDA
Segment for ABIOS real mode CDA. See the .C command for
displaying CDA information.

Taken from SAS_dd_CDA_anchor _r (SAS_dd_sect ion+0x8).

selector for FSC
Selector for the FSC segment.

Taken from SAS_dd_FSC (SAS_dd_sect ion+0x2).

--- SAS Task Section ---
Marks the beginning of the tasking section.

selector for current PTDA
Selector for the current PTDA and ring 0 stack.

Taken from SAS_task _PTDA (SAS_task_sect ion+0x0).

FLAT offset for process tree head
Linear address of _pPTDAFirst , which contains the linear address of
the PTDA that heads the PTDA tree.

Taken from SAS_task _ptdaptrs (SAS_task_sect ion+0x2).

FLAT address for TCB address array
Linear address of _papTCBSlots , which contains the linear address of
the TCB array.

Taken from SAS_task _threadptrs (SAS_task_sect ion+0x6).

offset for current TCB number
Linear address of _TaskNumber , which contains the current thread
slot number.

Taken from SAS_task _tasknumber (SAS_task_sect ion+0xa).

Offset for ThreadCount
Linear address of _ThreadCount , which contains the highest thread
slot number in use - 1.

Taken from SAS_task _threadcount (SAS_task_sect ion+0xe).

--- SAS File System Section --
Marks the beginning of the File System Section

handle to MFT PTree
Linear address of the head of the Ptree for the MFT.

See the .D command for formatting MPTs .

Taken from SAS_file _MFT (SAS_file_sect ion+0x0).

selector for System File Table
Selector for the segment containing a table of selectors that point to
tables of SFTs. Each SFT table contains an 8 byte header followed by
contiguous SFT entries.

See the .D command for formatting SFTs .

Taken from SAS_file _SFT (SAS_file_sect ion+0x4).

sel. for Volume Parameter Bloc
This is the selector for the work buffer used by volume mount
processing.

Taken from SAS_file _VPB (SAS_file_sect ion+0x6).

152 OS/2 Debugging

Note: The selector for the VPB segment is not given by this field. It
may be located from the selector named by global variable
GDT_VPB . See the .D command for formatting VPBs .

sel. for Current Directory Struc
Selector for the RMP segment containing CDS structures.

See the .D command for formatting CDSs .

Taken from SAS_file _CDS (SAS_file_sect ion+0x8).

selector for buffer segment
Selector for the file system buffer segment.

Taken from SAS_file _buffers (SAS_file_sect ion+0xa).

--- SAS Information Segment Section --
Marks the beginning of the Information Section.

selector for global info seg
Selector for the Global Information Segment (GISEG).

Taken from SAS_info _global (SAS_info_sect ion+0x0).

address of curtask local infoseg
16:16 far pointer for the current Local Information Segment (LISEG).

Taken from SAS_info _global (SAS_info_sect ion+0x2).

address of DOS task ′s infoseg
Real mode local information segment pointer (unused).

Taken from SAS_info _localRM (SAS_info_sect ion+0x6).

selector for Codepage Data
Selector for the segment containing the Code Page Data Information
Block (CDIB).

Taken from SAS_info _CDIB (SAS_info_sect ion+0xa).

--- SAS RAS Section --
Marks the beginning of the RAS section

selector for System Trace Data Area
Selector for the STDA trace buffer.

Taken from SAS_RAS_STDA_p

See the .T command for formatting the system trace buffer.
(SAS_RAS_sect ion+0x0).

segment for System Trace Data Area
Selector for the STDA trace buffer.

Taken from SAS_RAS_STDA_r (SAS_RAS_sect ion+0x2).

The same value is stored in both SAS_RAS_STDA_p and
SAS_RAS_STDA_r .

offset for trace event mask
Offset from the SAS to the trace major event codes table
(ras_mec_table).

Taken from SAS_RAS_event _mask (SAS_RAS_sect ion+0x4).

--- SAS Configuration Section --
Marks the beginning of the Configuration section

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 153

offset for Device Config. Table
Offset from the SAS to the device configuration table.

Taken from SAS_config _table (SAS_config_sect ion+0x0).

--- SAS Virtual Memory Mgt. Section --
Marks the beginning of the Virtual Memory Management section

Flat offset of arena records
The linear address of _parvmOne , the linear address of the first VM
arena record (VMAR).

See the .MA command for related information.

Taken from SAS_vm_arena (SAS_vm_sect ion+0x0).

Flat offset of object records
The linear address of _pobvmOne , the linear address of the first VM
object record (VMOB).

See the .MO command for related information.

Taken from SAS_vm_object (SAS_vm_sect ion+0x4).

Flat offset of context records
The linear address of _pcovmOne , the linear address of the first VM
context record (VMCO).

See the .MC command for related information.

Taken from SAS_vm_context (SAS_vm_sect ion+0x8).

Flat offset of kernel mte records
The linear address of _DosModMTE , the kernel (DOSCALLS.DLL) MTE.

See the .LM command for related information.

Taken from SAS_vm_krnl _mte (SAS_vm_sect ion+0xc).

Flat offset of linked mte list
The linear address of _global _h, the linear address of the head of the
MTE chain of link library modules.

See the .LM command for related information.

Taken from SAS_vm_glbl _mte (SAS_vm_section+0x10).

Flat offset of page frame table
The linear address of _pft , the linear address of the first (frame 0)
page frame structure (PF).

See the .MP command for related information.

Taken from SAS_vm_pft (SAS_vm_section+0x14).

Flat offset of page range table
The linear address of _pgPageablePAI , the pageable PAI. The first
double word of the PAI points to the page range table.

Taken from SAS_vm_prt (SAS_vm_section+0x18).

Flat offset of swap frame array
The linear address of _smbmDF , the linear address of swap frame
allocation bit map followed by _smFileSize , the swap file size word
length value in pages.

Taken from SAS_vm_swap (SAS_vm_section+0x1c).

154 OS/2 Debugging

Flat offset of Idle Head
The linear address of _pgIdleList , which points to the pseudo-PF at
the head of the idle PF list.

See 3.4.17.2, “Idle Page Frame Structures” on page 227 for more
information locating Idle Page Frame Structures.

See the .MP command for related information.

Taken from SAS_vm_idle _head (SAS_vm_section+0x20).

Flat offset of Free Head
The linear address of _pgFreeList , which points to the pseudo-PF at
the head of the free PF list.

See the 3.4.17.1, “Free Page Frame Structures” on page 226 for more
information locating free Page Frame Structures.

See the .MP command for related information.

Taken from SAS_vm_free_head (SAS_vm_section+0x24).

Flat offset of Heap Array
The linear address of _apkh , the array of VMKH kernel heap header
structures. Note: the first entry is unused.

Taken from SAS_vm_heap_info (SAS_vm_section+0x28).

Flat offset of all mte records
The linear address of _mte_h, which is the linear address of the head
of the MTE chain.

See the .LM command for related information.

Taken from SAS_vm_all_mte (SAS_vm_section+0x2c).

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 155

3.4.3 .B - Select the Communications Port and Speed

Select the communications port and speed.

Syntax:

��──── .B ───────── speed ────┬──────────┬──────────────────────��
└── port ──┘

Parameters:

Speed The COMx port speed. Any of the following values are valid:

150t

300t

600t

1200t

2400t

4800t

9600t

19200t

Note: Since baud rates are usually expressed in decimal and the
default number base for the Kernel Debugger is hexadecimal,
a t subscript must be supplied when using decimal values.

Port Specifies which COM port is to be used. If 1 or 2 are specified then
COM1 or COM2 are implied. Any other numeric value is assumed to
be an I/O port address.

Results and Notes:

When the Kernel Debugger initializes a default baud rate of 9600t is set.

The COM port defaults to COM2 if there are two serial ports; otherwise the
default is COM1, unless no COM ports are defined in the ROM BIOS data area,
in which case the first port address in the ROM BIOS data area is assumed.

The parity, data and stop bit settings default to none, 8 and 1. These may be
altered either:

From the Kernel Debugger by writing directly to the COM port control
register using the .O command.
From the system under test by using the MODE command.

If synchronization is lost with the debugging console, for example because the
debugging communications port has been temporarily used by another
application then it may be reset using the MODE command, from the command
line of the system under test. For example, to re-specify the default parameters
use:

MODE COM2 9600,n,8,1

156 OS/2 Debugging

3.4.4 .C - Display the Common ABIOS Data Area

Display ABOIS Command Data Area information.

Syntax:

��────.C ──��

Parameters: None

Results and Notes:

.C displays data for each logical device ID anchored from the Common ABIOS
Data Area (CDA). If the ABIOS is not present or initialized then the following
message is displayed:

ABIOS Not Present or Not Initialized

The presence of ABIOS is indicated by a non-zero byte value located at the
symbol:

ABIOS_Present.

If the ABIOS is present and initialized, then data based on the Logical Device ID
(LID) table is displayed. The LID Table is located from a selector located at:

ABIOS_CDS_ANCHOR_p - in protect mode

ABIOS_CDS_ANCHOR_r - in real mode

Tabular data of the following form is displayed:

 LID(0000) Type=Reserved DB=001e:0114 FTT=0000:0000
 LID(0001) Type=Null DB=0000:0000 FTT=0000:0000
 LID(0002) Type=Internal DB=0438:06f0 FTT=0448:011c
 LID(0003) Type=Diskette DB=0438:0728 FTT=0448:012c
 LID(0004) Type=Video DB=0438:07a4 FTT=0448:017c
 LID(0005) Type=Keyboard DB=0438:07e4 FTT=0448:01e4
 LID(0006) Type=Printer DB=0438:080c FTT=0448:0238
 LID(0007) Type=Asynch DB=0438:082c FTT=0448:0280
 LID(0008) Type=SysTimer DB=0438:084c FTT=0448:02e8
 LID(0009) Type=RTCTimer DB=0438:0860 FTT=0448:0328
 LID(000a) Type=SysService DB=0438:087c FTT=0448:0380
 LID(000b) Type=NMInterrupt DB=0438:08a0 FTT=0448:03cc
 LID(000c) Type=PointDevice DB=0438:08d8 FTT=0448:0404
 LID(000d) Type=DMA DB=0438:08f0 FTT=0448:044c
 LID(000e) Type=Security DB=0438:0920 FTT=0448:04a4
 LID(000f) Type=POS DB=0438:0938 FTT=0448:04f0
 LID(0010) Type=CMOSRam DB=0438:0960 FTT=0448:0538
 LID(0011) Type=ErrorLog DB=0438:0978 FTT=0448:0574
 LID(0012) Type== DB=0438:0990 FTT=0448:05ac
 LID(0013) Type=Disk DB=0438:09d8 FTT=0448:060c
 LID(0014) Type=anonymous) DB=0438:0a50 FTT=0448:0684
 LID(0015) Type=Null DB=0000:0000 FTT=0000:0000
 LID(0016) Type=Null DB=0000:0000 FTT=0000:0000
 LID(0017) Type=Null DB=0000:0000 FTT=0000:0000

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 157

 LID(0018) Type=Null DB=0000:0000 FTT=0000:0000
 LID(0019) Type=Null DB=0000:0000 FTT=0000:0000
 LID(001a) Type=Null DB=0000:0000 FTT=0000:0000
 LID(001b) Type=Null DB=0000:0000 FTT=0000:0000
 LID(001c) Type=Null DB=0000:0000 FTT=0000:0000
 LID(001d) Type=Null DB=0000:0000 FTT=0000:0000

Note: There is a formatting error that is illustrated in LID 12 and LID 14 lines.
See description below of Type= parameter for an explanation of this!

The fields displayed have the following meaning:

LID Logical Device ID.

This is a sequential numbering of entries that appear in the table of
LID entries. The entry, LID(0000), is however a dummy entry mapped
by CDAType where the selector:offset of DB= are number of LID
entries and offset to table of data pointers. Data pointer entries have
one of the following forms:

Field Name Offset Length Type Description

DataPtr + 0 6 Data Pointer in CDA

DLimit + 0 2 W Limit Field

DOffset + 2 2 W Offset Field

DSegment + 4 2 W Segment Field

Field Name Offset Length Type Description

PhysPtr + 0 6 Physical Data Pointer (INTEL Format)

+ 0 2 W Limit Field

PhysLSW + 2 2 W Lo Order 16 bits

PhysMSW + 4 2 W Hi Order 16 bits

Type= This an interpretation of the device type (DevID) field taken from the
corresponding device block. The following Type values may appear:

Reserved Used only for the LID(0000) dummy entry.
Null signifies an unused entry (DB=0000:0000).
Internal Devid=0000 used for internal ABIOS calls.
Diskette Devid=0001 Diskette device.
Disk Devid=0002 Disk device.
Video Devid=0003 Video device.
Keyboard Devid=0004 Keyboard.
Printer Devid=0005 Printer.
Asynch Devid=0006 Asynchronous device.
SysTimer Devid=0007 System Timer.
RTCTimer Devid=0008 RTC Timer.
SysService Devid=0009 SysService.
NMInterrupt Devid=000a NMI Interrupt.
PointDevice Devid=000b Pointer Device.
LightPen Devid=000c Light Pen.
JoyStick Devid=000d JoyStick.
CMOSRam Devid=000e CMOS RAM.

158 OS/2 Debugging

DMA Devid=000f DMA controller.
POS Devid=0010 Programmable Option Select.
ErrorLog Devid=0011 Error Log.
S/A Dump Devid=0012 Stand-Alone Dump.
IOPortAlloc. Devid=0013 I/O Port Allocation.
Audiotone Devid=0014 Audio device.
Int/8259 Devid=0015 Interrupt Controller.
Security Devid=0016 Keyboard Security.

Other device types are in use but are not translated to a predictable
name.

For example:

Devid=0017 SCSI Subsystem Interface
Devid=0018 SCSI Peripheral

Where this occurs the Devid may be found at offset +8 of the device
block.

DB=sel:off sel:off address of the Device Block for the corresponding LID. The
device block has the following standard header structure:

Field Name Offset Length Type Description

DeviceBlock + 0 8 Device Block Header

DevBlength + 0 2 W Device Block Length

Revision + 2 1 B Revision

+ 3 1 B Reserved

+ 4 2 W Logical ID

Devid + 6 2 W Device ID

FTT=sel:off sel:off address to the Function Transfer Table for this LID. The FTT
has the following standard header structure:

Field Name Offset Length Type Description

FTTable + 0 16 Function Transfer Table Header

FStart + 0 4 D Start Routine Entry Point

FInt + 4 4 D Interrupt Routine Entry Point

FTimeO + 8 4 D Start Routine Entry Point

FuncCount + c 2 W Count of Functions

+ e 2 W Reserved

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 159

3.4.5 .D - Display an OS/2 System Structure

Display an OS/2 System Structure.

Syntax:

��────.D ─────┬── SFT ──┬───────── addr ──────────────────────��
├── VPB ──┤
├── DPB ──┤
├── CDS ──┤
├── KSEM ──┤
├── DT ──┤
├── DEV ──┤
├── REQ ──┤
├── MFT ──┤
├── BUF ──┤
├── BPB ──┤
├── SEM32 ──┤
├── MUXQ ──┤
└── OPENQ ──┘

Parameters:

structure
The structure type may take one of the following values:

SFT Format a file system System File Table entry.

VPB Format a file system Volume Parameter Block.

DPB Format a file system Drive Parameter Block.

CDS Format a file system Current Directory Structure.

KSEM Format a Kernel Semaphore.

DT Disk Trace in now obsolete.

DEV Format a device driver header.

REQ Format a device driver request packet.

MFT Format a Master File Table entry.

BUF Format a file system I/O buffer.

BPB Format a BIOS Parameter Block.

SEM32 Format a 32-bit semaphore.

MUXQ Format a mutex semaphore wait queue.

OPENQ Format a 32-bit semaphore open queue.

addr
Specifies the address of the structure to be formatted. If omitted then the
current DS selector value, offset 0 is assumed.

An address expression may be specified.

Results and Notes:

160 OS/2 Debugging

 Attention

.D will format OS/2 structures without any validation. It is entirely incumbent
on the user to ensure that the address used does in fact point to the named
structure. Failure to observe this caution will result in meaningless
information being displayed.

The following are examples of each of the 13 formatted structures. Refer to the
System Reference for a description of each formatted structure.

SFT System File Table Entry
VPB Volume Parameter Block
DPB Drive Parameter Block
CDS Current Directory Structure
KSEM Kernel Semaphore
DEV Device Driver Header
REQ Device Driver (Strategy 1) Request Packet
MFT Master File Table Entry
BUF File System Buffer
BPB BIOS Parameter Block
SEM32 32-Bit Semaphore
MUXQ Semaphore MUX Queue
OPENQ Semaphore Open Queue

3.4.5.1 System File Table Entry (SFT)

� �
.d sft d0:8

sf_ref_count: 0001 sfi_mode: 00a0
sf_usercnt: 0000 sfi_hVPB: 0012
reserved: 00 sfi_ctime: 0000

sf_flags(2): 0100:0000 sfi_cdate: 0000
sf_devptr: #0000:0000 sfi_atime: 0000

sf_FSC: #00c8:0008 sfi_adate: 0000
sf_chain: #0000:0000 sfi_mtime: 0000
sf_MFT: fe7fb788 sfi_mdate: 0000

sfdFAT_firFILEclus: 5ad6 sfi_size: 000bb135
sfdFAT_cluspos: 09c8 sfi_position: 00085d90
sfdFAT_lstclus: 0000 sfi_UID: 0000
sfdFAT_dirsec: 00000000 sfi_PID: 0000
sfdFAT_dirpos: 00 sfi_PDB: 0000
sfdFAT_name: sfi_selfsfn: 0000

sfdFAT_EAHandle: 0000 sfi_tstamp: 00
sf_plock: 0000 sfi_DOSattr: 20

sf_NmPipeSfn: 0000
sf_codepage: 0000

##� �
Figure 28. System File Table Entry

Notes:: The sfdFAT _name is only meaningful for SFTs that represent open FAT
file system files.

For a description of the SFT fields see the System File Table Entery (SFT) in the
System Reference.

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 161

3.4.5.2 Volume Parameter Block (VPB)

� �
##ln gdt_vpb
0138:00000098 os2krnl:DOSGDTDATA:GDT_VPB
##.d vpb 98:12

vpb_flink: 0000 vpdFAT_cluster_mask: 41
vpb_blink: 008d vpdFAT_cluster_shift: 00

vpb_ref_count: 007b vpdFAT_first_FAT: 00b2
 vpb_search_count: 0000 vpdFAT_FAT_count: a8
 vpb_first_access: 00 vpdFAT_root_entries: 0004

vpb_signature: 444a vpdFAT_first_sector: 885c0400
vpb_flags(2): 02:00 vpdFAT_max_cluster: 410e

vpb_FSC: #00c8:0008 vpdFAT_FAT_size: b200
vpi_ID: 26715015 vpdFAT_dir_sector: aa04a800

vpi_pDPB: #04b8:00c4 vpdFAT_media: 0d
vpi_cbSector: 0200 vpdFAT_next_free: 00b2
vpi_totsec: 0007cfe0 vpdFAT_free_cnt: 04a8
vpi_trksec: 0020 vpdFAT_FATentrysize: b2
vpi_nhead: 0040 vpdFAT_IDsector: 00000000
vpi_pDCS: #0000:0000 vpdFAT_access: 0000
vpi_pVCS: #0000:0000 vpdFAT_accwait: 0000
vpi_drive: 07 vpdFAT_pEASFT: #0000:0000
vpi_unit: 07
vpi_text: UNLABELED
vpi_flags: 0003

####.m 98:0

*har par cpg va flg next prev link hash hob hal
 0003 %feaef04c 00000400 %fe6ef000 001 0002 0023 0000 0000 0003 0000 =0000
 hob har hobnxt flgs own hmte sown,cnt lt st xf
 0003 0003 fec5 0000 ffec 0000 0000 00 01 00 00 vmkrhrw

pvmli cs eip phlock cpg va flg hptda hob sig csig
 %fe82e4c4 002d 0a6800a5 %ac22403c 0001 %fe83c000 0005 024b 0003 ea9f ea9f
##dd %(98:0)-10 l8
%fe6fd4dc 00000001 ff5905b8 5e02bd64 000009bd
%fe6fd4ec 05d6007b 000009ae 0000099c dac40000
##dd %(98:0)-10-4+9bc l8
%fe6fde94 6d6b6d62 00180000 ffa20098 00e800e8
%fe6fdea4 ffc2001c 00000008 00000000 00000000
##.mo ffa2
ffa2 vpb
##� �

Figure 29. Volume Parameter Block

Notes::

The selector for the VPB segment may be found by listing the symbol
GDT_VPB and using its offset.

The handle of a VPB (hVPB) is the offset within the VPB segment.

The VPB segment has a unique owner ID, which may be determined
using the .M command. In the case of the VPB segment it is allocated
from the kernel resident heap, so the true owner id is found in the
heap header (or its extension - the trailer).

162 OS/2 Debugging

For a description of the VPB fields see the Volume Parameter Block (VPB) in the
System Reference.

3.4.5.3 Drive Parameter Block (DPB)

� �
.d dpb 4b8:c4

dpb_drive: 07
dpb_unit: 07

dpb_driver_addr: #0798:0000
dpb_next_dpb: #04b8:00e0
dpb_cbSector: 0200
dpb_first_FAT: 0001

dpb_toggle_time: 00000000
dpb_hVPB: 0012
dpb_media: f8
dpb_flags: 20

dpb_drive_lock: 0000
dpb_strategy2: #07a0:139c

##.m 04b8:0c4

*har par cpg va flg next prev link hash hob hal
 0003 %feaef04c 00000400 %fe6ef000 001 0002 0023 0000 0000 0003 0000 =0000
 hob har hobnxt flgs own hmte sown,cnt lt st xf
 0003 0003 fec5 0000 ffec 0000 0000 00 01 00 00 vmkrhrw

pvmli cs eip phlock cpg va flg hptda hob sig csig
 %fe82e4c4 002d 0a6800a5 %ac22403c 0001 %fe83c000 0005 024b 0003 ea9f ea9f
##dd %(4b8:0) - 10 l8
%fe6f1638 00000000 ff360498 2000fe6f 000001c5
%fe6f1648 00000000 001c0798 020004b8 00000001
##dd %(4b8:0) - 10-4+1c4 l8
%fe6f17f8 00000000 00000000 ff9604b8 0000000a
%fe6f1808 ff46000c 000014f8 00d020c8 ff46000c
##.mo ff96
ff96 dpb� �

Figure 30. Drive Parameter Block

Notes::

The DPB may be located from the VPB .

The DPB segment has a unique owner ID, which may be determined
using the .M command. In the case of the VPB segment it is allocated
from the kernel resident heap, so the true owner ID is found in the
heap header (or its extension - the trailer).

For a description of the DPB fields see the Driver Parameter Block (DPB) in the
System Reference.

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 163

3.4.5.4 Current Directory Structure (CDS)

� �
>> locate the SAS file system section
##dw 70:12 l1
0070:00000012 0074
##dw 70:74
0070:00000074 0fa4 fe70 00c0 07f8 0828 00a8 0428 0000
0070:00000084 03c8 ffff ffff 0843 0000 0000 0000 0000
0070:00000094 0000 0000 0000 0000 0000 0000 0000 0000
0070:000000a4 0000 0000 0000 0000 0000 0000 0000 0000
0070:000000b4 0000 0000 0000 0000 0000 0000 0000 0000
0070:000000c4 0000 0000 0000 0000 0000 0000 0000 0000
0070:000000d4 0000 0000 0000 0000 0000 0000 0000 0000
0070:000000e4 0000 0000 0000 0000 0000 0000 0000 0000

>> +8 into the file system section is the CDS RMP selector.
>> Can verify this by checking out the memory object owner.

##.m 828:0

*har par cpg va flg next prev link hash hob hal
 0003 %feaef04c 00000400 %fe6ef000 001 0002 0023 0000 0000 0003 0000 =0000
 hob har hobnxt flgs own hmte sown,cnt lt st xf
 0003 0003 fec5 0000 ffec 0000 0000 00 01 00 00 vmkrhrw

pvmli cs eip phlock cpg va flg hptda hob sig csig
 %fe82e4c4 002d 0a6800a5 %ac22403c 0001 %fe83c000 0005 024b 0003 ea9f ea9f

>> Owned by the Kernel Resident Heap. Look at the header

##dd %(828:0)-10 l8
%fe7015b4 000007d0 ff5c07b0 0000bd64 0000060d
%fe7015c4 049d0600 01ae0014 00000001 00000400

>> This is an attributed block so look at the trailer

##dd %(828:0)-10-4+60c l8
%fe701bbc 00000000 00000000 ff610828 0000fe70
%fe701bcc ff9e0054 4d45534b 00000201 00000000

##.mo ff61
ff61 cdsrmp

>> 828 does indeed point to the CDS RMP

>> Now dump the CDS handle table for the process of interest
##.p#
Slot Pid Ppid Csid Ord Sta Pri pTSD pPTDA pTCB Disp SG Name
 0048# 0029 0004 0029 0001 blk 0200 ab805000 ab99b820 ab97fc20 1ed4 11 cmd

##dw %ab99b820 +cds_handle-ptda_start l1a
%ab99bac8 0000 0000 0000 0000 0000 0000 0000 0090
%ab99bad8 0000 0000 0000 0000 0000 0000 0000 0000
%ab99bae8 0000 0000 0000 0000 0000 0000 0000 0000
%ab99baf8 0000 0000� �

Figure 31. (Part 1 of 2). Current Directory Structure

164 OS/2 Debugging

� �
>> Except for driver 07 (H:) the current directory handle is null.
>> This implies that the current directory for drive H: is not the
>> root. To see which it is, we need to locate the the CDS entry with
>> handle 0x0090.

>> The RMP has a 0x14 byte header. Each entry is prefixed with a word
>> length followed by the handle for that entry.

>> Starting with the first entry scan through until handle 0x0090 is
>> located.

##dw 828:14 l4
0828:00000014 8028 0000 00b2 0000

##dw 828:14 l2
0828:00000014 8028 0000

##dw 828:14+28 l2
0828:0000003c 0028 001c

##dw 828:14+28+28 l2
0828:00000064 0028 001d

##dw 828:14+28+28+28 l2
0828:0000008c 0026 001e

##dw 828:14+28+28+28+26 l2
0828:000000b2 8023 0014

##dw 828:14+28+28+28+26+23 l2
0828:000000d5 0028 0022

##dw 828:14+28+28+28+26+23+28 l2
0828:000000fd 002e 008f

##dw 828:14+28+28+28+26+23+28+2e l2
0828:0000012b 0025 0090

>> The CDS starts after the length prefix.

##.d cds 828:12b+2
cd_handle: 0090 cddFAT_id: 0000
cd_refcnt: 0002
cd_flags: 40
cd_devptr: 04b8:00c4

 cd_OwnerFSC: 0008

cdi_hVPB: 0012
cdi_end: 0002

cdi_flags: 80
cdi_text: H:\spool

##� �
Figure 32. (Part 2 of 2). Current Directory Structure

Notes::

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 165

The selector for the CDS segment may be located from the SAS, as
illustrated above, or form the storage at label CDSAddr .

The CDS RMP has a unique owner ID, which may be determined
using the .M command. In the case of the CDS RMP, it is allocated
from the kernel resident heap, so the true owner id is found in the
heap header (or its extension - the trailer).

For a description of the CDS fields see the Current Directory Structure (CDS) in
the System Reference.

166 OS/2 Debugging

3.4.5.5 Kernel Semaphore (KSEM)

� �
>> Intra-Process serialisation mutex KSEM imbedded in the PTDA
.p#
Slot Pid Ppid Csid Ord Sta Pri pTSD pPTDA pTCB Disp SG Name
*000c# 0002 0000 0002 0004 blk 0804 ab78d000 ab997020 ab978420 1c9c 00 cntrl
##.d ksem %ab997020 +ptda_ptdasem-ptda_start
Signature : KSEM Nest: 0000
Type : MUTEX
Flags : 00
Owner : 0000 PendingWriters: 0000
##

>> MFT Shared KSEM imbedded at the beginning of the MFT

##..d sft d0:8
sf_ref_count: 0001 sfi_mode: 00a0
sf_usercnt: 0000 sfi_hVPB: 0012
reserved: 00 sfi_ctime: 0000

sf_flags(2): 0100:0000 sfi_cdate: 0000
sf_devptr: #0000:0000 sfi_atime: 0000

sf_FSC: #00c8:0008 sfi_adate: 0000
sf_chain: #0000:0000 sfi_mtime: 0000
sf_MFT: fe7fb788 sfi_mdate: 0000

sfdFAT_firFILEclus: 5ad6 sfi_size: 000bb135
sfdFAT_cluspos: 09c8 sfi_position: 00085d90

##.d ksem %fe7fb788
Signature : KSEM Nest: 0000
Type : SHARE Readers: 0000
Flags : 01 PendingReaders: 0000
Owner : 0000 PendingWriters: 0000
##

>> Slot 49 is blocked. So we proceed by finding out what the BlockId
>> represents by finding its owner.

##.pb 49
 Slot Sta BlockID Name Type Addr Symbol
 0049 blk fe83bdf4 warp_d

##.m %0fe83bdf4

*har par cpg va flg next prev link hash hob hal
 072c %feaf8dd2 00000400 %00540000 149 072d 072b 0003 0000 0003 0025 hptda=0878
 hal=0025 pal=%ffe5d140 har=072c hptda=0878 pgoff=00000 f=021
 har par cpg va flg next prev link hash hob hal
 0003 %feaef04c 00000400 %fe6ef000 001 0002 0023 0000 0000 0003 0000 =0000
 hob har hobnxt flgs own hmte sown,cnt lt st xf
 0003 072c fec5 1000 ffec 0000 0000 00 01 00 00 vmkrhrw

pvmli cs eip phlock cpg va flg hptda hob sig csig
 %fe82e4c4 002d 0a6800a5 %ac22403c 0001 %fe83c000 0005 024b 0003 ea9f ea9f� �

Figure 33. (Part 1 of 2). Kernel Semaphore

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 167

� �
>> BlockID is in the kernel resident heap - assume that it is at the
>> beginning of a data portion of a heap block.
>> Dump the header.

##dd %0fe83bdf4-10 l8
%fe83bde4 00000000 bd100000 fe83fe83 ff7e0018
%fe83bdf4 4d45534b 000a0004 46380001 bd28a801

>> Object Owner Id is ff7e
##.mo ff7e
ff7e ksem
##.d ksem %0fe83bdf4
Signature : KSEM
Type : EVENT
Flags : 04
Owner : 000a PendingWriters: 0001
##� �

Figure 34. (Part 2 of 2). Kernel Semaphore

Notes::

KSEMs are usually found imbedded in system control blocks for
serialization and sharing purposes.

Dynamically allocated KSEMs are allocated out of one of the kernel
heaps.

Virtual Device Driver semaphore helper services result in KSEMs.

Under the ALLSTRICT kernel only, the KSEM has a signature field.
This is manufactured by the .D command for non-ALLSTRICT kernels.
Under the ALLSTRICT kernel the presence of a KSEM may be verified
by dumping the KSEM in bytes. Offset +0x0 is where the signature is
located.

The owner field refers to the slot number of the semaphore owner.

For a description of the KSEM structure see the Kernel Semaphore Structure in
the System Reference.

168 OS/2 Debugging

3.4.5.6 Physical Device Driver Header (DEV)

� �
>> Driver header address taken from the VBP with handle 12:

.d vpb 98:12
vpb_flink: 0000 vpdFAT_cluster_mask: 41
vpb_blink: 008d vpdFAT_cluster_shift: 00

vpb_ref_count: 007a vpdFAT_first_FAT: 00b2
 vpb_search_count: 0000 vpdFAT_FAT_count: a8
 vpb_first_access: 00 vpdFAT_root_entries: 0004

vpb_signature: 444a vpdFAT_first_sector: 885c0400
vpb_flags(2): 02:00 vpdFAT_max_cluster: 410e

vpb_FSC: #00c8:0008 vpdFAT_FAT_size: b200
vpi_ID: 26715015 vpdFAT_dir_sector: aa04a800

vpi_pDPB: #04b8:00c4 vpdFAT_media: 0d
vpi_cbSector: 0200 vpdFAT_next_free: 00b2
vpi_totsec: 0007cfe0 vpdFAT_free_cnt: 04a8
vpi_trksec: 0020 vpdFAT_FATentrysize: b2
vpi_nhead: 0040 vpdFAT_IDsector: 00000000
vpi_pDCS: #0000:0000 vpdFAT_access: 0000
vpi_pVCS: #0000:0000 vpdFAT_accwait: 0000
vpi_drive: 07 vpdFAT_pEASFT: #0000:0000
vpi_unit: 07
vpi_text: UNLABELED
vpi_flags: 0003

##.d dpb 4b8:c4
dpb_drive: 07
dpb_unit: 07

dpb_driver_addr: #0798:0000
dpb_next_dpb: #04b8:00e0
dpb_cbSector: 0200
dpb_first_FAT: 0001

dpb_toggle_time: 00000000
dpb_hVPB: 0012
dpb_media: f8
dpb_flags: 20

dpb_drive_lock: 0000
dpb_strategy2: #07a0:139c

##.d dev 798:0
DevNext: 0778:0000
DevAttr: 2880
DevStrat: 0dbc
DevInt: 0000

NumUnits: 0c
DevProtCS: 07a0
DevProtDS: 0798
DevRealCS: 0000
DevRealDS: 0000

� �
Figure 35. (Part 1 of 2). Physical Device Driver Header

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 169

� �
>> Formatting the device driver directly from the 1st data segment.

##.lmo ′ ibmkbd
hmte=009b pmte=%fe6f1fb8 mflags=8008e1c9 h:\ibmkbd.sys
seg sect psiz vsiz hob sel flags
0001 0001 0194 01fa 0000 0540 8d49 data iter prel rel
0002 0002 11c2 11c4 0000 0548 8d60 code shr prel rel
##.d dev 540:0

DevNext: 0510:0000
DevAttr: 8980
DevStrat: 0680
DevInt: 0586
DevName: IBMKBD$

DevProtCS: 0548
DevProtDS: 0540
DevRealCS: 0000
DevRealDS: 0000

##� �
Figure 36. (Part 2 of 2). Physical Device Driver Header

Notes::

The Device Header appears in one of two formats, depending on
whether the device supports multiple units or not.

The interrupt routine address is not used by OS/2.

For a description of the DEV fields see the Physical Device Driver Header (DEV)
in the System Reference.

170 OS/2 Debugging

3.4.5.7 Device Driver (Strategy 1) Request Packet (REQ)

� �
>> The two request packet pools for general device driver use:

##.moc 93

*har par cpg va flg next prev link hash hob hal
 0091 %feaefc80 00000010 %ab546000 129 0090 0092 0000 0000 0093 0000 sel=04a8
 hob har hobnxt flgs own hmte sown,cnt lt st xf
 0093 0091 0000 0124 ff40 0000 0000 00 00 00 00 reqpkt1
##.moc 94

*har par cpg va flg next prev link hash hob hal
 0092 %feaefc96 00000010 %ab536000 129 0091 0093 0000 0000 0094 0000 sel=04b0
 hob har hobnxt flgs own hmte sown,cnt lt st xf
 0094 0092 0000 0124 ff33 0000 0000 00 00 00 00 reqpkt2

>> Formatting the request packet assigned to slot 43:

##.p#
Slot Pid Ppid Csid Ord Sta Pri pTSD pPTDA pTCB Disp SG Name
*0043# 000d 0004 000d 0005 blk 081f ab7fb000 ab99ac20 ab97f220 1d24 17 faxworks

##dd %ab97f220 +1ac l1
%ab97f3cc 04a80832

##.d req 4a8:832
PktLen: 2c
PktUnit: 00
PktCmd: 04

PktStatus: 0000
PktDOSLink: 00000000
PktDevLink: 00000000

IOmedia: 00
IOpData: 008f7883
IOcount: 0000
IOstart: 00000000

� �
Figure 37. (Part 1 of 2). Device Driver Request Packets

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 171

� �
>> Formatting the request packet assigned to slot 2:

##.p2
Slot Pid Ppid Csid Ord Sta Pri pTSD pPTDA pTCB Disp SG Name
 0002 0001 0000 0000 0002 blk 0200 ab779000 ffe3ca00 ab977020 1f3c 00 *tsd
##dd %ab977020 +1ac l1
%ab9771cc 04a80012
##.d req 4a8:12

PktLen: 32
PktUnit: 00
PktCmd: 00

PktStatus: 0000
PktDOSLink: 00000000
PktDevLink: 00000000
InitcUnit: 00
InitDevHlp: 0000:0000
InitParms: 0000:0000
InitDrv: 00

InitSysiData: 0000
##� �

Figure 38. (Part 2 of 2). Device Driver Request Packets

Notes::

Request Packets are allocated from one of three pools:

Strategy 1 request pool

Strategy 2 request pool

Swapper request pool

Each thread is preassigned a strategy 1 request packet. If this is in
use when a device driver tries to allocate another, then a packet is
allocated from the strategy 2 pool for strategy 1 use.

Asynchronous read and write requests are implemented in
DOSCALL1.DLL by creating multiple threads on which to run the
parallel I/O requests.

.D REQ does not format Strategy 2 format Request Packets.

For a description of the Request Packet fields see the Device Driver Request
Packer in the System Reference.

172 OS/2 Debugging

3.4.5.8 Master File Table Entry (MFT)

� �
>> Display the SFT for SFN 20

##.d sft d0:(83*20+8)
sf_ref_count: 0001 sfi_mode: 00c2
sf_usercnt: 0000 sfi_hVPB: 0000
reserved: 00 sfi_ctime: 0000

sf_flags(2): 00c0:0000 sfi_cdate: 0000
sf_devptr: #0af0:0000 sfi_atime: 0000

sf_FSC: #00c8:ff40 sfi_adate: 0000
sf_chain: #00d0:170f sfi_mtime: b19d
sf_MFT: fe82ff7c sfi_mdate: 1f5f

sfdFAT_firFILEclus: 0000 sfi_size: 00000000
sfdFAT_cluspos: 0000 sfi_position: 00000000
sfdFAT_l

>> From the SFT display the MFT

.d mft %fe82ff7c
mft_ksem:

Signature : KSEM Nest: 0000
Type : SHARE Readers: 0000
Flags : 01 PendingReaders: 0000
Owner : 0000 PendingWriters: 0000

mft_lptr: 0000 mft_sptr: 00d0:08bb
mft_pCMap: 00000000 mft_serl: 013e mft_signature: 466d

 mft_CMapKSem:
mft_hvpb: 0000 mft_opflags: 0000 mft_flags: 0000
mft_name: \DEV\MOUSE$

>> Display the SFT for SFN 40

##.d sft d0:(83*40+8)
sf_ref_count: 0001 sfi_mode: 1302
sf_usercnt: 0000 sfi_hVPB: 008d
reserved: 00 sfi_ctime: 0000

sf_flags(2): 0000:0000 sfi_cdate: 0000
sf_devptr: #0000:0000 sfi_atime: 0000

sf_FSC: #00c8:0008 sfi_adate: 0000
sf_chain: #00d0:214b sfi_mtime: 0000
sf_MFT: fe6f190c sfi_mdate: 0000

sfdFAT_firFILEclus: 470c sfi_size: 00000000
sfdFAT_cluspos: 09c8 sfi_position: 00000000
sfdFAT_l� �

Figure 39. (Part 1 of 2). Master File Table Entries

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 173

� �
>> From the SFT display the MFT

.d mft %fe6f190c
mft_ksem:

Signature : KSEM Nest: 0000
Type : SHARE Readers: 0000
Flags : 01 PendingReaders: 0000
Owner : 0000 PendingWriters: 0000

mft_lptr: 0000 mft_sptr: 00d0:2045
mft_pCMap: 00000000 mft_serl: 00a3 mft_signature: 466d

 mft_CMapKSem:
mft_hvpb: 008d mft_opflags: 0000 mft_flags: 0001
mft_name: D:\SWAPPER.DAT

##� �
Figure 40. (Part 2 of 2). Master File Table Entries

Notes::

The MFT is entry may be located from each SFT that represents an
open instance of a file.

The MFT points to the most recent SFT open instance of the file.

For a description of the MFT field, see the Master File Table Entry (SFT) in the
System Reference.

174 OS/2 Debugging

3.4.5.9 File System Buffer (BUF)

� �
>> Locate the file system buffer segment

##ln gdt_buffers
0138:000000a8 os2krnl:DOSGDTDATA:GDT_Buffers

##dw a8:0
00a8:00000000 ade4 94c4 0000 ff93 005a 0218 bc8b 0000
00a8:00000010 0664 0200 bc8c 000f 9000 00e5 0234 ade4
00a8:00000020 0000 0279 e05e 0000 0001 0400 0000 0000
00a8:00000030 0000 0000 46e5 4e49 3030 3630 4d54 2050
00a8:00000040 0000 0000 0000 0000 0000 b5cd 1f5e 3251
00a8:00000050 0400 0000 46e5 4e49 3030 3730 4d54 2050
00a8:00000060 0000 0000 0000 0000 0000 b5c8 1f5e 0000
00a8:00000070 0000 0000 4de5 3046 3030 2038 4d54 2050

##.d buf a8:ade4
buf_next: 001c buf_prev: ffff buf_freeLink: 0000
buf_flags: 02 buf_hVPB: 0279 buf_sector: 00000001
buf_tid: 00 buf_wrtcnt: 02 buf_wrtcntinc: 0096
buf_fill: 0000

##.d buf a8:234
buf_next: 044c buf_prev: 001c buf_freeLink: 0000
buf_flags: 04 buf_hVPB: 0279 buf_sector: 0000e05d
buf_tid: 00 buf_wrtcnt: 01 buf_wrtcntinc: 0000
buf_fill: 0000

##.d buf a8:44c
buf_next: 0664 buf_prev: 0234 buf_freeLink: 0000
buf_flags: 02 buf_hVPB: 0279 buf_sector: 0000001c
buf_tid: 00 buf_wrtcnt: 02 buf_wrtcntinc: 0096
buf_fill: 0000

##.d buf a8:664
buf_next: 087c buf_prev: 044c buf_freeLink: 0000
buf_flags: 04 buf_hVPB: 0279 buf_sector: 0000bcd4
buf_tid: 00 buf_wrtcnt: 01 buf_wrtcntinc: 0000
buf_fill: 0000

>> Find the volume these buffers are assigned to.

##ln gdt_vpb
0138:00000098 os2krnl:DOSGDTDATA:GDT_VPB

� �
Figure 41. (Part 1 of 2). File System Buffer (BUF)

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 175

� �
##.d vpb 98:279

vpb_flink: 01fe vpdFAT_cluster_mask: 07
vpb_blink: 02f4 vpdFAT_cluster_shift: 03

vpb_ref_count: 004e vpdFAT_first_FAT: 0001
 vpb_search_count: 0000 vpdFAT_FAT_count: 02
 vpb_first_access: 09 vpdFAT_root_entries: 0200

vpb_signature: 444a vpdFAT_first_sector: 0000014d
vpb_flags(2): 02:40 vpdFAT_max_cluster: 95f5

vpb_FSC: #0000:ff40 vpdFAT_FAT_size: 0096
vpi_ID: e2ea4414 vpdFAT_dir_sector: 0000012d

vpi_pDPB: #04b8:0038 vpdFAT_media: f8
vpi_cbSector: 0200 vpdFAT_next_free: 0000
vpi_totsec: 0004b0f0 vpdFAT_free_cnt: 63a8
vpi_trksec: 003f vpdFAT_FATentrysize: 10
vpi_nhead: 0010 vpdFAT_IDsector: 00000000
vpi_pDCS: #0000:0000 vpdFAT_access: 0000
vpi_pVCS: #0000:0000 vpdFAT_accwait: 0000
vpi_drive: 02 vpdFAT_pEASFT: #00d0:23da
vpi_unit: 02
vpi_text: DOS FAT
vpi_flags: 0003

>> The file system buffer segment is assigned a unique object owner
>> id.

##.m 0a8:0
*har par cpg va flg next prev link hash hob hal
 0003 %feaef04c 00000400 %fe6ef000 001 0002 0023 0000 0000 0003 0000 =0000
 hob har hobnxt flgs own hmte sown,cnt lt st xf
 0003 0003 fec5 0000 ffec 0000 0000 00 01 00 00 vmkrhrw

pvmli cs eip phlock cpg va flg hptda hob sig csig
 %fe82e4c4 002d 0a6800a5 %ac22403c 0001 %fe83c000 0005 024b 0003 ea9f ea9f
##dd %(a8:0)-10 l8
%fe702ff0 0b0c0001 4d5000a2 fe705854 0000cc99
%fe703000 94c4ade4 ff930000 0218005a 0000bc8b
##dd %(a8:0)-10-4+cc98 l8
%fe70fc84 00000000 00000000 ff9300a8 003ec010
%fe70fc94 ffa4000c fe80caac 00020100 ff9e0014
##.mo ff93
ff93 fsbuf
##� �

Figure 42. (Part 2 of 2). File System Buffer (BUF)

Notes::

File system buffers are allocated out of a buffer segment whose
selector may be located either from the SAS File System section,
offset + 0 x a or from symbol GDT_BUFFERS .

The buffer segment contains a header of length +0x1c .

Header Offset +0x0 gives the offset to the head of the list of most
recently used buffers.

Header Offset +0x4 gives the offset to the tail of the list of most
recently used buffers.

176 OS/2 Debugging

Each buffer contains a 0x18 byte header followed by 0x200 bytes of
data. The buffer header is what is formatted by .D BUF.

For a description of the Buffer Header fields, see the File System Buffers in the
System Reference .

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 177

3.4.5.10 BIOS Parameter Block (BPB)

� �
##.d bpb bootbp

BytesPerSector: 0200
SectorsPerCluster: 08
ReservedSectors: 0001

NumberOfFATs: 00
RootEntries: 0200
TotalSectors: 0000

MediaDescriptor: f8
SectorsPerFAT: 00fa

SectorsPerTrack: 0020
Heads: 0040

HiddenSectors: 00000820
BigTotalSectors: 0007cfe0

##.d bpb minimumbpb
BytesPerSector: 0200

SectorsPerCluster: 01
ReservedSectors: 0001

NumberOfFATs: 00
RootEntries: 0010
TotalSectors: 0000

MediaDescriptor: f0
SectorsPerFAT: 0001

SectorsPerTrack: 0009
Heads: 0001

HiddenSectors: 00000000
BigTotalSectors: 003fffff

� �
Figure 43. BIOS Parameter Block (BPB)

Notes::

Two system BPBs are locatable at the symbols BootBPB and
minimumBPB.

Others are pointed to from the Device Driver Request Packet for
DosDevIOCtl command code 2 (build BPB).

See 3.4.5.7, “Device Driver (Strategy 1) Request Packet (REQ)” on
page 171 for information on formatting Device Driver Request
Packets.

For a description of the BPB fields, see the BIOS Parameter Block in the System
Reference.

178 OS/2 Debugging

3.4.5.11 32-Bit Semaphore Structures (SEM32, OPENQ and MUXQ)

� �
##.pb 25
Slot Sta BlockID Name Type Addr Symbol
 0025 blk fe81d2d0 pmshell Sem32 8001 004b hevLazyWrite

##.d sem32 %fe81d2d0
Type: Shared Event
Flags: Reset
pMuxQ: 00000000

Post Count: 0000
pOpenQ: fe56eb10
pName: fd074e98

 Create Addr: 13f60088

##.pb 2f
 Slot Sta BlockID Name Type Addr Symbol
 002f blk fe86ffdc pmshell

##.d sem32 %fe86ffdc
Type: Shared Event
Flags: Reset
pMuxQ: 00000000

Post Count: 0000
pOpenQ: fe56eb02
pName: NULL (anonymous)

 Create Addr: 12d16b48

##.pb 30
 Slot Sta BlockID Name Type Addr Symbol
 0030 blk fe86fe58 pmshell Sem32 0001 00ce hevSleeper

##.d sem32 %fe86fe58
Type: Private Event
Flags: Reset
pMuxQ: 00000000

Post Count: 0000
Open Count: 0001

 Create Addr: 13f62f28

� �
Figure 44. Three Types of Event Semaphore

Notes::

32-bit semaphores may be Event or Mutex in type, private or shared
in scope and if shared, named or anonymous.

The BlockID of a thread waiting on a 32-bit semaphore is the address
of the semaphore structure. The Type field in the .PB command
usually indicates a 32-bit semaphore when in use, however this is not
always the case. The next example shows how to determine
precisely whether the BlockID points to a 32-bit semaphore.

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 179

� �
##.pb 33
Slot Sta BlockID Name Type Addr Symbol
 0033 blk fe86fa1c pmshell
##.m %0fe86fa1c

*har par cpg va flg next prev link hash hob hal
 0003 %feaef04c 00000400 %fe6ef000 001 0002 0023 0000 0000 0003 0000 =0000
 hob har hobnxt flgs own hmte sown,cnt lt st xf
 0003 0003 fec5 0000 ffec 0000 0000 00 01 00 00 vmkrhrw

pvmli cs eip phlock cpg va flg hptda hob sig csig
 %fe82e380 002d 0a6800a5 %ac22403c 0001 %fe83c000 0005 024b 0003 ea9f ea9f
##dd %0fe86fa1c-10 l8
%fe86fa0c 12d15b4c 54564553 ab97d220 ffc20018
%fe86fa1c 00000010 00000000 c4280001 455000a7
##.mo ffc2
ffc2 semstruc
##.d sem32 %0fe86fa1c

Type: Private Event
Flags: Reset
pMuxQ: 00000000

Post Count: 0000
Open Count: 0001

 Create Addr: 00a7c428

##� �
Figure 45. How to Determine Whether a BlockID Points to a 32-Bit Semaphore

Notes::

Except for RAMSEM, MUXWAIT, ChildWait and private conventions the
BlockID is an address of a structure or routine that relates to the
resource or event being waited for.

The .M command is used to identifty the owner of the BlockID. In this
case it is the kernel resident heap.

Each resident heap block is prefixed with a 4-byte header. If the low
order bit is 0 then the high word of the header contains the owner of
the heap block.

32-bit Semaphore structures are allocated from regular resident heap
blocks. Thus the owner ID may be seen by displaying storage before
the BlockID address.

180 OS/2 Debugging

� �
##.pb 56
 0056 blk fe88ad8c mutxwait Sem32 8001 0090 _WINOS2_Settings + 77

##.d sem32 %fe88ad8c
Type: Shared Mutex
Flags:
pMuxQ: fe88ab94

Request Ct: 0001
Owner: 0055

Requester Ct: 0001
pOpenQ: fe5724c2
pName: fd084368

 Create Addr: 00022e98

##.d openq %fe5724c2

Pid Open Count

00d8 0001
00d7 0001
00d6 0001

##da %fd084368
%fd084368 RJM\MUTEX0

##.d muxq %fe88ab94

pMux

fe88aba4

##.d sem32 %fe88aba4
Type: Shared MuxWait
Flags: Mutex_Mux

SR Count: 0003
SR Pointer: fe88a8f4
Wait Count: 0001

pOpenQ: fe571e94
pName: fd0843c8

 Create Addr: 00022ec4

##da %fd0843c8
%fd0843c8 RJM\MUXWAIT
##.d openq %fe571e94

� �
Figure 46. (Part 1 of 2). Mux Wait Semaphores

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 181

� �
Pid Open Count

00d7 0001
00d6 0001

##dd %fe88a8f4
%fe88a8f4 00000003 00000004 80000090 00000000
%fe88a904 80000091 00000001 80000094 00000001
%fe88a914 ffbe0014 fe88aba4 00000000 5158554d
%fe88a924 fe88a916 ffc70010 fe88a958 dd2f4580
%fe88a934 000001a2 ffc70010 fe88aa88 dd2f464d
%fe88a944 00000010 ffa4000c fe88a968 000102d5
%fe88a954 ffc70010 fe88a9d8 1bd49ce0 000101a5
%fe88a964 ffa4000c fe88aa7c 0001038d ffc70010

##� �
Figure 47. (Part 1 of 2). Mux Wait Semaphores

Notes::

pOpenQ points to an Open Queue Structure, that list all processes
that have access to the 32-bit semaphore. This is formatted using .D
OPENQ.

pName points to the semaphore name, when no anonymous.

pMuxQ points to a MUXQ structure, that lists any 32-bit MUX wait
semaphore address lists that have included this semaphore. In this
example we see one MUX list.

The MUX list may be formatted using .D SEM32.

Instead of a pMuxQ , the MUX semaphore contains a pointer to the
semaphore record (SR Pointer) and a count of the number of
semaphores in the list (SR Count).

There is no special formatting command for the SR Structure - it has
to be viewed by displaying storage directly. In this case we see then
length, flags and three semaphore handles each followed by the user
correlator.

For a description of the 32-bit Semaphore Structures, see the 32-Bit Semaphore
Structures in the System Reference.

182 OS/2 Debugging

3.4.6 .I - Swap in Storage

Page in a TSD or a Page of Virtual Storage from the Swapper file.

Syntax:

��────.I ─────┬──────────┬───────┬─────────── addr ─────────────��
│ ├── B ──┤
│ └── D ──┘
│
│
└── T ─────┬───────┬───────┬────────────┬─────────��

├── B ──┤ └─── slot ───┘
└── D ──┘

Parameters:

T When specified it requests the Kernel Debugger page in the TSD for a
specified thread slot.

One TSD is assigned to each thread slot. If the registers for an
out-of-context thread need to be examined, then it may be necessary
to swap in the TSD for that slot, since the ring 3 stack frame is stored
in the TSD when a thread enters the kernel. The presence or
absence of the TSD for a given slot may be deduced by the presence
or absence of a value for the Disp field of the .P command.

If the T option is omitted it requests the Kernel Debugger page in the
page of virtual storage that encompasses the specified addr .

B When specified requests that all breakpoints be re-instated, including
those which the current CS:EIP may be addressing.

This parameter is effectively obsolete since breakpoints at the current
CS:EIP are correctly handled by the Breakpoint commands.

D Specifies that a page-in request be scheduled for the kernel debugger
daemon thread to execute. In most cases a page-in operation may
be performed synchronously, but under the following conditions it is
prohibited:

When an interrupt is being handled (that is, not at task time)

When a swapping operation is pending (TCBfswapping (TCB +
0x1a1) not 0)

When the current thread is blocked (TK_WF_SLEEPING (0x40) is
set in TCBWakeFlags (TCB + 0x162))

When in ring0 and InDos is 0

When one of these conditions occurs the page-in request may be
scheduled for execution asynchronously by the Debugger Daemon
thread by use of the D parameter. If the request is successfully
scheduled the user is invited to enter the G command. The system
will dispatch the Daemon thread, in time, which will attempt the
page-in request. The Daemon returns control to the debug console
using an INT 3 interrupt.

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 183

addr This specifies the virtual address of the page to be paged in. The
address is effectively rounded down to the nearest 4K page boundary.

Note: A selector:offset address specification can only be used if the
selector does not reference the packed area of the LDT. If it
does then a linear address must be supplied by the user.

slot Specifies the thread slot number of the TSD to be paged in. The
default slot is the current slot of the debugger′s default slot if
overridden with the .S command.

Results and Notes:

When an asynchronous page-in is requested, the Kernel Debugger will prompt
the user with one of the following depending upon combination of parameters
specified:

task|addr %nnnn |%nnnnnnnn, LDT entry address %nnnnnnnn queued, G to continue

task|addr %nnnn|%nnnnnnnn queued, G to continue

TSD for slot s queued, G to continue

On successful completion of a synchronous page-in, the user will be prompted
with the command prompt.

If .I is unable to complete the request the OS/2 system error code will be
displayed (in decimal) in the following message:

OS/2 error code nt

Refer to the Control Programming reference or to BSEERR.H C header file for an
interpretation of the error code.

184 OS/2 Debugging

3.4.7 .H - Display Dump File Header Information

Display dump file header information saved by the stand-alone dump program in
the first sector (512 bytes) of the dump file.

Syntax:

��──── .H ──��

Parameters:

None.

Results and Notes:

This command displays the following information:

� �
.h
Dump File Header Info:
Start Addr1: 0
End Addr1: 2623213

Total Disks: 9
Flag: 11

Ending addresses by disk:
 2623213 6634079 9846551 12950323
 14965147 17345751 19711393
 22092095 25165823
#� �

Each of the fields displayed has the following meaning:

Start Addr1:
The lowest physical address dumped.

End Addr1:
The highest physical address dumped.

Total Disks:
The number of disk volumes the dump data set spans. When the dump is
taken to hard disk then the number of volumes is one.

Flag:
Indicates whether the dump file required decompressing. 0 indicates a
compressed dump and 11 a decompressed dump.

Ending Addresses by disk
Shows the range of physical memory dumped to each disk volume.

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 185

3.4.8 .I (DF) - Show Dump State

Display the dump state.

Syntax:

��──── .I ──��

Parameters:

None.

Results and Notes:

This command displays the following summary information:

� �
#.I
PROCESS slot:1c Pid:0003 Ord:0013
PTDA handle=0088 address=%7bcd5844
MTE handle=018a address=%fdfadf78 (PMSHL32)
SMTE address=%fc9a4c48
LDT handle=0187 address=%7a597000
CODE: user (cs:eip)#005b:17d679f2 cbargs=
STACKS: user (ss:esp)#0053:01382cbc(active)

ring2(ss:esp)#09be:00004000(bottom)
ring0 tcbframe=%7bbd4f54 bottom=%7bbd4f9c� �

Each of the fields display has the following meaning:

slot: The current thread slot at the time the dump was taken. This value is
taken from the TaskNumber global variable.

Pid: The current Pid when the dump was taken. This value is taken from
the Pid global variable.

Ord: The Tid of the current thread at the time the dump was taken. This
value is taken from the TCBOrdinal (TCB+ 0x0) of the current TCB .

handle= The VMOB handle that represents the control block named to the left.

.I displays this information for the PTDA, MTE, SMTE and LDT
associated with the current thread when the dump was taken.

See the .MO command form more information.

address= The address of the object whose name and handle are given on the
same line of display.

user (cs:eip) The current user CS:EIP when the dump was taken. See the .R
command for related information.

cbargs= The call gate argument count if the current task has made a privilege
level transition. See the .PU command for further information.

user (ss:esp) The current user SS:ESP when the dump was taken. See the .R
command.

186 OS/2 Debugging

ring2(ss:esp) The current ring 2 SS:ESP as saved in TCBCpl2_SS (TCB + 0x1bc)
and TCBCpl2_ESP (TCB + 0x1b8) fields of the current TCB .

ring0 tcbframe= The current (or last) kernel entry stack frame pointed to be
TCB_pFrameBase (TCB + 0x3c) when the current thread made a call
or transition to the kernel.

bottom= The base of the ring 0 stack (in its all contexts addressable form) for
the current thread.

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 187

3.4.9 .K - Display User Stack Trace

Display the user stack trace for a given thread slot.

Syntax:

��─┬── .K ──┬──┬──────────┬────────────────────────────────────��
├── .KS ──┤ ├── # ──┤
└── .KB ──┘ ├── * ──┤

└── slot ──┘

Parameters:

.K Display stack frame trace assuming the default operation size from
the descriptor associated with the code selector of the user registers
for the specified slot.

.KS Display frame trace assuming an operation size of 16-bits (small
model).

.KB Display frame trace assuming an operation size of 32-bits (big model).

slot Display stack trace for thread slot.

The following short hand may be used for the slot number:

* The current (last) thread the dispatcher gave control to.
This value is taken from the word a global label:

_TaskNumber

The debugger default thread slot. This defaults to the
current slot unless overridden by the .S command.

If no slot number is given then all thread slots are displayed and
grouped by process.

Results and Notes:

The .K command operates as a K command, but with the starting stack frame
and code segment address implicitly determined from the user′s register as
displayed by the .R command.

The output from the ..K command display′s exactly as the K command but with
the slot-number prefixed to the return address when an out-of-context stack trace
is displayed. See the following example output.

 Attention

The .K command is subject to the same limitations as noted for the K
command. See the K command description for details.

Example output from an out-of-context stack trace:

188 OS/2 Debugging

� �
##.S 8
##.K 37
0037|a6e7:0000006f 03d4 0000 00c5 006f
0037|a6e7:00000000 0000 0000 0000 0000
##� �

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 189

3.4.10 .LM - Format Loader Structures (MTE, SMTE, OTE and STE)

Display selected information from the MTE and SMTE of one or more loaded
modules. Optionally format the associated STE or OTE as follows:

Syntax:

��────.LM ────┬───────┬───┬───────┬────┬──────────┬─────────────��
└── O ──┘ ├── L ──┤ ├── hmte ──┤

├── P ──┤ ├── addr ──┤
├── V ──┤ └── name ──┘
└── X ──┘

Parameters:

O Format information about each object of each load module.

For 32-bit modules selected fields from the Object Table Entry (OTE)
are displayed.

For 16-bit modules selected fields from the Segment Table Entry (STE)
are displayed.

L Select Dynamic Link Library modules only. (This includes .FON, .IFS
and .DLL modules).

P Select Physical Device Drivers modules only.

V Select Virtual Device Drivers modules only.

X Select Executable modules (.EXE) only.

hmte Specifies the handle of the memory object assigned to the MTE
structure to be formatted.

addr Specifies the address of the MTE to be formatted.

name Specifies the name (excluding the file extension and path). The MTE
matching this name will be formatted. The name must be specified
as a quoted string.

This option requires the SMTE to be present in storage. See below
for information on how to make the SMTE present.

The default specification is to scan the entire MTE chain without formatting
corresponding STEs or OTEs.

Results and Notes:

The MTE chain is scanned from global symbol:

_mte_h

When OTE/STE formatting is not requested output appears as follows:

190 OS/2 Debugging

� �
.lm
hmte=0293 pmte=%fdfd1a38 mflags=06903140 e:\os2tools\mrfile32.exe
hmte=027f pmte=%fdfd1c80 mflags=06903142 !pulse
hmte=0272 pmte=%fdfd1db4 mflags=06903152 c:\os2\cmd.exe
hmte=00a0 pmte=%fe0177a8 mflags=0698b194 c:\os2\dll\display.dll
hmte=017a pmte=%fe015abc mflags=0698b198 c:\os2\dll\bvhwndw.dll
hmte=010e pmte=%fef282dc mflags=0691b180 ???
hmte=0101 pmte=%fe016b6c mflags=0691b180 ???
hmte=00f9 pmte=%fe016cd4 mflags=0691b180 c:\os2\mdos\vdma.sys
hmte=00f5 pmte=%fe016de0 mflags=0691b180 c:\os2\mdos\vbios.sys
hmte=0072 pmte=%fff2c919 mflags=0002b180 mvdm.dll
hmte=0006 pmte=%fff2bde0 mflags=0000b980 doscalls.dll
hmte=01c8 pmte=%fdf45e78 mflags=0698b1c8 c:\os2\dll\times.fon
hmte=01c6 pmte=%fe017718 mflags=0698b1c8 c:\os2\dll\helv.fon
hmte=00d5 pmte=%fdf32e60 mflags=0608f1ca c:\os2\pmdd.sys
hmte=00d6 pmte=%fdf32f04 mflags=0608f1c9 c:\os2\dos.sys
hmte=00cd pmte=%fdf49f64 mflags=0608f1c9 c:\os2\testcfg.sys
hmte=00cc pmte=%fdf4fb40 mflags=0628a1c9 c:\os2\hpfs.ifs
hmte=00a2 pmte=%fdf45fb8 mflags=0408e1c9 c:\os2dasd.dmd
hmte=00a1 pmte=%fdf32f8c mflags=0408e1c9 c:\ibm2scsi.add
hmte=009f pmte=%fdf2ff18 mflags=0408e1c9 c:\ibm2flpy.add
hmte=0096 pmte=%fdf41f60 mflags=0408e1c9 c:\print02.sys
hmte=0093 pmte=%fdf2efb8 mflags=0408e1c9 c:\clock02.sys
#� �

The fields formatted have the following meaning:

hmte Handle of the memory object occupied by this MTE. Taken from
mte_handle

pmte Linear address of this MTE

mflags Flag field 1 taken from mte_flags1. These flags have the following
interpretation:

Table 5 (Page 1 of 2). mflags Interpretation

Name bit mask Description

NOAUTODS 0x00000000 No Auto DS exists

SOLO 0x00000001 Auto DS is shared

INSTANCEDS 0x00000002 Auto DS is not shared

INSTLIBINIT 0x00000004 Per-instance Libinit

GINISETUP 0x00000008 Global Init has been setup

NOINTERNFIXUPS 0x00000010 Internal fixups in .EXE-.DLL applied

NOEXTERNFIXUPS 0x00000020 External fixups in .EXE-.DLL applied

CLASS_PROGRAM 0x00000040 Program class

CLASS_GLOBAL 0x00000080 Global class

CLASS_SPECIFIC 0x000000C0 Specific class, as against global

CLASS_ALL 0x00000000 Nonspecific class - all modules

CLASS_MASK 0x00000000

MTEPROCESSED 0x00000100 MTE being loaded

USED 0x00000200 MTE is referenced

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 191

Table 5 (Page 2 of 2). mflags Interpretation

Name bit mask Description

DOSLIB 0x00000400 Set if DOSCALL1

DOSMOD 0x00000800 Set if DOSCALLS

MTE_MEDIAFIXED 0x00001000 File Media permits discarding

LDRINVALID 0x00002000 Module not loadable

PROGRAMMOD 0x00000000 Program module

DEVDRVMOD 0x00004000 Device driver module

LIBRARYMOD 0x00008000 DLL module

VDDMOD 0x00010000 VDD module

MVDMMOD 0x00020000 Set if VDD Helper MTE (MVDM.DLL)

INGRAPH 0x00040000 In Module Graph

GINIDONE 0x00080000 Global Init has finished

MTEADDRALLOCED 0x00100000 Allocate specific or not

FSDMOD 0x00200000 FSD MTE

FSHMOD 0x00400000 FS helper MTE

MTELONGNAMES 0x00800000 Module supports long-names

MTE_MEDIACONTIG 0x01000000 File Media contiguous memory req

MTE_MEDIA16M 0x02000000 File Media requires mem below 16M

MTEIOPLALLOWED 0x04000000 Module has IOPL privilege

MTEPORTHOLE 0x08000000 Porthole module

MTEMODPROT 0x10000000 Module has shared memory protected

MTENEWMOD 0x20000000 Newly added module

MTEDLLTERM 0x40000000 Gets instance termination

MTESYMLOADED 0x80000000 Set if debugger symbols loaded

name The full path name for the module is displayed to the right of the
mflags field. The name is taken from the smte_path of the SMTE. If
the SMTE is swapped out then the the name is taken from
mte_modname (the .DEF file link edit name) and prefixed with an !
symbol.

Where no path information is given then the module is predefined by
the system and does not exist separately as a load module file.

The STE and OTE are displayed when the O option is specified. These tables
are accessed from the address at SMTE+0x1c. This requires that the SMTE be
present in storage. If it is not then the following is returned:

???

Swappable MTE - swapped

To page in the SMTE use .LM without parameters to obtain the MTE address from
the pmte field. The SMTE address is at MTE + 0x4. Use the .I command to
page in the SMTE storage.

192 OS/2 Debugging

For a 16-bit module the STE is formatted as follows:

� �
#.lmo ′ hpfs′

hmte=00cc pmte=%fdf4fb40 mflags=0628a1c9 c:\os2\hpfs.ifs
seg sect psiz vsiz hob sel flags
0001 0003 eb24 eb24 0000 0668 8d60 code shr prel rel
0002 0079 d22f d230 0000 0670 8d60 code shr prel rel
0003 00e3 07b5 07b8 0000 0678 8d60 code shr prel rel
0004 00e8 0d8a 0d8c 0000 0680 8d60 code shr prel rel
0005 00f0 0d6e 19c2 0000 0688 8d41 data prel rel
0006 00f7 03fb 03fc 0000 0690 8c41 data prel
0007 00f9 0084 0084 0000 0698 8d41 data prel rel
0008 00fa 0010 0014 0000 06a0 8d41 data prel rel
0009 00fb 0238 0238 0000 06a8 8d41 data prel rel
#� �

The STE fields formatted have the following meaning:

seg Segment number. This is a sequential index of module segments.
Index entries appearing in the link-edit map will correspond with
these values.

sect (ste_offset) Offset in file to segment data.

psiz (ste_size) File data size.

vsiz (ste_minsiz) Minimum allocation size.

hob (ste_seghdl) Memory object handle of segment data.

sel (ste_selector) Selector assigned to this segment.

flags (ste_flags) Segment type and attribute flags. These interpretations of
these are displayed to the right of the flag word. They are assigned
as follows:

Table 6 (Page 1 of 2). flags Assignments

Name bit mask .lmo msg Description

STE_CODE 0x0000 code Code segment type

STE_DATA 0x0001 data Data segment type

STE_PACKED 0x0002 Segment is packed

STE_SEMAPHORE 0x0004 Segment semaphore

STE_ITERATED 0x0008 iter Segment data is iterated

STE_WAITING 0x0010 move Segment is waiting on semaphore

STE_SHARED 0x0020 shr Segment can be shared

STE_PRELOAD 0x0040 prel Segment is preload

STE_ERONLY 0x0080 EO Execute only if code segment

STE_ERONLY 0x0080 RO Read only if data segment

STE_RELOCINFO 0x0100 rel If segment has reloc records

STE_CONFORM 0x0200 conf Segment is conforming

STE_RING_2 0x0800 iopl Ring 2 selector

STE_RING_3 0x0C00 Ring 3 selector

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 193

Table 6 (Page 2 of 2). flags Assignments

Name bit mask .lmo msg Description

STE_HUGE 0x1000 disc Huge segment

STE_PAGEABLE 0x2000 Just a page can be faulted in

STE_PRESENT 0x2000 Packed segment already loaded

STE_SELALLOC 0x4000 Used to indicate sel allocated

STE_GDTSEG 0x8000 Used to indicate GTD sel alloc

For a 32-bit module the OTE is formatted as follows:

� �
#.lmo ′ doscall1′

hmte=00a7 pmte=%fdf59f58 mflags=0698b594 c:\os2\dll\doscall1.dll
obj vsize vbase flags ipagemap cpagemap hob sel
0001 00001354 1a010000 80009025 00000001 00000002 00ad d00e r-x shr alias iopl
0002 0000cde8 1a020000 80002025 00000003 0000000d 00ac d017 r-x shr big
0003 00001844 1a030000 80001025 00000010 00000002 00ab d01f r-x shr alias
0004 000002ce 1a040000 80001025 00000012 00000001 00aa d027 r-x shr alias
0005 000054d0 1a050000 8000d025 00000013 00000006 00a9 d02e r-x shr alias conf iopl
0006 00000270 1a060000 80001023 00000019 00000001 00a8 d037 rw- shr alias
0007 00001b40 1a070000 80001003 0000001a 00000002 0000 d03f rw- alias� �

The OTE fields formatted have the following meaning:

obj Object number. This is a sequential index of module object. Index
entries appearing in the link-edit map will correspond with these
values.

vsize (ote_size) Object virtual size

vbase (ote_base) Object base virtual address

flags (ote_flags) Attribute flags. The interpretations of these are displayed
to the right of the each line. They are assigned as follows:

Table 7 (Page 1 of 2). flags Attribues

Name bit mask .lmo msg Description

OBJREAD 0x00000001 r Readable Object

OBJWRITE 0x00000002 w Writeable Object

OBJEXEC 0x00000004 x Executable Object

OBJRSRC 0x00000008 rsrc Resource Object

OBJDISCARD 0x00000010 disc Object is Discardable

OBJSHARED 0x00000020 shr Object is Shared

OBJPRELOAD 0x00000040 prel Object has preload pages

OBJINVALID 0x00000080 inv Object has invalid pages

OBJZEROFIL 0x00000100 zfill Object has zero-filled pages

OBJRESIDENT 0x00000200 Object is resident

OBJALIAS16 0x00001000 alias 16:16 alias required

OBJBIGDEF 0x00002000 big Big/Default bit setting

194 OS/2 Debugging

Table 7 (Page 2 of 2). flags Attribues

Name bit mask .lmo msg Description

OBJCONFORM 0x00004000 conf Object is conforming for code

OBJIOPL 0x00008000 iopl Object I/O privilege level

OBJMADEPRIV 0x40000000 Object is made private for debug

OBJALLOC 0x80000000 Object allocated and used by loader

ipagemap (ote_pagemap) Object page map index

cpagemap (ote_mapsize) Number of entries in object page map

hob (ote_seghdl) Memory object handle of object data

sel (ote_selector) Selector assigned to this object

If either the segment table or object is not in storage then the following message
is issued:

%nnnnnnnnx - swapped

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 195

3.4.11 .M - Format Memory Structures

Format memory management structures (VMOB, VMAR, VMAL, VMCO, VP and
PF).

Syntax:

��────.M ─────┬───────┬───┬─────────────┬───────────────────────��
├── A ──┤ └── options ──┘
├── O ──┤
├── C ──┤
├── L ──┤
├── V ──┤
└── P ──┘

Parameters:

A Format Memory Arena Records (VMARs). See the .MA command for
more information.

O Format Memory Object Records (VMOBs). See the .MO command for
more information.

C Format Memory Context Records (VMCOs). See the .MC command for
more information.

L Format Memory Alias Records (VMALs). See the .ML command for
more information.

V Format Virtual Page structures (VPs). See the .MV command for more
information.

P Format Page Frame structures (PFs). See the .MP command for more
information.

options See the corresponding .Mx command for details of applicable options.

The .M command defaults to:

.MAMC

.MAAMC

For further details see the M option of the .MA command.

196 OS/2 Debugging

3.4.12 .MA - Format Memory Arena Records (VMAR)

Display memory arena records VMARs. Optionally format related object records
VMOBs, alias records VMALs and context records VMCOs.

Syntax:

��────.MA ──┬─┬───────────────┬─┬───────┬─┬───────────┬─────────��
│ ├── M ─┬───────┤ └── C ──┘ └── maddr ──┘
│ │ └── A ──┤
│ └────── A ──────┘
│
└─┬───────┬─┬─────────────────────┬──────────────────�
└── B ──┘ ├────────── F ────────┤

└─┬───────┬─┬───────┬─┘
├── L ──┤ └── C ──┘
├── R ──┤
└── H ──┘

�───────────────────────┬───────────────────────────┬───────────��
├── har ────┬──┬─────────┬──┘
└── laddr ──┘ └── L n ──┘

Parameters:

A This option is used with (and implies) the M option. It causes a match
for private area addresses to be made across all contexts. See the M
option for further details.

Note:

Under Kernel Debugger the default is to match addresses in
the current context only.

Under Dump Formatter address matches are made across all
contexts, that is, the A option is in permanent effect.

B Display in-use (busy) arena records in sequential order.

C Display chained memory structures.

Chaining causes related memory structures to be displayed in
groups, the head of which is indicated by an * suffix. The related
structures are:

Aliases to the associated arena record (VMALs).

Arena records of all associated alias records (VMARs).

Shared instance data objects for all related arena records

Context records for shared objects of all associated arena records
(VMCOs). See the .MC command.

Object records of all associated arena records (VMOBs). See the
.MO command.

F Display free arena records.

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 197

H Follow the arena hash chain pointer. The hash chain is used by
virtual memory management to look up a memory object for a given
context from a linear address.

L Follow the arena forward (left) chain pointer. Arena records for each
arena are chained using a double-linked circular chain. The Dump
Formatter or Kernel Debugger will not detect wrap-around. This
option must therefore be limited by specifying a fixed number of
arena records, using the Ln operand, or interrupted using Ctrl-C.

M Searches for all arena records (of all contexts) that represent virtual
memory that encloses the address specified in maddr If maddr is not
specified then the current CS:EIP is taken as the matching address. If
the storage is in the private arena Kernel Debugger will search the
current context only unless the

An address expression may be specified, via the A option. The Dump
Formatter always searches for matches in all contexts.

R Follow the arena backward (right) chain pointer. Arena records for
each arena are chained using a double-linked circular chain. The
Dump Formatter or Kernel Debugger will not detect wrap-around.
This option must therefore be limited by specifying a fixed number of
arena records, using the Ln operand, or interrupted using Ctrl-C.

maddr Specifies the matching address to be used with the M option.

laddr Specifies the linear address of a specific arena record to be
formatted.

Ln Specifies the number of arena records to display.

har Specifies the handle of a specific arena record to be formatted.

Results and Notes:

Arena records are in contiguous storage, which is anchored from the address
given by global variable:

_parvmOne

Output from the .MA command is formatted using a common template with minor
variations.

Note: Because a common display template is used for all forms of arena record
certain fields will be irrelevant to the records being viewed and may
contain garbage information. Specific cases are noted in the examples
where this applies.

The following are examples of the nine formats of area record:

Free Arena Record

Sentinel Arena Record

Boundary Sentinel Arena Record

System Arena Records mapped by GDT selectors

System Arena Records not mapped by GDT selectors

Shared Arena Records for shared data

Shared Arena Records for instance data

Private Arena Records for non-shared data

198 OS/2 Debugging

Private Arena Records for shared data

For a description of the fields formatted by .MA select .MA Output Field
Descriptions.

For more examples using of the .M family of commands see Volume I, of the
OS/2 Debugging Library ′Exploring Memory Management′ chapter.

3.4.12.1 Free Arena Record

 har par cpg va flg next prev link hash hob hal
 0263 %fef2948c 000294a2 %00320000 168 0233 0262 0000 0000 02df 0000 =029e
 0264 %fef294a2 000294b8 %00000000 000 0000 0000 0000 0000 0000 0000 =0000
 0265 %fef294b8 000294ce %00000000 000 0000 0000 0000 0000 0000 0000 =0000

Figure 48. Free Arena Record Display

Notes:

Flag bit 0x001 reset signifies a free record.

The only fields of relevance are har, par, and cpg .

Bit positions 0xffe of flg and remaining fields may contain garbage
from a previous use of the record.

For a description of the fields formatted by .MA select .MA Output Field
Descriptions.

3.4.12.2 Sentinel Arena Record

 har par cpg va flg next prev link hash hob hal
 0004 %fef26062 00000000 %60000000 003 0239 0015 0000 0000 ffc0 0000 max=%fffc0000
 0005 %fef26078 0000dfb0 %04000000 007 0259 006e 0000 0000 fff0 0000 max=%1fff0000

Figure 49. Sentinel Arena Records

Notes:

Flag bit 0x002 set signifies a sentinel record.

hob is not relevant to sentinel records. (The value displayed
originates from the m a x = field).

For OS/2 2.1, arena record 4 is sentinel for the system arena.

For a description of the fields formatted by .MA select .MA Output Field
Descriptions.

3.4.12.3 Boundary Sentinel Arena Record

 har par cpg va flg next prev link hash hob hal
 0005 %fef26078 0000dfb0 %04000000 007 0259 006e 0000 0000 fff0 0000 max=%1fff0000

Figure 50. Boundary Sentinel Arena Record

Notes:

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 199

Flag bits 0x006 set signify a boundary sentinel record.

The boundary sentinel indicates the boundary between the shared
and private arena address spaces. Consequently there is only one
boundary sentinel to be found in a system.

hob is not relevant to sentinel records. (The value displayed
originates from the m a x = field).

For OS/2 2.1, arena record 5 is boundary sentinel for the shared
arena.

For a description of the fields formatted by .MA select .MA Output Field
Descriptions.

3.4.12.4 System Arena Record Mapped by GDT

 har par cpg va flg next prev link hash hob hal
 0006 %fef2608e 00000003 %fff20000 009 000f 00b0 0000 0000 0007 0000 sel=0100
 0007 %fef260a4 0000000b %ffe27000 009 0008 001a 0000 0000 0008 0000 sel=0400
 0008 %fef260ba 0000000b %ffe32000 009 0009 0007 0000 0000 0009 0000 sel=0f00
 0009 %fef260d0 00000010 %ffe3d000 009 000b 0008 0000 0000 000a 0000 sel=0120

Figure 51. System arena records - Address Space Mapped by a GDT Selector

Notes:

Flag bit 0x008 set signifies a selector mapping.

va value >= that specified in the System Arena Sentinel signifies
system area area record.

For a description of the fields formatted by .MA select .MA Output Field
Descriptions.

3.4.12.5 System Arena Record Not Mapped by GDT

 har par cpg va flg next prev link hash hob hal
 000e %fef2613e 00000001 %fff16000 001 01d9 0083 0000 0000 000f 0000 =0000
 000f %fef26154 00000001 %fff23000 001 0010 0006 0000 0000 0010 0000 =0000
 0010 %fef2616a 00000002 %fff24000 001 0011 000f 0000 0000 0011 0000 =0000

selector

Figure 52. System Arena Records - Address Space not Mapped by a GDT

Notes:

Flag bit 0x008 set to 0 signifies a no selector mapping.

va value >= that specified in the System Arena Sentinel signifies
system area area record.

For a description of the fields formatted by .MA select .MA Output Field
Descriptions.

200 OS/2 Debugging

3.4.12.6 Shared Arena Record for Shared Data

 har par cpg va flg next prev link hash hob hal
 00b2 %fef26f56 00000010 %1a0a0000 379 00b6 00b3 0000 0000 00be 0000 hco=001ed
 00b3 %fef26f6c 00000010 %1a090000 3d9 00b2 00a9 0000 0000 00c0 0000 hco=001ee
 00b4 %fef26f82 00000010 %1a0e0000 379 00bb 00b5 0000 0000 00c1 0000 hco=0022e

Figure 53. Shared Arena, Shared Data

Notes:

Flag bit 0x200 set to 1 signifies shared arena, shared data.

Context records chained from hco value will list the processes that
currently share the memory object represented by this arena record.

For a description of the fields formatted by .MA select .MA Output Field
Descriptions.

3.4.12.7 Shared Arena Record for Instance Data

 har par cpg va flg next prev link hash hob hal
 00e9 %fef27410 00000020 %1abb0000 179 0105 00ea 0000 0000 02b5 0000 =0000
 00ea %fef27426 00000010 %1aba0000 179 00e9 00eb 0000 0000 02b6 0000 =0000

Figure 54. Shared Arena, Instance Data

Notes:

Flag bit 0x200 set to 0 with a va value not in the system arena and 0
hptda indicates shared arena instance data.

Object records chained from hob value will list the objects and
processes that map to the common virtual address range represented
by this arena record.

For a description of the fields formatted by .MA select .MA Output Field
Descriptions.

3.4.12.8 Private Arena Record Non-Shared Data

 har par cpg va flg next prev link hash hob hal
 00e7 %fef273e4 00000010 %00020000 179 00e8 00db 0000 0000 011e 0000 hptda=0097
 00e8 %fef273fa 00000010 %00030000 179 012f 00e7 0000 0000 011f 0000 hptda=0097

Figure 55. Private Non-shared Data, Process Owned Arena Records

Notes:

Arena records not satisfying the criteria for any of the System,
Sentinel or Shared Arena records are assumed to be private arena
records.

If the private memory object is shared (for example, .EXE code
segments running in more than one process) then the associated
private arena records for the sharing processes are chained from the
link field as long as hal is zero.

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 201

For a description of the fields formatted by .MA select .MA Output Field
Descriptions.

3.4.12.9 Private Arena Record Shared Data

 har par cpg va flg next prev link hash hob hal
 01e2 %fef28976 00000010 %00010000 1c9 01e3 01e0 00db 0000 011c 0000 hptda=0237

Figure 56. Private Shared Data, Process Owned Arena Records

Notes:

Arena records not satisfying the above criteria are assumed to be
private arena records.

If the private memory object is shared (for example, .EXE code
segments running in more than one process) then the associated
private arena records for the sharing processes are chained from the
link field as long as hal is zero.

For a description of the fields formatted by .MA select .MA Output Field
Descriptions.

3.4.12.10 .MA Output Field Descriptions
Output from .MA is in a tabular format of the following form:

 har par cpg va flg next prev link hash hob hal
 0005 %fef26078 0000dfb0 %04000000 007 0259 006e 0000 0000 fff0 0000 max=%1fff0000
 0009 %fef260d0 00000010 %ffe3d000 009 000b 0008 0000 0000 000a 0000 sel=0120
 00b4 %fef26f82 00000010 %1a0e0000 379 00bb 00b5 0000 0000 00c1 0000 hco=0022e
 00ea %fef27426 00000010 %1aba0000 179 00e9 00eb 0000 0000 02b6 0000 =0000
 00e7 %fef273e4 00000010 %00020000 179 00e8 00db 0000 0000 011e 0000 hptda=0097

The field headings have the following meaning:

har The handle of the arena record being formatted. This is the unique
identifier by which the arena record is known.

par The linear address of the arena record being displayed.

cpg The size of the contiguous linear address range reserved by this
arena record expressed as a hexadecimal number of pages. This
value will be greater then or equal to the size of the memory object
that occupies this linear address range.

For small allocations (<64K) in non-system arenas this will usually
be rounded to 0x10 pages so that the CRMA may be applied.

For free records this field is used as a chain pointer to the next free
record but only the low order 20 bits are displayed by .MA.

va The linear address of the beginning of the memory object represented
by the arena record.

flg Arena record flags. These may take a combination of the following
settings:

202 OS/2 Debugging

Name Bit mask Description

AR_INUSE 0x001 Record not on free list

AR_TAG 0x006 Record type mask

AR_TAGREG 0x000 Regular record

AR_TAGSEN 0x002 Sentinel

AR_TAGBSEN 0x006 Boundary sentinel

AR_SELMAP 0x008 Memory mapped by selector

AR_SELBASEALL 0x00c Base selector map all

AR_SELMASK 0x00c Selector map mask

AR_RELOAD 0x010 Pre-reserved for huge item or or reserved for reload of MTE
object

AR_WRITE 0x020 Write permission

AR_USER 0x040 User permission

AR_EXEC 0x080 Executable permission

AR_READ 0x100 Read permission

AR_HCO 0x200 Record linked to Context List

AR_GUARD 0x400 Guard page

AR_SGS 0x800 Registered under Screen Group Switch control.

next Handle of next arena record within the same arena (private, shared or
system).

prev Handle of the previous record within the same arena (private, shared
or system).

link Handle of an associated arena record.

For private arena sentinel records this points to the boundary
sentinel.

For shared arena shared data this points to other private arenas
sharing the same object.

For alias objects this points to the arena record of the associated
(aliased) object.

hash Handle of the next arena record whose va hashes to the same hash
chain.

hob The handle of the associated memory object record. See .MO
command.

hal The handle of the associated memory alias record. See .ML
command. If this field is set to a value of 0xffff then this is not the
handle of an alias record, but signifies that this arena has been
privatized by the creation of an alias to it.

hptda= hhhh The handle of the pseudo-object that is the PTDA of the process
that has this arena record assigned to its private address space. Use
.MO hhhh to display the PTDA pseudo-object and hence obtain the
address of its virtual address.

m a x = %mmmmmmmm Maximum linear address of the area headed by this
sentinel record.

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 203

s e l = ssss GTD selector that is assigned to a system arena memory object.

h c o = ccccc Handle of the first context record that represents processes sharing
this shared arena, shared data memory object. See the .MC
command.

3.4.13 .MC - Format Memory Context Records (VMCO)

Display memory context records (VMCOs).

Syntax:

��────.MC ────┬───────┬─┬───────┬─┬─────────────────────────┬───��
└── B ──┘ ├── F ──┤ ├── hco─────┬───┬─────────┤

└── C ──┘ └── laddr ──┘ └── Ln ───┘

Parameters:

B Display in-use (busy) alias records in sequential order.

C Display chained context records.

Chaining causes related context records that are chained from
hconext of the current context to be formatted. The head of each
group indicated by an * suffix. Context records are chained to
represent each instance of an object being shared among several
processes. The head of the chain is pointed to by the hco field of the
corresponding arena record See the .MA command for information on
formatting arena records.

Notes: There is no pointer to the arena record from the context
record. Associated arena records have to be found by
scanning arena or object records.

The C option will not format context records from the head of
the chain. Do achieve this, locate the corresponding arena
record and use

.MAC har

F Display free alias records.

laddr Specifies the linear address of a specific context record to be
formatted.

Ln Specifies the number of context records to display.

hco Specifies the handle of a specific context record to be formatted.

Results and Notes:

Context records are in contiguous storage, which is anchored from the address
given by global variable:

_pcovmOne

Output from the .MC command appears in one of two formats:

Free Context Records
Busy Context Records

204 OS/2 Debugging

For a description of the fields formatted by .MC select .MC Output Field
Descriptions.

For more examples using of the .M family of commands see: Exploring Memory
Management.

3.4.13.1 Free Alias Records

 hco=00313 pco=ffe4bf7a pconext=ffe4bf7f
 hco=00314 pco=ffe4bf7f pconext=ffe4bf84
 hco=00315 pco=ffe4bf84 pconext=ffe4bf89
 hco=00316 pco=ffe4bf89 pconext=ffe4bf8e

Figure 57. Free Context Record Display

Notes:

pconext is used as a chain pointer to the next free context record.

For a description of the fields formatted by .MC see the .MC Output Field
Descriptions.

3.4.13.2 Busy Context Records

 hco=00001 pco=ffe4b020 hconext=00000 hptda=00ae f=1d pid=0002 c:pmshell.exe
 hco=00002 pco=ffe4b025 hconext=00000 hptda=00ae f=1d pid=0002 c:pmshell.exe
 hco=00003 pco=ffe4b02a hconext=00000 hptda=00ae f=13 pid=0002 c:pmshell.exe
 hco=00004 pco=ffe4b02f hconext=00000 hptda=00ae f=1d pid=0002 c:pmshell.exe

Figure 58. Selector Busy Context Records

Notes:

Flag bit 0x20 set signifies a context handle > 64k. In effect this is a 1
bit extension of the 16 bit hco field of the VMCO. The .ML command
takes this into account when formatting VMCO records.

Flag bit 0x80 set signifies that the context has been privatized. This
implies that the object was originally shared but a private instance of
it has subsequently been created. Typically this occurs when
DosDebug is used to access a debugee′s shared data.

For a description of the fields formatted by .MC see the .MC Output Field
Descriptions.

3.4.13.3 .MC Output Field Descriptions
Output from .MC appears in one of is of the following forms:

 hco=00317 pco=ffe4bf8e pconext=ffe4bf93

 hco=00001 pco=ffe4b020 hconext=00000 hptda=00ae f=1d pid=0002 c:pmshell.exe

Each of the fields has the following meaning:

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 205

h c o = The handle of the context record being formatted. This is the unique
identifier by which the context record is known.

p c o = The linear address of the context record being formatted.

hconext= For busy records this is the handle of the next context record that
represents another user of the related (shared) object. For free
records this is the handle of the next free record.

hptda= The handle of the PTDA pseudo-object that represents the process
sharing the corresponding memory object.

f Context record flags.

The following flags are defined:

Name Bit mask Description

CO_CREATOR 0x01 originating context

CO_PRIV 0x80 Privatized context

CO_HCOH 0x20 Next context record handle > 64K

CO_WRITE 0x02 Write access

CO_USER 0x04 User attr ibute

CO_EXEC 0x08 Execute access

CO_READ 0x10 Read access

CO_GUARD 0x40 Guard page

P i d = This names the process Id and process executable that corresponds
to the hptda field.

3.4.14 .MK - Display Memory Lock Information Records (VMLKI)

Display memory lock information records.

Note:

This command was implemented by feature 82818 for the ALLSTRICT
kernel only. It is not available in either of the GA versions for OS/2 Warp
V3.0 or OS/2 V2.11.

Feature 82818

Feature 82818 introduces the Kernel Debugger .MK command. 82818 is
supplied as an APAR fix to:

OS/2 Warp V3.0: as PJ18364 in fixpack 7

OS/2 V2.11: as PJ16805 in fixpack 90

Syntax:

��────.MK ────┬────────────────────┬────────────────────────────��
└── hob ────┬────────┤

└── Ln ──┘

206 OS/2 Debugging

Parameters:

none Lists all lock information records for all memory objects with locked
records.

Ln Specifies the number of lock information records to display for a a
given hob .

hob Specifies the handle of a specific object record whose lock
information records are to be formatted.

Results and Notes:

Lock information records are maintained for outstanding memory locks in
memory lock information records (VMLIs) which are located at the address given
by global variable:

_pVMLIHead

When a memory lock request is successfully executed a lock handle is returned
to the caller for later use when unlocking memory. The lock handle normally
resides in the caller′s storage. It comprises a concatenation of:

The requestor′s hptda

The hob whose pages are being locked

The page number

The number of pages

Request flags

In addition a check-sum or signature is calculated from these values and stored
with the lock handle.

The VMLI is a copy of the constituents of the lock handle that resides in system
memory.In addition it includes:

The requestor′s return address

A pointer to the next VMLI

A pointer to the requestor′s lock handle

The .MK command formats the contents of the VMLI then re-calculates the
signature. The calculated and saved signatures should be identical.

Next the lock handle is accessed. If it differs from the corresponding VMLI then it
too is formatted and the signature is re-calculated and displayed. If either the
formatted lock handle and corresponding VMLI or the calculated and extracted
signatures disagree then a problem may be indicated. For example, an
overlayed or freed lock handle. However, there is no requirement for lock
requestors to retain their lock handles in their original locations.

 Attention

The Kernel Debugger can trap when attempting to format lock handles from
freed memory.

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 207

Note: When feature 82818 is present VMLI records are automatically formatted
when displaying memory object records with locked pages, using the .MO
command.

Output from the .MK command appears as follows:

� �
##.mk

pvmli cs eip phlock cpg va flg hptda hob sig csig
 %fe679f1c 0170 fffa015d %fd17d480 0001 %013f1000 0003 0091 0424 18aa 18aa
 %fe68a1dc 0170 fffa015d %fd17d468 0001 %013f1000 0003 0091 0424 18aa 18aa
 %fe74539c 0170 fff3e551 %ffe006ff 0002 %fff33000 0001 02f7 0016 0252 0252
 %fe712c54 0170 fff3e551 %ffe00577 0003 %fff38000 0001 02f7 0016 0258 0258
 %fe761e0c 0908 00000878 %7b6b7d0c 0001 %ffee9000 0005 0091 0190 011f 011f

0000 %4c800000 0ff0 0001 0000 0000 d7f5
 %fe777e18 0908 00000841 %7b6b7d0c 0006 %ffeea000 0005 0091 0227 01bc 01bc

0000 %4c800000 0ff0 0001 0000 0000 d7f5
 %fe777e3c 0908 00000809 %7b6b7d0c 0001 %ffef0000 0005 0091 022c 01c2 01c2

0000 %4c800000 0ff0 0001 0000 0000 d7f5
 %fe777e60 0908 0000072b %7c224066 0002 %17c40000 0005 0091 0199 7e72 7e72
 %fe777e84 0908 0000072b %7c224058 0001 %7a022000 0001 0091 0168 a224 a224
 %fe777ef8 0908 000006ee %7c22403c 0001 %7a022000 0001 0091 0168 a224 a224
 %fe777f28 0908 000006ee %7c22404a 0002 %17c80000 0005 0091 0196 7eaf 7eaf
 %fe777f4c 0908 000000a5 %7c22402e 0001 %fe763000 0005 0091 0003 e80c e80c� �

The field headings have the following meaning:

pvmli Address of the VMLI record.

cs Code selector of the requestor of the memory locking function. For
calls made through a DevHlp request this is taken from
TCBpDHRetAddr (TCB + 0x74). For internal requests the immediate
caller of _VmLockMem is displayed.

A blank value indicates information from the lock handle is being
formatted, because it does not agree with the corresponding VMLI .
See note above.

eip The instruction pointer of the requestor of the memory locking
function. For calls made through a DevHlp request this is taken from
TCBpDHRetAddr (TCB + 0x74). For internal requests the immediate
caller of _VmLockMem is displayed.

A blank value indicates information from the lock handle is being
formatted, because it does not agree with the corresponding VMLI .
See note above.

phlock The address of the lock handle buffer supplied by with the lock
request.

cpg The number of contiguous pages locked.

va The linear address of the first page locked.

flg The flags saved from the lock request.

The following bit settings are defined:

208 OS/2 Debugging

Bit value Description

0x01 Lock is a long-term

0x02 Verify lock call

0x04 Lock originated from a DevHlp

hptda The hptda of the lock requestor.

hob The handle of the associated memory object record. See the .MO
command.

sig The signature value extracted from the VMLI or lock handle.

csig The recalculated signature based on information saved in the VMLI or
lock handle.

For related information see refer also to the Virtual Memory Lock Trace.

3.4.15 .ML - Format Memory Alias Records (VMAL)

 (not supported in early 2.1 versions of the Dump Formatter)

Display memory alias records (VMALs). Optionally format related arena records
(VMARs), object records (VMOBs) and context records (VMCOs).

Syntax:

��────.ML ────┬───────┬─┬───────┬─┬─────────────────────────┬───��
└── B ──┘ ├── F ──┤ ├── hal─────┬───┬─────────┤

└── C ──┘ └── laddr ──┘ └── Ln ───┘

Parameters:

B Display in-use (busy) alias records in sequential order.

C Display chained memory structures.

Chaining causes related memory structures to be displayed in
groups, the head of which is indicated by an * suffix. The related
structures are:

The associated arena record (VMAR). See the .MA command.

Aliases to the associated arena record (VMALs).

Arena records of all associated alias records.

Shared instance data objects for all related arena records.

Context records for shared objects of all associated arena
records. (VMCOs). See the .MC command.

Object records of all associated arena records (VMOBs). See the
.MO command.

F Display free alias records.

maddr Specifies the matching address to be used with the M option.

laddr Specifies the linear address of a specific alias record to be formatted.

Ln Specifies the number of arena records to display.

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 209

hal Specifies the handle of a specific alias record to be formatted.

Results and Notes:

Alias records are in contiguous storage, which is anchored from the address
given by global variable:

_palVMAliases

Output from the .ML command appears in one of three formats.

Free Alias Record
Selector Alias Record
Linear Address Alias Record

For a description of the fields formatted by .ML see the .ML Output Field
Descriptions.

For more examples using of the .M family of commands see Volume I, of the
OS/2 Debugging Library ′Exploring Memory Management′ chapter.

3.4.15.1 Free Alias Records

 hal=000e pal=%ffe61088 palnext=ffe610a0 pgoff=00000 f=000
 hal=000f pal=%ffe61090 palnext=ffe61088 pgoff=00000 f=000
 hal=0010 pal=%ffe61098 palnext=ffe61090 pgoff=d4460 f=000

Figure 59. Free Alias Record Display

Notes:

Flag bit 0x001 reset signifies a free record.

The only fields of relevance are hal, pal, and palnext .

For a description of the fields formatted by .ML see the .ML Output Field
Descriptions.

3.4.15.2 Selector Alias Records

 hal=000a pal=%ffe61068 har=0208 cs=0056 ds=d446 cref=001 f=13
 hal=000b pal=%ffe61070 har=020b cs=0056 ds=d446 cref=001 f=13

Figure 60. Selector Alias Record Display

Notes:

Flag bit 0x02 set signifies a CS alias record.

Flag bit 0x10 set signifies that DS is valid, i.e CS is an alias for the
same storage mapped by DS. For example after use of
DosCreateCSAlias. This flags distinguishes this form of the alias
record.

This alias applies to selectors within a specific (process) context.

For a description of the fields formatted by .ML see the .ML Output Field
Descriptions.

210 OS/2 Debugging

3.4.15.3 Linear Address Alias Records

 hal=0001 pal=%ffe61020 har=00b8 hptda=009f pgoff=00000 f=001
 hal=0002 pal=%ffe61028 har=00b9 hptda=009f pgoff=00000 f=001
 hal=0003 pal=%ffe61030 har=001b hptda=009f pgoff=00000 f=001

Figure 61. Linear Address Alias Record Display

Notes:

Flag bit 0x10 reset distinguishes this form of the alias record.

hptda and har refer to the context and arena which has been aliases.

The context and arena of the creator of the alias may be shown using

.MLC hal

For a description of the fields formatted by .ML see the .ML Output Field
Descriptions.

3.4.15.4 .ML Output Field Descriptions
Output from .ML appears in one of is of the following forms:

 hal=0006 pal=%ffe61048 har=01b8 hptda=009f pgoff=00000 f=021

 hal=000a pal=%ffe61068 har=0208 cs=0056 ds=d446 cref=001 f=13

 hal=0011 pal=%ffe610a0 palnext=ffe610a8 pgoff=00000 f=000

Each of the fields has the following meaning:

hal The handle of the alias record being formatted. This is the unique
identifier by which the alias record is known.

har The handle of the arena record which represents the aliasing linear
address range. The arena record for the aliased linear address is
pointed to by the link field of the aliasing har .

hptda The handle of the PTDA object of the context which has been aliased.
This may also take the value of a system owner when memory is in
the process of being freed.

pgoff The page offset into the arena which is aliased. Note: aliases may
map partial objects. The number of pages aliased may be
determined from the arena record which represents the aliased
memory. Use .MLC hal to display this information.

cs The Code Selector created to alias R/W memory.

ds The Data Selector which has been aliased by a Code selector.

cref The reference count for the number of time a Code Selector alias has
been requested for a given Data Selector.

palnext The pointer to the next free alias record.

f Alias record flags. For Selector Aliases this is a 6-bit field, for other
aliases this is a 12-bit field.

The following flags are defined:

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 211

Name Bit mask Description

AL_ISBUSY 0x1 Set if record is busy

AL_CSALIAS 0x2 Set is CS alias record

AL_MEMMAP 0x4 Set if MemMapAlias Record

AL_DBGALIAS 0x8 Set if Debug alias

AL_CSDSVALID 0x10 Set if DS selector valid

AL_DEVHLP 0x20 Set if Devhlp Alias

AL_PRIV 0x40 Set if privatized alias

AL_VDM 0x80 Set if VMD alias

AL_NOALIAS 0x100 Set if UVIRT mapping in VDMs

3.4.16 .MO - Format Memory Object Records (VMOB)

Display memory object records (VMOBs). Optionally format related alias records
(VMALs), arena records (VMARs) and context records (VMCOs).

If feature 82818 is installed, then under the Kernel Debugger only, lock
information records will be formatted whenever a memory object with locked
pages is displayed. See the .MK command for more information.

Syntax:

��────.MO ─┬───────┬─┬───────┬─┬───────────┬───────────────────────��
└── V ──┘ ├── M ──┘ └── maddr ──┘

│
├───────┬─┬───────┬─┬───────────────────────┬─��
└── B ──┘ ├── C ──┤ ├── hob ──┬─┬─────────┤

├── F ──┤ └── laddr ──┘ └── L n ──┘
├── N ──┤
├── P ──┤
└── S ──┘

Parameters:

B Display in-use (busy) object records in sequential order.

C Display chained memory structures.

Chaining causes related memory structures to be displayed in
groups, the head of which is indicated by an * suffix. The related
structures are:

The associated arena record (VMAR). See the .MA command.

Aliases to the associated arena record (VMALs).

Arena records of all associated alias records.

Shared instance data objects for all related arena records.

Context records for shared objects of all associated arena records
(VMCOs). See the .MC command.

Object records of all associated arena records (VMOBs).

212 OS/2 Debugging

Note: Pseudo-objects have no related memory objects.

F Display free object records.

M Searches for a pseudo-object whose address matches the address
specified for maddr. If no match is found then nothing is displayed.

Notes:: The pseudo-object address specified must be an exact match
for hit.

The pseudo-object address is that of the object itself and not
the VMOB that represents it.

A selector:offset form of address may not be specified.
However a physical address may be specified in order to
bypass virtual address validation done by Kernel Debugger
and Dump Formatter.

N Specifies that only normal object records be displayed. These are
objects whose linear address allocation is represented by an arena
record. Contrast this with Pseudo-Object and System Object. See
also the .MA command for details of arena record display.

P Specifies that pseudo-object records be displayed.

S Specifies that objects to be displayed are those whose memory
management semaphore is busy or wanted. The memory
management semaphore is used internally for serializing access to
memory management structures. It should not be confused with the
memory locking as provided by the DevHlp_Lock, DevHlp_Unlock,
DevHlp_VMLocl and DevHlp_VMUnlock calls.

V Specifies verbose mode of display. The address of the VMOB
structure is displayed but object description and owner interpretation
is suppressed.

maddr Specifies the matching address to be used with the M option.

An address expression may be specified.

laddr Specifies the linear address of a specific object record to be
formatted.

An address expression may be specified.

Ln Specifies the number of object records to display.

hob Specifies the handle of a specific object record to be formatted
according to the criteria specified by the other options.

Results and Notes:

Object records are located in contiguous storage, which is anchored from the
address given by global variable:

_pobvmOne

Output from the .MO command appears in one of four formats:

Normal Object
Pseudo-Object
Free Object Record
System Object

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 213

For a description of the fields formatted by .MO see the .MO Output Field
Descriptions.

For more examples using of the .M family of commands see Volume I, of the
OS/2 Debugging Library ′Exploring Memory Management′ chapter.

3.4.16.1 Normal Object Records

 hob har hobnxt flgs own hmte sown,cnt lt st xf
 000d 000c 0000 0325 ffba 0000 0000 00 00 00 00 lock
 000e 000d 0000 0000 ffaa 0006 0000 00 00 00 00 os2krnl
 000f 000e 0000 0000 ffaa 0006 0000 00 00 00 00 os2krnl
 0010 008f 0000 402c 00ae 0115 0000 00 00 00 00 priv 0002 c:pmshell.exe
 0011 0010 0000 0000 ff37 0000 0000 00 00 00 00 romdata

Figure 62. Normal Object Record Display

hob pob har hobnxt flgs own hmte sown,cnt lt st xf
 0001 %fec80020 0001 fec8 0000 fff1 0000 0000 00 00 00 00
 0002 %fec80030 0002 fec8 0000 ffe3 0000 0000 00 00 00 00
 0003 %fec80040 0003 fec8 0000 ffec 0000 0000 00 01 00 00

Figure 63. Normal Object Record Display - Verbose Form

Notes:

The verbose form is specified using the Voption. This causes the
suppression of owner and hmte interpretation.

For a description of the fields formatted by .MO see the .MO Output Field
Descriptions.

3.4.16.2 Pseudo-Object Records

hob va flgs own hmte sown,cnt lt st xf
0004 %fff13238 8000 ffe1 0000 0000 00 00 00 00 vmah
0005 %fff13190 8000 ffe1 0000 0000 00 00 00 00 vmah
0006 %fff0a891 8000 ffa6 0000 0000 00 00 00 00 mte doscalls.dll
0072 %ffe3c7d4 8000 ffcb 0000 0000 00 00 00 00 ptda 0001 *sysinit
007a %fff0b3fa 8000 ffa6 0000 0000 00 00 00 00 mte mvdm.dll
007b %fff0b26b 8000 ffa6 0000 0000 00 00 00 00 mte fshelper.dll
0091 %fe7349ac 8000 ffa6 0000 0000 00 00 00 00 mte c:pmshapim.dll
0098 %7b9e4060 8000 ffe1 0000 0000 00 00 00 00 vmah
009d %fe722fb8 8000 ffa6 0000 0000 00 00 00 00 mte c:clock02.sys

Figure 64. Pseudo-Object Record Display

Notes:

The 0x8000 flag bit signifies as psuedo-object.

For a description of the fields formatted by .MO see the .MO Output Field
Descriptions.

214 OS/2 Debugging

3.4.16.3 Free Object Records

hob va flgs own hmte sown,cnt lt st xf
02b5 %fec82b70 0000 0000 0000 0000 00 00 00 00 free
02b6 %fec82b80 0000 0000 0000 0000 00 00 00 00 free
02b7 %fec82b90 0000 0000 0000 0000 00 00 00 00 free
02b8 %fec82ba0 0000 0000 0000 0000 00 00 00 00 free
02b9 %fec82bb0 0000 0000 0000 0000 00 00 00 00 free

Figure 65. Free Object Record Display

Notes:

Flag bit 0x001 reset signifies a free record.

The only fields of relevance are va and pob when the V option is
specified.

The va field is used a link field to other free VMOBs.

For a description of the fields formatted by .MO see the .MO Output Field
Descriptions.

3.4.16.4 System Object IDs

fff0 vmllock
fff1 vmob
fff2 vmsgs
fff3 vmbmp16

Figure 66. Example System Object Display

Notes:

System object IDs are not represented by VMOB structures. They are
pre-defined IDs for system components.

The Dump Formatter and Kernel Debugger display only object names
when displaying system objects.

3.4.16.5 .MO Output Field Descriptions
Output from .MO appears tabular for with one of the following headings:

hob va flgs own hmte sown,cnt lt st xf
0004 %fff13238 8000 ffe1 0000 0000 00 00 00 00 vmah
0006 %fff0a891 8000 ffa6 0000 0000 00 00 00 00 mte doscalls.dll

hob pob har hobnxt flgs own hmte sown,cnt lt st xf
 0003 %fec80040 0003 fec8 0000 ffec 0000 0000 00 01 00 00
 0004 %fec80050 %fff13238 8000 ffe1 0000 0000 00 00 00 00

 hob har hobnxt flgs own hmte sown,cnt lt st xf
 0001 0001 fec8 0000 fff1 0000 0000 00 00 00 00 vmob
 0002 0002 fec8 0000 ffe3 0000 0000 00 00 00 00 vmar

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 215

Each of the heading fields has the following meaning:

hob The handle of the object record being formatted. This is the unique
identifier by which the object record is known.

hobnext The handle of next shared-instance data object that maps to the same
linear address range (shares the same arena record but maps to a
different physical address).

har The handle of the arena record that describes the linear address
range allocated to this object.

pob The linear address of the object record.

va The virtual address of the pseudo-object named in the object
description.

flgs Object record flags.

The following flags are defined:

Name Bit mask Description

OB_PSEUDO 0x8000 Pseudo-object

OB_API 0x4000 API located object

OB_LOCKWAIT 0x2000 Waiting for a lock conflict to resolve

OB_LALIAS 0x1000 Object has aliases

OB_SHARED 0x0800 Object ′s contents are shared

OB_UVIRT 0x0400 UVirt object

OB_ZEROINIT 0x0200 Object is zero-initialized

OB_RESIDENT 0x0100 Initial allocation was resident

OB_LOWMEM 0x0040 Object is in low memory

OB_GUARD 0x0080 Guard page attribute

OB_EXEC 0x0020 Executable attr ibute

OB_READ 0x0010 Readable attr ibute

OB_USER 0x0008 User attr ibute

OB_WRITE 0x0004 Writeable attr ibute

OB_HUGE 0x0002 Object is huge

OB_SHRINKABLE 0x0001 Object is Shrinkable (only if also OB_SHARED)

OB_DHSETMEM 0x0001 DevHlp_VMSetMems are allowed the object

Notes: See Pseudo-Objects when OB_PSEUDO is set.

OB_API is set as a result of allocation made by some APIs (for
example, DosExecPgm). It forces page alignment and signals
a likelihood of long-term locking.

OB_HUGE is set when the object is created by DosAllocHuge
API.

When OB_LOCKWAIT is set then the thread has detected a
lock request conflict and wishes to wait for the conflict to
resolve. The conflict occurs because a contiguous storage
lock has been requested but cannot be satisfied because one
or more of the pages are already short-term locked. If the
current request is for a short-term lock then the thread will

216 OS/2 Debugging

wait up to 10 seconds for the conflict to clear. If the time-out
expires then the current short-term lock request ends in error
and the following message appears on the debugger screen:

VMLOCK: Short term lock for > 10 secs: hob=hob

If the current request is for a long-term lock then the thread
will wait indefinitely. In both cases the blockID the thread
waits on is the address of the VMOB flag word (VMOB+0x4).
See .PB command for information on thread slots waiting on
BlockIDs.

own This is the hob of the owner of this object. The owning hob may be in
one of three categories:

1. System Owner Used to indicate system owned objects. The owner
description usually indicates the type of object that is
being displayed. For example, the LDT for process 9
running pulse.exe is owned by system object 0xffb9 and
has a description

ldt 0009 c:pulse.exe .

2. Module Owner (hmte) This is used for objects that are part of a
load module. The .hmte of the load module is used as a
the Owner Id for the object. The object description names
the owning module from the MTE/SMTE structures. See
the .LM command for related information.

3. Process owner (hptda) Process owned objects are those allocated
in the private or shared arenas under a running process
and not part of a loaded module. The hptda of the process
is used as the owner. The owner description names the
process id and main executable module.

hmte This names the hmte or System Object Id of the executable code that
allocated the memory object.

sown Semaphore owner id. This is the thread slot number that owns the
memory management semaphore associated with this object.
Memory management uses the address of the VMOB as the BlockID
to sleep on when the semaphore is held. This semaphore is used to
serialize access to a VMOB structure. See the .PB command for
information on thread slots waiting on BlockIDs.

cnt Count of owners of the VMOB semaphore and wait flag.

The low order bit of cnt is used as a wait indicator. The high order 7
bits are a count of the number of times the owning thread has
requested the VMOB semaphore without releasing it. See sown filed
above for related information.

xf Extra flags.

The following flags are defined:

Name Bit mask Description

VMOB_SLOCK_WAIT 0x01 Waiting on short term locks to clear

VMOB_LLOCK_WAIT 0x02 Waiting on long term locks to clear

VMOB_DISC_SEG 0x04 Object is part of a discardable seg

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 217

Name Bit mask Description

VMOB_HIGHMEM 0x08 Object was allocated via dh_vmalloc using the
VMDHA_USEHIGHMEM flag

Notes:

The lock wait flags indicate that a thread is waiting for locked
pages in the memory object to be unlocked, but not to resolve
a conflicting lock request: that is indicated with the
OB_LOCKWAIT flag.

If a thread blocks waiting for long-term locks to clear then the
address of the long-term lock count (VMOB + 0xd) is used as
the BlockID the thread blocks on. The thread blocks
indefinitely.

If a thread blocks waiting for short-term locks to clear then the
address of the short-term lock count (VMOB + 0xe) is used as
the BlockID the thread blocks on. The thread will block for up
to 10 seconds. If after that time the short-term lock has not
been cleared then an error is returned and under the debug
kernel the following message is sent to the debug console:

VMLOCK: Short term lock for > 10 secs: hob=hob

See the 3.4.21, “.PB - Display Blocked Thread Information” on
page 246 (.PB command) for information on thread slots
waiting on BlockIDs.

lt Count of active long-term lock holders. A non-zero value indicates
one or more pages of the memory object have been long-term locked,
that is prevented from being paged out from physical storage.
Long-term locks are expected to be held for a relatively long period of
time, in the order of seconds. See the .MP command for information
on displaying physical storage status. See also VM Lock Trace
Kernel Debugger facility.

st Count of active short-term lock holders. A non-zero value indicates
one or more pages of the memory object have been short-term
locked, that is prevented from being paged out from physical storage.
Short-term locks are expected to be held for a relatively short period
of time, in the order of milliseconds. See the .MP command for
information on displaying physical storage status. See also 1.4.2,
“Virtual Memory Management Lock Trace” on page 18 Kernel
Debugger facility.

description The object description appears to the right of the tabular display. It is
combines the interpretation of own and hmte fields. The following
forms are possible:

Process owned objects

These appear as:
priv Pid process

where:

Pid Is the owning process id
process Is the main executable running the owning process

218 OS/2 Debugging

MTE Owned objects

These appear as:
shared module

where:

module Is the name of the module that contains the object
(hob) displayed.

PTDA Pseudo-objects

These appear as:
ptda Pid process

where:

Pid Is the process id in which the object is located.
process Is the main executable running the owning process

MTE Pseudo-objects

These appear as:
mte module

where:

module Is the module name that corresponds to the MTE
pointed to by the va

LDT occupying storage

This appears as:
ldt Pid process

where:

Pid Is the id of the process that owns the LDT related
to the object

process Is the main executable running the owning process
Free objects

These appear as:
free

System Owned Objects

These appear as:
owner user

where:

owner Is the system object name corresponding to the
own field.

user Is the system object name corresponding to the
hmte field.

System Object Owner IDs: System objects are a reserved range of hobs used to
attribute ownership of virtual memory objects to system components. System
object IDs have no corresponding VMOB.

The following table lists the system objects IDs are defined. The names shown
are those displayed by the Kernel Debugger and Dump Formatter when
formatting VMOB structures:

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 219

Table 8 (Page 1 of 6). System Object IDs

Name ID Description

l ielist 0xff2d LDR LieLists

demversion 0xff2e DEM fake version entries

vmbmapd 0xff2f VM Arena Bitmap Directory

npipenpn 0xff30 Named pipe NPN segment

npipenp 0xff31 Named pipe NP segment

reqpkttcb 0xff32 DD TCB request packets

reqpkt2 0xff33 DD strat2 request packets

spldevrmp 0xff34 Spool Dev RMP segment

chardevrmp 0xff35 Char Dev RMP segment

syssemrmp 0xff36 System Semaphore RMP segment

romdata 0xff37 ROM data

libpath 0xff38 LDR LibPath

jfnflags 0xff39 JFN flags

jfntable 0xff3a JFN table

ptouvir t 0xff3b PhysToUVirt

tkr3stack 0xff3c Ring 3 stack

tkr2stack 0xff3d Ring 2 stack

tkenv 0xff3e User Environment

tktib 0xff3f Thread Information Block

reqpkt1 0xff40 DD strat1 request packets

allocphys 0xff41 Allocated via DevHlp AllocPhys

khbdon 0xff42 Unusable donated heap page owner

krhrw1m 0xff43 Resident R/W 1Meg mem heap owner

krhro1m 0xff44 Resident R/W 1Meg mem heap owner

mmph 0xff45 dekko mapped memory

pageio 0xff46 pageio per-swap-file save block

fsreclok 0xff47 Record lock record owner

File System Drivers

fsd1 0xff48 FSD 1

fsd2 0xff49 FSD 2

fsd3 0xff4a FSD 3

fsd4 0xff4b FSD 4

fsd5 0xff4c FSD 5

fsd6 0xff4d FSD 6

fsd7 0xff4e FSD 7

fsd8 0xff4f FSD 8 and subsequent

Device Drivers

dd1 0xff50 Device driver 1

dd2 0xff51 Device driver 2

dd3 0xff52 Device driver 3

220 OS/2 Debugging

Table 8 (Page 2 of 6). System Object IDs

Name ID Description

dd4 0xff53 Device driver 4

dd5 0xff54 Device driver 5

dd6 0xff55 Device driver 6

dd7 0xff56 Device driver 7

dd8 0xff57 Device driver 8

dd9 0xff58 Device driver 9

dd10 0xff59 Device driver 10

dd11 0xff5a Device driver 11

dd12 0xff5b Device driver 12

dd13 0xff5c Device driver 13

dd14 0xff5d Device driver 14

dd15 0xff5e Device driver 15

dd16 0xff5f Device driver 16 and subsequent

Miscellaneous Owners

fsclmap 0xff60 Cluster map owner

cdsrmp 0xff61 Current Directory Structure RMP seg

tom 0xff62 Timeout Manager

abios 0xff63 Advanced BIOS

cache 0xff64 Cache

dbgdcb 0xff65 DBG Debug Control Block

dbgkdb 0xff66 DBG Kernel Debug Block

dbgwpcb 0xff67 DBP Watch Point Control Block

demsft 0xff68 DEM SFT array (for FCBs)

demfonto 0xff69 DEM font offsets

demfont 0xff6a DEM font data

devhlp 0xff6b Allocated via devhlp AllocPhys

discard 0xff6c Discardable, zero fill object

doshlp 0xff6d DosHelp segment

dyndtgp 0xff6e DYN trace point parm block

dyndto 0xff6f Dynamic trace point

dyndtot 0xff70 Tmp dynamic trace info

dynmtel 0xff71 DYN MTE dynamic trace link

emalloc 0xff72 EM86 malloc()

emtss 0xff73 EM86 TSS

device 0xff74 Installed device driver

infoseg 0xff75 infoseg (local or global)

initmsg 0xff76 INIT saved message

init 0xff77 Generic init-time only

intdirq 0xff78 INT IRQ info

intstack 0xff79 Interrupt stack

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 221

Table 8 (Page 3 of 6). System Object IDs

Name ID Description

iopll ist 0xff7a List of modules with IOPL

kdbalias 0xff7b Kernel debugger alias

kdbsym 0xff7c Kernel debugger symbol

kmhook 0xff7d KM hook info

ksem 0xff7e KSEM semaphore

lbdd 0xff7f Loadable base device driver

lid 0xff80 ABIOS logical identifier

monitor 0xff81 Monitor segment

mshare 0xff82 Named-shared

mshrmp 0xff83 RMP having mshare records

nmi 0xff84 Non maskable interrupt

npx 0xff85 287/387 save area

orphan 0xff86 Orphaned segment

prof 0xff87 Profile support

ptogdt 0xff88 Allocated via dh_allocateGDTSelector

ptovir t 0xff89 PhysToVirt

puse 0xff8a Page Usage

pusetmp 0xff8b Tmp Page Usage

perfview 0xff8c Perfview

qscache 0xff8d QuerySysInfo cache

ras 0xff8e RAS segment

resource 0xff8f Resource BMP segment

sysserv 0xff90 System service

t imer 0xff91 Timer services segment

traphe 0xff92 TRAP Hard Error

File System Owners

fsbuf 0xff93 File system buffer

cdevtmp 0xff94 Char DEV TMP

fsc 0xff95 FSC segment

dpb 0xff96 DPB

eatmp 0xff97 FAT EA TMP

fatsrch 0xff98 FAT search segment

gnotify 0xff99 FindNotify global segment

pnotify 0xff9a FindNotify private segment

fsh 0xff9b Installable file sys helper

ifs 0xff9c Installable file system

mfsd 0xff9d Mini fi le system

mft 0xff9e Master fi le table

npipebuf 0xff9f Named pipe I/O buffer segment

pipe 0xffa0 Pipe

222 OS/2 Debugging

Table 8 (Page 4 of 6). System Object IDs

Name ID Description

sft 0xffa1 System file table

vpb 0xffa2 Volume parameter block

Loader Owners

ldcache 0xffa3 Loader Instance Data Cache

ldrdld 0xffa4 LDR Dynamic Load record

invalid 0xffa5 Cache being made

ldrmte 0xffa6 mte

ldrpath 0xffa7 LDR MTE path

ldrnres 0xffa8 LDR non-resident names

prot16 0xffa9 Protect 16 list

Boot Loader and Kernel Owners

os2krnl 0xffaa OS2KRNL load image

os2ldr 0xffab OS2LDR load image

ripl 0xffac Remote IPL (remote boot)

Page Manager Owners

pgalias 0xffad Temporary page manager aliases

pgbuf 0xffae PG loader and swapper buffer

pgcrpte 0xffaf PG Compat. region page table

dbgalias 0xffb0 Debugger alias pte

pgdir 0xffb1 PG Page directory

pgkstack 0xffb2 Kernel stack region

pgvp 0xffb3 VP array

pgpf 0xffb4 PF array

pgprt 0xffb5 Page Range Table

pgsyspte 0xffb6 PG System page tables

Selector Manager Owners

gdt 0xffb7 SEL GDT

selheap 0xffb8 Selector-mapped heap block

ldt 0xffb9 SEL LDT

lock 0xffba SEL Lock

selnop 0xffbb NO-OP Locks

seluvirt 0xffbc SEL UVIRT mapping

Semaphore Owners

semmisc 0xffbd SEM Miscellaneous

semmuxq 0xffbe SEM Mux Queue

semopenq 0xffbf SEM Open Queue

semrec 0xffc0 SEM SemRecord

semstr 0xffc1 SEM string

semstruc 0xffc2 SEM Main structure

semtable 0xffc3 SEM Private/Shared table

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 223

Table 8 (Page 5 of 6). System Object IDs

Name ID Description

Swapper Owners

smdfh 0xffc4 SM Disk Frame Heap

smsfn 0xffc5 SM SFN array

smsf 0xffc6 SM Swap Frame

Tasking Owners

tkextlst 0xffc7 TK Exit List record

tkkmreg 0xffc8 TK dispatch (KM) registers

tklibif 0xffc9 TK LibInit Free Notification record

tklibi 0xffca TK LibInit record

ptda 0xffcb TK PTDA

tcb 0xffcc TK TCB

tsd 0xffcd TK TSD

VDD, VDH, VDM Owners

vddblkh 0xffce VDD block header

vddblk 0xffcf VDD memory block

vddcfstr 0xffd0 VDD config.sys string

vddctmp 0xffd1 VDD creation tmp allocation

vddep 0xffd2 VDD Entry Point

vddheaph 0xffd3 VDD heap header

vddheap 0xffd4 Heap objects to load VDDs

vddhook 0xffd5 VDD hook

vddla 0xffd6 VDD Linear Arena header

vddlr 0xffd7 VDD Linear arena Record

vddmod 0xffd8 VDD module record

vddopen 0xffd9 Open VDD record

vddpddep 0xffda VDD PDD Entry Point

vddproc 0xffdb VDD procedure record

vddstr 0xffdc VDD string

vdhfhook 0xffdd VDH fault hook

vdhalloc 0xffde VDH services resident memory

vdhswap 0xffdf VDH services swappable memory

vdmalias 0xffe0 VDM Alias

Virtual Memory Manager Owners

vmah 0xffe1 VM arena header

vmal 0xffe2 VM Alias Record

vmar 0xffe3 VM Arena Record

vmbmap 0xffe4 VM Location Bitmap

vmco 0xffe5 VM Context Record

vmdead 0xffe6 VM Dead Object

vmhsh 0xffe7 VM Location Hash Table

224 OS/2 Debugging

Table 8 (Page 6 of 6). System Object IDs

Name ID Description

vmkrhb 0xffe8 VM *UNKNOWN* busy KRHB

vmkrhf 0xffe9 VM free KRHB

vmkrhl 0xffea VM end KRHB

vmkrhro 0xffeb VM Public Kernel Resident R/O Heap

vmkrhrw 0xffec VM Public Kernel Resident R/W Heap

vmkshd 0xffed VM Swappable Heap Descriptor

vmkshro 0xffee VM Public Kernel Swappable R/O Heap

vmkshrw 0xffef VM Public Kernel Swappable R/W Heap

vmllock 0xfff0 VM long term lock manager

vmob 0xfff1 VM Object Record

vmsgs 0xfff2 VM Screen Group Switch record

vmbmp16 0xfff3 VM Temp buf (BMP16)

shrind 0xfff4 Reserved for shared indicator

give 0xfff5 Giveable segment

get 0xfff6 Gettable segment

giveget 0xfff7 Giveable and gettable segment

preload 0xfff8 Loader ′s preload object

3.4.17 .MP - Format Memory Page Frame Structures (PFs)

Display memory Page Frame Structures (PFs).

Syntax:

��────.MP ──┬───────┬─┬───────┬─┬──────────────────────────┬─────��
└── B ──┘ ├── F ──┤ ├── frame ──┬─┬─────────┬──┘

├── L ──┤ └── laddr ──┘ └── Ln ───┘
└── R ──┘

Parameters:

B Display in-use (busy) Page Frame Structures in sequential order.

Note: In-Use PFs are signified by the PF_FREE flag being reset and
not by the PF_BUSY flag being set.

F Display free Page Frame Structures.

L Follow left (forward) chain pointer. This is only of relevance to Free
and Idle Page Frame Structures since these are linked in a double

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 225

linked chain. Warning: Both the Dump Formatter and the Kernel
Debugger may fail to recognize the chain pointers correctly. In
particular the 2 high order digits of the frame number are truncated.
Use this option advisedly! See the Free Page Frame Structures or Idle
Page Frame Structures for information on locating Idle and Free PF
chains.

R Follow right (backward) chain pointer. This is only of relevance to
Free and Idle Page Frame Structures since these are linked in a
double linked chain. Warning: Both the Dump Formatter and the
Kernel Debugger may fail to recognize the chain pointers correctly.
In particular the 2 high order-digits of the frame number are
truncated. Use this option advisedly! See the Free Page Frame
Structures or Idle Page Frame Structures for information on locating
idle and free PF chains.

laddr Specifies the linear address of a specific Page Frame Structure to be
formatted.

An address expression may be specified.

Ln Specifies the number of Page Frame Structures to display from the
starting criterion.

frame Specifies a physical storage page frame number. This will cause the
Page Frame Structure corresponding to that frame to be displayed
except for UVIRT storage. PFs corresponding to UVIRT storage are
zeroed unless aliased by non-UVIRT storage. In the former case .MP
will display then next non-UVIRT PF. In the latter it will display the
aliasing non-UVIRT PF. See the DP command for related information.

Results and Notes:

Page Frame Structures are allocated in contiguous storage from the address
given by global variable:

_pft

Output from the .MP command appears in one of three formats.

In-use Page Frame Structure.
Idle Page Frame Structure.
Free Page Frame Structure.

For a description of the fields formatted by .MP see the .MP Output Field
Descriptions.

For more examples using of the .M family of commands see Volume I, of the
OS/2 Debugging Library ′Exploring Memory Management′ chapter.

3.4.17.1 Free Page Frame Structures

ffdf509c Free: BLink=0000f Flg=4 FLink=001da Blk=00001 Frame=0000d
ffdf50a8 Free: BLink=001f2 Flg=4 FLink=0003f Blk=00001 Frame=0000e
ffdf50b4 Free: BLink=001f1 Flg=4 FLink=0000d Blk=00001 Frame=0000f
ffdf50c0 Free: BLink=001fe Flg=4 FLink=001f1 Blk=00000 Frame=00010

Figure 67. Free Page Frame Structures

226 OS/2 Debugging

Notes:

• Free Page Frame Structures are chained in a double-linked list. The
head of this list may be located as follows:

 1. Locate list structure whose address is given by _pgFreeList

 2. The first double-word of the list structure points to the
psuedo-page frame structure that heads the free list.

 3. The second double-word contains the pseudo-frame number of the
pseudo-PF. N.B. This marks the end of the linked list only.

 4. The backward pointer to the first true free PF is given by the 5
low-order digits of the second double-word of the pseudo-PF. This
value may be used with the .MP command.

• The Blk field has a residual field an is of no direct relevance to free
Page Frame Structures.

For a description of the fields formatted by .MP see the .MP Output Field
Descriptions.

3.4.17.2 Idle Page Frame Structures

ffdfcdb8 Idle: pVP=ff1e6b9c Blink=01279 Flg=0 Flink=0004c Blk=0004a Frame=0127a
ffdfcdac Idle: pVP=ff1e6ba8 Blink=01261 Flg=0 Flink=0127a Blk=0004b Frame=01279
ffdfcc8c Idle: pVP=ff1e6c08 Blink=0125d Flg=0 Flink=01279 Blk=00066 Frame=01261

Figure 68. Idle Page Frame Structures

Notes:

• Idle Page Frame Structures are chained in a double-linked list. The
head of this list may be located as follows:

 1. Locate list structure whose address is given by _pgIdleList

 2. The first doubleword of the list structure points to the
psuedo-page frame structure that heads the idle list.

 3. The second double-word contains the pseudo-frame number of the
pseudo-PF. N.B. This marks the end of the linked list only.

 4. The backward pointer to the first true idle PF is given by the 5 low
order digits of the second double-word of the pseudo-PF. This
value may be used with the .MP command.

For a description of the fields formatted by .MP see the .MP Output Field
Descriptions.

3.4.17.3 In-use Page Frame Structures

ffdf5000 InUse: pVP=ff1df000 RefCnt=0001 Flg=0 ll=00 sl=00 Blk=00000 Frame=00000
ffdf500c InUse: pVP=ff1df060 RefCnt=0001 Flg=0 ll=00 sl=00 Blk=00000 Frame=00001
ffdf5018 InUse: pVP=ff1df06c RefCnt=0001 Flg=0 ll=00 sl=00 Blk=00000 Frame=00002
ffdf5024 InUse: pVP=ff1df078 RefCnt=0001 Flg=0 ll=00 sl=00 Blk=00000 Frame=00003

Figure 69. In-Use Page Frame Structures

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 227

For a description of the fields formatted by .MP see the .MP Output Field
Descriptions.

3.4.17.4 .MP Output Field Descriptions
Output from .MP appears in one of is of the following forms:

ffdf500c InUse: pVP=ff1df060 RefCnt=0001 Flg=0 ll=00 sl=00 Blk=00000 Frame=00001

ffdfcdac Idle: pVP=ff1e6ba8 Blink=01261 Flg=0 Flink=0127a Blk=0004b Frame=01279

ffdf50b4 Free: BLink=001f1 Flg=4 FLink=0000d Blk=00001 Frame=0000f

Each of the fields has the following meaning:

address The linear address of the PF structure is given to the left of each
display line.

type The type of PF is displayed in the second column. Three types are
possible: Free, Idle and InUse.

p V P = The linear address of the associated Virtual Page Structure. See the
.MV command for information on displaying Virtual Page Structures.

RefCnt The number of PTEs that reference the frame of physical storage
represented by this PF. A reference count greater than 1 indicates
shared memory, some instances of which will be represented by
VMCOs (see the .MC command).

When a PTE is attached to an existing PF then the Refcnt is
incremented.

When a page of memory is freed, the Refcnt is decremented. If it
becomes zero the PF may be eligible for putting on the Idle list.

PFs corresponding to UVIRT storage are zeroed unless aliased by
non-UVIRT storage. In either case no reference accounting is
performed for UVIRT mappings.

Bl ink= The backward or right link to the previous Idle or Free PF.

Fl ink= The forward or left link to the next Idle or Free PF.

F l g = PF flags.

The following flags are defined:

Name Bit mask Description

PF_FAST 0x1 frame is fast memory

PF_BUSY 0x2 frame is busy

PF_FREE 0x4 frame is free

PF_RES 0x8 reserved

Notes: PF _FAST flag is set for some physical storage frames below
640K.

PF_BUSY signifies that access to the PF is being serialized by
the page frame manager. This is normally followed by setting
the VP_BUSY flag in the associated VP, if reset or setting the
VP_WANTED flag and waiting on the the BlockID of the VP

228 OS/2 Debugging

address. Under the debug kernel the thread slot of the VP
semaphore owner is saved in vp_semowner (VP+0x0a) See
.PB command for information on thread slots waiting on
BlockIDs.

l l = Count of number of long-term lock requests active against this page
frame. This is incremented when a request to lock a range of pages
of a memory object is made. It is also, but rarely, set to 1 to isolate
page frames that have caused trap 2 errors from which the system
has recovered. See also .MO command output for flags relating to
memory object locking.

s l = Count of number of short-term lock requests active against this page
frame. This is incremented when a request to lock a range of pages
of a memory object is made. For related information, see .MO
command output for flags relating to memory object locking.

B l k = Specifies the swap disk frame, loader block number or diagnostic flag
depending on the flag settings of the corresponding Virtual Page
Structure pointed to by the p V P = field.

When VP_DF is set and VP_DISCARDABLE is reset then B l k = is the
swap disk frame number that contains a copy of the page frame.

When VP_DISCARDABLE is set and VP_RESIDENT is reset then the
B l k = field is the Loader BlockID. Except for a special case noted
below, this is a page index, starting from 1, into the objects of the
module as an aggregated whole, with the size of each object rounded
up to a page boundary. The special case occurs when the memory
object that owes this page frame has an hmte set to system object id
0xffc0, Discard Owner . When this occurs the following special block
numbers may be used:

0x0fffe System Infoseg
0x0fffd Local Infoseg
0x0fffc invalid LDT pages

When VP_DF and VP_DISCARDABLE are reset the B l k = usually
indicates the last cross-linked swapper disk frame (unless its zero),
however under the debug kernel negative values are used to indicate
errors or instances where swapper frames have been freed because
the corresponding PTE for the frame was found to be dirty. The
following error indicators are possible:

-1 When also Flg=9 then the physical frame caused a Trap 2
error, but the system was able to recover the data. The
frame is isolated from further use by setting l l = 1, refcnt= 1
and PF_FREE flags are reset and pVP=pgVPBasePg

-3 A page-in operation failed with
ERROR_SWAP_IO_PROBLEMS

-4 A page_out operation failed with PGPO_FAILED
-5 A page_out operation failed with ERROR_SWAP_FILE_FULL

Otherwise disk frame reclamation is indicated by B l k = values of: -1,
-2, -7, -9 and 0xfff0.

For related VP information, see the .MV command.

Frame= This is the physical page frame number that this Page Frame
Structure represents.

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 229

3.4.18 .MV - Format Memory Virtual Page Structures (VPs)

Display memory Virtual Page Structures (VPs).

Syntax:

��────.MV ──┬───────┬─┬───────┬─┬──────────────────────────┬─────��
└── B ──┘ ├── F ──┤ ├── vpid ──┬─┬─────────┬──┘

├── L ──┤ └── laddr ──┘ └── Ln ───┘
└── R ──┘

Parameters:

B Display in-use (busy) Virtual Page Structures in sequential order.

Note: In-use VPs are signified by a zero reference count and not by
the VP_BUSY flag. See Re f= field in .MV Output Field
Description.

F Display free Page Frame Structures.

L Follow left (forward) chain pointer. This is only of relevance to free
Virtual Page Structures since these are linked in a double linked
chain.

 Attention

Both the Dump Formatter and the Kernel Debugger may fail to
recognize the chain pointers correctly and under some
circumstances the debug kernel may hang. Use this option
advisedly!

See Free Virtual Page Structures for information on locating Free VP
chains.

R Follow right (backward) chain pointer. This is only of relevance to
Free Virtual Page Structures since these are linked in a double linked
chain.

 Attention

Both the Dump Formatter and the Kernel Debugger may fail to
recognize the chain pointers correctly and under some
circumstances the debug kernel may hang. (.MVFL will cause this
effect). Use this option advisedly!

See Free Virtual Page Structures for information on locating Free VP
chains.

laddr Specifies the linear address of a specific Virtual Page Structure to be
formatted.

An address expression may be specified.

Ln Specifies the number of Virtual Page Structures to display from the
starting criterion.

230 OS/2 Debugging

vpid Specifies a VP Id. This is an index in to the table of Virtual Page
Structures, which are located in contiguous virtual storage.

Results and Notes:

Virtual Page Structures are allocated in contiguous storage from the address
given by global variable:

_pgpVPBase

Output from the .MV command appears in one of two formats.

In-use Virtual Page Structure
Free Virtual Page Structure

For a description of the fields formatted by .MV see the .MV Output Field
Descriptions.

For more examples using of the .M family of commands see Volume I, of the
OS/2 Debugging Library ′Exploring Memory Management′ chapter.

3.4.18.1 Free Virtual Page Structures

VPI=0d3e pVP=ff1e8ee8 free FLink=00000000 BLink=fff13280
VPI=0d3f pVP=ff1e8ef4 free FLink=ff1e9fec BLink=ff1e8cf0
VPI=0d40 pVP=ff1e8f00 free FLink=ff1e9fec BLink=ff1e8cf0
VPI=0d41 pVP=ff1e8f0c free FLink=00001000 BLink=02450030
VPI=0d42 pVP=ff1e8f18 free FLink=00000000 BLink=ff1e8f00

Figure 70. Free Virtual Page Structures

Notes:

• Free Page Frame Structures are grouped in bundles that are chained
in a circular double link list. Each bundle comprises contiguous free
VPs in the VP array. The chain pointers are only used by the head
and tail of each bundle as follows:

− For bundles of greater than one VP:

 1. Blink of the head points to the tail
 2. Flink of the head points to the head of the next bundle
 3. Blink of the tail points to the head of the previous bundle
 4. Flink of the tail is set to zero

− For single VP bundles:

 1. Blink points to the head of the previous bundle
 2. Flink points to the head of the next bundle

The free VP chain is headed by a pseudo-VP whose Blink points to
the head of the first true free bundle and whose Flink points to the
last VP in the VP array. The pseudo-VP is located at global symbol:

_pgVPHead

• Unless a free VP is the head or tail of a bundle the Flink and Blink will
retain values from its previous use. In particular it may be possible to
glean information about a previous allocation at the Flink field
overlays the Flg and Block fields and the Blink field overlays the
HobPg and Hob fields of an in-use VP. In the example above VPI d41

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 231

was probably allocated to page 30 of hob 245. Using the following .MO
command might reveal who the owner was and who allocated this
storage.

.MOC 245

For a description of the fields formatted by .MV see the .MV Output Field
Descriptions.

For more examples using of the .M family of commands see Volume I, of the
OS/2 Debugging Library ′Exploring Memory Management′ chapter.

3.4.18.2 In-use Virtual Page Structures

VPI=0000 pVP=ff1df000 Res Frame=0000 Flg=410 HobPg=0000 Hob=ff77 Ref=001 Own=000
VPI=0001 pVP=ff1df00c Res Block=0000 Flg=c00 HobPg=0000 Hob=ff6c Ref=042 Own=000
VPI=0002 pVP=ff1df018 Res Frame=0bc5 Flg=410 HobPg=0000 Hob=0001 Ref=001 Own=000
VPI=0003 pVP=ff1df024 Res Frame=0bc4 Flg=410 HobPg=027a Hob=0022 Ref=001 Own=000

Figure 71. In-Use Virtual Page Structures

For a description of the fields formatted by .MV see the .MV Output Field
Descriptions.

3.4.18.3 .MV Output Field Descriptions
Output from .MV appears in one of is of the following forms:

VPI=0000 pVP=ff1df000 Res Frame=0000 Flg=410 HobPg=0000 Hob=ff77 Ref=001 Own=000
VPI=0001 pVP=ff1df00c Res Block=0000 Flg=c00 HobPg=0000 Hob=ff6c Ref=042 Own=000

VPI=0d40 pVP=ff1e8f00 free FLink=ff1e9fec BLink=ff1e8cf0

Each of the fields has the following meaning:

V P I =
The VP index into the array of VPs.

p V P =
The linear address of the VP.

status
The status of the VP interpreted from the Flg field. The following values may
appear:

SOW Swap on Write flag (VP_SOW set)
Res Page is resident (VP_RESIDENT set)
Dsc Page is discardable (VP_DISCARDABLE set)
Swp Page is swappable (VP_DISCARDABLE reset)
free VP is free (vp_refcount=0)

Block= nnnn
The cross-linked loader block number or swapper disk frame. This implies
the virtual page is not attached to a PF. If it is:

discardable Then it is linked to a loader BlockID,

swappable Then it is linked to a swapper disk frame.

232 OS/2 Debugging

When the page is swappable (VP_DISCARDABLE reset) and does not have a
disk frame (VP_DF reset) then the following special Block values may be
used:

0 Allocate PF on demand
1 Allocate on demand zero-fill page
2 page is in a broken disk frame

Frame= nnn
The virtual page is linked to PF nnnn . Refer to the .MP command for
displaying information about the related page frame.

Fl ink=
Forward link of a free VP. This is only of relevance to the VP at the head of a
bundle of free VPs. See Free Virtual Page Structures for information on how
free VPs are linked.

Bl ink=
Backward link of a free VP. This is only of relevance to the VP at the head
and tail of a bundle of free VPs. See Free Virtual Page Structures for
information on how free VPs are linked.

F l g =
VP flags.

The following flags are defined:

Name Bit mask Description

VP_BUSY 0x001 page semaphore taken

VP_WANTED 0x002 page semaphore requested

VP_CACHE 0x004 search page cache for pf

VP_PFIDLE 0x008 cross linked to idle pf

VP_PF 0x010 cross linked to pf

VP_DF 0x020 has swap file disk frame

VP_DIRTY 0x040 contents written to - from pte

VP_SHDIRTY 0x080 shadow dirty bit (for VDMs)

VP_SOW 0x100 change to swappable on write

VP_PRIVATIZED 0x200 vp privatized

VP_RESIDENT 0x400 cannot be moved - value from pte

VP_DISCARDABLE 0x800 1 = discardable, 0 = swappable

Notes: PF _BUSY signifies that access to the VP is being serialized by the
page frame manager.

VP_WANTED signifies that a thread is waiting to mark the VP busy.
The thread will wait on a BlockID of the VP address. Under the debug
kernel the thread slot of the VP semaphore owner is saved in
vp_semowner (VP+0x0a) see O w n = field of the .MV command. See
.PB command for information on thread slots waiting on BlockIDs.

HobPg=
The relative page number of the memory object that this VP is assigned to.
See H o b = field below.

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 233

H o b =
The hob of the memory object to which this page is assigned.

Note: Use

.MOC hob

to obtain the virtual address and owner information relating to this VP.
See the .MO command for more information.

R e f =
The number of memory objects sharing this page of data. A reference count
greater than 1 indicates shared memory, some instances of which will be
represented by VMCOs, (see the .MC command) and others by aliases (see
the .ML command).

The reference count is incremented and decremented according to usage.
When the count becomes zero the VP is no longer in use and any committed
physical storage or swapper storage my become eligible for freeing.

UVIRT storage is not represented by VPs thus reference accounting is not
performed.

O w n =
The thread slot number of the current owner of the VP semaphore. This field
is only used in the debug kernel and will only have significance if the
VP_BUSY or WP_WANTED flags are set. See .PB command for information
on thread slots waiting on BlockIDs.

234 OS/2 Debugging

3.4.19 .N - Display Dump Information Summary

Display information saved by from the operating system when the stand-alone
dump procedure was initiated.

Syntax:

��────.N ───��

Parameters:

None

Results and Notes:

.N command displays information saved when the kernel routine RASRST is
entered at sand-alone dump initiation.

.N displays the following information:

gdtr_lim: 1FFF
gdtr_base: 7C3E5000
idtr_lim: 03FF
idtr_base: FFE00150
ldtr_reg: 0028
lo_data_sel: 0400
hi_data_sel: 0400
trace_buf_addr: 0B490400
sys_anchor_sel: 0070
arena_base: FEB1F020
max_threads: 0101
phys_page_dir: 001D6000
vm_object_ptr: FEC80020
StartInit_Data: 00000140
dcm_ote_start: FFF0A92F
CurProcPid: 000D
TaskData: 0B5C0400
FirstPacket: 158A
LastPacket: 04C0
SysSemDataTable: 53A60400
GDT_Buffers: 00A80138
PapTCBPtrs: 0B6B0400
callerSS: 00E8
callerESP: 00000FCC
savePage: 00241467

Each of the items displayed has the following significance:

gdtr _lim:
The current GDTR register limit value.

gdtr _base
The current GDTR register base address.

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 235

ldtr _lim
The current LDTR selector limit.

ldtr _base
The current LDTR selector base address.

ldtr _reg
The current LDT selector.

lo_data_sel
Selector for DOSGROUP segment.

hi_data_sel
Selector for DOSHIGHDATA segment.

trace _buf _addr
Offset:selector address of ras_stda _addr ; the selector for the system
trace buffer.

sys _anchor _sel
Selector for the SAS.

sarena _base
Value of _parvmOne , the pointer to the first VMAR.

max_threads
Maximum Thread Slot Number.

phys _page_dir
Value of cr3 register (that is, the physical address of the page
directory table).

vm_object _ptr
Value of _pobvmOne , the pointer to the first VMOB

StartInit _data
Value of _StartINITData .

dcm _ote_start
Address of DOSCALLS.DLL OTE.

CurrProcPid
Current process ID.

TaskData
Offset:selector address of scheduler global data.

FirstPacket
First word of the first device driver strategy 2 request packet in packet
pool.

LastPacket
First word of the last device driver strategy 2 request packet in packet
pool.

SysSemDataTable
Offset:selector address of SysSemDataTable .

GDT_Buffers
GDT selector for buffer segment. The low-order word of this field
should be ignored.

PapTCBPtrs
Offset:selector address of papTCBPtrs . The word value at this label is
an offset from the DOSGROUP selector (400) to the thread slot table.

236 OS/2 Debugging

callerSS
The SS selector on entry to RASRST , the stand-alone system dump
entry point within the kernel.

Note: If this dump was taken in interrupt mode the SS selector will
be E8. Further more, if that last device driver to use the
interrupt stack is KDB$ then it is possible the the dump
process was initiated with the Ctrl-Alt-Numlock-Numlock
sequence. If the dump was taken in kernel mode then the SS
selector will probably be 30 and the dump will have been
initiated because of a trap or call to DosForceSystemDump
API.

callerESS
The ES register on entry tp RASRST , the stand-alone system dump
entry point within the kernel.

savePage
Page directory entry 0. This data is overwritten by the dump process.

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 237

3.4.20 .P - Display Process Status

Display process and thread status information from the Per Task Data Area
(PTDA), Thread Control Block (TCB) and Thread Swappable Data (TSD).

Syntax:

��────.P ───────────────────────┬──────────┬────────────────────��
├── # ──┤
├── * ──┤
└── slot ──┘

Parameters:

slot
Display process status for thread slot slot .

The following shorthand may be used for the slot number:

* The current (last) thread the dispatcher gave control to. This
value is taken from the word a global label:

_TaskNumber

The debugger default thread slot. This defaults to the current slot
unless overridden by the .S command.

If no slot number is given then all thread slots are displayed and grouped by
process.

Results and Notes:

The .P command locates a thread′s TCB from either the thread slot table, the
linear address of which is given by the following global variable:

_papTCBSlots

or by traversing the process tree using TCBpTCBNext (TCB +0x14), TCBpPTDA
(TCB +0x08) and ptda_pTCBHead (PTDA + 0x20) fields. Output from the .P
command appears in tabular form as follows:

� �
Slot Pid Ppid Csid Ord Sta Pri pTSD pPTDA pTCB Disp SG Name
 0001 0001 0000 0000 0001 blk 0100 ffe3a000 ffe3c7d4 ffe3c61c 1eb4 00 *ager
 0002 0001 0000 0000 0002 blk 0200 7b7ca000 ffe3c7d4 7b9c8020 1f3c 00 *tsd
 0003 0001 0000 0000 0003 blk 0200 7b7cc000 ffe3c7d4 7b9c81d8 1f50 00 *ctxh
 0004 0001 0000 0000 0004 blk 081f 7b7ce000 ffe3c7d4 7b9c8390 1f48 00 *kdb
 0005 0001 0000 0000 0005 blk 0800 7b7d0000 ffe3c7d4 7b9c8548 1f20 00 *lazyw
 0006 0001 0000 0000 0006 blk 0800 7b7d2000 ffe3c7d4 7b9c8700 1f3c 00 *asyncr
*0008 0002 0001 0002 0001 blk 0500 7b7d6000 7b9e4020 7b9c8a70 1eb8 01 pmshell
 000a# 0002 0001 0002 0002 blk 0800 7b7da000 7b9e4020 7b9c8de0 1ed4 01 pmshell

� �
Figure 72. Command .P Output

Each of the fields has the following meaning:

238 OS/2 Debugging

slot
The unique (hexadecimal) index in to the thread slot table of all threads.

This value may be flagged with:

* To the left to signify the current (or last) dispatched thread.
To the right to signify the Kernel Debugger or Dump Formatter default
thread slot.

Slot may be found in the TCBNumber (TCB + 0x2) field of the TCB

Pid
The process id this thread slot is assigned to.

Ppid
The parent process id that created this thread. A value of zero signifies a
detached process.

Csid
The command subtree id.

This is normally the same value as the Pid . When the parent process dies
any orphaned children are adopted by their grandparent by making Ppid
equal to the grandparent′s Pid . Each orphan inherits the Csid of its dying
parent. This mechanism ensures that orphaned PTDAs are not retained for
returning termination information to their parent (via DosWaitChild).

Csid is taken from the Csid (PTDA +0x4be (H/R: +0x4b6)) field of the PTDA .

Ord
The thread ordinal for this thread slot. This is the unique thread id assigned
to the thread within the process to which it belongs.

Ord is taken from the TCBOrdinal (TCB+ 0x0) field of the TCB

Sta
The thread′s ascending scheduler state taken from the TCBState (TCB
+0x161) field.

Except when a state transition is progress this is the same as the current
state of the thread (see the Qst field of the .PQ command.)

The following states are possible:

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 239

Table 9. Process States

Abbreviation State TCBState
value

Description

--- STATE_VOID 0 Uninitialized or Dead thread

rdy STATE_READY 1 Thread ready to run

blk STATE_BLOCKED 2 Blocked on a BlockID

sus STATE_SUSPENDED 3 *** Not in Use ***

crt STATE_CRITSEC 4 Blocked by another CritSec thread (after
attempting to run)

run STATE_RUNNING 5 Thread currently running

bst STATE_READYBOOST 6 Ready, but apply an IO boost after swapping
in a TSD

tsd STATE_TSD 7 Thread waiting for the TSD daemon to page
in the TSD.

dly STATE_DELAYED 8 Delayed TKWakeup (Almost Ready)

frz STATE_FROZEN 9 Frozen Thread via DosSuspendThread,
DosCreateThread, DosExecPgm or
DosSystemService

gsk STATE_GETSTACK 10 TSD daemon is waiting for the page
manager to page-in a TSD

bad STATE_BADSTACK 11 TSD failed to page-in

Notes: The scheduler manages threads on queues by priority and state.
See the .PQ command for displaying scheduler queues.

The scheduler uses a finite state machine to manipulate thread
queues. TCBQState and TCBState are the state transition drivers.
They hold a thread′s current and desired state. Except during a state
transition current and desired state will be identical.

STATE_RUNNING is set when the next potential runner has been
selected. The running thread′s context is then switched and various
dispatcher flags checked before finally giving control to user code. It
is therefore possible for the running state to be set and for the user
code not to run.

STATE_READYBOOST is a modified ready state and never becomes
the current state, instead a priority boost is applied and the state
becomes STATE_READY .

STATE_CRTSEC state applies to non-critical section threads only. It is
only set when a critical section thread within the same process has
given up the processor, while still in critical section, and another
thread in the same process is selected to run. If this thread is thread
1 of the process and there are pending signals to process, the
thread ′s signal handler will be dispatched. When there are no more
pending signals or this thread is not thread 1, then STATE_CRITSEC
will be set.

STATE_FROZEN is normally only seen when an application uses the
DosSuspendThread API or creates a thread (or process) that is
initially suspended. DosSystemService is used by the session
manage to freeze all threads of a process in one system call.

240 OS/2 Debugging

Many states are transient accordingly the persistent appearance of a
particular state might indicate a problem of the following nature:

rdy Many ready threads might indicate contention
for processor time. Tends to indicate the
existence of a higher priority CPU-bound thread.

run Under the Dump Formatter this would indicate a
trapped or processor-bound thread. Under the
Kernel Debugger a processor bound thread.

blk All threads blocked could indicate no-work or a
deadlock. Under Dump Formatter this would
imply a manually invoked dump using
Ctrl-Alt-Numlock-Numlock or use of the
DosForceSystemDump API.

--- The void state is rarely seen. Under Dump
Formatter this probably indicates an incorrect
version of the Dump Formatter for the system
dumped.

crt Another thread in the same process is in critical
section and is either blocking without exiting
critical section or is processor bound.

dly Another thread is processor bound.

frz A deadlock, loop or no-work for the freezing
thread.

sus Is not used, so probably indicates a mismatch
between the Dump Formatter and dump.

tsd Physical storage overcommitted. Swapper very
large. System may be thrashing.

bst Physical storage overcommitted. Swapper very
large. Very busy processor bound system
System may be thrashing.

gsk Physical storage overcommitted. Swapper very
large. Very busy processor bound system
System may be thrashing.

bad Excessive swapper. System may die. Physical
storage overcommitted. Very busy processor
bound system.

Pri Thread priority (word length field) in TCBPriority (TCB +0x168).

This is the current priority calculated by the scheduler based upon priority
class (TCBPriClass (TCB +0x164)), priority class level (TCBPrilevel (TCB
+0x165)) and priority boosts (TCBPriClassMod (TCB +0x166)).

The following priority classes are defined:

Class Value Description

CLASS_IDLE_TIME 0x01 Idle-Time class

CLASS_REGULAR 0x02 Regular class

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 241

Class Value Description

CLASS_TIME_CRITICAL 0x03 Time-Critical class

CLASS_SERVER 0x04 Client/Server Server class

The following priority boosts (class modifiers) are defined:

Boost Value Description

CLASSMOD_KEYBOARD 0x04 Keyboard boost

CLASSMOD_STARVED 0x08 Starvation boost

CLASSMOD_DEVICE 0x10 Device I/O Done Boost

CLASSMOD_FOREGROUND 0x20 Foreground boost

CLASSMOD_WINDOW 0x40 Window Boost

CLASSMOD_VDM_INTERRUPT 0x80 VDM simulated interrupt boost

Note: CLASSMOD_KEYBOARD has no effect on CLASS_SERVER

The priority level is a value between 0x0 and 0x1f.

Priority class and modifier values are logically ORed to form an index
into the priority class translation table, which is located at global
symbol:

_schPriClassTbl

The resulting value is logically ORed with the priority level. The final
value is subject to the minimum thread priority (TCBPriorityMin (TCB
+016a)).

Priority boosts do not affect the priority of idle and time-critical
threads.

Priority level has little or no effect on the priority of boosted regular
and server class threads. threads

pTSD
Linear address of the TSD control block associated with this thread this
thread taken from the TCBpTSD (TCB +0x0c).

Note:

The TSD contains the ring 0 stack for the associated thread. For the
current thread this is addressable from selector 30 however the base
address of selector 30 is entirely different from TCBpTSD. This is
because the two addresses are aliased using two PTEs to pin the
same physical frame. This device allows the TSD for be accessed
out-of-context by the system, at the same time protecting system code
from erroneous stack references.

pPTDA
Linear address of the PTDA control block representing the process to which
this thread belongs. The address is taken from TCBpPTDA (TCB +0x08).

pTCB
Linear address of the TCB control block which represents the thread.

Note:

242 OS/2 Debugging

The output from .P is ordered by process and child process. TCBs are
initially located from the thread table then the chain pointer
TCBpTCBNext (TCB +0x14) is used to locate the remaining threads of
a process.

Under the Dump Formatter .P will occasionally miss a thread because
of the non-sequential manner in which the thread table slots are
re-used. To ensure all active threads are displayed use .PU, .PB or
.PQ commands.

Disp
The displacement into the TSD for the current thread that the dispatcher will
use for its ESP after having switched back to this thread′s context.

This value is calculated from TSDKernelESP ; it therefore requires the TSD to
be present. If the TSD is not present then a blank value is given. The TSD
may be forced present under the Kernel Debugger by use of the .I
command.

SG
Screen Group ID currently assigned to this process.

The Screen Groups ID is taken from the console locus structure (Cons _Loc
+0x2) embedded in the PTDA ((PTDA +0x526 (H/R: +0x51e))).

Name
The name of the primary executable running in this process.

Except for process 1 and DOS Virtual Machines the name is obtained from
the hmte stored in ptda_module (PTDA +0x5a6 (H/R: +0x59e)). If the SMTE
is paged in then the name is taken from the file name pointed to by
smte _path otherwise it it taken from mte_module and prefixed with an ! point.
See the .LM command for information on formatting loader control blocks.

Process 1 comprises internal threads, that is threads which run in the kernel
and are not separately loaded modules. ptda _module is zero for this process
so the Dump Formatter and Kernel Debugger translate the Tids for Pid 1 as
follows:

Tid Name Description

1 *ager Ager thread used for compressing the Swap File.

2 *tsd Scheduler ′s Daemon Thread used to page in TSDs

3 *ctxh Default Global Context Hook dispatching thread.

4 *kdb Kernel Debugger Daemon thread used to process
page-in requests from the .ID command

5 *lazyw File system cache lazy writer thread.

6 *asyncr File system asynchronous read ahead thread.

7 *sysinit System initialization thread.

8-n Other transient internal threads associated with
system initialization have a blank name.

Virtual DOS Machines run the DEM component of OS/2 to provide DOS
emulation. DOS programs are loaded by the DEM and not known to the
(OS/2) loader. Thus ptda_module is zero and the Kernel Debugger and
Dump Formatter use the name *vdm to indicate a VDM. The PSP of the first
loaded DOS program in a process may be located from CurrentPDB (PTDA

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 243

+0x2ea), which contains its segment address. The preceding paragraph
contains the DOS arena record, the last 8 bytes of which contains the DOS
program name currently executing.

244 OS/2 Debugging

3.4.20.1 Scheduler Finite State Machine

Figure 73. Scheduler Finite State Machine

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 245

3.4.21 .PB - Display Blocked Thread Information

Display information about all blocked threads.

Syntax:

��────.PB ──────────────────────┬──────────┬────────────────────��
├── # ──┤
├── * ──┤
└── slot ──┘

Parameters:

slot
Display user information for thread slot slot .

The following shorthand may be used for the slot number:

* The current (last) thread the dispatcher gave control to. This value
is taken from the word a global label:

_TaskNumber

The debugger default thread slot. This defaults to the current slot
unless overridden by the .S command.

If no slot number is given then all thread slots are displayed in slot number
order.

Results and Notes:

The .PB command locates each thread′s TCB from the thread slot table, the
linear address of which is given by global variable:

_papTCBSlots

or by traversing the process tree using TCBpTCBNext (TCB +0x14), TCBpPTDA
(TCB +0x08) and ptda_pTCBHead (PTDA + 0x20) fields.

Output is displayed only if a thread is blocked on a BlockID. It appears in
tabular form as follows:

Slot Sta BlockID Name Type Addr Symbol
 0001 blk fff11050 *ager
 0002 blk fff74f59 *tsd _tkTSDDaemon
 0003 blk fff43c78 *ctxh _kmCTXHDaemon
 0004 blk fff7545a *kdb _tkKDBDaemon
 0005 blk fff02dfc *lazyw _semLW
 0006 blk fff111d4 *asyncr _AsyncReadSem
 0008 blk fffe000e pmshell RamSem 074b:06d6
 000a blk ffca0002 pmshell
 000b blk fffd000b pmshell MuxWait
 000c blk fffd000c pmshell MuxWait
 000d blk 04000df0 pmshell DosSem 0400:0df0 CtrlNumLkQ
 0007 blk fe750a10 pmshell Sem32 8001 0019 vhevLazyWrite
 0010 blk fe728dcc pmshell Sem32 8001 0001 SrvReq
 0011 blk fffe0006 pmshell RamSem d0c7:0020

246 OS/2 Debugging

 0012 blk fffd0012 pmshell MuxWait
*0013 blk fffe0007 pmshell RamSem d09f:0bc0 memory_pool + 127
 0014# blk fffe0008 pmshell RamSem d09f:0bc8 memory_pool + 12f

Each of the fields has the following meaning:

slot
The unique (hexadecimal) index in to the thread slot table of all threads.

This value may be flagged with:

* to the left to signify the last dispatched thread.
to the right to signify the Kernel Debugger or Dump Formatter default
thread slot.

Slot may be found in the TCBNumber (TCB + 0x2) field of the TCB

Sta
The ascending or desired state of the thread. This should always appear as
blk for the .PB command, however Dump Formatter does not check the
thread state so formats all threads. Those whose state is not blk should be
ignored. See 3.4.20.1, “Scheduler Finite State Machine” on page 245 and the
.PQ command for more information on thread states.

BlockID
The token used by TKSleep and TKWapeUp to sleep and wake a thread on
an event.

The BlockId is taken from TCBSleepID (TCB + 0x18c).

The BlockID is a conventional value. A number of conventions are used by
various system components. Usually the BlockID is constructed so to be
unique across all conventions. Frequently it will refer to the address of an
associated resource, such as a system control block, or a field within a
control block. See the discussion of the Type field below for more
information on interpreting BlockIDs .

Name
The name of the primary executable running in this process.

See name field description of the .P command for further information.

Type
Interpretation of the use of the BlockID in conjunction with double word
TCB_SemInfo (TCB + 0x14c) and double word TCB_SemDebugAddr (TCB +
0x150).

The following Types are recognized by the Dump Formatter and Kernel
Debugger:

RamSem
The thread is waiting on a RamSem or FastSafeRamSem .

The high word of the BlockID is 0xfffe ; the low word is the RamSemID
taken from the RamSem structure.

The Addr field is taken from TCB_SemInfo . This is a selector:offset
address of the RAMSEM . The RamSem may be imbedded within a
FastSafeRamSem or a PMFastSafeRamSem.

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 247

The Symbol displayed is either that of the TCB_SemDebugAddr or if -1,
the RamSem address. See the LN command for information on
displaying symbols.

MuxWait
The thread is waiting on multiple events.

The high word of the BlockID is 0xfffd , the low word is the slot of the
waiting thread.

TCB_SemInfo and TCB_SemDebugAddr are not used with a MuxWait
BlockID .

To locate the semaphores that comprise a given MuxWait proceed as
follows:

1 Locate the MuxWait table at symbol MuxTable . Display this using DB
for convenience. This table comprises 9 byte entries whose format is
given by the MuxTableEntry structure.

2 Scan the MuxTable for entries that have this thread′s slot number
(+0x2 into each entry).

3 Of those entries, select those with non-zero MuxType (+4 into each
entry).

4 Choose one of the following:

For type 1 (SysSem)
The last double word is the linear address of a system
semaphore structure. Use the technique described below under
SysSem for interpreting the SysSem .

For type 2 (RamSem)
The last double word of the entry contains the RamSem handle,
the high word is the hob of the memory object containing the
RamSem . The low word is the offset into the object where the
RamSem is located. Use the technique described above under
RamSem for interpreting the RamSem

For type 3 (Physical RamSem)
The last double word is the physical address of the RamSem.

For type 4 (32-bit event sem)
The last double word is the physical address of a 32-bit event
semaphore. See Sem32 below.

See Volume I of The OS/2 Debugging Library, example debugging log for
an explicit example of using this technique.

Addr and Symbol fields are blank.

ReqPkt
The thread is waiting for an I/O request packed to complete.

The BlockID is the Selector:Offset address of the request packet. The
Selector is the DOSGROUP kernel selector and should be selector 400.

The address should lie between addresses at global symbols:
FirstPacket and LastPacket .

See the Physical Device Driver Reference manual for information on
device driver request packets.

Addr and Symbol fields are blank.

248 OS/2 Debugging

SysSem
The thread is waiting on a system semaphore.

The BlockID is the Selector:Offset address of the SysSemTblStruc
structure. The Selector is the DOSGROUP kernel selector and should be
selector 400.

The address should lie within the System Semaphore Data Table, located
at symbol SysSemDataTable for length 256*6 bytes.

Offset +0 of each table entry contains the owner′s thread number.

The name associated with the semaphore may be located as follows:

1 Locate the SysSem RMP segment by displaying doubleword at
symbol SysSemRMPHdl . The high word is the selector for the
semaphore RMP.

2 Display the System Semaphore RMP using DB . The first 0x14 bytes is
the RMP header. The remainder comprises variable length records.
The first word of each record is its length and therefore the relative
offset to the beginning of the following record. Offset 2 of each record
is the semaphore data table selector offset.

3 Scan the RMP looking for an offset that matches the low word of the
BlockID . When found the remaining bytes of the RMP record is the
semaphore name (with the top two bytes overlaid by the semaphore
offset).

See Volume I of The OS/2 Debugging Library, example debugging log for
an explicit example of using this technique.

The Addr and Symbol fields are blank.

DosSem
The thread is waiting on an internal RamSem .

The BlockID is the selector:offset of the DosSem . The Selector is the
DOSGROUP kernel selector and should be selector 400. The offset does
not lie in the System Semaphore Data Table of the I/O Request Packet
Table.

Addr is the BlockID formatted as selector:offset .

The Symbol displayed is either that of the TCB_SemDebugAddr or if -1,
the DosSem address. See the LN command for information on displaying
symbols.

Sem32
The thread is waiting on a 32-bit semaphore.

The BlockID is the address of the 32-bit Semaphore structure.

TCB_SemInfo contains the semaphore handle. This is of the form:

8001nnnn Shared 32-bit semaphore. nnnn is the (doubleword) index into
the shared semaphore table located at symbol _pShSemTbl .
Each entry is an address of the corresponding 32-bit
semaphore structure. (That is, the Sem32 BlockID).

0001nnnn Private 32-bit semaphore. nnnn is the (doubleword) index into
the private semaphore table located at pPrSemTbl (PTDA
+0x4cc (H/R: +0x4c4)). Each entry is an address of the

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 249

corresponding 32-bit semaphore structure. (That is, the
Sem32 BlockID).

Addr field is the semaphore handle formatted as two words.

The Symbol displayed is either that of the TCB_SemDebugAddr or if -1,
the Sem32 address. See the LN command for information on displaying
symbols.

Use the .D SEM32 command with the BlockID to format the 32-bit
semaphore.

Buffer
The thread is waiting for a file system buffer.

The BlockId is the selector:offset address of the buffer. The high word is
the buffer selector and should be a8.

The Addr and Symbol fields are blank.

SFT
The thread is waiting for a SFT entry.

The BlockId is the selector:offset address of the SFT. The high word is
the buffer selector and should be one that is listed in the SFT table
pointed to by c0:0 .

The Addr and Symbol fields are blank.

ChildWait
The thread is waiting in DosWaitChild for a child process to terminate.

The high word of the BlockID is the ptda _Pid offset from selector 30
(0xffca).

The low word of the BlockID is the Pid to which this thread belongs.

blank type
The thread is waiting on a BlockId that the Kernel Debugger and Dump
Formatter have not been able to identify.

Addr field is blank.

The Symbol displayed is either that of the TCB_SemDebugAddr or if -1,
the Sem32 address. See the LN command for information on displaying
symbols.

Notes::

The BlockID interpretation is not exact. A device driver, for example,
could call DevHlp _ProcBlock using a value for BlockID that conflicts
with another convention.

Under the Debug kernel only, TCB_SemDebugAddr is used to record
the creator′s address of kernel, system and RAM semaphores. If it is
not used it is set to 0xffffffff.

ChildWait semaphores might be missed by the Dump Formatter and
Kernel Debugger. Look out for BlockIDs of the form 0xffca???? .

Some Sem32 BlockIDs are missed by the Dump Formatter. Check
TCB_SemInfo for a 32-bit semaphore handle and BlockIDs of the form
0xfe??????

250 OS/2 Debugging

If BlockID is a linear address owned by ksem then the semaphore is a
Kernel Semaphore . However, not every KSEM is owned ksem owned
memory. Under the ALLSTRICT kernel, a KSEM may be readily
identified from the first 4 bytes, which have the signature ″KSEM″ Use
.D KSEM command against the BlockID .

In general a BlockID will be chosen to be meaningful to the programs
using it. Often it is an address of a resource that needs to be
serialized. Where no other information is given one should try:

.M BlockID To try to establish an owner of the
resource represented by the BlockID

LN BlockID To try to establish a meaningful symbol
associated with the BlockID

Unwind User ′s Stack To try to establish the API or call the
lead to the thread waiting on the BlockID
(see the .K command)

Addr
The address of the semaphore associated with this BlockID

See Type field discussion above for more precise information.

Symbol
Either the symbolic address of the creator or of the associated semaphore.

See Type field discussion above for more precise information.

3.4.22 .PQ - Display Scheduler Queue Information

Display scheduler thread queue information for all (active) threads.

Syntax:

��────.PQ ──────────────────────┬──────────┬────────────────────��
├── # ──┤
├── * ──┤
└── slot ──┘

Parameters:

slot
Display queue status for thread slot slot .

The following shorthand may be used for the slot number:

* The current (last) thread the dispatcher gave control to. This value
is taken from the word a global label:

_TaskNumber

The debugger default thread slot. This defaults to the current slot
unless overridden by the .S command.

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 251

If no slot number is given then all thread slots are displayed in slot number
order.

Results and Notes:

The .PQ command locates each thread′s TCB from the thread slot table, the
linear address of which is given by global variable:

_papTCBSlots

or by traversing the process tree using TCBpTCBNext (TCB +0x14), TCBpPTDA
(TCB +0x08) and ptda_pTCBHead (PTDA + 0x20) fields.

Output from the .PQ command appears in tabular form as follows:

 Slot QSt Pri pTCB PriNextQ PriPrevQ PriHigh PriLow PriNext PriPrev
 0001 blk 0100 ffe3c61c
 0002 blk 0200 7b9c8020
 0003 blk 0200 7b9c81d8
 0004 blk 081f 7b9c8390
 0005 blk 0800 7b9c8548
 0006 blk 0800 7b9c8700 7b9cb3b0 7b9c9830
 0008 blk 0500 7b9c8a70
 000a blk 0800 7b9c8de0
*000b blk 0800 7b9c8f98 7b9ca960 7b9ca960
 000c# blk 0800 7b9c9150 7b9cab18 7b9cab18

Each of the fields has the following meaning:

slot
The unique (hexadecimal) index in to the thread slot table of all threads.

This value may be flagged with:

* To the left to signify the current (or last) dispatched thread.
To the right to signify the Kernel Debugger default thread slot.

Slot may be found in the TCBNumber (TCB + 0x2) field of the TCB .

QSt
The thread′s descending or current scheduler state taken from the
TCBQState (TCB +0x160) field.

Except when a state transition is progress this is the same as the desired
state of the thread (see the Sta field of the .P command.)

The following states are possible:

Table 10 (Page 1 of 2). Thread States and Description

Abbreviation Qstate TCBQState
Value

Description

--- STATE_VOID 0 Uninitialized or Dead thread

rdy STATE_READY 1 Thread ready to run

blk STATE_BLOCKED 2 Blocked on a BlockID

sus STATE_SUSPENDED 3 Suspended by DosSuspendThread

252 OS/2 Debugging

Table 10 (Page 2 of 2). Thread States and Description

Abbreviation Qstate TCBQState
Value

Description

crt STATE_CRITSEC 4 Blocked by another CritSec thread (after
attempting to run)

run STATE_RUNNING 5 Thread currently running

tsd STATE_TSD 7 Thread waiting for the TSD daemon to page
in the TSD.

bst STATE_READYBOOST 6 Current state never set to this value - see
note below.

dly STATE_DELAYED 8 Delayed TKWakeup (Almost Ready)

frz STATE_FROZEN 9 Frozen Thread via DosCreateThread,
DosExecPgm or DosSystemService

gsk STATE_GETSTACK 10 TSD daemon is waiting for the page
manager to page in a TSD

bad STATE_BADSTACK 11 TSD failed to page in

Notes: STATE _READYBOOST is a modified ready state and never becomes
the current state, instead a priority boost is applied and the state
becomes STATE_READY .

See the Sta field description of the .P command for related
information on thread states.

Pri Thread priority in TCBPriority (TCB +0x168)

This is the current priority calculated by the scheduler based upon priority
class (TCBPriClass (TCB +0x164)), priority class level (TCBPrilevel (TCB
+0x165)) and priority boosts (TCBPriClassMod (TCB +0x166)). See Pri field
description of the .P command for further information.

pTCB
Linear address of the TCB control block that represents the thread.

PriNextQ
The TCB address of the thread at the head of the next priority queue.

PriNextQ is taken from the TCBpTCBPriNextQ (TCB + 0x170) double-word
field.

If there are no other linked priority queues then TCBpTCBPriNextQ and
TCBpTCBPriPrevQ point to this thread and PriNextQ and PriPrevQ are shown
blank.

All TCBs not heading a priority queue have TCBpTCBPriNextQ and
TCBpTCBPriPrevQ pointing to themselves.

PriNext and PriPrev is only of relevance to blocked and delayed threads.

PriPrevQ
The TCB address of the thread at the head of the previous priority queue.

PriPrevQ is taken from the TCBpTCBPriPrevQ (TCB + 0x174) double-word
field.

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 253

If there are no other linked priority queues then TCBpTCBPriNextQ and
TCBpTCBPriPrevQ point to this thread and PriNextQ and PriPrevQ are shown
blank.

All TCBs not heading a priority queue have TCBpTCBPriNextQ and
TCBpTCBPriPrevQ pointing to themselves.

PriNext and PriPrev is only of relevance to blocked and delayed threads.

PriHigh
The TCB address of the next higher priority thread within this priority queue.

PriHigh is taken from the TCBpTCBPriHigher (TCB + 0x178) double-word
field.

If there are no higher priority threads on this priority queue then
TCBpTCBPriHigher points to this thread and PriHigh is shown blank.

PriLow
The TCB address of the next lower priority thread within this priority queue.

PriLow is taken from the TCBpTCBPriLower (TCB + 0x17c) double-word
field.

If there are no lower priority threads on this priority queue then
TCBpTCBPriLower points to this thread and PriLow is shown blank.

PriNext
The TCB address of the next thread of the same priority within this priority
queue.

PriNext is taken from the TCBpTCBPriNext (TCB + 0x180) double-word field.

If there are no other threads of the same priority on this priority queue then
TCBpTCBPriNext and TCBpTCBPriPrev point to this thread and PriNext and
PriPrev are shown blank.

PriPrev
The TCB address of the previous thread of the same priority within this
priority queue.

Priprev is taken from the TCBpTCBPriPrev (TCB + 0x184) double-word field.

If there are no other threads of the same priority on this priority queue then
TCBpTCBPriNext and TCBpTCBPriPrev point to this thread and PriNext and
PriPrev are shown blank.

3.4.22.1 Scheduler Priority Queues
Threads are linked in structures call Priority Queues or PriQ s.

Priority queues are a double-linked list of thread priority groups. Each group is a
double-linked list of threads of the same priority.

Six chain pointers are used for the links of a PriQ :

TCBpTCBPriHigher (TCB + 0x178)

TCBpTCBPriLower (TCB + 0x17c)

TCBpTCBPriNext (TCB + 0x180)

TCBpTCBPriPrev (TCB + 0x184)

By default these chain pointers are set to point to their own TCB.

254 OS/2 Debugging

TCBpTCBPriHigher and TCBpTCBPriLower link the heads of each priority group.

TCBpTCBNext and TCBpTCBPrev link the TCBs within each priority group.

A number of PriQs are defined. Each is anchored from a global symbol pointer:

_ptcbPriQTSD
Anchor for all threads in tsd state.

_ptcbPriQRunner
Anchor for all threads in rdy state. At most this contains one TCB.

_ptcbPriQReady
Anchor for all threads in rdy state.

_ptcbPriQGetStack
Anchor for all threads in gsk state.

_ptcbPriQBadStack
Anchor for all threads in bad state.

ptda _pTCBPriQCritSec
Anchor per-process for all threads within a process in crt state.

Notes: For the current process ptda_pTCBPriQCritSec (PTDA +0x2e4) is a
also a global symbol. Out of current context it can be located relative
to the process′ PTDA address.

The TCB address of the thread that has entered critical section is
saved in ptda_pTCBCritSec (PTDA +0x2e0).

Sleeping threads are queued on priority queues but in a manner to favor
wake-up processing. The BlockID is hashed to form an index into a table of PriQ
anchors. The table is located at global symbol:

_aptcbSleep

Each anchor points to a chain of PriQs of threads sleeping on the same BlockID.
The head TCB of each PriQ within a hashed chain is doubly linked from:

TCBpTCBPriNextQ (TCB + 0x170)

TCBpTCBPriPrevQ (TCB + 0x174)

Threads that happen to sleep on the same BlockID as a multi-wake-up BlockID
are guaranteed not to be put in the same chain as the multi-wake-up threads.

When multi-wake-up threads wake their entire sleeping PriQ is moved to a chain
of PriQs for threads in dly state. The delayed thread PriQ is anchored from
global symbol:

_ptcbPriQDelayed

Since ptcbPriQDelayed anchors a chain of PriQs , the head of each PriQ is
doubly-linked using TCBpTCBPriQNextQ and TCBpTCBPriQPrevQ .

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 255

3.4.23 .PU - Display Thread User Space Information

Display thread user space summary information for all (active) threads.

Syntax:

��────.PU ──────────────────────┬──────────┬────────────────────��
├── # ──┤
├── * ──┤
└── slot ──┘

Parameters:

slot
Display user information for thread slot slot .

The following shorthand may be used for the slot number:

* The current (last) thread the dispatcher gave control to. This
value is taken from the word a global label:

_TaskNumber

The debugger default thread slot. This defaults to the current slot
unless overridden by the .S command.

If no slot number is given then all thread slots are displayed in slot number
order.

Results and Notes:

The .PU command locates each thread′s TCB from the thread slot table, the
linear address of which is given by global variable:

_papTCBSlots

or by traversing the process tree using TCBpTCBNext (TCB +0x14), TCBpPTDA
(TCB +0x08) and ptda_pTCBHead (PTDA + 0x20) fields.

Output from the .PU command appears in tabular form as follows:

Slot Pid Ord pPTDA Name pstkframe CS:EIP SS:ESP cbargs
 0001 0001 0001 ffe3c7d4 *ager ffe3bf54 1e30:00001794 0030:0000a402 0000
 0002 0001 0002 ffe3c7d4 *tsd
 0003 0001 0003 ffe3c7d4 *ctxh
 0004 0001 0004 ffe3c7d4 *kdb
 0005 0001 0005 ffe3c7d4 *lazyw
 0006 0001 0006 ffe3c7d4 *asyncr
 0008 0002 0001 7b9e4020 pmshell 7b7d7f4c d02f:0000272d 001f:0003f8b8 0008
*000a 0002 0002 7b9e4020 pmshell 7b7dbf44 d087:00003413 bfff:000007a6 0010
 000b# 0002 0003 7b9e4020 pmshell 7b7ddf48 d087:0000351a bfff:00000fc0 000c

Each of the fields has the following meaning:

256 OS/2 Debugging

slot
The unique (hexadecimal) index in to the thread slot table of all threads.

This value may be flagged with:

* To the left to signify the current (or last) dispatched thread.
To the right to signify the Kernel Debugger or Dump Formatter default
thread slot.

Slot may be found in the TCBNumber (TCB + 0x2) field of the TCB .

Pid
The process id this thread slot is assigned to.

Ord
The thread ordinal for this thread slot. This is the unique thread id assigned
to the thread within the process to which it belongs.

Ord is taken from the TCBOrdinal (TCB+ 0x0) field of the current TCB.

pPTDA
Linear address of the PTDA control block representing the process to which
this thread belongs. The address is taken from TCBpPTDA (TCB +0x08).

Name
The name of the primary executable running in this process.

See name field description of the .P command for further information.

pstkframe
The address of the ring 0 stack frame that saved the user (ring 2 or ring 3)
registers at the last transition to ring 0. For internal threads that have never
run in ring 2 or ring 3 or for the currently running ring 3 thread this field will
appear blank.

The address for the user stack frame is taken from TCB_pFrameBase (TCB
+ 0x3c). See .R command for further information on displaying registers
saved in the user stack frame.

CS:EIP
The user (ring 2 or ring 3) CS:EIP saved in the ring 0 user stack frame the
last time the thread made a transition to ring 0. This field will appear blank
if the thread is an internal ring 0 thread, currently running in ring 3 or the
TSD for this thread is paged out. See the .I command for information on
paging in a TSD.

SS:ESP
The user (ring 2 or ring 3) SS:ESP saved in the ring 0 user stack frame the
last time the thread made a transition to ring 0. This field will appear blank
if the thread is an internal ring 0 thread, currently running in ring 3 or the
TSD for this thread is paged out. See the .I command for information on
paging in a TSD.

cbargs
The user (ring 2 or ring 3) cbargs saved in the ring 0 user stack frame the
last time the thread made a transition to ring 0. This field will appear blank
if the thread is an internal ring 0 thread, currently running in ring 3 or the
TSD for this thread is paged out. See the .I command for information on
paging in a TSD.

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 257

3.4.24 .R - Display User ′s Registers

Display the user registers for a given thread slot. Set default addresses for the
E, D, K and U commands.

Syntax:

��────.R ───────────────────────┬──────────┬────────────────────��
├── # ──┤
├── * ──┤
└── slot ──┘

Parameters:

slot
Display user registers for thread slot slot . This option is valid only under the
Kernel Debugger.

The following shorthand may be used for the slot number:

* The current (last) thread the dispatcher gave control to. This
value is taken from the word a global label:

_TaskNumber

The debugger default thread slot. This defaults to the current slot
unless current slot unless overridden by the .S command.

If no slot number is given then the debugger′s default slot number is
assumed.

Results and Notes:

Registers are displayed and register mnemonics are assigned the values
displayed for use in address expressions and operands of other Kernel
Debugger and Dump Formatter commands.

The register information is obtained as follows:

Under the Kernel Debugger, if the displayed slot is the current system slot
and the system is not in kernel mode (that is, Indos ¬ =1) then the hardware
register values save by the debugger are displayed.

Otherwise the registers are extracted from the from the ring 0 stack frame
base pointed to by TCB_pFrameBase (TCB + 0x3c) for the thread slot in
question.

The ring 0 stack frame base is created when the threads makes a transition
from ring 2 or 3 to ring 0. This happens for a variety of reasons, such as
issuing a call gate, trapping, pre-emption, interrupt, etc.. The format of the
stack frame base depends on the reason for the ring 0 transition.
TCB_pcriFrameType (TCB + 0x38) points to the CRI, which contains a table
of RIPs. Each RIP entry is associated with a specific hardware register. The
RIP contains the offset and length of the associated register saved in the
stack frame base. See the Client Register Information and Stack Frames for
details of the CRI and RIP formats.

258 OS/2 Debugging

Note:

If the thread has never run out of kernel mode, as is the case with
some internal threads, then the CRI is never updated. The .R
command is not able to format the user registers. For these threads
the R command should be used, but only when the thread in question
is the current system thread. Because the R command is an alias to
the .R under the Dump Formatter, there is no way the display the
current registers for an internal thread under the Dump Formatter.
The only recourse is to display the TSD for the thread and attempt to
unravel the stack manually.

If an invalid thread slot number is given the Kernel Debugger issues the
following message: prompted with the command prompt.

Invalid task number: nnnn

The format of the .R command output depends on whether the RT command has
been used to toggle register display to full or short form and also whether the Y
386ENV command has been used to toggle register interpretation into 286 or 386
mode. Examples of the various forms follow:

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 259

� �
##rt
##.r 2c
eax=f110099f ebx=00000001 ecx=0133fe4c edx=00000007 esi=0133ffec edi=00000000
eip=00000626 esp=0133fe20 ebp=0133fe88 iopl=2 -- -- -- nv up ei ng nz na pe nc
cs=d02f ss=099f ds=0053 es=0053 fs=150b gs=0000 cr2=1581928c cr3=001d0000
gdtr=7c3e5000 1fff idtr=ffe00df0 03ff tr=0010 ldtr=0028 cr0=pg et ts em mp --
dr0=00000000 --e1- dr1=00000000 --e1- dr2=00000000 --e1- dr3=00000000 --e1-
tr6=00000 v=0 d=00 u=00 w=00 c=w tr7=00000 ht=0 rep=0 dr6=-- -- -- dr7=-- --
002c|d02f:00000626 66ead77a021a5b00 jmp 005b:1a027ad7

##rt
##.r
eax=00000000 ebx=00000014 ecx=0000abd7 edx=0000abd7 esi=00080bff edi=00080007
eip=0000272d esp=0000a668 ebp=0008a670 iopl=2 -- -- -- nv up ei ng nz na pe nc
cs=d02f ss=0047 ds=abd7 es=d137 fs=150b gs=0000 cr2=1581928c cr3=001d0000
doscall1:CONFORM16:postDOSSEMWAIT:
d02f:0000272d c9 leave

##y 386env
##.r 2c
ax=099f bx=0001 cx=fe4c dx=0007 sp=fe20 bp=fe88 si=ffec di=0000
ip=0626 cs=d02f ds=0053 es=0053 ss=099f -- nv up ei ng nz na pe nc
002c|d02f:0626 66ead77a021a5b00 jmp 005b:1a027ad7
##

##rt
##.r 2c
ax=099f bx=0001 cx=fe4c dx=0007 sp=fe20 bp=fe88 si=ffec di=0000
ip=0626 cs=d02f ds=0053 es=0053 ss=099f -- nv up ei ng nz na pe nc
gdtr=3e5000 1fff idtr=e00df0 03ff tr=0010 ldtr=0028 iopl=2 msw=ts em mp
002c|d02f:0626 66ead77a021a5b00 jmp 005b:1a027ad7
##� �

Following the formatted register display, one line of disassembled code is
displayed at the default disassembly address. See the U command for details on
disassembling code.

Each of the fields has the following meaning:

General Registers
These comprise the following registers:

ax, bc, cx, dx, sp, bp, si, di

eax, ebx, ecx, edx, esp, ebp, esi, edi

Each is displayed with its value in hexadecimal.

Segment Registers
These comprise the following registers:

cs, ds, es, fs, gs, ss

Each is displayed with its selector value in hexadecimal.

260 OS/2 Debugging

Instruction Pointers
These comprise the following registers:

ip and eip

Each is displayed with its value in hexadecimal.

Flag registers
These comprise the following registers:

flags and eflags

These have their bit setting interpreted as follows:

Bit Value Flag Description

17 1 VM Virtual 8086 Mode (EFLAGS only)

16 0 RF Resume Flag - Disable Debug Exceptions (EFLAGS
only)

14 1 NT Nested Task

11 1 OV Overflow

11 1 NV ¬ Overflow

10 1 DN Direction Down

10 0 UP Direction Up

9 1 EI Enable Interrupts

9 0 EI Disable Interrupts

7 1 NG Negative Sign

7 0 PL Plus Sign

6 1 ZR Zero Result

6 0 NZ Non-zero Result

4 1 AC Auxil iary Carry

4 0 NA ¬ Auxil iary Carry

2 1 PE Parity Even

2 0 PO Parity Odd

0 1 CY Carry

0 0 NC ¬ Carry

Bits 12 and 13 are the I/O Privilege Level bits. These are formatted as
i op l= level .

Flags 14, 16 and 17 when reset are indicated by --.

Memory Management Registers

gd t r= xxxxxxxx yyyy
Global Descriptor Table Register base address (xxxxxxxx) and limit
(yyyy)

i d t r= xxxxxxxx yyyy
Interrupt Descriptor Table Register base address (xxxxxxxx) and limit
(yyyy)

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 261

l d t r= xxxx
Local Descriptor Table Register GDT selector (xxxx).

t r = xxxx
Task Register GDT selector (xxxx).

Control Registers

c r 0 =
System control flags and Machine Status Word.

These have their bit setting interpreted as follows:

Bit Value Flag Description

31 1 PG Paging Enabled

4 1 ET Extension Type Flag - x87 support

3 1 TS Task Switch Flag

2 1 EM Emulation exception

1 1 MP Math Present

0 1 PM Protect Mode Enabled

Reset flag bit are shown with --.

c r 2 =
Page fault linear address.

c r 3 =
Page Directory Base Register (PDBR).

Debug Registers

dr0 to dr3
These are formatted as follows:

dr0=llllllll glxnb
dr1=llllllll glxnb
dr2=llllllll glxnb
dr3=llllllll glxnb

where llllllll is the breakpoint linear address and glxnb are dr7 and dr6
related flags.

The flags have the following interpretations:

g G Indicates a globally enabled breakpoint.

l L Indicates a locally enabled breakpoint.

x E Indicates an execute breakpoint

R Indicates a read breakpoint

W Indicates a write breakpoint

n The number of bytes tested (1, 2 or 4)

b B Indicates a that a debug exception was generated that matched this
breakpoint; this is the Bn value of dr6 .

- Indicates a flag bit reset.

262 OS/2 Debugging

d r 6 =
The control bits 13-15 are interpreted as follows:

Bit Value Flag Description

15 1 BT Breakpoint triggered on task switch

14 1 BS Breakpoint triggered on single step.

13 1 BD Breakpoint on debug register access/update.

Flag bits not set are indicated by --

d r 7 =
The control bits 8 and 9 are interpreted as follows:

Bit Value Flag Description

9 1 GE Exact data matching enabled for global breakpoints

8 1 LE Exact data matching matching for local breakpoints

Flag bits not set are indicated by --

Test Registers

t r 6 = lllll v = v d = dd u = uu w = ww c = c

lllll is the linear page address.

v is tr6 flag bit 11, the valid bit.

dd are tr6 flag bits 10 and 9.

uu are tr6 flag bits 8 and 7.

w are tr6 flag bits 6 and 5.

c is set as follows:

r tr6 flag bit 0 set. TLB read command.

w tr6 flag bit 1 reset. TLB write command.

t r 7 = ppppp h t= h rep= r

ppppp is the tr7 physical frame address.

h is flag bit 4 value. This is the hit or PL bit.

r are tr7 flag bits 3 and 2. These are the report or REP bits.

The following publications should be consulted for definitive information on
processor registers:

Intel486(TM) Microprocessor Family Programmer′s Reference Manual

Pentium(TM) Processor User′s Manual

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 263

3.4.25 .REBOOT - Restart the System

Restart the system.

Syntax:

��────.REBOOT ──��

Parameters:

None

Results and Notes:

DosHlp service DosHlpReboot is called to restart the system.

 Attention

No system shutdown processing, whatsoever, is performed.

This command is not available to the Dump Formatter.

264 OS/2 Debugging

3.4.26 .S - Set or Display Default Thread Slot

Set or display the Kernel Debugger′s and Dump Formatter′s default slot threads
slot.

This command affects the default operation of the following:

D command
E command
U command
.I command
.K command
.P command
.PB command
.PQ command
.PU command
.R command

Syntax:

��────.S ─────┬───────┬─────────┬──────────┬────────────────────��
└── S ──┘ ├── * ──┤

└── slot ──┘

Parameters:

slot
Set the default threads slot to slot .

The following shorthand may be used for the slot number:

* The current (last) thread the dispatcher gave control to. This value
is taken from the word a global label:

_TaskNumber

If no slot number is given .S displays the current thread slot number in
message:

Current task number: nnnn

where nnnn is the thread slot number.

S Set current ESP, EBP, SS, CS and EIP registers to those of the Dispatcher.

This option sets these registers as if the thread context had just been
switched by the OS/2 Dispatcher. The R command will show the thread in
kernel mode, about to be run.

No actual updating of register values takes place. Only default values are
effected.

The new defaults are derived as follows:

ESP taken from TSDKernelESP (TSD + Disp value of .P command output.)

EBP taken from TSDUserSSPad (TSDKernelESP - 2)

SS selector 30 (TASKAREA segment).

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 265

CS Selector 170 (DOSHIGH32CODE segment).

EIP label pgSwitchRet .

This option is not available to the Dump Formatter.

It is not generally of relevance to non-kernel mode code.

Results and Notes:

The .S command sets certain default values such that the view of the user′s
space in the new default slot is as if the thread context had switched. Linear
and LDT selector based addresses will be accessed correctly by the Dump
Formatter and Kernel Debugger. However, certain system data that are updated
by a context switch are not changed and continue to display in the system′s
current thread context. These items include:

Task Register (TR)

GDT descriptor table entries for selectors 28, 30, 38 and 150b

Current TSS ring 0, and ring 2 stack selectors and pointers

Global and System copy of the Current Local Information Segments

The Thread Local Memory Area and Local Information Segment mapped by
LDT descriptor dfff

Note: Descriptor dfff maps a global shared memory object, but it′s data is
copied from the incoming PTDA and TCB when a context switch
occurs. This achieves the effect of thread local memory.

266 OS/2 Debugging

3.4.27 .T - Dump the System Trace Buffer

Dumps the system trace buffer.

Syntax:

��────.T ─────┬───────────┬─┬───────────────────────────┬───────��
├── count ──┘ └── MAJ=mm ────┬────────────┤
│ └── MIN=nn ──┘
│
└──── S ────── filespec ──────────────────────────��

Parameters:

count
The number of trace entries to print, starting with the most recent. If not
specified then the entire trace buffer will be dumped.

M A J = mm
Specifies that only trace events with major code mm should be displayed.

See System Trace Facility - Major Code Assignments for a information on the
deployment of trace major and minor codes in OS/2.

 Attention

The Kernel Debugger may fail to process the M A J = parameter correctly.
Under some circumstances the debug kernel may hang. Use this option
advisedly!

M I N = nn
Specifies that only trace events with minor code nn should be displayed.

This option required the specification of a major code using the M A J =
parameter.

See System Trace Facility - Major Code Assignments for a information on the
deployment of trace major and minor codes in OS/2.

 Attention

The Kernel Debugger may fail to process the M A J = parameter correctly.
Under some circumstances the debug kernel may hang. Use this option
advisedly!

S Specifies that the trace buffer should be saved to a file named in filespec .

This option is only available to the Dump Formatter.

The saved trace file may be subsequently formatted using the OS/2
TRACFMT command.

filespec
The file specification for the saved trace buffer.

The filespec may be fully qualified. The path defaults to the current
directory.

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 267

Results and Notes:

The trace is activated using the OS/2 TRACE command.

If the trace is not active then the following message is generated:

Trace not on

The trace buffer is allocated in a single segment (STDA) whose selector may be
located from global symbol ras_stda _addr . The STDA is a circular buffer whose
entries are recorded in reverse order. The header gives the offsets to the first,
last and current entires. The format of the trace buffer is described under
System Trace Data Area.

The major codes being traced are recorded in a bit string located at label
ras_mec_table . Each active major code has its corresponding bit set.

The minor codes being traced are recorded in a bit string whose selector is
located at label ras_min _table . The minor code table contains 32 byte entries,
each corresponding to a major code. Each bit of each entry corresponds to a
minor code within the major. If the bit is set, then the minor code is traced.

When tracing by Pid is active then the ptda_rasflag (PTDA +0x39a) is set to 0xff .

The status of system tracing is recorded in status byte at label ras_systr _flags .
The following flags are defined:

Name Bit mask Description

RF_TRCAVAIL 0x80 System Trace Available

RF_TRCPAUSED 0x40 Trace paused

RF_TRCPID 0x20 Trace by PID

RF_TRCERRCOUNT 0x10 Tracing until error count

RF_TRCSUSPEND 0x08 Suspend due to error count

RF_TRCMINORCD 0x04 Tracing by Minor Code

The .T command output appears as follows, (see note at the end of this section
for information on recent changes to the format of the trace output):

 MAJ=04 MIN=0089 PID=0006 CONTEXT=KERNEL:PROTECT
 MAJ=06 MIN=008c PID=0000 CONTEXT=KERNEL:PROTECT

00 00 ..
 MAJ=06 MIN=000c PID=0000 CONTEXT=KERNEL:PROTECT TS=1336

08 00 ..
 MAJ=04 MIN=0009 PID=0006 CONTEXT=KERNEL:PROTECT
 MAJ=04 MIN=0089 PID=0006 CONTEXT=KERNEL:PROTECT

Each of the fields is defined as follows:

M A J =
The traced event major code.

M I N =
The traced event minor code.

268 OS/2 Debugging

P I D =
The current Pid when the event occurred. See .P command for information
on displaying active Pids.

CONTEXT=system:processor
The system and processor context under which the event was traced.

system context may be:

KERNEL If the trace record was created internally by a kernel routine.

API If the trace record was created externally by the use of the
DosDynamicTrace or DosSysTrace APIs.

See Dynamic Trace Customizer for information on creating
dynamic trace records (via DosDynamicTrace).

See DosSysTrace (Static Trace Event Recording) for information
on creating static trace records.

processor context may be:

PROTECT If the trace record was created when the system was running in
protect mode.

REAL If the trace record was created when the system was running in
real mode.

T S = hhss
The system time stamp where hh is 100th seconds and ss is seconds.

The time stamp is taken from the Global Information Segment (GISEG+0xa).
It is only recorded in the trace record if the time has changed since the
previous timed stamped record was recorded.

Note: TRACEFMT treats this value as a word length fixed number of two
decimal places.

trace data
Additional trace data.

A trace event may be accompanied with additional trace data, in which case
it is dumped in hexadecimal and ASCII format on the following line.

Related information on the system trace facility may be found in:

System Trace Reference Manual, of The OS/2 Debugging Library.

The OS/2 Command Reference, TRACE command.

The OS/2 Command Reference, TRACEFMT command.

The OS/2 Command Reference, TRACEBUF CONFIG.SYS statement.

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 269

3.4.27.1 New Trace Format
From OS/2 2.11 fix pack 91 and OS/2 3.0 fix pack 8, the system trace has been
enhanced to include more useful timestamp information. The Kernel Debugger
and Dump Formatter were updated in FixPaks 16 (OS/2 3.0) and 105 (OS/2 2.11)
to take account of the new format.

 Attention

The use of the .T command after the new trace format was implemented, but
before the Kernel Debugger and Dump Formatter were updated, caused the
Kernel Debugger and Dump Formatter to trap.

The following is an example of the new format:

#
Trace On at 0000,0000,0000,0000,0000,0000,0000
Trace Off at 0000,0000,0000,0000,0000,0000,0000
 MAJ=03 MIN=0009 PID=0000 CONTEXT=KERNEL:PROTECT TS=3611,382e

00 00 00 00 bd 55 f5 ff 60 01 00 00 02 00 01 00=Uu.`.......
 MAJ=03 MIN=000f PID=0000 CONTEXT=KERNEL:PROTECT TS=3611,382e

00 00 cc cc f1 27 00 00 00 10 00 00 06 02 01 00 ..LLq′
c8 3c f2 ab H<r+

 MAJ=03 MIN=0008 PID=0017 CONTEXT=KERNEL:PROTECT TS=3611,252d
00 00 00 00 93 86 e5 1b 5b 00 00 00 02 22 01 00e.[....″ . .

 MAJ=03 MIN=0008 PID=0017 CONTEXT=KERNEL:PROTECT TS=3611,222d
00 00 00 00 93 86 e5 1b 5b 00 00 00 02 22 01 00e.[....″ . .

 MAJ=03 MIN=0008 PID=0017 CONTEXT=KERNEL:PROTECT TS=3611,222d
00 00 00 00 93 86 e5 1b 5b 00 00 00 02 22 01 00e.[....″ . .

The formatted trace is headed by a pair of timestamps that give the time tracing
was initiated and terminated. These are of the form:

YYYY,xxMM,xxDD,xxHH,xxmm,xxss,xxhh

Where:

YYYY is years,

MM is Months

DD is Days,

HH is hours,

mm is minutes,

ss is seconds.

hh is 1/100th seconds,

xx ignore.

The timestamp of each trace record is now shown as a pair of word values of the
form:

TS=MMHH,hhss

Where

MM is minutes,

HH hours,

270 OS/2 Debugging

hh 1/100s seconds and

ss seconds.

Note:

The byte reversal occurs because the time values are originally byte
values which are displayed as words.

Chapter 3. Kernel Debugger and Dump Formatter Command Reference 271

272 OS/2 Debugging

Glossary

Application Anchor Block (AAB) . A PM Application Anchor Block is allocated in the
Thread Local Memory Area (TLMA) when a PM application thread creates a message
queue. The AAB contains a pointer to the MQ which allows PM to find the MQ in any
context. This is particularly useful to the debugger since it also allows the MQ of any PM
thread in the system since the TLMA is saved in a thread′s TCB.

BlockIDs . BlockIDs are conventional tokens used to represent the reason for a thread
that blocks. This occurs as the result of the kernel entering TKSleep (either directly or
via ProcBlock). The address of the BlockID is passed to TKSleep and stored in
TCBSleepID. A thread wakes when the kernel calls TKWakeup (or ProcRun) with a
corresponding BlockID. All, zero or the highest priority thread blocked on the BlockID will
be woken depending on parameter flags. This mechanism is used by most functions and
APIs that cause thread execution to be suspended, either for an event or serialisation.

Examples are:

DosSleep

DosSemWait

DosWaitChild

DosRead

DevHlp_ProcBlock

Refer to 3.4.21, “.PB - Display Blocked Thread Information” on page 246 for more
detailed information.

BIOS Parameter Block . A BIOS Parameter Block is used for low level Disk I/O calls to
the BIOS.

For further information see:

The .D BPB Command in the Kernel Debugger and Dump Formatter Command
Reference.

The BPB Structure in the System Reference.

Breakpoint . A breakpoint is a location in a program where execution is suspended and
control is given to a debugging tool.

The INTEL architecture supports two implementations of breakpoints for debugging
purposes:

The software generated breakpoint using the INT 3 instruction;

The hardware generated breakpoint using the Debugging Registers.

The use of software breakpoints require code modification, whereas the use of debugging
registers does not. However, the number of predefined software breakpoints is
potentially unlimited whereas there are only 4 breakpoints specifiable using Debugging
Registers.

A further distinction between the two types is that software breakpoints only intercept the
execution of a particular instruction path, whereas Debugging Registers may be used, in
addition, to intercept data fetches and stores from a particular location in virtual memory.

The Kernel Debugger supports both implementations of breakpoints through the use of
the:

The BR command, which uses Debugging Registers.

The BP command, which uses INT 3 instructions.

The Kernel Debugger limits the predefinition of BP breakpoints to 10, however the
programmer may code as many additional INT 3 instructions into thier program as
desired.

 Copyright IBM Corp. 1996 273

The Kernel Debugger refers to breakpoints explicitly set by the BP and BR commands as
sticky (implying a certain permanence about them). The G command may have one or
more temporary breakpoints established when one or more stop addresses are specified.
These are referred to as go breakpoints. Once the Kernel Debugger breaks in go
breakpoints are removed. The internal operation of the Kernel Debugger may also
necessitate the use of the occasional temporary breakpoints when instruction tracing (see
the T and P commands). These are set implicitly and discarded without the user being
aware of their existence. Go and temporary breakpoints are created using the INT 3
instruction. Go and sticky BP breakpoints count towards the Kernel Debugger imposed
limit of 10, but temporary breakpoints only ever exist singly so do not.

Block Management Package (BMP) . A Block Management Package (BMP) is a data
structure used to manage a pool of fixed length blocks using a bit string. Each bit in the
bit string corresponds to an entry. A set bit indicates whether the entry is in use.

Typically this is used for:

Kernel Heap allocation
Memory object allocation

cbargs . cbargs is the argument count associated with the hardware defined call gate
mechanism. The count is the number of words or double-words (as defined by the gate
descriptor) that are inserted into a ring 0 stack when ring 2 or ring 3 code executes a call
gate instruction.

CBIOS . The Compatibility BIOS (CBIOS) is a layer of code in the OS2LDR that presents a
hardware independent interface to the BIOS for the OS2KRNL. The interface to the
OS2KRNL is provided through a set of entry points called Dos Helper Functions.

Client Register Information (CRI) . The Client Register Information (CRI) is a table of
Register Information Packets (RIPs) that describe the offset and length of each register
that is stored in a ring 0 stack frame on entry to the kernel. This level of indirection
allows kernel routines to access entry registers regardless of the stack frame type, of
which there are a number, for example:

System Entry Frames from API calls

Trap Frames from traps and exceptions

Interrupt Frames from the interrupt manager

VDM Stack Frames

Kernel Stack Frames

Each TCB points to a CRI and the associated stack frame from TCB_pcriFrameType(TCB
+ 0x38) and TCB_pFrameBase(TCB + 0x3c) respectively.

Codepage Data Information Block (CDIB) . The Codepage Data Information Block (CDIB)
contains country-specific constant information relating to screen, keyboard and printer
devices. The CDIB is built from information derived directly from CONFIG.SYS
statements.

The CDIB may be located from the SAS.

Command Subtree Identifier . The Command Subtree Identifier is used to represent a
part of a process (or command) tree headed by a particular parent process. The ID used
is the Pid of the process that heads the subtree.

Normally a process has a CSID equal to it′s own Pid. However, when processes become
orphaned they acquire the subtree Id of their original parent and become adopted by
their grand-parents by acquiring their grand-parents ′s Pid as their new parent Pid.

Common ABIOS Data Area (CDA) . The CDA is the Common ABIOS Data Area.

Refer to the Kernel Debug and Dump formatter guide, external command .C - display
Common ABIOS data area.

274 OS/2 Debugging

Compatibility Region Mapping Algorithm . The Compatibil ity Region Mapping Algorithm
(also referred to as the thunking algorithm) is used by thunking code to convert 16:16
addresses to 0:32 addresses and vice versa.

This is achieved by ensuring LDT selectors have their limits set to 64K so that they tile
the compatibility region (0M to 448M). This gives an easy conversion algorithm from the
selector:offset address to the 32-bit linear address. In C language syntax this is
expressed as follows:

l inear_add ress= ((se lec to r >> 3) << 16) + o f f se t

selector:offset=((l inear_address . >> 13) | 7):(linear_address & 0x0000ffff)

Context . Context (or thread context) refers to the view of the system any given thread
has. Only one thread context may be current at any time.

Switching contexts refers to the process of preparing the system for another thread to
run. From an application program ′s perspective this implies restoring its registers and
ring 2 and 3 stacks when it is given the opportunity to run again. From the system ′s
perspective, restoration of an application′s registers and stacks is done after the context
switch, by the dispatcher, on exiting kernel mode. Not every context switch is followed by
exiting kernel mode. For example, if another thread in the same process is in critical
section (but blocked) then the new thread enters crt state and the scheduler is called to
select yet another thread.

Context switching includes the following system actions:

• Updating GDT descriptor entries 28, 30, 38 and 150b, which point to

The current process′ LDT ,

The current threads ring 0 stack,

The current thread ′s floating point emulator work area,

The current thread ′s TIB. (By default the FS selector is loaded with 150b).

Note: The LDT selector is only updated when the process changes with a context
switch, that is, for a process context switch.

• Updating page directory and tables for a process context switch.

• Updating the TR register if the process switch involves a task switch (normally only
VDMs).

• Updating the current TSS ring 0 and ring 2 stack addresses.

• Updating system copies of the Global and Information Segments.

• Copying the Local Information Segment from the incoming PTDA and the Thread
Local Memory Area from the incoming TCB to the segment mapped by LDT selector
dfff .

Besides addressing the current ring 0 stack, selector 30 also addresses the current
thread ′s scheduling control blocks. In particular: the PTDA, TCB and TSD. This is done
by aliasing selected address ranges from selector 30 to those of the true PTDA, TCB and
TSD in the system arena global memory for the current context. The system defines a
dummy module containing a hard-coded PTDA. The symbols of this module have the
same name as those of the fields in the PTDA. The system arranges for this to map the
PTDA addressed by selector 30. This trick allows the system to refer to PTDA fields for
the current context without regard for which process is current, simply by using the field
names as public symbols. The user may use the same symbols for referencing the PTDA
but these are only valid for the current system context. To access PTDA fields in other
contexts the following technique can be used:

Glossary 275

� �Note that the current PTDA is located at PTDA_Start

##.p *
Slot Pid Ppid Csid Ord Sta Pri pTSD pPTDA pTCB Disp SG Name

*0025 0004 0002 0004 0001 blk 0300 7b7c8000 7bbc4080 7bbe8a90 1fc4 16 someprog

The current thread slot is 25

We wish to know the thread that has entered critical section in process of
thread slot 40. The address of the critical section TCB is
saved in ptda_pTCBCritSec and the thread ordinal and slot number
are the first two words of the TCB.

##.p 40
Slot Pid Ppid Csid Ord Sta Pri pTSD pPTDA pTCB Disp SG Name

 0040 0012 0002 0012 0001 blk 0500 7b7d6000 7b9e4020 7b9c8a70 1eb8 10 userprog

##dw %(DW(%7b9e4020+ptda_ptcbcritsec-ptda_start)) l2
%7b9c8de0 0002 0041

Thread 2 of 12 or thread slot 41 is in critical section
##.p 41
Slot Pid Ppid Csid Ord Sta Pri pTSD pPTDA pTCB Disp SG Name

 0041 0012 0002 0012 0002 blk 0800 7b7da000 7b9e4020 7b9c8de0 1ed4 10 userprog� �

Refer to the Kernel Debugger and Dump Formatter .P and .S commands for more
information.

Current Directory Structure (CDS) . A Current Directory Structure (CDS) is used to store
file system information about the current directory per drive of each process.

Each CDS is managed in an RMP segment. The PTDA for each process contains an
imbedded array of 26 CDS handles, one for each drive. The CDS RMP segment may be
located from the SAS.

See also related structures:

MFT

SFT

DPB

FSC

VPB

Refer to the following for more detailed information

3.4.2, “.A - Format the System Anchor Segment (SAS)” on page 149.

3.4.5, “.D - Display an OS/2 System Structure” on page 160.

DEM. DEM is the DOS Emulation component of OS/2.

Driver Parameter Block (DPB) . A Driver Parameter Block (DPB) contains vital
information about the state and format of a disk drive. The DPBs are chained together
and located in a single segment whose selector may be obtained from the SAS. See also
3.4.2, “.A - Format the System Anchor Segment (SAS)” on page 149.

See also related structures:

CDS

MFT

SFT

FSC

VPB

Refer to the following for more detailed information

3.4.2, “.A - Format the System Anchor Segment (SAS)” on page 149.

3.4.5, “.D - Display an OS/2 System Structure” on page 160.

276 OS/2 Debugging

DosHlp . DosHlp services comprise a set of hardware dependent service routines
established during system initialisation for use by the OS2KRNL and user programs via
the OEMHLP$ device driver. Many of the DosHlp services deal with device dependent
BIOS behaviour and therefore provide a device independent interface to the BIOS.

File Allocation Table (FAT) . The File Allocation Table file system is the default filing
system supported by OS/2. Support for FAT is always present, regardless of any
installed file systems.

File System Control Block (FSC) . A File System Control Block (FSC) represents an
installed file system (IFS). The FSC contains a table of entry points implemented by the
file system driver (FSD). All FSCs are located in a single segment whose selector may
be obtained from the the SAS, see 3.4.2, “.A - Format the System Anchor Segment
(SAS)” on page 149.

See also related structures:

CDS

MFT

SFT

DPB

VPB

File System Driver (FSD) . A File System Driver (FSD) is a special load module that
implements an installed file system (IFS). FSDs are loaded during system initialization
when the .IFS statement of CONFIG.SYS is encountered.

Examples of FSDs are:

HPFS.IFS

HPFS386.IFS

CDROM.IFS

Gate . A gate descriptor is one that defines to the hardware a means of entering code
that executes at a more privileged level of authority. Four types of gate are defined:

Call Gate The subject of a CALL instruction. Typically used to implement
operating system and device driver application programming
interfaces (APIs). Device drivers may create Call gates dynamically
using the DosDynamicAPI facility.

Task Gate The subject of a call or exception where a (hardware assisted) task
switch is required.

Interrupt Gate The subject of a hardware or software generated interrupt.
Typically an Interrupt gate will switch execution to an interrupt
handler when a device presents an interrupt.

Trap Gate The subject of a trap exception. Used to handle programming
errors.

Global Descriptor Table (GDT) . The Global Descriptor Table (GDT) is a hardware
architected control block. The GDT is common to all protect mode processes. It contains
descriptors for memory segments common to all protect mode processes.

Refer to 3.3.17, “DG - Display Global Descriptor Table” on page 97 for more detailed
information.

Global Information Segment (GISEG) . The Global Information Segment (GISEG) is a
single instance control block that records the current session status, date and time, trace
status and version of the system.

The system maintains two copies of the Global Information Segment to fence against
system damage.

Glossary 277

The selector for the GISEG may be located from the SAS. See the Dump Formatter and
Kernel Debugger .A command.

The GISEG is also mapped locally per-process by the LDT descriptor 0xdff4.

hal . The memory alias record handle (hal) is an index into the table of memory alias
records (VMALs) whose address is located at _parVMAliases.

Refer to 3.4.15, “.ML - Format Memory Alias Records (VMAL)” on page 209 for more
detailed information.

har . The memory arena record handle (har) is an index into the table of memory arena
records (VMARs) whose address is located at _parvmOne.

Refer to 3.4.12, “.MA - Format Memory Arena Records (VMAR)” on page 197 for more
detailed information.

hco . A hco is a handle for a memory context record. This is an index into the table of
memory arena records (VMCOs) whose address is located at _pcovmOne.

Refer to 3.4.13, “.MC - Format Memory Context Records (VMCO)” on page 204 for more
detailed information.

hmte . The MTE control block handle (hmte) is the hob of the memory object that
contains the MTE.

MTEs are allocated as pseudo-objects, so do not have Arena Records associated with
them.

Refer to the following for more detailed information:

3.4.16, “.MO - Format Memory Object Records (VMOB)” on page 212.

3.4.10, “.LM - Format Loader Structures (MTE, SMTE, OTE and STE)” on page 190.

hob . The memory object record handle (hob) is an index into the table of memory
objects records (VMOBs) whose address is located at _pobvmOne.

Refer to 3.4.16, “.MO - Format Memory Object Records (VMOB)” on page 212 for more
detailed information.

hptda . The PTDA control block handle hptda is the hob of the memory object that
contains the PTDA.

PTDAs are allocated as pseudo-objects, so do not have Arena Records associated with
them.

Refer to 3.4.16, “.MO - Format Memory Object Records (VMOB)” on page 212 for more
detailed information.

Interrupt Descriptor Table (IDT) . The Interrupt descriptor table (IDT) is a hardware
architected structure that comprises a table of gate descriptors, one for each interrupt
vector. The low numbered entries are defined by the hardware architecture and
dedicated to exception management.

The Kernel Debugger′s V command may be used to intercept system exception handlers.

Interrupt Vector . An interrupt vector is presented to the processor when an interrupt is
generated either externally by the Programmed Interrupt Controller or internally within
the processor chip itself. It is used by the processor as an index into the IDT to determine
which interrupt routine should be dispatched.

The processor reserves vectors 0 - 31 to correspond to hardware architected exceptions
0 through 31. Vectors 32 - 255 are reserved for I/O interrupts, which are presented to the
processor by the Programmed Interrupt Controller when the one of its IRQ lines is
tr iggered. The correspondence between vectors and IRQs is defined during system
initialisation as follows:

IRQs 0 - 7 vectors 0x50 - 0x57

IRQs 8 - 15 vectors 0x70 - 0x77

278 OS/2 Debugging

Thus a keyboard interrupt, which is assigned to IRQ 1 under the IBM PC architecture will
be handled by the interrupted handler whose interrupt gate is assigned to IDT descriptor
0x51.

See the Dump Formatter and Kernel Debugger DI command for information on displaying
IDT entries.

Internal Processing Errors (IPEs) . Internal Processing Errors are unrecoveralble error
conditions detected by the system while running in ring 0. The may arise from
inconsistencies detected by the OS/2 Kernel or from traps occuring in any ring 0 code
(Kernel, Installable File System Drivers and Device Drivers).

When the system detects an IPE it enters a routine called panic where an error message
is formatted and displayed and the system is halted.

Job File Number (JFN) . A Job File Number (JFN) is a handle for open file system
objects, unique within the process that opened the file system object. The JFN is
returned by DosOpen. It is used and an index into the JFN Table to locate the
corresponding SFT handle.

Job File Number Table (JFT) . A Job File Number Table (JFT) entry is assigned to each
open file system object within a process. The JFT provides a cross-reference to the
handle for the corresponding SFT. The JFT is locatable from the PTDA field JFN_pTable
(PTDA +0x5b8 (H/R: +0x5b0)) for each process.

The JFT is initially allocated within the PTDA at label JFN_Table (PTDA +0x35e) with 20
entries. If this is expanded by use of the DosSetMaxFH then JFN_pTable is updated to
point to the new table.

See also related structures:

CDS

DPB

MFT

FSC

VPB

Loader Cache . The Loader Cache is used for saving discardable pages of instance data
segments from DLLs loaded from mountable media. The caches is allocated from the
kernel heap and has a system object owner ID of cache.

Local Descriptor Table (LDT) . The Local Descriptor Table (LDT) is a hardware
architected table of memory descriptors.

Under OS/2 one LDT is allocated per process.

Refer to 3.3.19, “DL - Display the Current Local Descriptor Table” on page 101 for more
detailed information.

Local Information Segment . The Local Information Segment is a per-process control
block that records the current status of the process. It is imbedded in the PTDA and is
also mapped by the LDT descriptor 0xdfff.

Master File Table (MFT) . A Master File Table (MFT) entry is used to associate path
names with open files (SFTs) and lock records (RLRs). The MFTs are managed in a
PTREE structure, which is locatable from the SAS.

See also related structures:

CDS

DPB

SFT

FSC

VPB

Glossary 279

Refer to the following for more detailed information:

3.4.2, “.A - Format the System Anchor Segment (SAS)” on page 149

3.4.5, “.D - Display an OS/2 System Structure” on page 160

Message Queue Header (MQ) . A PM Message Queue Header (MQ) is used as an anchor
for message processing for a given PM Application′s message thread. The MQ is created
when a threads calls WinCreateMsgQueue .

Module Table Entry (MTE) (non-swappable) . The (non-swappable) Module Table Entry
(MTE) for a loaded module is use to record information about loaded modules. Since the
MTE is allocated in non-swappable only information that must be resident at all times is
recorded here. Related information that may be paged out is recorded in its sister
control, the Swappable Module Table Entry (SMTE).

The MTE contains the following information:

pointers to related control blocks such as, SMTE, resource and fix-up tables.

attributes of the load module.

Use count for .EXE modules.

Each MTE is identified by a unique handle referred to as the hmte.

Refer to 3.4.10, “.LM - Format Loader Structures (MTE, SMTE, OTE and STE)” on
page 190 for more detailed information.

Object Table Entry (OTE) . An Object Table Entry (OTE) describes the address, size and
attributes an object within a loaded 32-bit load module.

The corresponding control block for a 16-bit load module is the STE.

Refer to 3.4.10, “.LM - Format Loader Structures (MTE, SMTE, OTE and STE)” on
page 190 for more detailed information.

Page Frame Structure (PF) . A Page Frame Structure (PF) is used by page frame
management to track the status of a physical storage frame. The Page Frame Structures
are allocated in contiguous storage, anchored from the address specified in global
variable:

_pft

Each PF corresponds one to one with a frame of physical storage and provides links to
Virtual Page Structures VPs.

Zero or more PTEs may be pinned to a physical frame, this is reflected in a reference
count maintained in the associated PF.

UVIRT mappings have their corresponding PFs reserved unless aliased by non-UVIRT
storage.

Refer to the following for more detailed information

3.4.17, “.MP - Format Memory Page Frame Structures (PFs)” on page 225.

Paragraph . A paragraph is a unit of memory allocation of 16 bytes. Paragraph aligned
allocations lie on a 16-byte boundary.

Patricia Tree (PTREE) . A Patricia Tree (PTREE) is a form of tree structure designed to
offer a fast look-up facility for generically specified keys. In OS/2 a modified form of the
PTREE is use to manage MFTs for fast path-name look-up.

Page Table Entry (PTE) . A Page Table Entry (PTE) is a hardware architected structure
that is used to map virtual addresses to physical storage addresses.

Refer to 3.3.20, “DP - Display Page Directory and Table Entries” on page 102 for more
detailed information.

Per-Task Data Area (PTDA) . The Per-Task Data Area (PTDA) is the anchor point for all
process (task) related control information. One PTDA exists per process and from it is
located the LDT, TCB chain, Page tables and Arena Headers for a process.

280 OS/2 Debugging

All active PTDAs are addressable, whatever the current process, from a global address in
the system arena. However, for the current process an alias address is created using
selector 30 and in addition the many of the PTDA field names are declared as public
symbols. This allows the fields names in the PTDA for the current process to be referred
to directly under the Kernel Debugger and Dump Formatter.

PTDA_Start is the symbol assigned to the beginning of the current PTDA. Using the ?
command against this and other PTDA field names allows relative offsets for PTDA fields
to be calculated and used in other contexts as offsets from the global PTDA address.

Refer to the following for more detailed information

3.4.20, “.P - Display Process Status” on page 238.

Physical Arena Information block (PAI) . The Physical Arena Information block (PAI)
describes ranges of physical memory to memory management.

Pageable physical memory is described by the PAI pointed to by the SAS.

Process Information Block (PIB) . The Process Information Block (PIB) is a supplemental
process related control block made accessible to ring 3 programs. It contains process
status information obtained from the process′ PTDA.

The PIB may be located from ptda_avatib(PTDA + 0x28) using the Dump Formatter or
Kernel Debugger.

A program gains access to the PIB along with the TIB by calling the DosGetInfoBlocks
API.

Process Identifier (pid) . The Process Identifier (pid) is a unique system wide value used
to identify a given process.

Note: It is not the same as the hptda which also uniquely identifies a process.

The Pid is used as a handle in process related APIs such as DosKillProcess and
DosWaitChild.

Refer to 3.4.20, “.P - Display Process Status” on page 238 for more detailed information.

Program Data Block . The Program Data Block is the name given to the DOS PSP by the
DEM component of OS/2.

Program Segment Prefix (PSP) . The Program Segment Prefix (PSP) is a DOS control
block that forms the header of a loaded program. Under OS/2 the DEM component refers
to this as the PDB or Program Data Block.

Process . A process is a collection of threads that share a common address space.

Each process is primarily represented by a PTDA structure and is assigned a unique
identifier, the Pid.

Processes are organised in hierarchical tree structures known as process or Command
Subtrees.

Pseudo-Objects . Pseudo-Objects are small system objects that comprise control blocks
and other system areas, which for reasons of virtual memory conservation are not
represented by a corresponding Arena Records. They are allocated out of the kernel
resident heaps and comprise the following types of object:

MTE

VMAH

PTDA

Loader Cache

Refer to 3.4.16, “.MO - Format Memory Object Records (VMOB)” on page 212 for
more detailed information.

Glossary 281

Queue Message (QMSG) . A PM Queue Message (QMSG) is used by WinPostMsg to
enqueue an asynchronously sent message to a thread′s message queue. QMSGs are
chained from the MQ of the receiver in a circular array.

Record Lock Record (RLR) . A Record Lock Record (RLR) describes a locked region of a
file system record. RLRs are chained from the related MFT and point to the associated
SFT. They record the owner of the record lock.

See also related structures:

CDS

DPB

SFT

FSC

VPB

Record Management Package (RMP) . A Record Management Package (RMP) is a data
structure designed for tabulating variable length records. Typically OS/2 uses RMPs to
manage:

Named Storage names
Open File names
Directory names
System Semaphore names

Reliability, Availability and Serviceability (RAS) . RAS is an acronym that refers to
diagnostic and service support within OS/2. Frequently it is used as a synonym for the
adjective diagnostic.

Register Information Packet (RIP) . A Register Information Packet (RIP) is an entity used
to describe the size and offset of a register in a system stack frame. RIPs are located in
a CRI.

Scheduler . The Scheduler component of OS/2 is responsible for managing threads on
queues according to priority and status.

Refer to the following for more detailed information

3.4.20, “.P - Display Process Status” on page 238

3.4.21, “.PB - Display Blocked Thread Information” on page 246

3.4.23, “.PU - Display Thread User Space Information” on page 256

3.4.22, “.PQ - Display Scheduler Queue Information” on page 251

Screen Group . A Screen Group is a logical full screen buffer and keyboard. A number of
processes may be assigned to run in a given screen group. The workplace shell is one
such screen group. Each screen group is assigned an ID. The screen group assigned to
a process is recorded in its Local Information Segment. The currently active screen
group is recorded in the Global Information Segment.

Screen Groups are represented by SGCB structures.

Under version 2 of OS/2 the screen group concept has been extended to that of a
session.

Refer to 3.4.20, “.P - Display Process Status” on page 238 for information on displaying
screen group ids.

Screen Group Control Block (SGCB) . The Screen Group Control Block (SGCB) is used by
the session manager component of the system to represent a Screen Group. It contains
status information for the screen group and acts as a cross reference between the Pid
currently associated with a given screen group and vice versa.

Segment Table Entry (STE) . A Segment Table Entry (STE) describes the address, size
and attributes of a segment (object) within a loaded 16-bit load module.

282 OS/2 Debugging

The corresponding control block for a 32-bit load module is the OTE.

Refer to 3.4.10, “.LM - Format Loader Structures (MTE, SMTE, OTE and STE)” on
page 190 for more detailed information.

Send Message Structure (SMS) . A PM Send Message Structure (SMS) is used by
WinSendMessage to enqueue a synchronously sent message. SMSs are chained from
the MQ of both the sender and receiver.

Session . Sessions are groups of related processes initiated using DosStartSession API.
Each session is assigned a logical screen buffer or presentation space. Sessions are
identified by a unique ID that corresponds with their Screen Group Id (though the range
of numbers is extended to included PM sessions, which all share then same screen
group).

The following session ID/Screen Group ID ranges are defined:

SG Usage

0 Hard Error Popups

1 Shell Screen Group

2 Real Mode Screen Group

3 VioPopUp Screen Group

4 First Full Screen Application Session

15 Last Full Screen Application Session

16 First Windowable VIO-Session

31 Last Windowable VIO-Session

32 First PM session

255 Last PM session

System Anchor Segment (SAS) . The System Anchor Segment (SAS) is a central system
control block use to anchor control blocks for major system components such as:

File systems

Device Drivers

Scheduler

Memory management

The SAS is built at the beginning of the segment addressable from selector 70 and 78.

Refer to the following for more detailed information

3.4.2, “.A - Format the System Anchor Segment (SAS)” on page 149.

System Queue Message (SQMSG) . A PM System Queue Message (SQMSG) is used by
the PMDD.SYS device driver to enqueue messages, which represent system input
activity, to the system input queue.

Swappable Module Table Entry (SMTE) . The Swappable Module Table Entry (SMTE)
contains characteristics of a loaded module that may be page out of memory. The SMTE
is the sister control block to the MTE, which records those characteristics that must be
resident at all times.

The SMTE principally contains:

A pointer to OTE or STE.

A pointer to the fully qualified module name.

The entry point and initial stack pointers.

Refer to 3.4.10, “.LM - Format Loader Structures (MTE, SMTE, OTE and STE)” on
page 190 for more detailed information.

Glossary 283

System File Table (SFT) . A System File Table (SFT) entry is used to describe the
attributes of each instance of an open file system object. SFTs are stored in a segment
directly locatable from the SAS. SFTs are indirectly locatable from the JFN Table
imbedded in the PTDA of each process that opens a file system object.

See also related structures:

CDS

DPB

MFT

FSC

VPB

Refer to the following for more detailed information

3.4.2, “.A - Format the System Anchor Segment (SAS)” on page 149

3.4.5, “.D - Display an OS/2 System Structure” on page 160

System Trace Data Area (SDTA) . The System Trace Data Area (SDTA) is a circular
buffer used to record trace events. The SDTA may be located from the SAS.

Symbol . A symbol is the name given to a program code or data location that has been
made public by the programmer. Such symbolic definitions appear in the map file output
from the linkage editor. They may be referenced in the Dump Formatter and Kernel
Debugger using the L command when the map file is converted to a symbol file using the
MAPSYM utility.

Symbol Absolute . An Absolute symbol is a symbolized constant value that has been
made public by the programmer. Such symbolic definitions appear in the map file output
from the linkage editor and may be referenced in the Dump Formatter and Kernel
Debugger using the LA command when the map file is converted to a symbol file using
the MAPSYM utility.

Symbol Group . A symbol group is the set of symbols that are defined within a program
segment. Frequently a program segment is given its own selector at load time.

Symbol Map . A symbol map is created from symbolic name information generated by a
program compiler and converted for used by the Dump Formatter and Kernel Debugger
by the linkage editor and MAPSYM utilities. This allows program code and data locations
to be referred to by name as well as by address.

System File Number (SFN) . A System File Number (SFN) is the system-wide unique
handle by which an open file system object is known. It is the offset into the SFT
segment that locates the corresponding SFT entry.

Refer to the following for more related information:

3.4.2, “.A - Format the System Anchor Segment (SAS)” on page 149.

3.4.5, “.D - Display an OS/2 System Structure” on page 160.

Task . A task is a hardware architected thread of execution. The INTEL architecture
allows for multiple independent tasks to co-exit and provides the task gate mechanism as
a means of switching between tasks. Tasks are represented to the hardware by the TSS.

The characteristics of a task are very similar to that of the OS/2 process. Protect-mode
processes however, tend to run under a single task in OS/2 and implement switching
through the more efficient software managed context switching mechanism.

Only VDMs and error recovery processes run as independent tasks.

See the INTEL486 Programmer′s Reference for more information.

Task State Segment (TSS) . The Task State Segment (TSS) is a hardware architected
control block that is used for two purposes:

284 OS/2 Debugging

 1. To implement the privi leged level transit ion mechanism init iated with a Call Gate
instruction.

 2. To provide a register save area for hardware task switching init iated with a call to a
Task Gate.

In general OS/2 does not use the hardware task switching mechanism, so TSSs are few.
It does however use the TSS for implementing Application Programming Interfaces (APIs)
in the system.

A TSS may be formatted using the Kernel Debugger and Dump Formatter DT command.

Translation Lookaside Buffer (TLB) . The Translation Lookaside Buffer (TLB) is a
hardware implemented buffer used for caching linear to physical address mappings.

The Intel486(TM) processor provides test registers for manipulating the TLB.

Thrashing . Thrashing refers to the state of a system where most of the CPU time is
spent paging in and out memory from the swap file. This happens when real storage is
heavily over committed and storage references encompass a wide range of virtual pages
over a short processing time.

Such a condition can indicate a poorly tuned application where paging is caused by the
process of accessing data the application needs. A typical scenario is where work data is
chained in a single, very extended, queue and no mechanism exits to access the required
data without scanning the entire chain. Use of hashing techniques greatly reduce this
problem.

Thread . A thread is a independently scheduleable entity that competes for processor
resource with other threads.

Each thread is represented by a TCB and TSD structure.

Threads are organised within processes and assigned a unique identifier within the
owning process known as the Tid.

All threads within the system are assigned a system wide unique identifier known as the
Thread Slot Number.

Refer to 3.4.20, “.P - Display Process Status” on page 238 for more detailed information.

Thread Control Block (TCB) . The Tread Control Block (TCB) contains per-thread control
and status information that must be resident at all times. The swappable counterpart to
the TCB is the TSD

Refer to the following for related information

3.4.20, “.P - Display Process Status” on page 238.

Thread Identifier (tid) . The Thread Identifier (tid) is a value, unique within the owning
processes, used to identify the thread. It is not the same as the Thread Slot Number,
which uniquely identifies a thread, system-wide.

The Tid is used in thread related APIs such as DosKillThread and DosSetPriority.

Thread Information Block (TIB) . The Thread Information Block (TIB) is a supplemental
thread related control block made accessible to ring 3 programs. It contains thread
information obtained from the thread ′s TCB and acts as an anchor for exception-handlers
registered for the thread.

The TIB may be located from TCBptib(TCB + 0x10) using the Dump Formatter or Kernel
Debugger.

A program gains access to the TIB along with the PIB by calling the DosGetInfoBlocks
API.

Thread Local Memory Area (TLMA) . The Thread Local Memory Area (TLMA) a an area of
private arena memory that is instanciated at a thread level. This is achieved by copying
the contents of the TLMA to dfff:0024 when a thread switch occurs. The TLMA contents
are saved in the TCB at TCBTLMA .

Glossary 285

Storage is allocated from the TLMA by using the DosAllocThreadLocalMemory API.

Thread Slot Number . The Thread Slot Number is a system wide unique identifier
assigned to each thread in the system.

Threads are located from the thread slot table whose linear address is at global symbol:

_papTCBSlots

Each slot is a double-word linear address of the corresponding thread′s TCB. The first
slot (slot=0) is reserved.

Under the Kernel Debugger and Dump Formatter the following symbols may be used to
represent particular threads in many of the commands that accept a slot number as a
parameter:

* The current or last dispatched thread as recorded in word global variable
_TaskNumber

The default thread slot used by the Dump Formatter and Kernel Debugger.

Refer to 3.4.20, “.P - Display Process Status” on page 238 for more detailed information.

Thread Swappable Data (TSD) . The Thread Swappable Data (TSD) control block contains
per-thread status and control information that resides in swappable memory and
therefore is not required for reference out of context of the related thread. The resident
memory counterpart to the TSD is the TCB (Thread Control Block).

The vast majority of the TSD is used as the ring 0 stack when a thread makes a privilege
level transition to ring 0 via a call gate descriptor. The base of the ring 0 stack will
therefore include the ring 3 call gate stack frame on entry to ring 0 (which is usually
kernel or device driver code).

In the debug kernel a dummy page prefixes the used part of the TSD in order to catch
ring 0 stack faults.

Other information contained in the TSD includes GTD instance data for the corresponding
thread ′s context. This comprises descriptors for:

28: The LDT descriptor.

30: Base selector for ring 0 process instance data, which includes the ring 0 stack,
TCBs and PTDA.

38: Floating point emulator instance data

40: FS mapping to the TIB

When an an inter-process thread context switches, descriptors 30 - 40 are loaded into the
GDT from the TSD. When an intra-process thread context switches, descriptors 28 - 40
are loaded into the GDT from the TSD.

Refer to the following for related information

3.4.20, “.P - Display Process Status” on page 238.

Thunking . Thunking is the process of calling 16-bit code from 32-bit code and vice versa.
Thunking consists of applying the CRMA to convert from one form of address to the other
and making any stack parameter adjustments either by padding 16-bit operands to 32-bit
with leading zeros (16- to 31-bit conversion) or truncating the padded 32-bit value to 16
bits (32- to 16-bit conversion).

Tracepoint . A tracepoint is designated location in system or application code where the
System Trace Facility will gather data for logging by the STDA.

Tracepoints may be implemented statically by use of the DosSysTrace API or dynamically
through use of the Dynamic Trace Customizer.

System defined tracepoints are documented in the System Tracepoints Reference.

UVIRT. The UVIRT attribute signifies virtual storage mapping to a pages of physical
storage.

286 OS/2 Debugging

The full set of memory management structures associated with virtual storage allocation
may not exist for UVIRT storage.

The UVIRT attribute may be associated with a number of structures, for example:

PTE

LDT and GDT descriptors

VMAL

In general UVIRT allocations are ′convenience ′ mappings memory to selectors. Typically
they are created by device drivers using the DevHlp_PhysToUvirt facility.

Virtual DOS Machine (VDM) . A Virtual DOS Machine (VDM) is a type of process that runs
in an emulated DOS environment using the DOS EMulation (DEM) component of OS/2.

Virtual Page Structure (VP) . A Virtual Page Structure (VP) is used by memory
management to track the status of a virtual storage frame, whether backed by physical
storage, cached by the loader or paged out to the swapper. The Virtual Page Structures
are allocated in contiguous storage, anchored from the address specified in global
variable:

_pgpVPBase

Refer to the following for more detailed information

3.4.18, “.MV - Format Memory Virtual Page Structures (VPs)” on page 230.

Virtual Memory Arena Header Record (VMAH) . One Virtual Memory Arena Header
Record (VMAH) is allocated per arena to record information about the address range of
an arena. The VMAH points to its sentinel arena record (VMAR).

Each VMAH chained in a double linked list.

The system arena VMAH is located at global symbol:

_ahvmSys

The shared arena VMAH is located at global symbol: _ahvmShr

For each private arena the VMAH is imbedded in the PTDA at label &ptdaah..

Under OS/2 2.1 the system and shared arena VMAHs are assigned to objects 4 and 5
respectively.

Virtual Memory Alias Record (VMAL) . The Virtual Memory Alias Record (VMAL) is used
to represent aliased regions of virtual memory. These are either:

regions of physical storage that may be addressed by more than one virtual or

linear address that are not associated with a memory object, such as VDM UVIRT
allocations.

When two memory objects are aliases of each other then they need not have co-incident
sizes or origins within the aliased arena record. Aliases are designed to provide
alternative attributes for accessing the same piece of data within or across processes.
Compare this with shared instance data within the shared arena, where multiple object
records share a common arena record. In this case each object is associated with a
unique process and is not considered an alias.

Each VMAL is identified by a unique handle referred to as the hal.

Refer to the following for more detailed information

3.4.15, “.ML - Format Memory Alias Records (VMAL)” on page 209.

Virtual Memory Kernel Heap (VMKH) . The Virtual Memory Kernel Heap (VMKH)
structures are used to describe system heap memory. Many objects allocated out of the
kernel heap are assigned a System Object identifier.

Virtual Memory Arena Record (VMAR) . The Virtual Memory Arena Record (VMAR) is
used to represent a contiguous region of virtual memory allocated in page quantities.
Such storage may or may not be committed or resident.

Glossary 287

Arena records are chained in a doubly linked lists, one for each arena type. That is, the
chain chain exists separately for each private arena, the shared arena and system arena.

Special arena records, known as Sentinels head each chain. They describe the entire
arena which they head.

All virtual memory is described by by at least one arena record.

Each VMAR is identified by a unique handle referred to as the har.

Arena also records point to the following related memory structures:

VMOB

VMAL

VMCO

Refer to the following for more detailed information

3.4.15, “.ML - Format Memory Alias Records (VMAL)” on page 209.

Virtual Memory Context Record (VMCO) . A Virtual Memory Context Record (VMCO) is
used to record the association of shared arena, shared data objects with processes that
are using.

Each VMCO is identified by a unique handle referred to as the hco.

Refer to the following for more detailed information

3.4.13, “.MC - Format Memory Context Records (VMCO)” on page 204.

Virtual Memory Object Record (VMOB) . The Virtual Memory Object Record (VMOB) are
used to represent memory objects, that is the instance data associated with a particular
virtual address. VMOBs contain pointers to the the owning and requesting objects as
well as the corresponding arena record (VMAH).

Each VMOB is identified by a unique handle referred to as the hob.

Refer to the following for more detailed information

3.4.16, “.MO - Format Memory Object Records (VMOB)” on page 212.

Volume Parameter Block (VPB) . A Volume Parameter Block (VPB) is used to store
volume information associated with a file system object. All VPBs are contained within a
single segment locatable from the SAS. Most file system structures contain a VPB
handle for an associated volume. The handle is used as an offset into the VPB segment.

See also related structures:

CDS

MFT

SFT

DBP

FSC

Refer to the following for more detailed information

3.4.2, “.A - Format the System Anchor Segment (SAS)” on page 149

3.4.5, “.D - Display an OS/2 System Structure” on page 160

Zombie . The term Zombie is used to describe a.Z terminal condition of a thread or
process. There is a strict operating system definition and two colloquial uses:

•

• The strict system definition refers to a process that has terminated but whose PTDA

has been retained on the zombie queue (_pPTDAFirstZombie) because the process
status byte (LISEG+0xa) indicates that its parent wishes to collect
termination information through DosWaitChild . The dead child is retained on
the zombie queue until either the parent dies or issues DosWaitChild .

288 OS/2 Debugging

• Zombie is also commonly used to refer to a terminating thread or process
that has blocked after the application has returned to the operating system.
Usually this implies a problem freeing memory because one or more pages
have been long-term locked by a device driver.

• The third use of zombie refers to any process that is anonymous. Internal
thread, VDMs, and terminating threads can be anonymous.

Glossary 289

290 OS/2 Debugging

List of Abbreviations

AAB Application Anchor Block

BMP Block Management Package

CDA Common ABIOS Data Area

CDIB Codepage Data Information Block

CDS Current Directory Structure

CRI Client Register Information

DEM DOS Emulation

DPB Driver Parameter Block

FAT File Allocation Table

FSC File System Control Block

FSD File System Driver

GDT Global Descriptor Table

GISEG Global Information Segment

IBM International Business Machines Corporation

IDT Interrupt Descriptor Table

IPE Internal Processing Errors

ITSO International Technical Support Organization

JFN Job File Number

JFT Job File Number Table

LDT Local Descriptor Table

MQ Message Queue Header

MFT Master File Table

MTE Module Table Entry

OTE Object Table Entry

PAI Physical Arena Information block

PF Page Frame Structure

PIB Process Information Block

Pid Process Identifier

PSP Program Segment Prefix

PTDA Per-Task Data Area

PTE Page Table Entry

PTREE Patricia Tree

QMSG Queue Message

RAS Reliability, Availability and Serviceability

RIP Register Information Packet

 Copyright IBM Corp. 1996 291

RLR Record Lock Record

RMP Record Management Package

SAS System Anchor Segment

SDTA System Trace Data Area

SFN System File Number

SFT System File Table

SGCB Screen Group Control Block

SMS Send Message Structure

SMTE Swappable Module Table Entry

SQMSG System Queue Message

STE Segment Table Entry

TCB Thread Control Block

TIB Thread Information Block

Tid Thread Identifier

TLMA Thread Local Memory Area

TLB Translation Lookaside Buffer

TLMA Thread Local Memory Area

TSD Thread Swappable Data

TSS Task State Segment

VDM Virtual DOS Machine

VMAH Virtual Memory Arena Header Record

VMAL Virtual Memory Alias Record

VMAR Virtual Memory Arena Record

VMCO Virtual Memory Context Record

VMKH Virtual Memory Kernel Heap

VMOB Virtual Memory Object Record

VP Virtual Page Structure

VPB Volume Parameter Block

WND Window Sturcture

292 OS/2 Debugging

Index

Special Characters
?, Show Internal Command Help 82
.?, Show External Command Help 148
.A, Format the System Anchor Segment

(SAS) 149
.B, Select the Communications Port and

Speed 156
.C, Display the Common ABIOS Data Area 157
.D, Display an OS/2 System Structure 160
.H, Display Dump File Header Information 185
.I (DF), Show Dump State 186
.I, Swap in Storage 183
.K, Display User Stack Trace 188
.LM, Format Loader Structures (MTE, SMTE, OTE

and STE) 190
.M, Format Memory Structures 196
.MA, Format Memory Arena Records

(VMAR) 197
.MC, Format Memory Context Records

(VMCO) 204
.MK, Display Memory Lock Information Records

(VMLKI) 206
.ML, Format Memory Alias Records (VMAL) 209
.MO, Format Memory Object Records

(VMOB) 212
.MP, Format Memory Page Frame Structures

(PFs) 225
.MV, Format Memory Virtual Page Structures

(VPs) 230
.N, Display Dump Information Summary 235
.P, Display Process Status 238
.PB, Display Blocked Thread Information 246
.PQ, Display Scheduler Queue Information 251
.PU, Display Thread User Space

Information 256
.R, Display User′s Registers 258
.REBOOT, Restart the System 264
.S, Set or Display Default Thread Slot 265
.T, Dump the System Trace Buffer 267
(AAB), Application Anchor Block 273
(MQ), Message Queue Header 280
(QMSG), Queue Message 282
(SMS), Send Message Structure 283
(SQMSG), System Queue Message 283
(TLMA), Thread Local Memory Area 285

A
a System Dump, Forcing 14
AAB 291
abbreviations 291
Absolute, Symbol 284
acronyms 291
Algorithm, Compatibility Region Mapping 275
Allocation Table, File 277
ALLSTRICT 1, 71
Analog Dial-in Telephone Line 7
Anchor Block (AAB), Application 273
Anchor Segment, System 283
Application Anchor Block (AAB) 273
Area (TLMA), Thread Local Memory 285
Arena Header Record, Virtual Memory 287
Arena Record, Virtual Memory 287
Arithmetic Expressions 74

B
B, Breakpoint 84
BC, Clear Breakpoints 84
BD, Disable Breakpoints 85
BE, Enable Breakpoints 85
Binary Operators 75
BIOS Parameter Block 273
BL, List Breakpoints 86
Block (AAB), Application Anchor 273
Block Management Package (BMP) 274
Block, BIOS Parameter 273
BlockIDs 273
BMP 274, 291
BP, Set or Alter Breakpoint 87
BR, Set or Alter a Debug Register

Breakpoint 89
Breakpoint 12, 16, 19, 40, 41, 80, 273
Breakpoint, B 84
Breakpoints, Kernel Debugger 38
BS, Show Timestamped Breakpoint Trace 90
BT, Set Timestamped Breakpoint Trace 91
Buffer, Translation Lookaside 285
Built-in Functions 76

C
C, Compare Memory 93
Cable, Modem Data 6

 Copyright IBM Corp. 1996 293

Cache, Loader 279
Call Gate 277
cbargs 274
CBIOS 274
CDA 274, 291
CDIB 274, 291
CDS 276, 291
Clear Breakpoints, BC 84
Client Register Information (CRI) 274
Codepage Data Information Block (CDIB) 274
Command Reference, Kernel Debugger and

Dump Formatter 71
Command Subtree Identifier 274
Commands, External 147
Commands, Internal 80
Common ABIOS Data Area (CDA) 274
Communications Software 7
Compare Memory, C 93
Compatibility Region Mapping Algorithm 275
Configuration Process 7
Context 16, 40, 41, 42, 43, 147, 275
Context Record, Virtual Memory 288
Control Block, Screen Group 282
Control Block, Thread 285
Controlling Output 14
Controlling the System 11
CRI 274, 291
Current Directory Structure (CDS) 276

D
D, Display Memory 94
DA, Display Memory in ASCII Format 96
Data Area, Per-Task 280
Data Area, System Trace 284
Data Block, Program 281
Data Cable, Modem 6
DB, Display Memory in Byte Format 96
DD, Display Memory in Doubleword Format 97
Debug Kernel, Installing the 2
Debug Terminal Setup 3
Debugger Breakpoints, Kernel 38
Debugging 1, 2, 3, 4, 5, 6, 8, 11, 12, 13, 14, 38
DEM 276, 291
Description, Thread States 252
Descriptor Table, Global 277
Descriptor Table, Interrupt 278
Descriptor Table, Local 279
Device Driver helper, Virtual 39
DG, Display Global Descriptor Table 97

DI, Display Interrupt Descriptor Table 100
Diagrams, Syntax 71
Dial-in Telephone Line, Analog 7
Disable Breakpoints, BD 85
Display a Task State Segment, DT 104
Display an OS/2 System Structure, .D 160
Display Blocked Thread Information, .PB 246
Display Dump File Header Information, .H 185
Display Dump Information Summary, .N 235
Display Global Descriptor Table, DG 97
Display Interrupt Descriptor Table, DI 100
Display Memory in ASCII Format, DA 96
Display Memory in Byte Format, DB 96
Display Memory in Doubleword Format, DD 97
Display Memory in Word Format, DW 96
Display Memory Lock Information Records

(VMLKI), .MK 206
Display Memory, D 94
Display Page Directory and Table Entries,

DP 102
Display Process Status, .P 238
Display Scheduler Queue Information, .PQ 251
Display Stack Trace from Address, K 116
Display the 286 LoadAll Buffer, DX 106
Display the Common ABIOS Data Area, .C 157
Display the Current Local Descriptor Table,

DL 101
Display Thread User Space Information,

.PU 256
Display User Stack Trace, .K 188
Display User′s Registers, .R 258
DL, Display the Current Local Descriptor

Table 101
DOS Machine, Virtual 287
DosDebug Logging Facility 37
DosHlp 276
DosPTrace Logging Facility 38
DP, Display Page Directory and Table

Entries 102
DPB 276, 291
Driver helper, Virtual Device 39
Driver Parameter Block (DPB) 276
DT, Display a Task State Segment 104
Dump Formatter, Process 67
Dump the System Trace Buffer, .T 267
Dump, Forcing a System 14
DW, Display Memory in Word Format 96
DX, Display the 286 LoadAll Buffer 106

294 OS/2 Debugging

E
E, Enter Data into Memory 107
Enable Breakpoints, BE 85
Enter Data into Memory, E 107
Errors, Internal Processing 279
Evaluator, Expression 73
Example loader log 24
Exception/Trap/Fault Vector Commands, V 139
EXEC, PS 64
EXEC, RUNCHAIN 63
EXEC, TEMPLATE 65
Execute Commands Conditionally, J 114
Expression Evaluator 73
Expressions, Arithmetic 74
Expressions, String 74
External Commands 147

.?, Show External Command Help 148

.A, Format the System Anchor Segment
(SAS) 149

.B, Select the Communications Port and
Speed 156

.C, Display the Common ABIOS Data
Area 157

.D, Display an OS/2 System Structure 160

.H, Display Dump File Header
Information 185

.I (DF), Show Dump State 186

.I, Swap in Storage 183

.K, Display User Stack Trace 188

.LM, Format Loader Structures (MTE, SMTE,
OTE and STE) 190

.M, Format Memory Structures 196

.MA, Format Memory Arena Records
(VMAR) 197

.MC, Format Memory Context Records
(VMCO) 204

.MK, Display Memory Lock Information
Records (VMLKI) 206

.ML, Format Memory Alias Records
(VMAL) 209

.MO, Format Memory Object Records
(VMOB) 212

.MP, Format Memory Page Frame Structures
(PFs) 225

.MV, Format Memory Virtual Page Structures
(VPs) 230

.N, Display Dump Information Summary 235

.P, Display Process Status 238

.PB, Display Blocked Thread Information 246

.PQ, Display Scheduler Queue
Information 251

External Commands (continued)
.PU, Display Thread User Space

Information 256
.R, Display User′s Registers 258
.REBOOT, Restart the System 264
.S, Set or Display Default Thread Slot 265
.T, Dump the System Trace Buffer 267

F
F, Fill Memory with Repeated Data 108
FAT 277, 291
File Allocation Table 53
File Allocation Table (FAT) 277
File System Control Block (FSC) 277
File System Driver (FSD) 277
File Table, System 284
Fill Memory with Repeated Data, F 108
Forcing a System Dump 14
Format Loader Structures (MTE, SMTE, OTE and

STE), .LM 190
Format Memory Alias Records (VMAL), .ML 209
Format Memory Arena Records (VMAR),

.MA 197
Format Memory Context Records (VMCO),

.MC 204
Format Memory Object Records (VMOB),

.MO 212
Format Memory Page Frame Structures (PFs),

.MP 225
Format Memory Structures, .M 196
Format Memory Virtual Page Structures (VPs),

.MV 230
Format the System Anchor Segment

(SAS),.A 149
Format, New Trace 270
FSC 277, 291
FSD 277, 291
Functions, Built-in 76

G
G, Go 109
Gate 277
GDT 277, 291
GISEG 277, 291
Global Descriptor Table (GDT) 277
Global Information Segment (GISEG) 277
glossary 273
Go, G 109
Group Control Block, Screen 282

Index 295

Group, Screen 282
Group, Symbol 284
Guide, Kernel Debugger User 1

H
H, Hex Arithmetic 111
hal 278
har 278
hco 278
Header (MQ), Message Queue 280
Heap Validation, Virtual Memory Management

System 21
Heap, Virtual Memory Kernel 287
helper, Virtual Device Driver 39
Hex Arithmetic, H 111
hmte 278
hob 278
hptda 278
HSTRICT 1, 71

I
I, Input from an I/O Port 113
IBM 291
Identifier, Command Subtree 274
Identifier, Process 281
Identifier, Thread 285
IDT 278, 291
Information block, Physical Arena 281
Information Block, Process 281
Information Block, Thread 285
Information Packet, Register 282
Information Segment, Global 277
Information Segment, Local 279
Input from an I/O Port, I 113
Installing the Debug Kernel 2
Internal Commands 80

?, Show Internal Command Help 82
B, Breakpoint 84
BC, Clear Breakpoints 84
BD, Disable Breakpoints 85
BE, Enable Breakpoints 85
BL, List Breakpoints 86
BP, Set or Alter Breakpoint 87
BR, Set or Alter a Debug Register

Breakpoint 89
BS, Show Timestamped Breakpoint Trace 90
BT, Set Timestamped Breakpoint Trace 91
C, Compare Memory 93
D, Display Memory 94
DA, Display Memory in ASCII Format 96

Internal Commands (continued)
DB, Display Memory in Byte Format 96
DD, Display Memory in Doubleword

Format 97
DG, Display Global Descriptor Table 97
DI, Display Interrupt Descriptor Table 100
DL, Display the Current Local Descriptor

Table 101
DP, Display Page Directory and Table

Entries 102
DT, Display a Task State Segment 104
DW, Display Memory in Word Format 96
DX, Display the 286 LoadAll Buffer 106
E, Enter Data into Memory 107
F, Fill Memory with Repeated Data 108
G, Go 109
H, Hex Arithmetic 111
I, Input from an I/O Port 113
J, Execute Commands Conditionally 114
K, Display Stack Trace from Address 116
L, List Maps, Groups and Symbols 118
M, Move a Block of Data in Memory 122
O, Output to an I/O Port 123
P, PTrace Instruction Execution 124
Q, Quit the Dump Formatter 126
R, Set or Display Current CPU Registers 127
S, Search Memory for Data 132
T, Trace Instruction Execution 133
U, Unassemble 137
V, Exception/Trap/Fault Vector

Commands 139
W, Withmap Add/Remove 143
Y, Set or Display Dump Formatter and Kernel

Debugger Options 144
Z, Set, Execute or Display the Default

Command 146
Internal Processing Errors 12, 21
Internal Processing Errors (IPEs) 279
International Business Machines

Corporation 51
Interrupt Descriptor Table 43
Interrupt Descriptor Table (IDT) 278
Interrupt Gate 277
Interrupt Vector 278
IPE 291
IPEs 279
ITSO 291

J

296 OS/2 Debugging

J, Execute Commands Conditionally 114
JFN 279, 291
JFT 279, 291
Job File Number (JFN) 279
Job File Number Table (JFT) 279

K
K, Display Stack Trace from Address 116
KDB.INI Initialization File 5
Kernel Debugger and Dump Formatter

Command Reference 71
Kernel Debugger Breakpoints 38
Kernel Debugger Local Setup 2
Kernel Debugger Remote Setup 6
Kernel Debugger User Guide 1

L
L, List Maps, Groups and Symbols 118
LDT 279, 291
Limitations 10
Line, Analog Dial-in Telephone 7
List Breakpoints, BL 86
List Maps, Groups and Symbols, L 118
Loader Cache 279
loader log, Example 24
Loader Logging Facility, System 21
Local Descriptor Table 67
Local Descriptor Table (LDT) 279
Local Information Segment 279
Local Memory Area (TLMA), Thread 285
Local Setup, Kernel Debugger 2
Lock Trace, Virtual Memory Management 18
Logging Facility, DosDebug 37
Logging Facility, DosPTrace 38
Logging Facility, System Loader 21
Low Speed Modems 10

M
M, Move a Block of Data in Memory 122
Management Lock Trace, Virtual Memory 18
Management Package, Record 282
Management System Heap Validation, Virtual

Memory 21
Map, Symbol 284
Master File Table (MFT) 279
Memory Alias Record, Virtual 287
Memory Area (TLMA), Thread Local 285
Memory Management Lock Trace, Virtual 18

Memory Management System Heap Validation,
Virtual 21

Message (QMSG), Queue 282
Message (SQMSG), System Queue 283
Message Queue Header (MQ) 280
Message Structure (SMS), Send 283
MFT 279, 291
Mnemonics and Symbols 78
Modem 6
Modem Data Cable 6
Modems, Low Speed 10
Module Table Entry 23, 40, 64, 69
Module Table Entry (non-swappable) 280
Module Table Entry, Swappable 283
Move a Block of Data in Memory, M 122
MQ 291
MTE 280, 291

N
New Trace Format 270

O
O, Output to an I/O Port 123
Object Record, Virtual Memory 288
Object Table Entry (OTE) 280
Operators, Binary 75
Operators, Unary 76
OTE 280, 291
Output to an I/O Port, O 123
Output, Controlling 14

P
P, PTrace Instruction Execution 124
Page Frame Structure (PF) 280
Page Table Entry (PTE) 280
PAI 281, 291
Paragraph 280
Parameter Block, BIOS 273
Parameter Block, Driver 276
Parameter Block, Volume 288
Patricia Tree 280
Per-Task Data Area 22, 26, 27, 28, 29, 30, 31, 32,

33, 34, 35, 40, 64
Per-Task Data Area (PTDA) 280
PF 280, 291
Physical Arena Information block (PAI) 281
PIB 281, 291
pid 281, 291

Index 297

PMDF Analyze Menu 58
PMDF Edit Menu 56
PMDF File Menu 55
PMDF Help Menu 60
PMDF Mouse Options 61
PMDF Options Menu 57
Process 281
Process Dump Formatter 67
Process Identifier 16, 39, 40
Process Identifier (pid) 281
Process Information Block (PIB) 281
Process, Configuration 7
Processing Errors, Internal 279
Program Data Block 281
Program Segment Prefix (PSP) 281
PS EXEC 64
Pseudo-Objects 281
PSP 281, 291
PTDA 280, 291
PTE 280, 291
PTrace Instruction Execution, P 124
PTREE 280, 291

Q
Q, Quit the Dump Formatter 126
QMSG 291
Queue Header (MQ), Message 280
Queue Message (QMSG) 282
Queue Message (SQMSG), System 283
Quit the Dump Formatter, Q 126

R
R, Set or Display Current CPU Registers 127
RAS 282, 291
Record Lock Record (RLR) 282
Record Management Package (RMP) 282
Reference, Kernel Debugger and Dump

Formatter Command 71
Register Information Packet (RIP) 282
Reliability Availability and Serviceability

(RAS) 282
Remote Setup, Kernel Debugger 6
Required Items to Setup a System 6
Restart the System, .REBOOT 264
RIP 282, 291
RLR 282, 292
RMP 282, 292
RUNCHAIN EXEC 63

S
S, Search Memory for Data 132
SAS 283, 292
Scheduler 282
Screen Group 282
Screen Group Control Block (SGCB) 282
SDTA 284, 292
Search Memory for Data, S 132
Segment Prefix, Program 281
Segment Table Entry (STE) 282
Segment, System Anchor 283
Segment, Task State 284
Select the Communications Port and Speed,

.B 156
Send Message Structure (SMS) 283
Session 283
Set or Alter a Debug Register Breakpoint,

BR 89
Set or Alter Breakpoint, BP 87
Set or Display Current CPU Registers, R 127
Set or Display Default Thread Slot, .S 265
Set or Display Dump Formatter and Kernel

Debugger Options, Y 144
Set Timestamped Breakpoint Trace, BT 91
Set, Execute or Display the Default Command,

Z 146
Setup, Debug Terminal 3
Setup, Kernel Debugger Local 2
Setup, Kernel Debugger Remote 6
SFN 284, 292
SFT 284, 292
SGCB 282, 292
Show Dump State, .I (DF) 186
Show External Command Help,.? 148
Show Internal Command Help, ? 82
Show Timestamped Breakpoint Trace, BS 90
Slot Number, Thread 286
SMS 292
SMTE 283, 292
Software, Communications 7
Speed Modems, Low 10
SQMSG 292
States and Description, Thread 252
STE 282, 292
String Expressions 74
Structure (SMS), Send Message 283
Structure, Current Directory 276
Swap in Storage, .I 183
Swappable Data, Thread 286

298 OS/2 Debugging

Swappable Module Table Entry 40, 69
Swappable Module Table Entry (SMTE) 283
Symbol 284
Symbol Absolute 284
Symbol Group 284
Symbol Map 284
Symbols, Mnemonics 78
Syntax Diagrams 71
System Anchor Segment 58, 147
System Anchor Segment (SAS) 283
System Control Block, File 277
System Dump, Forcing a 14
System File Number (SFN) 284
System File Table (SFT) 284
System Heap Validation, Virtual Memory

Management 21
System Loader Logging Facility 21
System Queue Message (SQMSG) 283
System Trace Data Area (SDTA) 284
System, Controlling the 11

T
T, Trace Instruction Execution 133
Table Entry, Segment 282
Task 284
Task Gate 43, 277
Task State Segment 43, 44
Task State Segment (TSS) 284
TCB 285, 292
Telephone Line, Analog Dial-in 7
TEMPLATE EXEC 65
Terminal Setup, Debug 3
the Debug Kernel, Installing 2
The KDB.INI Initialization File 5
Thrashing 285
Thread 285
Thread Control Block (TCB) 285
Thread Identifier 16
Thread Identifier (tid) 285
Thread Information Block (TIB) 285
Thread Local Memory Area (TLMA) 285
Thread Slot Number 286
Thread States and Description 252
Thread Swappable Data (TSD) 286
Thunking 286
TIB 285, 292
tid 285, 292
TLB 285, 292
TLMA 292

Trace Data Area, System 284
Trace Format, New 270
Trace Instruction Execution, T 133
Trace, Virtual Memory Management Lock 18
Tracepoint 286
Translation Lookaside Buffer (TLB) 285
Trap Gate 277
Tree, Patricia 280
Troubleshooting 10
TSD 286, 292
TSS 284, 292

U
U, Unassemble 137
Unary Operators 76
Unassemble, U 137
User Guide, Kernel Debugger 1
UVIRT 286

V
V, Exception/Trap/Fault Vector Commands 139
Validation, Virtual Memory Management System

Heap 21
VDM 287, 292
Vector, Interrupt 278
Virtual Device Driver helper 39
Virtual DOS Machine (VDM) 287
Virtual Memory Alias Record (VMAL) 287
Virtual Memory Arena Header Record

(VMAH) 287
Virtual Memory Arena Record (VMAR) 287
Virtual Memory Context Record (VMCO) 288
Virtual Memory Kernel Heap (VMKH) 287
Virtual Memory Management Lock Trace 18
Virtual Memory Management System Heap

Validation 21
Virtual Memory Object Record (VMOB) 288
Virtual Page Structure (VP) 287
VMAH 287, 292
VMAL 287, 292
VMAR 287, 292
VMCO 288, 292
VMKH 287, 292
VMOB 288, 292
Volume Parameter Block (VPB) 288
VP 287, 292
VPB 288, 292

Index 299

W
W, Withmap Add/Remove 143
Withmap Add/Remove, W 143
WND 292

Y
Y, Set or Display Dump Formatter and Kernel

Debugger Options 144

Z
Z, Set, Execute or Display the Default

Command 146
Zombie 288

300 OS/2 Debugging

ITSO Technical Bulletin Evaluation RED000

International Technical Support Organization
OS/2 Debugging Handbook - Volume II
Using the Debug Kernel and Dump Formatter
February 1996

Publication No. SG24-4641-00

Your feedback is very important to help us maintain the quality of ITSO Bulletins. Please fill out this
questionnaire and return it using one of the following methods:

• Mail it to the address on the back (postage paid in U.S. only)
• Give it to an IBM marketing representative for mailing
• Fax it to: Your International Access Code + 1 914 432 8246
• Send a note to REDBOOK@VNET.IBM.COM

Please rate on a scale of 1 to 5 the subjects below.
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction ____

Organization of the book
Accuracy of the information
Relevance of the information
Completeness of the information
Value of illustrations

Grammar/punctuation/spell ing
Ease of reading and understanding
Ease of finding information
Level of technical detail
Print quality

Please answer the following questions:

a) If you are an employee of IBM or its subsidiaries:

Do you provide billable services for 20% or more of your time? Yes____ No____

Are you in a Services Organization? Yes____ No____

b) Are you working in the USA? Yes____ No____

c) Was the Bulletin published in time for your needs? Yes____ No____

d) Did this Bulletin meet your needs? Yes____ No____

If no, please explain:

What other topics would you like to see in this Bulletin?

What other Technical Bulletins would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

Name Address

Company or Organizat ion

Phone No.

Cut or Fold
Along Line

Cut or Fold
Along Line

ITSO Technical Bulletin Evaluation RED000
SG24-4641-00 IBML

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM International Technical Support Organization
Department 626C, Building 014-1
Internal Zip 5220
1000 Northwest 51st Street
Boca Raton, Florida
USA 33431-1328

Fold and Tape Please do not staple Fold and Tape

SG24-4641-00

IBML

Printed in U.S.A.

SG24-4641-00

	OS/2 Debugging Handbook - Volume II Using the Debug Kernel and Dump Formatter
	The OS/2 Debugging Handbook Library
	Abstract
	Contents
	Figures
	Tables
	Special Notices
	Preface
	How This Document is Organized
	Related Publications
	International Technical Support Organization Publications
	ITSO Redbooks on the World Wide Web (WWW)
	Acknowledgments

	Chapter 1. Kernel Debugger User Guide
	Kernel Debugger Local Setup
	Installing the Debug Kernel
	Debug Terminal Setup
	The KDB. INI Initialization File
	Kernel Debugger Remote Setup
	Items Required to Setup a System for Remote Debugging
	The Configuration Process
	Controlling the System from the Debugging Console
	Controlling Output to the Debugging Console
	Optional System Diagnostic Facilities
	Forcing a System Dump from the Kernel Debugger
	Virtual Memory Management Lock Trace
	Virtual Memory Management System Heap Validation
	System Loader Logging Facility
	DosDebug Logging Facility
	DosPTrace Logging Facility
	Kernel Debugger Breakpoints
	Trap and Exception Processing
	Exception Registration Records
	OS/ 2 Exception Exception Management - Overview
	Exception Handler Stack Frames
	Intercepting Exceptions and Traps

	Chapter 2. Dump Formatter User Guide
	Dump Formatter Installation
	Dump Decompression
	Presentation Manager Dump Formatter (PMDF) Installation
	PMDF Menus and Options
	PMDF File Menu
	PMDF Edit Menu
	PMDF Options Menu
	PMDF Analyze Menu
	PMDF Help Menu
	PMDF Mouse Options
	PMDF REXX Interface
	The RUNCHAIN EXEC
	The PS EXEC
	The TEMPLATE EXEC
	Process Dump Formatter

	Chapter 3. Kernel Debugger and Dump Formatter Command Reference
	Syntax Diagrams - Notation
	The Expression Evaluator
	String Expressions
	Arithmetic Expressions
	Internal Commands
	? - Show Internal Command Help or Evaluate an Expression
	B - Breakpoint Command Family
	BC - Clear Breakpoints
	BD - Disable Breakpoints
	BE - Enable Breakpoints
	BL - List Breakpoints
	BP - Set or Alter a Breakpoint
	BR - Set or Alter a Debug Register Breakpoint
	BS - Show Timestamped Breakpoint Trace
	BT - Set Timestamped Breakpoint Trace
	C - Compare Memory
	D - Display Memory
	DA - Display Memory in ASCII Format
	DB - Display Memory in Byte Format
	DW - Display Memory in Word Format
	DD - Display Memory in Doubleword Format
	DG - Display Global Descriptor Table
	DI - Display Interrupt Descriptor Table
	DL - Display the Current Local Descriptor Table
	DP - Display Page Directory and Table Entries
	DT - Display a Task State Segment
	DX - Display the 286 LoadAll Buffer
	E - Enter Data into Memory
	F - Fill Memory with Repeated Data
	G - GO
	H - Hex Arithmetic
	I - Input from an I/ O Port
	J - Execute Commands Conditionally
	K - Display Stack Trace from Address
	L - List Maps, Groups and Symbols
	M - Move a Block of Data in Memory
	O - Output to an I/ O Port
	P - PTrace Instruction Execution
	Q - Quit the Dump Formatter
	R - Set or Display Current CPU Registers
	S - Search Memory for Data
	T - Trace Instruction Execution
	U - Unassemble
	V - Exception/ Trap/ Fault Vector Commands
	W - Withmap Add/ Remove
	Y - Set or Display Dump Formatter and Kernel Debugger Options
	Z - Set, Execute or Display the Default Command
	External Commands
	.? - Show External Command Help
	.A - Format the System Anchor Segment (SAS)
	.B - Select the Communications Port and Speed
	.C - Display the Common ABIOS Data Area
	.D - Display an OS/ 2 System Structure
	.I - Swap in Storage
	.H - Display Dump File Header Information
	.I (DF) - Show Dump State
	.K - Display User Stack Trace
	.LM - Format Loader Structures (MTE, SMTE, OTE and STE)
	.M - Format Memory Structures
	.MA - Format Memory Arena Records (VMAR)
	.MC - Format Memory Context Records (VMCO)
	.MK - Display Memory Lock Information Records (VMLKI)
	.ML - Format Memory Alias Records (VMAL)
	.MO - Format Memory Object Records (VMOB)
	.MP - Format Memory Page Frame Structures (PFs)
	.MV - Format Memory Virtual Page Structures (VPs)
	.N - Display Dump Information Summary
	.P - Display Process Status
	.PB - Display Blocked Thread Information
	.PQ - Display Scheduler Queue Information
	.PU - Display Thread User Space Information
	.R - Display User¢ s Registers
	.REBOOT - Restart the System
	.S - Set or Display Default Thread Slot
	.T - Dump the System Trace Buffer

	Glossary
	List of Abbreviations
	Index
	Special Characters A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	N
	O
	P
	M
	S
	Q
	R
	U
	V
	T
	W
	Y
	Z
	ITSO Technical Bulletin Evaluation RED000

