
SmartSVN 2 Reference

SyntEvo GmbH, www.syntevo.com

2006

Contents

1 Introduction 5

2 Main Window 6
2.1 Projects . 6
2.2 Directory Tree and File Table . 7

2.2.1 Directory States/Directory Tree . 7
2.2.2 File States/File Table . 7
2.2.3 The Focus . 8
2.2.4 Refreshing . 8
2.2.5 Smart Open . 8

2.3 Menus . 9
2.3.1 Edit Menu . 9
2.3.2 Window Menu . 9
2.3.3 Help Menu . 9

3 Commands 14
3.1 Checkout . 14
3.2 Create Module . 15
3.3 Updating . 16

3.3.1 Update . 16
3.3.2 Update More . 16
3.3.3 Switch . 16
3.3.4 Switch to URL . 17
3.3.5 Relocate . 17

3.4 Merging . 17
3.4.1 Merge . 17
3.4.2 Merge from URL . 18

3.5 Commit . 18
3.6 Local Modifications . 19

3.6.1 Add . 19
3.6.2 Ignore . 20
3.6.3 Remove . 20
3.6.4 Delete Physically . 20
3.6.5 Rename . 20
3.6.6 Move . 20

1

Contents

3.6.7 Smart Move . 21
3.6.8 Copy . 21
3.6.9 Revert . 21
3.6.10 Mark Resolved . 22

3.7 Advanced Copies . 22
3.7.1 Copy URL-WC . 22
3.7.2 Copy WC-URL . 23
3.7.3 Copy URL-URL . 23

3.8 Properties . 23
3.8.1 Edit Properties . 23
3.8.2 Change File Type . 24
3.8.3 Change EOL Style . 24
3.8.4 Change Keyword Substitution . 24
3.8.5 Change Executable Property . 24
3.8.6 Edit Externals . 24
3.8.7 Edit Ignore Patterns . 25

3.9 Tags . 25
3.9.1 Add Tag . 25
3.9.2 Add Branch . 25
3.9.3 Tag Browser . 26

3.10 Queries . 26
3.10.1 Compare . 26
3.10.2 Compare with Revision . 26
3.10.3 Compare 2 Files . 26
3.10.4 Change Report . 26
3.10.5 Log . 27
3.10.6 Annotate . 27
3.10.7 Create Patch . 28
3.10.8 Create Patch between URLs . 28

3.11 Locks . 28
3.11.1 Scan Repository . 28
3.11.2 Lock . 29
3.11.3 Unlock . 29
3.11.4 Show Info . 29
3.11.5 Change Needs Lock . 29

3.12 Remote State . 30
3.12.1 Refresh Remote State . 30
3.12.2 Clear Remote State . 30

3.13 Tools . 31
3.13.1 Conflict Solver . 31
3.13.2 Export Backup . 31
3.13.3 Canonicalize URLs . 31
3.13.4 Remove Empty Directories . 31

3.14 Common Features . 32
3.14.1 Revision input fields . 32

c© 2006 SyntEvo GmbH, www.syntevo.com 2

Contents

3.14.2 Repository path input fields . 32
3.14.3 Tag input fields . 32

4 Repository Browser 33
4.1 Checkout . 33
4.2 Modifying the repository . 33
4.3 Querying the repository . 34

5 Repository Profiles 35
5.1 Profiles . 35

5.1.1 Add . 35
5.2 Proxies . 37

6 Project Management 38
6.1 Project Manager . 38
6.2 Project Settings . 38

6.2.1 Repository Layout . 38
6.2.2 Text File Encoding . 39
6.2.3 Refresh/Scan . 39
6.2.4 Working Copy . 39
6.2.5 TMate . 40
6.2.6 Default Settings . 40

7 Preferences 41
7.1 On Startup . 41
7.2 Change Report . 41
7.3 Commit . 41
7.4 Conflict Solver . 41

7.4.1 Built-in . 42
7.5 Refresh . 42
7.6 File Comparators . 43

7.6.1 Built-in . 43
7.7 External Tools . 43

7.7.1 Directory Command . 44
7.8 Check for Update . 44

8 TMate 45
8.1 Display . 45
8.2 Commands . 45
8.3 Log Cache . 46
8.4 Settings . 47

9 VM options 48
9.1 General options . 48
9.2 SVN options . 48
9.3 User interface options . 49

c© 2006 SyntEvo GmbH, www.syntevo.com 3

Contents

9.4 Specifying options . 50

c© 2006 SyntEvo GmbH, www.syntevo.com 4

Chapter 1

Introduction

SmartSVN is a graphical Subversion (SVN) client. Its target audience are users who
need to manage a number of related files in a directory structure, to control access in a
multi-user environment and to track changes to the files and directories. Typically area
of application are software projects, documentation projects or website projects.

We’ve tried to make SmartSVN easy to use for new SVN users and powerful for
advanced users. Users of SmartCVS, our successful CVS client, will find switching to
SVN using SmartSVN very easy. Various convenient features will help you to make
working with SVN more efficient and comfortable.

We want to thank all users, who have participated in the Early Access Program of
SmartSVN and in this way helped to improve it by reporting bugs and making feature
suggestions.

Special thanks go to Alexander Kitaev from TMate Software (http://www.tmate.org),
who provides the excellent base library SVNKit which SmartSVN uses for accessing Sub-
version repositories and working copies.

5

Chapter 2

Main Window

The main window is the central place when working with SmartSVN. In the center of
the window, all Directories and Files of the current SVN working copy are displayed.
Various SVN commands on these directories and files are provided by the menu bar and
the toolbar.

In the bottom left area of the main window the Output window shows logged output
from executed SVN commands.

In the bottom right the TMate window (Section 8) lists the collected revisions as they
happend in the repository.

The size of the windows and their position can be arranged with the mouse. By
dragging their titles, they can be undocked from one position and docked to another
position. The layout of the windows is stored and recovered for future SmartSVN sessions.

At the very bottom of the main window the status bar displays various kinds of
information, like information on the currently selected menu item, operation progress or
the repository URL of the currently selected file/directory.

While SVN operations with a connection to the repository are processed, the progress
display shows the total amount of sent and received bytes during this operation.

2.1 Projects

SmartSVN internally manages your SVN working copies by “SmartSVN projects”. A
SmartSVN project (subsequently only referenced as “project”) points to a local SVN-
controlled directory and has a name and some settings (Section 6.2) attached to it. When
working with SmartSVN, you are always working with a project.

Projects can be created in different ways from the Project menu. To create a com-
pletely new project from a not-yet-version-controlled local directory, use Create Module
(see Section 3.2). This will also create the corresponding directory (module) in the repos-
itory. If you want to create a local working copy from a project which already exists in
a repository, use Check Out (see Section 3.1). To create a project from an already ver-
sioned local directory, use Create from Directory and specify the local SVN-controlled
directory.

One main window always refers to one project. To work with multiple projects at
the same time, you can open multiple main windows by clicking Window|Open New

6

Chapter 2. Main Window

Window. Already managed projects can be opened in a main window by Open or closed
by Close.

2.2 Directory Tree and File Table

The directory tree and the file table show the local directories/files below the project’s
root directory. .svn-directories and ignored directories and files within other ignored
directories are not displayed.

2.2.1 Directory States/Directory Tree

The directory tree shows the project’s directories and their SVN states, which are denoted
by different icons. They are listed in Table 2.1. In case of a versioned directory, the
corresponding revision number is displayed after the name of the directory.

2.2.2 File States/File Table

The file table shows the project’s files with their SVN states and various additional in-
formation. The meaning of the states/icons is listed in Table 2.3. The rest of this section
explains configuration options for the file table. They are always related only to the
current project and are also stored with the current project.

File Attributes

You can specify which file attributes shall be displayed in the file table by View|Table
Columns, see Table 2.2. Also, the order of the table columns can be defined here, alterna-
tively to rearranging them directly in the file table. Select Automatically resize columns
to let SmartSVN automatically adjust the size of every column depending on its content.
Select Make this configuration the default to have the selected configuration applied to
every new project.

Tip Certain table columns require to access additional files when scan-
ning the file system and therefore slow down scanning. The note
within the Table Columns dialog gives you information on which
columns these are.

Name Filters

The toolbar of the file table contains the Filter input field, which can be used to restrict
the displayed files to a certain file name pattern. Wildcard symbols ’*’ and ’%’ can be
used with the usual meaning.

To search the file table for a certain file you can simply start typing the file name
while the focus is in the file table. This will make a small popup come up, which displays
the characters you have already entered. Again, wildcard symbols ’*’ and ’%’ can be used
with the usual meaning.

c© 2006 SyntEvo GmbH, www.syntevo.com 7

Chapter 2. Main Window

State Filters

With the menu items in the View menu, you can also set filters to display only files which
meet certain criteria. Files From Subdirectories enables the recursive view showing not
only files from the currently selected directory but also those from subdirectories.

With Ignored Files ignored files within versioned directories will be displayed. Files
from ignored directories are never displayed.

With Unversioned Files unversioned files (also within unversioned directories) are
displayed.

Note Unversioned Files option does in no way affect the unversioned files
itself or their SVN state. Certain operations, which can work on
unversioned files, will consider them anyway. Parent directories of
unversioned files will remain in modified children state. To actually
ignore such files on the SVN-level you can use the Ignore command
(Section 3.6.2).

With Unchanged Files unchanged files are displayed. It is sometimes convenient
to hide them, as they don’t matter for most of the SVN commands. With Remote
Changed Files selected, files will be displayed which are locally unchanged, but are re-
motely changed (see Table 3.2). This option has no effect, if Unchanged Files is selected.

2.2.3 The Focus

The directory tree and the file table are the central components within SmartSVN’s main
window. A virtual focus is always assigned to exactly one of both components. The focus
and the currently selected files/directory define which commands/actions are available
from the menu bar and the tool bar.

2.2.4 Refreshing

The contents of the directory tree and the file table are initialized when a project is
opened by reading at least the contents of the root directory into memory. Whether
the complete project shall also be read into memory at project startup or not can be
configured in the project settings (Section 6.2). When changes to known (i.e in memory)
files or directories occur from within SmartSVN, they are refreshed automatically. In case
of external changes, an explicit refresh via View|Refresh or by the corresponding toolbar
button is required. You can configure the kind of refresh (“depth”) within the application
preferences (Section 7.5).

2.2.5 Smart Open

When double-clicking a file in the file table, the file will be “opened”, depending on its
file state:

• An unchanged, unversioned or added file is opened with the file editor, see the
Edit|Open command (Section 2.3.1) for further details.

c© 2006 SyntEvo GmbH, www.syntevo.com 8

Chapter 2. Main Window

• A conflicting file is opened with the Conflict Solver (Section 3.13.1).

• All other files are opened by comparing them (Section 3.10.1).

2.3 Menus

This section summarizes actions which are available from the Edit, the Window and the
Help menu.

2.3.1 Edit Menu

Stop stops the currently running operation. Depending on the type of operation, this
action might not be applicable. On the other hand, while an operation is running, most
other actions are not applicable.

Open opens the selected file/directory. If the directory tree has the focus, this action
will only work, if a Directory Command has been configured in the preferences (see
Section 7.7). If the file table has the focus the file will be opened in an editor. The editor
which shall be used to open a file can be configured in the Externals Tools section of the
Preferences (see Section 7.7). If no editor is configured there, the internal file editor will
be launched.

Select Committable Files selects all committable files in the file table.

Note In the Professional Version, SmartSVN allows to automatically add
unversioned or remove missing files for a commit. Hence these files
are also selected.

Select Directory selects the deepest common directory for all selected files in the file
table.

Copy File Path copies the path of the selected file to the system clipboard. If multiple
files are selected, all paths will be copied, each on a new line.

Copy File Name copies the name of the selected file to the system clipboard. If
multiple files are selected, all names will be copied, each on a new line.

Preferences shows the application preferences (see Section 7.8).

2.3.2 Window Menu

With Open New Window you can open a new main window to work with multiple
projects at the same time. The subsequent content of the Window menu depends on
which windows (frames) are currently open. For each window, there is a menu item to
switch to it.

2.3.3 Help Menu

Help Topics shows the online version of SmartSVN’s help.
License Information shows information on your SmartSVN license and the licensing

conditions for SmartSVN.

c© 2006 SyntEvo GmbH, www.syntevo.com 9

Chapter 2. Main Window

Register lets you upgrade SmartSVN to the professional version. You will need to
purchase a license file, but it’s definitely worth the money!

Enable Connection Logging can be used to trace and analyze problems when working
with SmartSVN. The dialog will give you further instructions on how to use Connection
Logging.

Check for Updates connects to the SmartSVN website and checks, if there is a new
version available for download. By default, this check is also performed when starting
SmartSVN. You can configure the update checking within the Preferences (Section 7).

About SmartSVN shows information on the current SmartSVN version.

c© 2006 SyntEvo GmbH, www.syntevo.com 10

Chapter 2. Main Window

Icon Meaning Details

Unchanged Directory is under version control, not modified and equal
to its revision in the repository resp. to its pristine copy.

Unversioned Directory is not under version control and hence only exists
locally.

Ignored Directory is not under version control (exists only locally)
and is marked to be ignored.

Modified Directory itself is modified in its properties (compared to its
revision in the repository resp. to its pristine copy.)

Modified children At least one direct or indirect child of this directory has a
Non-Unchanged state.

Added Directory is scheduled for addition.

Removed Directory is scheduled for removal.

Replaced Directory has been scheduled for removal and added again.

Copied Directory has been added with history.

History-Scheduled A parent directory has been added with history, which im-
plicitly adds this directory with history.

Missing Directory is versioned, but does not exist locally.

Conflict An updating command lead to conflicting changes in direc-
tories’ properties.

Incomplete A previous update was not fully performed. Do an update
again.

Root or External Directory is either the project root or an external root. This
state might be combined with other directory states.

Nested Root Directory is a nested working copy root, but no external.

Obstructed The local working-copy is damaged here; backup your mod-
ifications and do a clean checkout.

Remote Directory only exists in the repository. This state is only
used for the remote state command (see Section 3.12).

Unscanned Directory has not been scanned yet (see Section 2.2.4).

Switched Directory is switched (compared to its parent); see Section
3.3.3. Is combined with other states.

Locked Directory is locked locally because an operation has been
interrupted before. A Refresh (Section 2.2.4) should fix the
problem. Is combined with other states.

Figure 2.1: Directory States

c© 2006 SyntEvo GmbH, www.syntevo.com 11

Chapter 2. Main Window

SmartSVN Name SVN info Description
Name (same) The file’s name
Revision (same) Current revision of the file
Local State Schedule Textual representation of the local state

of the file
Remote State - Remote state of the file (see Section

3.12)
Lock Lock Owner Lock state of the file (see Section 3.11)
Last Rev. Last Changed Rev. Revision, where this file has been com-

mitted
Last Changed Last Changed Date Time of the last commit of the file
Text Updated Text Last Updated Time of the last (local) update of the

file’s text; this attribute is set when the
content of a file has been changed by an
SVN command.

Props Updated Properties Last Updated Time of the last (local) update of the
file’s properties; this attribute is set
when the properties of a file have been
changed by an SVN command.

Last Author Last Changed Author Last author, i.e. who performed the
last commit on the file

Type svn:mime-type The file’s type (see Section 3.8.2)
EOL svn:eol-style End-Of-Line Type of the file (see Sec-

tion 3.8.3)
Keyw. svn:keywords Keyword substitution options of the file

(see Section 3.8.4)
Needs Lock svn:needs-lock Whether the file should be locked be-

fore working (see Section 3.11.5)
Executable svn:executable Whether the file has the executable

property set (see Section 3.8.5)
Copy From Copy From URL/Rev Location and URL from which this file

has been copied (locally). This value is
only present if the file is in Copied state

Ext. - The file’s extension
Relative directory - Parent directory of the file relative to

the selected directory
File Time - The local time of the file

Figure 2.2: File Attributes

c© 2006 SyntEvo GmbH, www.syntevo.com 12

Chapter 2. Main Window

Icon Meaning Details

Unchanged File is under version control, not modified and equal to its
revision in the repository resp. to its pristine copy.

Unversioned File is not under version control, hence it only exists locally.

Ignored File is not under version control (exists only locally) and is
marked to be ignored.

Modified File is modified in its content or properties (compared to its
revision in the repository resp. to its pristine copy).

Missing File is under version control, but does not exist locally.

Added File is scheduled for addition.

Removed File is scheduled for removal.

Replaced File has been scheduled for removal and added again.

Copied File has been added with history.

History-Scheduled A parent directory has been added with history, which im-
plicitly adds this file with history.

Conflict An updating command lead to conflicting changes either in
content or properties.

Incomplete A previous update was not fully performed. You should do
an update again.

Remote File does not exist locally, but only in the repository. This
state is only used for the remote state (see Section 3.12).

Obstructed The local working-copy is damaged here; backup your mod-
ifications and do a clean checkout.

Figure 2.3: File States

c© 2006 SyntEvo GmbH, www.syntevo.com 13

Chapter 3

Commands

SmartSVN provides most of the command-line SVN commands in a standalone version,
but also combines them to powerful higher-level commands. Common enhancements,
which are present for various of the following commands are explained in Section 3.14.

3.1 Checkout

Use the Checkout command to create a working copy from a project which is already
under SVN control.

Page “Repository”

First you need to select the repository from which you want to check out a project. If you
can’t find the repository profile in the combobox, click the Manage button to add it, see
Section 5 for details.

Click Next to continue.

Page “Location”

After switching to this page, the repository will be scanned. A few moments later you’ll
see the root content of the repository. Expand the tree nodes to dive into the repository
structure, for more details refer to Section 4.

Use the Select Revision button to define the revision you want to fetch. Of course
the repository content might change when changing the revision.

Select the repository directory you want to check out and click Next.

Page “Target Directory”

At this page you can select the local directory into which the working copy should be
checked out. Use the options to define, how the directory name should be created. The
Checkout Directory depends on these options and always shows the final directory into
which the checkout will occur (i.e. where the root .svn- directory will be created).

14

Chapter 3. Commands

With Check out non-recursively, you will only checkout the previously selected repos-
itory directory, but no subdirectories. Later you may choose to checkout certain subdi-
rectories by Update More(see 3.3.2). Non-recusive checkouts can be useful, if you wish to
skip certain modules of a project.

Click Next to proceed.

Page “Project”

At this page you can select whether to Check out a working copy, i.e. create the necessary
.svn/ structure or to simply Export the files from the repository. With Check out a
working copy and manage as project, SmartSVN will add the working copy to its list of
projects, using the specified Project Name. In case of Export only, you have to specify
the desired line endings marker with Use EOL.

Click Next to proceed.

Page “Confirmation”

Use this page to review your choices. Click Back to change them or Finish to start the
checkout.

3.2 Create Module

Use this command to add a new locally available project to the repository and to create
the corresponding SmartSVN project.

Page “Directory to Import”

Select the local directory, for which you want to create a new project and a new module
in the repository.

Page “Repository”

Choose the repository you want the new module to be created in. If the profile does not
exist yet, click the Manage button to add it.

Page “Location”

After switching to this page, it takes a few moments until the repository is scanned. You
are able to dive into the repository by expanding the directory nodes, for more details
refer to Section 4. Use the Create Directory to create a new directory for your project
in the repository.

After you’ve created the necessary structures in the repository, select the directory
which should be linked with the root of your local project and click Next.

c© 2006 SyntEvo GmbH, www.syntevo.com 15

Chapter 3. Commands

Page “Project Name”

At this page you can assign a name to the project, which will automatically be created. If
you just want to import the project without further working with it, deselect the option
Add to list of managed projects.

Page “Confirmation”

Use this page to review your choices. Click Back to change them or Finish to start the
Module creation.

The result of the Create Module command will be a new project, for which only the
local root directory is under SVN control. This gives you many possibilities to config-
ure which files/directories of your local file system should actually be versioned in the
repository. From the Edit menu you can use Add and Ignore on files and directories.
Furthermore, for files you can adjust properties by the corresponding commands from the
Properties menu. After the project has been fully configured, use Modify|Commit to do
the final import into the repository.

3.3 Updating

Updating from the repository can happen either by a simple update of the working copy
or by switching the working copy to another location/revision. Following commands are
available from the Modify menu.

3.3.1 Update

Use this command to get the latest changes or a specific revision from the repository for
the selected files/directory.

Select HEAD to get the latest changes. To get a revision, select Revision and enter
the revision number. Select Recurse into subdirectories to perform the update command
not only for the current selected directory, but also for all subdirectories.

3.3.2 Update More

Use this command to get locally missing directories and files from the repository for a
foregoing non-recursive Update or Checkout(see 3.1).

Update More checks for the currently selected directory, whether there are not yet
checked out subdirectories. They are presented in a list and you can select one or more of
them to update. Recurse into subdirectories specifies, whether the selected directories
shall be updated resp. checked out recursively or not.

3.3.3 Switch

Use the Switch command to switch the selected directory to the Trunk, a tag or a branch.

c© 2006 SyntEvo GmbH, www.syntevo.com 16

Chapter 3. Commands

Select Trunk to switch back from a branch or tag to the main trunk. Select Branch
or Tag and enter the branch or tag name to switch to a tag or branch. Select Recurse
into subdirectories to perform the switch command not only for the currently selected
directory, but also for all subdirectories.

This Switch command only works on directories, which are covered by the Repository
Layout (Section 6.2.1), which is defined in the Project Settings. To switch to arbitrary
locations or other revisions than HEAD, use the Switch to URL command.

3.3.4 Switch to URL

Use the Switch-to-URL command to switch the selected directory to an arbitrary reposi-
tory URL/revision.

Select the Repository Profile which you want to switch to and enter the desired
Repository Path. To switch to the latest revision, select HEAD. To switch to another
revision, select Revision and enter the revision number. Select Recurse into subdirec-
tories to perform the Switch command not only for the currently selected directory, but
also for all subdirectories.

3.3.5 Relocate

Use the Relocate command to “locally switch” the selected directory to another reposi-
tory/URL.

Relocate Directory shows the directory, relative to the project’s root directory, which
will be relocated. From URL displays the repository root URL of the selected directory,
if this information is available locally. Otherwise it displays the complete repository URL
of the directory. With To URL you can now specify the replacement string for From
URL: Relocate will then search within the selected directory and subdirectories for URLs
starting with From URL and replace the corresponding part by To URL.

3.4 Merging

Merging is used to incorporate changes between two repository revisions into the current
working copy.

3.4.1 Merge

Use the Merge command to merge changes from other source-branches to the selected
file/directory.

Select Trunk to merge from the main trunk. Select Branch or Tag and enter the
branch or tag name to merge changes from a branch or tag. Location shows the final
merge source.

You can either merge a Revision Range, where all revisions From a certain revision
To another revision are merged. For the To Revision, you can either specify the Revision
directly or merge up to HEAD. The merged changes correspond exactly to the difference

c© 2006 SyntEvo GmbH, www.syntevo.com 17

Chapter 3. Commands

between both revisions. You can also merge changes from exactly one Single Revision,
which is specified by its Number.

Select Reverse merge to reverse the changes between the selected revisions. Internally,
this is achieved by swapping the start and end revision.

By default, merging takes the ancestry into account. This means, that Merge does
not simply calculate (and merge) the difference between two files which have the same
path, but also checks if both files are actually related. For the typical usecases of Merge,
this behaviour leads to the expected results. For all other cases, you can decide to switch
it off by selecting Ignore ancestry.

Select Recurse into subdirectories to merge not only the files in the currently selected
directory, but also those from subdirectories.

This Merge command only works on directories, which are covered by the Repository
Layout (see Section 6.2.1), defined in the Project Settings. To merge from arbitrary
locations use the Merge from URL command.

3.4.2 Merge from URL

Use the Merge from URL command to merge changes between two arbitrary URLs to the
selected file/directory.

Profile 1, corresponding Path 1 and Revision 1 define the first merge source. Profile
2, corresponding Path 2 and Revision 2 define the second merge source. The difference
between first and second merge source (the order of the sources is important) will be
merged to the local working copy.

For details regarding the options, refer to Section 3.4.1.

3.5 Commit

Use the Commit command to write back (commit) the changes of the selected files/directory
to the repository.

Page “Configuration”

Select Recurse into subdirectories to commit not only changes from the selected local
directory, but also from subdirectories.

Select Keep Locks to keep existing file locks remaining after the commit. If not
selected, the files will be automatically unlocked after a successful commit. For more
information regarding locking, see Section 3.11.

Select Automatically add unversioned and remove missing files if you want SmartSVN
to automatically add unversioned (most likely new) files and remove missing (most likely
obsolete) files before the commit. Select Detect moved and renamed files if you want
SmartSVN to detect files which are most likely renamed or moved. These files will not
simply be added and removed, but marked as copied. For details, refer to Section 3.6.7.

Select Remove removed parent directories to make SmartSVN also scan parent
directories of the files/directory which have been selected for the commit. If such a parent

c© 2006 SyntEvo GmbH, www.syntevo.com 18

Chapter 3. Commands

directory is scheduled for removal, it will automatically be included for the commit. With
Also remove empty parent directories, all resulting emtpy parent directories will also
be included for the commit. To cleanup all empty directories within your project, you
can use Tools|Remove empty directories, see Section 3.13.4.

Clicking Next might take some time, because the file system of your project needs to
be scanned for committable files.

Page “Smart Move”

This page only occurs, if the option Detect moved and renamed files on the Config-
uration page is selected and at least one moved or renamed file pair was detected. For
details, refer to Section 3.6.7.

Page “Confirmation”

At this page you will get a list of all files and directories which were found to be com-
mittable according to the selected options from the Configuration page. To skip a
file/directory from commit, deselect the corresponding checkbox.

Finally you can enter a Commit Message, which will be displayed in various kinds of
logs. A meaningful commit message is very helpful for you and your team to track your
changes. SmartSVN also remembers recently used commit messages and even lets you
get a commit message from the log by choosing Get from Log from the action button.

By default, SmartSVN will warn you in case of an empty commit message. You can
switch this warning off in the global commit preferences(see 7.3).

Click Finish to commit the selected files and directories.

3.6 Local Modifications

Local commands can be performed without a connection to the repository. They are
used to prepare the working copy state for a final commit. Following local commands are
available from the Modify menu.

3.6.1 Add

Use this command to schedule files or directories for beeing added to SVN control.
In case of directories you have the option to Recurse into subdirectories, which -

when selected - causes all subdirectories and files from subdirectories to be added as well.
When a file is added, SmartSVN automatically applies certain properties to the file.

Most important is the automatic detection of the files MIME type (Type), which can
basically be text or binary. Further property defaults can be specified in the project
settings(see 6.2).

Tip Automatic detection can be overriden by the binaryExtensions

entry in settings.xml. All extensions listed here will automati-
cally treated as binary.

c© 2006 SyntEvo GmbH, www.syntevo.com 19

Chapter 3. Commands

3.6.2 Ignore

Use this command to mark unversioned files or directories to be ignored. This is useful
for files or directories which should not be stored under SVN control. Usually .obj or
.class files or even their whole containing directories should be marked as to be ignored.

You can select Ignore Explicitly to add each selected file/directory explicitly to the
ignore list. If SmartSVN detects a common pattern for the selected files/directory, it will
also allow you to Ignore As Pattern.

This command is a shortcut for altering the svn:ignore property, which can also be
edited by Properties|Edit Ignore Patterns. Refer to Section 3.8.7 for details.

3.6.3 Remove

Use this command to schedule the selected files/directory for being removed from SVN
control.

Select Remove from SVN control and delete locally to schedule the files/directory
for removal and to also delete them locally. Select Just remove from SVN control to
schedule for removal only. After committing the changes, the files/directories will remain
as unversioned.

By default, SmartSVN refuses to remove files or directories, which have local modifi-
cations or directories which contain unversioned files. Select Force Removal if you wish
to perform the removal of such items anyway.

3.6.4 Delete Physically

Use this command to delete local files or unversioned resp. ignored directories.

Warning! Be careful before deleting a file (or directory) as there will be no
way to recover unversioned items.

3.6.5 Rename

Use this command to rename a file or directory which is already under SVN control.
The file with the old name will be scheduled for removal, the file with the new name for
addition. This command will preserve the file’s history.

Regarding the Force Removal option, refer to Section 3.6.3.

3.6.6 Move

Use this command to move and/or rename a file or directory which is already under SVN
control. The file with the old name will be scheduled for removal, the file with the new
name for addition. This command will preserve the history of the moved item.

c© 2006 SyntEvo GmbH, www.syntevo.com 20

Chapter 3. Commands

Tip There is also a special variation of this commands, which works on
exactly two selected files, where one of the files is missing and the
other one is unversioned. SmartSVN interprets this as a “belated”
move and moves the missing file to the unversioned file without
displaying any dialog.

3.6.7 Smart Move

Use this command to reproduce already performed moves/renamings of files. Typically,
you will not perform moves/renamings within SmartSVN itself, but with system com-
mands, by IDEs, etc. One such external move/renaming results in a missing and a new
unversioned file. Both files could then be added resp. removed and committed, what
will result in a correct repository content, but will not preserve the relation between both
files (which is actually one moved/renamed file). This has especially effects on the log of
both files: The log of the removed file will end at the committed revision, while the log of
the added file will start at the committed revision. To preserve the relation (and hence
history/log), a belated move on both files has to be performed. Smart Move can detect
such already performed moves based on the file content and displays the corresponding
suggestions.

From Name displays the name of the missing (i.e. old) file. To Name displays the
name of the unversioned (i.e. new) file. If the name of the file has not changed, i.e. From
Name equals To Name, To Name is omitted. In the same manner From Path displays
the path of the old and To Path displays the path of the new file. Again, To Path will
be omitted if it is equal to From Path. Similarity denotes the calculated likelyhood for
this file pair representing an actually happened move/renaming.

If you agree to a move suggestion, keep it selected. This will establish the necassary
relation between missing and unversioned file as if the file had been moved directly by
SmartSVN or any other SVN client. Otherwise, if you decide that a suggestion would
relate two actually unrelated files, deselect it.

Click OK to actually apply the selected move suggestions.

3.6.8 Copy

Use this command to create a copy of a file or directory which is already under SVN
control.

Select the Target Directory and the new File Name under which the copy of the
file/directory shall be created.

This command will preserve the history of the copied item.

3.6.9 Revert

Use this command to revert the local changes of the selected files/directories. In case
of directories you have the option to Revert files and subdirectories recursively. If
deselected, only the properties of the directory itself will be reverted.

c© 2006 SyntEvo GmbH, www.syntevo.com 21

Chapter 3. Commands

• Added files/directories will be unscheduled for addition and return to unversioned
state.

• Removed files/directories will be unscheduled for removal and restored with their
content and properties taken from the pristine copy.

• Replaced files/directories will be unscheduled for replacement and restored with
their content and properties taken from the pristine copy.

• Copied files/directories which are not added (i.e. only copied with history) will
completely be removed.

• Modified files/directories will be restored with their content and properties taken
from the pristine copy (overwriting local changes!).

• Missing files will be restored with their content and properties taken from the pris-
tine copy.

• Conflicted files/directories will be restored with their content and properties taken
from the pristine copy (ignoring local changes which caused the conflict!).

Warning! Be careful before reverting a file or directory as all local modifica-
tions will be lost.

3.6.10 Mark Resolved

Use this command to mark conflicting files/directories as resolved. You need to resolve
conflicts to be able to commit the files/directories. In case of directories you have the
option to Resolve files and subdirectories recursively. If deselected, only the property
conflicts of the directory itself will be resolved.

3.7 Advanced Copies

The Modify menu contains three advanced copy commands, which are directly interacting
with the repository.

3.7.1 Copy URL-WC

With Copy URL-WC you can copy a file or directory from the repository to your local
working-copy. This command is useful to resurrect dead files or directories from earlier
revisions.

Select the From Repository from which you want to copy the file/directory Copy
at the specified Source Revision. Specify the local directory Into Local into which the
file/directory shall be copied. With Name will be the actual name (last component of
the path).

c© 2006 SyntEvo GmbH, www.syntevo.com 22

Chapter 3. Commands

3.7.2 Copy WC-URL

With Copy WC-URL you can copy the local selected file/directory to the repository.
This is the foundation for creating tags, although SmartSVN provides more convenient
functions for this task (see Section 3.9).

The local file/directory Copy Local will be copied to the repository specified by To
Repository. The target directory is Into Directory. With Name will be the actual name
(last component of the path). Because the copy is directly performed in the repository,
you also have to specify a Commit Message.

3.7.3 Copy URL-URL

With Copy URL-URL you can perform pure repositories copies. This is for instance a
convenient and fast way to create repository tags/branches.

Select the Repository Profile to which the copy shall occur. Copy From and the
Source Revision specify the copy source. Copy Into specifies the directory into which
the selected Copy From file/directory shall be copied. With Name specifies the new name
of the copied file/directory (last component of the path). Because the copy is directly
performed in the repository, you also have to specify a Commit Message.

3.8 Properties

Both, files and directories can have properties attached to them. There exists a set of
predefined properties, which are used by SVN itself to manage the working copy. All other
properties are “user-defined” properties. Following commands are related to properties
and are available from the Properties menu.

3.8.1 Edit Properties

This command allows you to display and edit properties of the selected file/directory.
The table displays all properties of a file/directory with their Name, Current Value

and Base Value (the value from the pristine copy). Similar to the File Compare, changes
in property values between current and base value are hightlighted by different colors.

To enter a new property, select the last (empty) line in the table, enter the property’s
name and its value, then click Add. To create a copy from another property, select the
original property, change the property’s name and maybe its value, then click Add. To
change a property, select it in the table, change the name or the value and click Apply.
To delete a property, select it and click Delete.

Note Internal SVN properties starting with svn can’t be edited directly.
Instead, SmartSVN offers special commands in the Properties
menu to modify them.

c© 2006 SyntEvo GmbH, www.syntevo.com 23

Chapter 3. Commands

3.8.2 Change File Type

Use this command to change the SVN-type of the selected files. The file type can be
either a default Text, a default Binary or a Custom type. In case of a Custom type, you
have to specify the corresponding MIME type here. E.g. “text/html”, “application/pdf”
or “image/jpeg”. Don’t change will leave all file types as they are currently.

The file types are relevant for some SVN operations, for instance updating, where in
case of text types the line endings, etc. can be replaced. By default, when adding files
(see Section 3.6.1), the file type category (text or binary) is automatically determined
by SmartSVN. In general this detection is correct, but in certain cases you may want to
explicitly change the type of the file by this command.

3.8.3 Change EOL Style

Use this command to change the EOL style (line separator) of the selected files. The EOL
style is important when updating or checking out a file. The option Platform Dependent
uses the platform’s native line separators. This option is set by default to all added text
files. It is the preferred option if you develop the same project on different platforms.

3.8.4 Change Keyword Substitution

Use this command to select the keywords for the selected files, which shall be substituted
(expanded) locally. Keyword substitution only works for text files.

For each keyword you have the option to Set or Reset it. Select Don’t change, to
keep the current substitution for the keyword.

3.8.5 Change Executable Property

Use this command to change the “Executable Property” of the selected files. The “Ex-
ecutable Property” is a versioned property, but is only used on Unix(-like) platforms,
where it defines whether the “Executable Flag” should be set to a file or not.

Choose Executable if the “Executable Property” should be assigned to the file, Don’t
Change to leave the executable property as it is currently set for each file or Non-
Executable to remove the property form the selected file.

3.8.6 Edit Externals

Use this command to define or change externals.

Example
To include the external http://server/svn/foo as directory bar/bazz at revision
4711 into your project, select directory bar and invoke Properties|Edit Externals.
Enter bazz into the Local Path input field, http://server/svn/foo into the URL
input field, 4711 to the Revision input field and click Add. After committing your
property change, an update on bar will create the subdirectory bar/bazz with the
content from http://server/svn/foo.

c© 2006 SyntEvo GmbH, www.syntevo.com 24

Chapter 3. Commands

Tip It is safer to always set a Revision to external definitions. In this
way you can always be sure about which actual version you are
working with. When you decide to use a more recent revision of
the external, you can evaluate it before and if you are satisfied,
increase the Revision number for this external.

3.8.7 Edit Ignore Patterns

Use this command to add, change or delete local ignore patterns for a directory, which
define files/directories to be ignored within the directory. By default, the ignore patterns
are only applied to the selected directory. You may also choose to apply the patterns
to all subdirectories as well by Recurse into subdirectories. In case of recursive ignore
patterns, you may alternatively consider to specify global ignore patterns within the
project settings(see 6.2.4).

To add an ignore pattern, you can also use the Modify|Ignore command.

3.9 Tags

SmartSVN simplifies the handling of “Tags” and “Branches”. Both “Tags” and “Branches”
are no native SVN concepts, but can easily be handled by the help of copy commands
(Section 3.7). SmartSVN provides special commands for this task, which are based upon
the copy commands. All of theses commands require to have your repository layout prop-
erly configured in the Project|Settings (Section 6.2.1). The commands are available from
the Tag/Branch menu.

3.9.1 Add Tag

Use this command to create a copy (“Tag”) of your local working-copy in the tags direc-
tory of your repository. By default, SmartSVN will fail if the specified tag already exists.
Select Overwrite existing tag, if necessary to create the tag anyway.

This command is similar to Modify|Copy WC-URL (see Section 3.7.2), but simplifies
the special task of “Tagging”.

3.9.2 Add Branch

Use this command to create a copy (“Branch”) of your local working-copy in the branches
directory of your repository. By default, SmartSVN will fail if the specified branch already
exists. Select Overwrite existing branch, if necessary to create the branch anyway.
Switch to branch will immediately switch to the new branch after creation.

This command is similar to Modify|Copy WC-URL (see Section 3.7.2), but simplifies
the special task of “Branching”.

c© 2006 SyntEvo GmbH, www.syntevo.com 25

Chapter 3. Commands

3.9.3 Tag Browser

The Tag Browser displays all tags and branches of your project in a hierarchical structure.
The hierarchy denotes which tags/branches have been derived (i.e. copied) from other
branches.

The tag browser is built up information from the Log Cache(see 8.3). With Refresh
you can refresh the cache and rebuilt the tag/branch-structure.

From the View-button you can select to show both Branches and Tags, Branches
only or Tags only. Recursive View specifies whether the table shall also display tags/branches
which been indirectly derived from the currently selected branch in the tree.

With Removed Tags/Branches SmartSVN will also display tags/branches which have
been deleted within the Repository. The corresponding items will contain a red minus
within their icon to denote the deletion.

Tip You can invoke the Tag Browser also from tag or branch name input
fields by clicking the ellipsis button to the right (...).

3.10 Queries

SmartSVN offers following non-modifying commands - some of them work locally, others
by querying the repository - from the Query menu.

3.10.1 Compare

Use this command to compare a single, local file with its pristine copy. No connection to
the repository is required.

3.10.2 Compare with Revision

Use this command to compare a single, local file with another revision of the file. Select
either to compare the Working Copy or the Pristine Copy. Select futhermore to compare
with the HEAD or with a specific Revision from the repository.

3.10.3 Compare 2 Files

Use this command to compare two local files against each other. No connection to the
repository is required.

3.10.4 Change Report

Use the Change Report on the selected files/directory to get a quick overview over all
their local changes at once.

c© 2006 SyntEvo GmbH, www.syntevo.com 26

Chapter 3. Commands

3.10.5 Log

Use this command to display the change history of the selected file/directory. On the
Configuration page you can specify, how far back in history the changes should be dis-
played.

Select Stop logging on copied locations, to make SmartSVN not trace further
changes after it has encountered a revision where the file/directory has been copied from
another location.

Select Log corresponding Trunk/Tags and Branches locations to log all “source-
branches” of the file. This options requires to have the project’s repository layout prop-
erly configured (Section 6.2.1). Then it will detect all Branches/Tags, in which the
file/directory is present and include them in the log-query.

Select Display all files/directories from found revisions to display for each revision
all items, which have been changed. Otherwise SmartSVN will only display the logged
file resp. the logged directory with its children (recursively). Selecting this option is
useful, when you want to understand the context of a concrete change; for instance all
files involved in a bug fix, etc.

On the Advanced page, you can configure the usage of the Log Cache(see 8.3). By
default, the Log Cache is Enabled with updating, which will speed up logging. You can
also choose Enabled without updating to skip updating the cache from the repository,
before it is queried. With this option you can perform logs without requiring any con-
nection to the repository. However new revision from the repository won’t be displayed.
With Disabled the log command will be performed directly against the repository. This
can be helpful if your Log Cache is obsolete due to changes in the repository of already
cached log data, see Section 8.3 for details.

In addition to the time-dependent revision limitation from the Configuration page,
you can limit the maximum number of returned revisions by Don’t show more than:
revisions. If present, this value is directly passed to the server resp. Log Cache, so it can
increase log performance and reduce network traffic.

With Skip resulting unchanged revisions, SmartSVN will report only those revisions,
where the selected file or the selected directory (including its children) has actually been
changed. This is typically not the case, if the parent directory of the selected file or
directory has been copied. Such revisions are reported by default, but can be skipped by
enabling this option.

After you have configured the command, click OK to proceed. Depending on the
configuration the upcoming Log frame will show the resulting log as a directory/file tree
or as a list of single file revisions.

3.10.6 Annotate

Use the Annotate command to view the “history” of the selected file on a per-line basis.
Similar to the Log command (see Section 3.10.5), you can configure the period of time

for which the annotated view shall be calculated.
After performing this command, an Annotate window of the selected file will come

up. It shows each line prefixed by the line number, revision number, author and date.

c© 2006 SyntEvo GmbH, www.syntevo.com 27

Chapter 3. Commands

These values are corresponding to the revision for which the line has been added or has
been changed for the last time. You can use the Color By to change the way of the line
coloring. With Revision two colors are used, denoting lines older or younger than the
selected revision. Age fades colors from blue to red denoting the age of the line. The age
itself is either linearily interpolated by the corresponding Revision or by the actual Time.
With Author, each line gets the color of its author, where author colors are randomly
assigned.

3.10.7 Create Patch

Use the Create Patch command to create a “Unidiff” patch for the selected files/directory.
A patch shows the changes in your working copy on a per-line basis, which can for instance
be sent to other developers.

The patch will be written to the local Output File. In case of creating a patch for a
directory, you can select Recurse into subdirectories to create the patch recursively for
all files within the selected directory.

3.10.8 Create Patch between URLs

Use the Create Patch between URLs command to create a “Unidiff” patch between to
arbitrary URLs. See Section 3.10.7 for more details on patches.

The base URL is specified by Profile 1, Path 1 and Revision 1. The URL to which
the differences shall be calculated is specified by Profile 2, Path 2 and Revision 2. The
patch itself will be written to the local Output File.

By default, Create Patch takes the ancestry into account. This means, that Create
Patch does not simply calculate (and print out) the difference between two files which
have the same path, but also checks if both files are actually related. You can decide to
switch this behaviour off by selecting Ignore ancestry.

Select Recurse into subdirectories to patch not only the files in the directory itself
which has been specified by the URL, but also those from subdirectories.

3.11 Locks

Since Subversion 1.2, explicit file locking is supported. File locking is especially useful
when working with binary files, for which merging is not possible.

For each file, its lock state is displayed in the file table column Lock. For the list of
possible lock states, refer to Table 3.1.

The “Self” state can be filled by SmartSVN when scanning the local working copy.
Please note, that this state can change, when scanning the repository (see Section 3.11.1),
as the lock might actually be “Stolen” or “Broken”.

3.11.1 Scan Repository

With this command, SmartSVN will scan the selected files or all files within the selected
directory in the repository for locks. The result is displayed in the file table column Lock.

c© 2006 SyntEvo GmbH, www.syntevo.com 28

Chapter 3. Commands

Name Meaning
(Empty) The file is not locked.
Self The file is locked for the local working copy.
Stolen The file was locked for the local working copy but in the meanwhile it

has been stolen by someone other in the repository.
Broken The file was locked for the local working copy, but in the meanwhile it

has been unlocked (by someone other) in the repository.
(Username) The file is currently locked by the named user.

Figure 3.1: Lock States

This column is automatically made visible, if necessary.

3.11.2 Lock

With the Lock command, you can lock the selected files in the repository. You can enter
a Comment, why you are locking these files.

The option Steal locks if necessary, will lock the requested files regardless of their
current lock state (in the repository). In this way it can happen that you “steal” the lock
from another user, what can lead to confusion, when the other user continues working on
the locked file. Hence you should use this option only if necessary (e.g. if someone is on
holiday and has forgotten to unlock important files).

3.11.3 Unlock

With the Unlock command, you can unlock the selected files in the repository.
The option Break locks, will unlock the requested files even, if they are not locked

locally. In this way it can happen that you “break” the lock from another users, what
can lead to confusion, when the other user continues working on the locked file.

3.11.4 Show Info

This commands shows information on the lock state (in repository) of the selected file.
State shows the current lock state (see Table 3.1). Token ID is the SVN Lock Token

ID, which is normally not relevant for the user. Owner is the name of the user, who
currently owns the lock. Created At is the time, when the lock has been set. Expires
At is the time, when the lock will expire. Needs Lock indicates, whether this file needs
locking, i.e. the “Needs Lock” property is set (see Section 3.11.5). Comment is the lock
comment, as entered by the user at the time of locking.

3.11.5 Change Needs Lock

By this command, files can be marked/unmarked to require locking. This is useful to
indicate to users, that they should lock the file before working with it. One aspect of this

c© 2006 SyntEvo GmbH, www.syntevo.com 29

Chapter 3. Commands

indication is, that SmartSVN will set files which require locking (due to this property) to
read-only when checking out, or updating.

3.12 Remote State

The remote state signals, what would happen in case of an update on HEAD (see Section
3.3.1). The remote state of files is displayed in the file table column Remote State. See
Table 3.2 for the list of possible remote states of files and directories.

Name Meaning
Latest The local file is equal to the latest revision of this file in the reposi-

tory. An update on this file will bring no changes.
Will be modified For the local file there exists a newer revision in the repository. An

update will bring the corresponding changes for this file.
Will be removed The local file has been removed in the repository. An update will

remove the file locally.
Will be added This file does not exist locally currently in a versioned state. An

update will add this file.
Obstructed For the local file there is something wrong, either locally or locally

in combination with the repository. For instance for the local file,
the the latest repository revision might contain a directory with the
same name.

Figure 3.2: Remote State Types

To display the complete remote state information, especially the “Will be added”
state, it may be necessary to add directories and files to tree resp. table, which do no
exist locally. To such directories and files the special local state “Remote” is assigned, see
Table 2.3 and Table 2.1.

3.12.1 Refresh Remote State

With Refresh Remote State SmartSVN will query the repository and compare the latest
repository revision with your local working copy. In this way, to each file the corresponding
remote state is assigned. This command will also automatically show the Remote State
column within the file table.

Additionally to the remote state, this command will also refresh the lock states of the
selected files/directory (see Section 3.11).

3.12.2 Clear Remote State

Use this command to clear and hide the remote state. This will remove all directories
and files which have the local state “Remote” (see Table 2.3 and Table 2.1) and hide the
Remote State file table column.

c© 2006 SyntEvo GmbH, www.syntevo.com 30

Chapter 3. Commands

3.13 Tools

The Tools menu offers several tools/utilities which can be useful when working with SVN
projects.

3.13.1 Conflict Solver

The Conflict Solver is a kind of Three-Way-Merge, which can be invoked on conflicting
files (see Table 2.3). The content of the current file (which contains the conflicts) is
displayed in the center text area. The left and right text areas show the contents of the
two files, which have been forked from the common base. The common base itself is not
displayed, but regarded by the UI for highlighting changes and conflicts. All file contents
are directly taken from the files, which SVN produces in case of conflicting changes.

The Conflict Solver allows only to alter the content of the current file. The Edit,
Search and Goto menus provide various commands for changing the file content resp.
resolving the conflicts. By the Layout menu, you can change the layout of the Conflict
Solver.

After you have successfully resolved the conflicts, you can choose File|Save to save
your changes to the file. SmartSVN will detect, whether all conflicts have been resolved
and in this case also automatically mark the file as resolved (see Section 3.6.10).

3.13.2 Export Backup

Use the Export Backup command to export a backup of the selected files/directory.
Root Directory displays the root directory, to which all file paths will be exported rela-

tively. Export displays what will be exported. Depending on the selection of files/directory
this will either be the number of files being exported or All files and directories.

You can either export Into zip-file or Into directory. In both cases, specify the target
zip file resp. directory and optionally choose to Wipe directory before copying.

Select Include Ignored Files resp. Include Ignored Directories, if you want to include
these ignored items.

3.13.3 Canonicalize URLs

Use the Canonicalize URLs command to rewrite URLs of .svn-files to canonical form, this
means omitting default port numbers. Having an URL in canonical form is convenient,
because you need not to enter the port number when working with the URL.

Select Include Externals to also canonicalize externals. Canonicalizing externals can
require to rewrite the svn:externals property (Section 3.8.6). In this case the affected
directories will be in modified state after the canonicalization and you have to commit
them by yourself to finish the canonicalization.

3.13.4 Remove Empty Directories

Use the Remove Empty Directories command to schedule all empty, versioned directories
below the currently selected directory for removal. Thereafter you can commit the selected

c© 2006 SyntEvo GmbH, www.syntevo.com 31

Chapter 3. Commands

directory to actually remove the directories from the repository.

3.14 Common Features

SmartSVN includes a set of common features resp. UI elements, which are shared by
various commands.

3.14.1 Revision input fields

Most input fields, for which you can enter a revision number, support a browse function,
which can be accessed by selecting the ellipsis (...) behind the input field.

A dialog displaying all revisions for the selected directory will come up. It shows all
revisions, for which the directory has actually been affected and additionally all revisions
which correspond to a specific tag, see Section 3.9 for further details. The Revision column
shows the revision number resp. the corresponding tag. The other columns display the
revision’s Time, Commit Message and Author, resp.

The displayed revisions are taken from the Log Cache (Section 8.3), so recent revisions
might not be contained in the list. In this case you can use Refresh to update the Log
Cache (and implicitly the displayed revisions) from the repository.

3.14.2 Repository path input fields

Most input fields, for which you can enter a repository path, support a browse function,
which can be accessed by selecting the ellipsis (...) behind the input field.

The Repository Browser (Section 4) will come up as a dialog. Depending on the
command from which the browser has been invoked, you can either select a repository file
and/or a repository directory.

3.14.3 Tag input fields

Input fields, for which you can enter a tag, like when using Switch (Section 3.3.3), support
a browse function, which can be accessed by selecting the ellipsis (...) behind the input
field.

The Tag Browser (Section 3.9.3) will come up to let you select a branch or tag.

c© 2006 SyntEvo GmbH, www.syntevo.com 32

Chapter 4

Repository Browser

The Repository Browser allows direct scanning and manipulations of the repository. You
can start the repository browser by Repository|Browse. Commands like Checkout or
Create Module provide inbound repository browsers. Commands like Copy WC-URL
provide editors, from which a repository browser can be launched.

The repository browser displays the repository content with a directory tree and a file
table, similar to the Main Window. The repository file system is only scanned on demand.
This happens when currently unscanned (gray) directories are expanded. To change the
browsed repository, use Repository|Open.

From the Repository menu you can use Select Revision to change the browsed re-
vision. This results in a complete refresh of the displayed repository content and may
take a while. You can also explicitly refresh the content by View|Refresh. You can also
Manage Profiles, for details refer to Section 5.

Some of the available operations can be cancelled by Edit|Stop.

4.1 Checkout

You can checkout the selected directory by Repository|Checkout. SmartSVN will then
display a simplified Checkout wizard. For details refer to Section 3.1.

4.2 Modifying the repository

The Modify menu provides different ways for direct modifications of the repository.
You can use Create Directory to create a new directory in the currently selected di-

rectory. Enter Directory Name and a Commit Message, which is automatically formed,
as long as you don’t modify it manually.

With Remove you can remove the currently selected directory or file from the reposi-
tory. Enter a corresponding Commit Message, which is automatically suggested depend-
ing on the selected file/directory. Of course, the file/directory is not destroyed, but only
removed for the next revision.

Use Copy to create a copy of the selected file/directory. Source Path will be copied
to Destination Path with the attached Commit Message. See also Section 3.7.3.

33

Chapter 4. Repository Browser

Use Move to move the selected file/directory. Source Path will be moved to Desti-
nation Path with the attached Commit Message.

4.3 Querying the repository

With Edit|View you view the selected file. SmartSVN will checkout the file to a temporary
location and open it in the specified editor, see Section 2.3.1 for more details.

The Query menu provides commands to query for certain information from the repos-
itory.

With Log you can display the log for the currently selected directory or file. For
details refer to Section 3.10.5.

With Annotate you can display an annotated view of a file’s content. For details refer
to Section 3.10.6.

c© 2006 SyntEvo GmbH, www.syntevo.com 34

Chapter 5

Repository Profiles

The Repository Profiles contain all settings which are required to establish a connection
respectively authenticate to a repository.

SmartSVN automatically creates a new profile, when opening a working copy, which
contains a currently unknown repository URL. Typically, such profiles are not fully con-
figured, because there are additional usernames, passwords or certificates required for
a successful authentication. When commands are invoked, which are connecting to the
repository, SmartSVN will query for this additional information.

Alternatively (and important for checkouts) the repository profiles can be configured
from the Main Window and from the Repository Browser by Repository|Manage Pro-
files.

5.1 Profiles

On the Profiles tab, you can configure the main connection settings resp. profiles. The
table shows all currently known profiles. You can Add, Copy, Edit or Delete a profile.
To change the order of the profiles, use Move Up and Move Down. The order of the
profiles affects the search for a matching profile, when connecting to a repository; the
list is searched from top to bottom. In this way you can create multiple profiles for one
repository with different settings, e.g. authenticated access for certain subdirectories and
anonymous access for the whole repository.

5.1.1 Add

By Add a wizard will come up, which lets you supply all necessary information to create
a new Profile.

Configuration

On the Location page you have to primarily specify which Access Method (protocol)
shall be used to access the repository. In case of SVN+SSH, you can optionally spec-
ify whether to Prepend SSH login name to host. This option is not important for
SmartSVN but may be convenient when also working with the command line.

35

Chapter 5. Repository Profiles

Further mandatory parameters of a Profile are Server Name, Repository Path and
Server Port. For the Server Port you have the option to use the Default port, or use a
Non-Default port.

Note The Repository Path is interpreted differently depending on the
Access Method. For HTTP, HTTPS it denotes the Location as
specified in Apache’s httpd.conf (or child configuration files). For
SVN it denotes the path relative to the repository root, which
svnserve serves; you will typically simply use “/” here. For
SVN+SSH it denotes the absolute file system path to the reposi-
tory, i.e. the same path which you would supply for the svnserve

-r parameter.

Instead of typing the values into the various input fields, you can also use Enter SVN
URL and supply the complete URL for the repository.

Details

Depending on the selected Access Method, there a different options which have to be
configured on the Details page. Most of them are related to authentication.

For SVN connections, you have to specify the SVN Login. This can either be Anony-
mous or by User Name/Password. In the latter case you have to supply the User Name
and Password. The Password can optionally be stored on disk by Store password on
disk, but note that passwords are NOT SAFE.

For HTTP connections, you have also to specify the SVN Login and you can optionally
choose Use Proxy if you want to connect via a proxy server (see Section 5.2 for more
details).

For HTTPS connections, you have to specify the same parameters as for HTTP
connections. Furthermore you have the option to Enable Client Authentication if this
is required by your SSL server. In this case choose the required Client Certificate File
and enter the corresponding Client Certificate Passphrase which is used to protect your
certificate. You can optionally Store passphrase on disk, but note that passwords are
NOT SAFE.

For SVN+SSH connections, you have to specify a Login Name for the SSH lo-
gin. You have the option to either authenticate by Password-Authentication or by
Public/Private-Key-Authentication. In case of Password-Authentication, enter the
corresponding password. You can optionally Store password on disk, but note that
passwords are NOT SAFE. In case of Public/Private-Key-Authentication, enter the
path to your Private Key File and the Passphrase, which is used to protect your Private
Key. You can optionally Store passphrase on disk, but note that passwords are NOT
SAFE!

c© 2006 SyntEvo GmbH, www.syntevo.com 36

Chapter 5. Repository Profiles

Note All passwords are stored in the passwords.xml file, which can
be found in SmartSVN’s home directory, which is by default
the .smartsvn within your home directory. Passwords are en-
crypted in a simple way which is NOT SAFE! Therefore don’t
store valuable passwords on a machine, where other users can access
passwords.xml file.

Finally and common for all Access Methods you can choose to Verify connection
when pressing ’Next’, which is recommended.

Name

The Name page shows the final URL for the profile to be created.
For displaying on the UI, a name is assigned to every repository profile. Choose

either Use Repository URL As Profile Name or Use This Profile Name and enter a
corresponding name.

Click Finish to create the profile.

5.2 Proxies

On the Proxies tab, you can configure a proxy, which can be used to connect to SVN
repositories over HTTP/HTTPS protocol. Even if a proxy is configured, the actual use
for connecting to certain repository also depends on the Use Proxy option within the
corresponding profile’s configuration (Section 5.1).

First, you have to decided whether to Use this proxy for HTTP- and HTTPS-
connections or to completely deactivate the proxy.

For the proxy host, you need to enter Server Name and Server Port. For Login, select
Anonymous if the proxy itself requires no authentication or User Name/Password. In
the second case, specify the required Username and Password. You can choose to Store
password on disk, but note that passwords are NOT SAFE (see Section 5.1)!

c© 2006 SyntEvo GmbH, www.syntevo.com 37

Chapter 6

Project Management

SmartSVN internally manages your SVN working copies by “SmartSVN projects”, as
basically described in Section 2.1.

6.1 Project Manager

With the Project Manager (Project|Project Manager) you can manage your existing
SmartSVN projects.

You can Add a new project. This button has the same effect as Project|Create
Project from Directory. Select the local SVN-controlled root directory of the working
copy for which you want to add a project and specify the corresponding Project Name.
With Edit you can change the name or Root Path of an already managed project. Reset
resets the settings of the selected projects to the default settings(see 6.2.6). Projects can
also be deleted by Delete; the local directory itself nor any other filesystem content will
be touched by this operation.

You can rearrange the order of the project list with Move Up and Move Down. The
specified order is used for the Project|Open dialog and the directory tree’s pop-up in the
main window.

6.2 Project Settings

The project settings affect the behaviour of various SVN commands. Contrary to the
global preferences (see Section 7), the project settings only apply to an individual project.
You can edit the settings of the currently opened project by Project|Settings. In the top
of the dialog, the Root Path of the project is displayed.

6.2.1 Repository Layout

The Repository Layout defines the project’s root URL (within the repository) and where
the Trunk, branches and tags of the project are stored. Trunk, Branches and Tags must
be specified relative to the Project Root. When using here values trunk, branches and
tags, you are compatible with the SVN standard.

38

Chapter 6. Project Management

Example
The Subversion project itself is located at http://svn.collab.net/repos/svn/.
Hence for the corresponding SmartSVN project, Project Root must be
set to http://svn.collab.net/repos/svn/. Subversion’s Trunk URL is
http://svn.collab.net/repos/svn/trunk, i.e. trunk is the relative path and
must be set for Trunk. This is similar for Tags and Branches.

The repository layout affects the presentation of URLs and various commands. Among
them are the basic Switch and Merge commands from the Modify-menu and all com-
mands related to tagging from the Tag-menu.

SmartSVN tries to automatically determine the repository layout when a project is
opened for the first time. Nevertheless you should verify that the suggested layout actually
matches your intended or already existing repository layout.

6.2.2 Text File Encoding

The text file encoding affects only the presentation of file contents, for instance when
comparing a file (see Section 3.10.1). These settings are not relevant for the operations
of SVN commands, which generally work only on the byte-level.

With Use system’s default encoding, SmartSVN will automatically use the system’s
default encoding when displaying files. When changing the system encoding later, the
project settings are automatically up-to-date.

Alternatively you can choose a fixed encoding by Use this encoding.

6.2.3 Refresh/Scan

The Initial Scan setting specifies, whether SmartSVN scans the Whole project or the
Root directory only when opening a project.

We recommend in general to use the Whole project option, because features like
searching files in the table, etc. are relying on having the whole project structure in
memory.

Nevertheless, when you are working with large projects, it can be convenient to scan
the file structure only on demand. This makes opening a project much faster and also
requires less memory which can be crucial for really large projects.

6.2.4 Working Copy

The option (Re)set to Commit-Times after manipulating local files advises SmartSVN
to always set a local file’s time to its internal SVN property commit-time. Especially in
case of an updating command (see Section 3.3), this option is convenient to get the actual
change time of a file and not the local update time.

Apply auto-props from SVN ’config’ file to added files advises SmartSVN to use
the auto-props from the SVN ’config’ file, which is located in the Subversion directory
beyond your home directory. These auto-props will also override other project defaults,
like Default EOL Style, explained below.

c© 2006 SyntEvo GmbH, www.syntevo.com 39

Chapter 6. Project Management

Global Ignores

The Global Ignores define which files/directories should in general be ignored within the
current project. This is contrary to local ignores (see Section 3.8.7), which are only related
to a specific directory. You can completely deactivate Global Ignores by Deactivated.
With Use from SVN ’config’ file, the same ignore patterns will be used as by the
command line client. To be independent of the command line client, you can enter your
own patterns by Use following patterns (separated with commas). The Patterns are
file name patterns, where “*” and “?” are wildcard symbols, interpreted in the usual way.

Default EOL Style

This option specifies the EOL style default, which is used when adding a file (Section
3.6.1). For more details refer to Section 3.8.3.

Default ’Needs Lock’

This option specifies the ’Needs Lock’ default, which is used when adding a file (Section
3.6.1). With No file, the ’Needs Lock’ property will be set to no file. With Binary files
the property will only be set to files, which have been detected to have binary content.
With Every file the property will be set to every file.

Default Keyword Subst.

This option specifies the Keyword Substitution default, which is used when adding a file
(Section 3.6.1). For more details refer to Section 3.8.4.

6.2.5 TMate

Refer to Section 8 for further details.

6.2.6 Default Settings

Projects are created by various commands. For reasons of simplicity, in most of these
cases, there is no configuration possibility for the corresponding project settings. There-
fore you can specify default project settings (template settings), which will be applied
to every newly created project. With Project|Default Settings you can configure the
same properties as for a concrete project, except of the Repository Layout which always
depends on the specific project.

c© 2006 SyntEvo GmbH, www.syntevo.com 40

Chapter 7

Preferences

The application preferences define the global behaviour of SmartSVN, regarding UI, SVN
commands, etc. Contrary to the project settings (see Section 6.2), these preferences apply
to all projects.

Tip The preferences are stored in the settings.xml file in SmartSVN’s
home directory.

7.1 On Startup

These settings configure the startup behaviour of SmartSVN.
You can either choose to Open last project, Show Welcome Dialog or Do Nothing,

i.e. start with an empty main frame.
Select Remove obsolete projects to check for every project, if its root directory still

exists. In case that the root path is not valid anymore, the project is removed from the
list of known/managed projects (see Section 6.1).

7.2 Change Report

These settings configure the Change Report (Section 3.10.4). For further details refer to
Section 7.6.1.

7.3 Commit

These settings configure the global commit(see 3.5) options. With Remind me to enter
a commit message, SmartSVN will ask when trying to commit without a message. You
can also specify the Maximum number of previous commit messages to remember
here.

7.4 Conflict Solver

These settings configure the Conflict Solver (Section 3.13.1).

41

Chapter 7. Preferences

You can either choose to use the Built-in Conflict Solver or an External Conflict
Solver. An external conflict solver is defined by the Operating System Command to be
executed, and its Arguments.

Arguments are passed to the Command as it would occur from OS command line.
Additionally the place holder ${leftFile} and ${rightFile} and ${mergedFile} can
be used, which are substituted by the absolute file path of the left/right resp. merged
(resulting) file.

7.4.1 Built-in

With Compare with Base selected, the highlighting of the changes resp. conflicts takes
the contents of the base file into account: Lines (in the left, center or right text area)
which are not equal are also compared to the corresponding lines of the base file and the
highlighting depends on the result of this comparison.

For details on the other options refer to Section 7.6.1.

7.5 Refresh

These settings configure the behaviour of refreshing the file system.
By Manual Refresh you can configure how the manual Refresh by View|Refresh (see

Section 2.2) behaves. All options take into account the scanned/unscanned state of the
working copy, see Section 6.2.3.

You have the option to refresh Always root directory. In this case the directory
selection in the tree does not matter, but always the whole project is refreshed. This
option requires the most effort, but will guarantee that after changing the selection in the
tree, displayed data is still up to date (relative to the last refresh time).

You can also choose to refresh only the Selected directory recursively. This option
can be useful, if you know, that you are only working a specific part of your whole SVN
project.

The option Selected directory (recursively if set for view) also refreshes only the
selected directory. Whether this refresh is recursive or not, depends on if View|Files
From Subdirectories is selected. This option is the fastest way of refreshing as it is most
selective, but it requires you to be always aware of which directories you have refreshed
and hence which information displayed in directory tree and file table are actually up to
date.

Scrolling specifies whether to Scroll to top of table or Try to keep same files visible.

Frame activation

SmartSVN can also automatically perform a refresh of the project after it gets the focus
back, if configured by Refresh on frame activation. The automatic refresh behaves the
same way as configured for the Manual Refresh. It can be useful if you are working some
time on your project (e.g. in an IDE), then decide to check and commit your changes and
hence get back to SmartSVN.

c© 2006 SyntEvo GmbH, www.syntevo.com 42

Chapter 7. Preferences

You have either the option to disable automatic refresh by Never, have an immediate
refresh by Immediately or have only a refresh, if SmartSVN has been inactive for at least
5 seconds by After more than 5 seconds of deactivation. This option is useful, if you
typically switch to other applications for a short period of time and do not want to trigger
automatic refresh. This last option is only available on non-Windows platforms, as on
windows as special native module is used, which makes the refresh more efficient and will
only refresh if necessary.

7.6 File Comparators

These settings configure file comparators, which can be invoked by the corresponding
actions from the Query menu.

You can link a specific File Pattern to a file comparator (file compare tool). You can
either choose to use the Built-in text file comparator or an External comparator. An
external comparator is defined by the Operating System Command to be executed, and
its Arguments.

Arguments are passed to the Command as it would occur from OS command line.
Additionally the place holder ${leftFile} and ${rightFile} can be used, which are
substituted by the absolute file path of the left resp. right file to compare. In cases,
where an ./svn-internal file like the base file is used for comparison, the content of this
file is copied to a temporary location and this temporary file is passed as parameter.

7.6.1 Built-in

These settings configure the Built-in text file comparator.
The Tab Size specifies the width (number of characters) which is used to display

a TAB character. The Inner Line Comparison specifies the “block size” to be used for
comparing within lines. With Show Whitespaces whitespace characters will be displayed.
With Show Line Numbers a line number gutter will be prepended. If Ignore whitespace
for line comparison is selected, two lines are treated as equal, if they only differ in the
number, but not in the position of whitespaces.

7.7 External Tools

These settings configure external tools, which can be invoked by Edit|Open.
You can link a specific File Pattern to an external tool. A tool is defined by the

Operating System Command to be executed, and its Arguments. Arguments are passed
to the Command as it would occur from OS command line. Additionally the place holder
${filePath} can be used, which is substituted by the absolute file path of the file (from
the file table), on which the command is invoked. You can also choose to run the command
in SmartSVN’s working directory or in the File’s directory.

c© 2006 SyntEvo GmbH, www.syntevo.com 43

Chapter 7. Preferences

Example
To configure Acrobat Reader (TM) as the default editor (viewer) for PDF-files, enter
*.pdf for File Pattern, the path of Acrobat Reader Executable (e.g. on Windows
acrord32.exe) for Command and leave ${filePath} for Arguments.

7.7.1 Directory Command

The Edit|Open command can also be performed on directories. For this case a Directory
Command can be configured.

To be able to use Edit|Open on a directory, you need to Enable Open Directory
Command. As for files you can configure the Command which shall be executed and the
Arguments to be passed. The directory command will always be executed in the selected
directory.

Example
On Windows, to open the command shell for a selected directory, enter cmd.exe for
Command and /c start cmd.exe for Arguments.

7.8 Check for Update

These settings configure the Update-Check mechanism of SmartSVN (Section 2.3.3).
Select Automatically check for available updates to make SmartSVN check for

program updates after it has been started.

c© 2006 SyntEvo GmbH, www.syntevo.com 44

Chapter 8

TMate

The TMate feature is a simple version of the TMate plugin for IntelliJ IDEA (http://www.jetbrains.com).
It collects information on repository revisions in the background and presents them in the
lower left TMate window. The TMate menu provides various commands and customiza-
tion facilities for the TMate window.

8.1 Display

The window lists the known revisions, starting with the youngest one. By Layout or
the corresponding selector toolbar button you can switch to different predefined views.
Depending on the selected view, the layout of the tree might differ, but revision nodes
will always be displayed. Within a revision node the contained directories and files are
displayed.

The display can be customized by the TMate settings, see Section 8.4 for further
details.

8.2 Commands

On a file, you can use Show Changes to compare the file’s content before and after the
commit of the revision.

On a revision, you can use Change Report to create a Change Report for this revision.
It displays all changed files with their contents and it highlights the differences between
the contents before and after the commit of the revision.

On a revision, you can use Rollback Revision to locally rollback the revision. This
will peform a reverse merge (Section 3.4.1) of the revision to the working copy. After you
have verified the result, you may choose to commit the rollback.

Select in File Table tries to select the corresponding file which is selected in the
TMate tree resp. all files of the selected revision from the tree in the main file table. Files
from the TMate tree, for which no counterpart in the file table exists, are ignored.

On a revision, Copy message puts the selected commit message into the System
clipboard.

45

Chapter 8. TMate

Use Refresh to make TMate collect new information on revisions since the last known
(and displayed) revision.

8.3 Log Cache

The Log Cache is the local data storage of the TMate plugin, which is also used by other
SmartSVN commands, for instance the Log command (Section 3.10.5) itself. It stores
and supplies the raw log information as received from the server and can supply them for
various commands later on. This increases log performance significantly and also leads to
reduced network traffic.

When the Log Cache is accessed for the first time for a certain repository, you may
choose which parts of the repository should be indexed by the cache. In general it is
advisable to select Create cache for whole repository at to let SmartSVN index the
whole repository. The reason is that logs of a certain “module” can have links to other
modules, because of the way Subversion’s Copy mechanism works. Sometimes repositories
can be very large and you are interested only in a few modules of the whole repository.
In this case it may be more efficient to select Create cache only for the current module
at. However this may lead to incomplete logs due to the reasons stated above.

Keeping the Log Cache up-to-date is automatically handled by SmartSVN. All log-
related commands always query the repository for the latest logs, before querying the Log
Cache and the TMate plugin can update the cache frequently, if Automatic Refresh has
been configured in the settings (Section 8.4).

Log results (for instance used by the Log command) from the Log Cache are in general
identical to results obtained when querying the server directly. However there can be
differences for following situations:

• Server-side access restrictions on already cached revisions are changed afterwards.
This happens for instance, when using and modifying AuthzSVNAccessFile for
HTTP repositories.

• Log information for already cached revisions are changed on the server afterwards.
This happens for instance when changing the repository’s database directly or by
changing revision properties (svn propset --revprop).

In such cases, you should use Tools|Rebuild Log Cache and select the corresponding
Cache to completely rebuild the Log Cache and hence fetch the modified log data for the
previously cached revisions.

Tip The Log Cache is stored in the subdirectory log-cache in
SmartSVN’s home directory. If you should encounter problems
when rebuilding the cache or you need to get rid of the cached infor-
mation for a certain repository, you can find out the corresponding
numbered subdirectory or you can remove the whole log-cache

directory. You should never change these files while SmartSVN is
running, otherwise the results will be unpredictable.

c© 2006 SyntEvo GmbH, www.syntevo.com 46

Chapter 8. TMate

8.4 Settings

The TMate settings are part of the project’s settings (Section 6.2) and configure the
behaviour of the TMate plugin and the Log Cache.

The basic refreshing behaviour of TMate resp. the Log Cache can either be Manual
refresh or Automatic refresh. In the latter case you have to specify the refresh interval
by Refresh each minutes.

Select Refresh after loading a project to automatically refresh the Log Cache after a
project has been loaded. Select Refresh after a command changed the working copy
to automatically refresh after Updates, Commits, etc.

Select Show all project revisions to display not only revisions for the current project’s
repository URL, but also for all other URLs (Tags/Branches), covered by the Repository
Layout (Section 6.2.1).

Within the Display settings you can configure whether to show the revision’s Time,
Author, File count and/or Trunk/Branch/Tag. Trunk/Branch/Tag will only be dis-
played, if Show all project revisions from the main section has been selected.

c© 2006 SyntEvo GmbH, www.syntevo.com 47

Chapter 9

VM options

Some very fundamental options, which have to be known early at startup time or which
typically need not to be changed are specified by Java VM options instead of SmartSVN
preferences. In addition to the default Java VM options, following options are supplied
by SmartSVN.

9.1 General options

Following general purpose options are supported by SmartSVN.

smartsvn.home

This propery specifies the directory into which SmartSVN will put its configuration files.
By default, this is ~/.smartsvn, where ~ denotes your home directory. On Windows,
this is %USERPROFILE%, on Unix/Mac this is simply ~. The value of smartsvn.home may
also contain other default Java system properties, like user.home. It may also contain
the special smartsvn.installation property, which refers to the installation directory
of SmartSVN.

Example
To store all settings into the subdirectory .smartsvn of SmartSVN’s installation
directory, you may set smartsvn.home=${smartsvn.installation}\.smartsvn.

9.2 SVN options

Following options are related to the core SVN functions.

svnkit.admindir

This option specifies the name of the directory into which Subversion’s administrative
files are stored. By default, this is the .svn directory.

48

Chapter 9. VM options

Example
ASP.NET does not allow directories to start with a “.”, as “.svn” does. Therefore,
to use ASP.NET in combination with SmartSVN, you can change the administrative
directory name e.g. to svn by svnkit.admindir= svn

smartsvn.http.timeout

This option specifies the timeout of HTTP connections. By default, this timeout is set
to one hour, which gives the server enough time to respond to time-expensive requests.
On the other hand, if a server is not responding at all, SmartSVN may block for one
hour, until it reports the problem. This may be annoying under certain circumstances
and hence can be changed by this property. The timeout value is specified in seconds.

Example
With smartsvn.http.timeout=60 you can set the HTTP connection timeout to 60
seconds.

smartsvn.default-connection-logging

With this option you can enable the connection logging(see 2.3.3) by default for all com-
mands. This can be useful when searching for connection-related problems, which occur
only rarely. By default, this option is not enabled.

Example
Use smartsvn.default-connection-logging=true to enable connection logging
by default.

9.3 User interface options

Following options are related to the user interface of SmartSVN.

smartsvn.lookandfeel

This property specifies the Look’n’Feel of SmartSVN. The value must be the fully qualified
class name of a valid Look’n’Feel on your system.

Example
On Windows, you can change to the default Windows Look’n’ feel by setting
smartsvn.lookandfeel=com.sun.java.swing.plaf.windows.WindowsLookAndFeel

smartsvn.ui.font

This property specifies the font family which is used for SmartSVN’s user interface. The
value must be a valid Java font name.

Example
To change the font family to Dialog, you may use smartsvn.uifont=Dialog

c© 2006 SyntEvo GmbH, www.syntevo.com 49

Chapter 9. VM options

smartsvn.ui.fontsize

This property specifies the font size which is used for SmartSVN’s user interface. The
value specifies the point size of the font, which defaults to 12.

smartsvn.ui.brightness

This property specifies the brightness of menu bars, toolbar, dialog backgrounds, etc.
Valid values are in the range of 0.0 to 1.0. This property is only applicable, if SmartSVN’s
default Look’n’Feel is used, i.e. smartsvn.lookandfeel has not been changed.

smartsvn.ui.window-background-brightness

This property specifies the brightness of the “White” of window backgrounds, like the
file table. Valid values are in the range of 0.0 to 1.0. This property is only applicable,
if SmartSVN’s default Look’n’Feel is used, i.e. smartsvn.lookandfeel has not been
changed.

9.4 Specifying options

Depending on your operating system, VM options are specified in different ways.

Windows

Options are specified in bin/smartsvn.vmoptions within the installation directory of
SmartSVN. You can specify an option by adding a new line with the option name, prefixed
by -D, and appending = and the corresponding option value.

Example Add the line

-Dsmartsvn.http.timeout=60

to set the HTTP-timeout to 60 seconds.

Unix

Options are specified e.g. in bin/smartsvn.sh within the installation directory of SmartSVN.
You can specify an option by adding the option name, prefixed by -D and appending =

and the corresponding option value to the execution call.

c© 2006 SyntEvo GmbH, www.syntevo.com 50

Chapter 9. VM options

Example Replace

\$_JAVA_EXEC -classpath \$_CP -Dsun.io.useCanonCaches=false

-Xmx48m SmartSVN

by

\$_JAVA_EXEC -classpath \$_CP -Dsun.io.useCanonCaches=false

-Xmx48m -Dsmartsvn.http.timeout=60 SmartSVN

to set the HTTP-timeout to 60 seconds.

Mac OS

Options are specified in Info.plist within the installation directory of SmartSVN. You
can specify an option by adding the option name, prefixed by -D and appending = to the
VMOptions array. These lines must be enclosed by a string-tag.

Example Insert the line

-Dsmartsvn.http.timeout=60

to set the HTTP-timeout to 60 seconds.

c© 2006 SyntEvo GmbH, www.syntevo.com 51

	Introduction
	Main Window
	Projects
	Directory Tree and File Table
	Directory States/Directory Tree
	File States/File Table
	The Focus
	Refreshing
	Smart Open

	Menus
	Edit Menu
	Window Menu
	Help Menu

	Commands
	Checkout
	Create Module
	Updating
	Update
	Update More
	Switch
	Switch to URL
	Relocate

	Merging
	Merge
	Merge from URL

	Commit
	Local Modifications
	Add
	Ignore
	Remove
	Delete Physically
	Rename
	Move
	Smart Move
	Copy
	Revert
	Mark Resolved

	Advanced Copies
	Copy URL-WC
	Copy WC-URL
	Copy URL-URL

	Properties
	Edit Properties
	Change File Type
	Change EOL Style
	Change Keyword Substitution
	Change Executable Property
	Edit Externals
	Edit Ignore Patterns

	Tags
	Add Tag
	Add Branch
	Tag Browser

	Queries
	Compare
	Compare with Revision
	Compare 2 Files
	Change Report
	Log
	Annotate
	Create Patch
	Create Patch between URLs

	Locks
	Scan Repository
	Lock
	Unlock
	Show Info
	Change Needs Lock

	Remote State
	Refresh Remote State
	Clear Remote State

	Tools
	Conflict Solver
	Export Backup
	Canonicalize URLs
	Remove Empty Directories

	Common Features
	Revision input fields
	Repository path input fields
	Tag input fields

	Repository Browser
	Checkout
	Modifying the repository
	Querying the repository

	Repository Profiles
	Profiles
	Add

	Proxies

	Project Management
	Project Manager
	Project Settings
	Repository Layout
	Text File Encoding
	Refresh/Scan
	Working Copy
	TMate
	Default Settings

	Preferences
	On Startup
	Change Report
	Commit
	Conflict Solver
	Built-in

	Refresh
	File Comparators
	Built-in

	External Tools
	Directory Command

	Check for Update

	TMate
	Display
	Commands
	Log Cache
	Settings

	VM options
	General options
	SVN options
	User interface options
	Specifying options

