
SmartGit Quickstart Guide

syntevo GmbH, www.syntevo.com

2009

Contents

1 Introduction 3

2 Basic Concepts 4
2.1 Typical Project Life-Cycle . 4
2.2 Branches . 5
2.3 Excursion to The Basics . 5

2.3.1 It’s All About Commits . 5
2.3.2 Branches are Just Pointers . 6
2.3.3 How Things Play Together . 6

2.4 The Index . 6
2.5 Merging . 7
2.6 Working Tree States . 7

3 Important Commands 8
3.1 Project-Related . 8

3.1.1 Open Working Tree . 8
3.1.2 Cloning a Repository . 8

3.2 Synchronizing with a Remote Repository 8
3.2.1 Push . 9
3.2.2 Fetch . 9

3.3 Local Operations on the Working Tree . 9
3.3.1 Stage . 9
3.3.2 Unstage . 9
3.3.3 Ignore . 10
3.3.4 Commit . 10
3.3.5 Undo Last Commit . 10
3.3.6 Revert . 10
3.3.7 Remove . 11
3.3.8 Delete . 11

3.4 Branch Handling . 11
3.4.1 Switch . 11
3.4.2 Checkout . 11
3.4.3 Merge . 11
3.4.4 Cherry Pick . 12
3.4.5 Rebase . 12

1

Contents

3.4.6 Add Branch . 12
3.4.7 Add Tag . 12
3.4.8 Branch Manager . 12

c© 2009 syntevo GmbH, www.syntevo.com 2

Chapter 1

Introduction

SmartGit is a graphical Git client which runs on all major platforms. Git is a distributed
version control system (DVCS). SmartGit’s target audience are users who need to manage
a number of related files in a directory structure, to co-ordinate access to them in a multi-
user environment and to track changes to these files. Typical areas of application are
software projects, documentation projects or website projects.

Acknowledgments

We want to thank all users, who have given feed-back to the early-access-builds of Smart-
Git and in this way helped to improve it by reporting bugs and making feature suggestions.

3

Chapter 2

Basic Concepts

First, we need to define some Git-specific names which might differ in their meaning with,
for example, those from Subversion.

In contrast with classical version control systems like CVS or Subversion (SVN), in Git
there is not only a single repository, but each user has his own repository (for simplicity
we will further refer to the user as a ’he’). Of course, you can set up Git also with one
central repository (similar to the one from CVS or SVN).

Usually, every repository has a working tree attached. The working tree is a simple
file system tree and contains a set of files which you can edit. At the same time the
working tree has an assigned commit (what is the equivalent to an SVN revision). Hence
for every file in a working tree a state can be defined in relation to the repository. This is
the foundation for all local Git commands: adding, committing, reverting changes, etc.

Example
Let’s assume you have all your project related files in a directory D:\my-project.
Then this directory represents the working tree containing all files to edit. The
attached repository (or more precise: the repository’s meta data) is located in the
D:\my-project\.git directory.

On the central repository, there usually doesn’t exist a working tree, because files
would not be edited on the server directly.

2.1 Typical Project Life-Cycle

As with all version control systems, you first have to initialize a repository and store your
project files in this repository. Then (other) users clone their repository from the origin-
repository. Now they can make changes to the files in the working tree of their cloned
repositories and commit the changes. The changes will be stored in their repository
only, they don’t even need to have access to the origin-repository when committing. At
some later time, after a user has committed a couple of changes, he can push (see 3.2.1)
them back to the origin-repository. Other users which also have their own clone of the
origin-repository, fetch (see 3.2.2) (resp. pull) changes from the origin-repository.

4

Chapter 2. Basic Concepts

2.2 Branches

Git distinguishes between two kinds of branches, local branches and remote branches.
Remote branches refer to local branches of the origin-repository. In other words: if you
clone from a repository, the clone will contain the local branches of the origin-repository
as remote branches.

You can’t commit to remote branches in your repository directly, but instead have
to commit to the corresponding local branch. From the perspective of the local branch,
the corresponding remote branch is called the tracking branch. After you have pushed
changes from your local branch to the origin-repository, the remote branch will get your
changes. If you fetch changes from the origin-repository, these commits will be stored
in the remote branch in your repository. To get the remote branch changes into your
local branch, the remote changes have to be merged from the tracking branch. This can
be done directly when invoking the Fetch command in SmartGit or later by explicitly
invoking the Merge command.

The default local branch which Git creates is named master. When cloning a remote
repository, the master tracks the remote branch origin/master.

2.3 Excursion to The Basics

Note At least for the authors keeping in mind the fundamental con-
cepts of this section was the mental break-through in understanding
branches, merging and rebasing and all other great features which
Git offers.

2.3.1 It’s All About Commits

Commits are what really matters in Git, so we will take a short trip to theory, namely
commit graphs.

Every repository starts with the initial commit. Every subsequent commit is directly
based on one or more parent commits. In this way a repository is a commit graph (or
more technically speaking: a directed, acyclic graph of commit-nodes) with every commit
being a descendant from the initial commit. This is the reason why a commit is not just
a set of changes, but due to its fixed location in the commit graph, also specifies a unique
repository state.

Each commit can be identified by its unique SHA-ID. Git allows to check out every
commit using its SHA (SmartGit does not require you to enter such hard to remember
SHAs, but instead lets you select commits). Checking out a commit will set the working
tree to the corresponding repository state. Then you may alter the working tree and
commit your changes which will add a new commit to the repository which will have the
previously checked out commit as its parent. This way you are extending the commit
graph.

Newly created commits are called heads, because there are no other commits descend-
ing from them. For every repository there is one distinct HEAD pointing to the “current”
commit, the commit to which the working tree belongs.

c© 2009 syntevo GmbH, www.syntevo.com 5

Chapter 2. Basic Concepts

2.3.2 Branches are Just Pointers

Every branch is simply a named pointer to a commit. The HEAD may point to a local
branch instead of a commit. In this case committing changes will not only create a new
commit, but also move the branch pointer (and hence HEAD) to the new commit.

2.3.3 How Things Play Together

The following example shows, how commits, branches, pushing, fetching and (basic) merg-
ing play together.

Example
Let’s assume we have commits 000, 001 and 002. master and origin/master both
point to 002. HEAD points to master.
Now, let’s commit a set of changes which results in commit 003. Commit 003 is a
child of 002. master will now point to 003, hence it is one commit ahead of the
tracking branch (origin/master).
When performing Push, Git uses this information and sends 003 to the origin-
repository, moving its master to 003, too. Because a remote branch always refers
to the branch in the remote repository, origin/master of our repository will also
be set commit 003.
Now, let’s assume someone else has further modified the remote repository and
committed 004 as a child of 003, i.e. the master in the origin-repository points now
to 004. When fetching from the origin-repository, we will receive commit 004 and
our repository’s origin/master will be moved to 004.
Finally, we will now Merge our local master from its tracking branch
(origin/master). This will simply move master to commit 004, too.
This was the completely Push-Fetch-Merge cycle when working with remote repos-
itories.

2.4 The Index

The Index is an intermediate “storage” for preparing a commit. Depending on your
personal preferences, SmartGit allows you to make heavy use of the Index or to ignore its
presence at all.

With the Stage command you can save a file content from your working tree in the
Index. If you stage a previously version-controlled, but in the working tree missing file, it
will be marked for removal. You can do that explicitly using the Remove command, just
as you are accustomed from CVS or SVN. Right-clicking the project root in SmartGit
and selecting Commit will give you the option to commit all staged changes.

If you have staged some file changes and later modified the working tree file again, you
can use the Revert command to either revert the file content to the staged changes stored
in the Index or to the file content stored in the repository (HEAD). The Changes preview
of the SmartGit project window can show the changes between the HEAD and Index, the
HEAD and working tree and the Index and the working tree state of the selected file.

c© 2009 syntevo GmbH, www.syntevo.com 6

Chapter 2. Basic Concepts

When unstaging previously staged changes before committing them, the staged changes
will be “moved” back to the working tree, if the working tree is not modified. The Index
will get the HEAD file content.

2.5 Merging

A normal commit has just one parent commit (or none in case of the initial commit). A
merge commit has two (or more) parent commits.

Git uses different kind of merges, the most important one is the fast-forward merge.
If, for example, you don’t have done any local commits in your repository and you pull
remote changes, they have to be merged into your local branch. But because a branch
in Git is just a pointer to a commit, Git does not need to create a merge commit (with
the parent commit from the local and remote branch). Simply moving the branch-pointer
forward is sufficient and the most effective way, because no separate file content has to
be stored in the repository - like it would be necessary, for example, when merging with
CVS.

Note Merging is a fundamental concept in Git and SmartGit performs
merges automatically in situations where you might not expect it.
For example, if you are working in the master branch and want
to switch to the release-1 branch, SmartGit merges changes from
the tracking branch origin/release-1. So be aware that a plain
switch to a different branch can result in a conflict.

2.6 Working Tree States

Usually, you can commit individual file changes. But there are some situations where this
is not possible, e.g., if a merge has failed with a conflict. In this case you either have
to finish the merge by solving the conflict, staging the file changes and performing the
commit on the working tree root or by reverting the whole working tree.

c© 2009 syntevo GmbH, www.syntevo.com 7

Chapter 3

Important Commands

3.1 Project-Related

A SmartGit project is a named entity which usually has one assigned working tree and
makes working with it easier by remembering a couple of, especially GUI related options.
Depending on the selected directory, when cloning or opening a working tree, SmartGit
allows to create a new project, open an existing one for the directory or to add the working
tree to the currently open project.

To group the projects, use Project|Project Manager. To remove a working tree from
a SmartGit project, use Project|Remove Working Tree. If you have moved a working
tree on your hard disk to a new location, SmartGit will let you know when opening the
project that it could not find the working tree. In this case, select the missing working
tree and use Project|Edit to tell SmartGit the new location.

3.1.1 Open Working Tree

Use this command to either open an existing local working tree (e.g. initialized or cloned
with the Git command line client) or initialize a new (personal) working tree.

You need to specify the local directory which you want to open. If the specified
directory is no Git working tree, you have the option to initialize it.

3.1.2 Cloning a Repository

Use this command to clone a repository.
Specify the repository to clone either as a remote URL (e.g. ssh://user@server:port/path)

or, if the repository is locally available in your file system, the file path. In the next step
you have to provide a local path where the clone should be located.

3.2 Synchronizing with a Remote Repository

These commands can be found in the Remote menu:

8

Chapter 3. Important Commands

3.2.1 Push

Use this command to store local commits to a remote repository.
In case multiple repositories are assigned to your local repository, select the target

repository where you want to store the commits to. Select the local branch(es) for which
you want to push commits. If you try to push commits from a new local branch, you will
be asked whether to create the necessary tracking branch. In most cases it’s recommended
to create the tracking branch, so you will also be able to receive changes from the remote
repository and have Git’s branch synchronization mechanism working here (see Section
2.2).

3.2.2 Fetch

Use this command to fetch commits from a remote repository.
After successful fetching the commits of the remote repository are stored in remote

branches of the local repository. They have to be merged into the corresponding local
branches either automatically or manually. If the option Merge fetched remote changes
is selected, the merge will happen immediately after fetching. If the merge worked without
conflict and the option Commit merged remote changes is selected, a merge commit is
created automatically, otherwise the working tree remains in merging state.

Alternatively, you can use the Merge (see 3.4.3) command to merge the remote changes
from the tracking (remote) branch to the local branch.

Note When you fetch submodules (nested repositories) the first time, you
need to invoke git submodule init manually for your working
tree. Currently, SmartGit can only fetch submodules after they
have been initialized (git submodule update).

3.3 Local Operations on the Working Tree

These commands can be found in the Local menu.

3.3.1 Stage

Use this command to prepare a commit by saving the current file content state in the
Index (see 2.4), by scheduling an untracked file for adding or a missing file for removing
from the repository.

To commit staged changes, invoke the commit (see 3.3.4) command on the working
tree root.

3.3.2 Unstage

Use this command to undo a previous stage (see 3.3.1).
If the file content in the Index is the same as in the working copy, the indexed content

will be restored to the working tree, otherwise the indexed content will be lost.

c© 2009 syntevo GmbH, www.syntevo.com 9

Chapter 3. Important Commands

3.3.3 Ignore

Use this command to mark untracked files as to be ignored. This is very useful for files
which should not be stored in the repository and ignoring them helps to not forget to add
files which should be stored in the repository. If the menu option View|Ignored Files is
selected, selected files will be shown.

Ignoring a file will write an entry to the .gitignore file in the same directory. Git
supports various options to ignore files, e.g. patterns that apply to files in subdirectories,
too. Using the SmartGit Ignore command only ignores the files in the same directory. To
use the more advanced Git ignore options, you may edit the .gitignore file(s) yourself.

3.3.4 Commit

Use this command to save local changes in the repository, to create a commit.
If the working tree is in merging state (see Section 2.5), you only can commit the

whole working tree. Otherwise, you can select the files to commit (previously tracked,
now missing files will be removed from the repository, untracked new files will be added).
If you have staged (see 3.3.1) changes in the Index, you can commit only these Index
changes by selecting the working tree root before invoking the commit command.

Note If you commit one or more individual files which have both staged
and unstaged changes, all changes will be committed.

While entering the commit message, you can use <Ctrl>+<Space>-keystroke to com-
plete file names or file paths. Use Select from Log to pick a previous commit message
from the log.

If Amend foregoring commit instead of creating a new one is selected, you can
update the commit message and files of the previous commit, e.g. to fix a typo or add a
forgotten file.

3.3.5 Undo Last Commit

Use this command to undo the last commit. The committed file contents will be stored
in the Index (see 2.4).

Warning! Don’t undo a commit which has already been pushed!

3.3.6 Revert

Use this command to revert the file content either back to their Index (see 2.4) or repos-
itory state (HEAD). If the working copy is in merging state, use this command on the
root of the working copy to get out of the merging state.

c© 2009 syntevo GmbH, www.syntevo.com 10

Chapter 3. Important Commands

3.3.7 Remove

Use this command to remove files from the repository and optionally delete them in the
working tree.

If the local file in the working tree is already missing, staging (see 3.3.1) will have the
same effect, but the Remove command also allows to remove files from the repository and
still keeping them locally.

3.3.8 Delete

Use this command to delete local files (or directories) from the working tree.

Warning! Note, that the files will not be deleted into the system’s trash and
hence restoring the content might not be possible!

3.4 Branch Handling

Branch-handling commands are located in the Branch menu.

3.4.1 Switch

Use this command to switch your working tree to a different branch.
If you select a remote branch, you can optionally create a new local branch. Not

creating the local branch will not allow to commit changes afterwards.
Switching to a local branch which has a tracking (remote) branch, will try to merge

changes from the tracking branch after the switch if the option Merge changes from
tracking branch is selected. If this option is not selected, you can later use the merge
(see 3.4.3) command to merge changes from the tracking branch.

3.4.2 Checkout

Use this command to switch the working tree to a certain commit.
First select the Root which contains the desired commit, then select the commit.

3.4.3 Merge

Use this command to merge changes from another branch to the current branch.
If the current branch has a tracking (remote) branch, you simply can select Tracking

branch to merge those changes. To merge from any other branch, select Other branch
or commit and pick the commit or branch.

With Fast-forward merge, SmartGit will only update the branch-pointer, if this is
possible (for details refer to Section 2.5). If not possible, this option behaves like Record
sources to prepare real merge commit which will perform the merge, record the source
commits and leave the workspace in merging state. You may then review the merge
results, tweak the merge (if necessary) and finally commit the merge.

c© 2009 syntevo GmbH, www.syntevo.com 11

Chapter 3. Important Commands

With Don’t record sources to prepare simple commit set, the content will be merged
in the usual way, but the merge sources won’t be recorded. When committing the result,
the merge will show up as a simple commit in the log, i.e. it will have no reference to the
merge source. In this way the merged commits have been condensed into a single commit.

Tip Don’t record sources to prepare simple commit can be useful
to condense a series of intermediate/temporary commits e.g. after
having finished a larger feature.

3.4.4 Cherry Pick

Use this command to “merge” certain commits to the current branch (actually, cherry-
picking is no real merge as it does not record the source commits.

Commits displayed in grey already belong to the current branch, commits displayed
in black are mergable.

3.4.5 Rebase

Use this command to “apply” (or “rebase”) certain commits from one branch to another.

Tip This command is in particular useful to keep the history of a repos-
itory linear.

3.4.6 Add Branch

Use this command to create a branch at the current commit.

3.4.7 Add Tag

Use this command to create a tag at the current commit.

3.4.8 Branch Manager

Use this dialog to get an overview over all branches or to delete some of the branches.

c© 2009 syntevo GmbH, www.syntevo.com 12

	Introduction
	Basic Concepts
	Typical Project Life-Cycle
	Branches
	Excursion to The Basics
	It's All About Commits
	Branches are Just Pointers
	How Things Play Together

	The Index
	Merging
	Working Tree States

	Important Commands
	Project-Related
	Open Working Tree
	Cloning a Repository

	Synchronizing with a Remote Repository
	Push
	Fetch

	Local Operations on the Working Tree
	Stage
	Unstage
	Ignore
	Commit
	Undo Last Commit
	Revert
	Remove
	Delete

	Branch Handling
	Switch
	Checkout
	Merge
	Cherry Pick
	Rebase
	Add Branch
	Add Tag
	Branch Manager

