VIDE



VIDE

Table of Contents

V IDE USEIGUIAE. .....eeeeutteee ettt ettt 444kt e 44k et e 4kt e e 4o skt oo et e e e e b et e e e st e e e e e eabne e e e e e
VIDE — CommMAaNd REFEIENCE........cciiiiiiiiiiiii ettt e e e e e 9
VIDE = EdItOr REFEIEICE. ... .eiiiiiiiiii ettt e ek e e e et e e e e e e e e e e e 23
VIDE C/CAH TULOMIAL .+t e e tttteee ettt e e oot e o4t e e et e e ettt e e ek e e e e e e e e e nnne s 4
UsING VIDE With the SUNJDK . .....coiiiiiieiiiiie ettt e ekt s et e e e e e s e e e e annee e s 53

The Borland C++ COMPIIEE 5.5...coiiiiiiiiiieeeeeeeeeeeeee e, 65

The Borland C++ Compiler 5.5 [



V IDE User Guide

he LR Dot Dbt Tiel  Dpbess  Diew  Yedew

DiGUm YY) W

e The V Integrated Development
Environment

* VIDE Overview

» VIDE Help System

» Debugging with VIDE
* VIDE for MS-Windows

» VIDE for Linux
» Release Notes

* Installing VIDE

» Known VIDE problems
» Help make VIDE better!
* No Warranty

The V Integrated Development Environment

VIDE is the V Integrated Development Environment for GNU gcc (Gnu compiler collection), the free

Borland C++ Compiler 5.5 for MS-Windows, and the standard Sun Java Development Kit. VIDE is available
both as a ready to run package for MS-Windows 9x/NT and Linux, and as part of the V C++ GUI
Framework. Executables for MS-Windows 9x/NT and Linux (glibc) are available for download at

http://www.objectcentral.com/vide.htm.

VIDE has been designed by a programmer for programmers. It makes the task of developing software for
CI/C++, Java, and HTML much easier than using command line mode. It is easy to learn, so it is a good tool
for the beginner. It also has the critical features needed to enhance the productivity of the experienced
programmer.

The source code is available under the GNU Public License (GPL), and many parts of its design reflect the
philosophy of GNU and Open Source. Whenever possible, VIDE takes advantage of existing GPL or freely
available software. It is designed to use the GNU gcc compiler and the free Sun Java kit. It also uses the GF
ctags program, and the addition of more integrated support for other GNU tools is planned.

While VIDE doesn't have every feature found in many commercial development systems, it is an ongoing
project, with more features included in each release. And best of all, VIDE is free! And since it is GPLed,
you can help add even more features if you want.
The main features in the current release of VIDE include:
« A great editor — The VIDE editor is a very good editor designed for the programmer. Editor features
include:
¢ Syntax Highlighting for C/C++, Java, Perl, Fortran, TeX and HTML.
¢ Several menu-selectable editor command sets, including:

O A generic modeless command set, similar to many Windows editors.

V IDE User Guide 1


http://www.objectcentral.com/vide.htm

VIDE

O Vi — the standard Unix editor, with extensions.
0 The See editor command set, an editor designed and used by Bruce Wampler, the
author of V and VIDE.
0 Others easily added by extending a C++ class.
¢ Beautifies C/C++ and Java code
¢ Powerful command macro capability
¢ Complete support for ctags (symbol lookup)

The Editor Reference has a short section of tips that will help you get the most out of the editor.

* Project Files — specify source files, compiler options, and other details required for g++ or Java.
Project files simplify and hide most of the details of using the underlying tools.

 gcc and Sun JDK - Supports development of both C/C++ with the GNU gcc/g++ compiler for
MS-Windows and Linux, (OS/2 environment soon), as well as the Java development using the Sun
JDK.

» Borland C++ Compiler 5.5 — VIDE has very good support for the recently released free Borland
command line compiler tools. It can build Console, GUI, and static library project files. | also
includes some extra documentation about the Borland environment. VIDE does not add a debugger,
however.

« Building Projects — Uses standard GNU make to build projects for g++, and the standard features of
the JDK to build Java projects.

» Syntax errors — Point and click to go to errors in source files.

» Supports gdb and jdb - Integrated support for the GNU gdb debugger for C/C++ and Sun's
jdb debugger for Java. The most common debugging tasks, such as stepping through a program, ar
fully integrated, yet all the more advanced features of gdb and jdb are available through a command
line window.

* V GUI - Integrated support for the V GUI for C++, including the V app generator and the V icon
editor.

* HTML - Extra support for HTML development. While VIDE doesn't support WYSIWYG HTML
development, you can send the current HTML file to your browser for immediate viewing. A
comprehensive HTML help document is included. Future versions will include more HTML features
such as table generation and image sizing.

» The VIDE Help System - Includes extensive HTML based help. Covers VIDE, GNU utilities,
C/C++ libraries, HTML, and more. The help files are available for separate download. You can see a
complete online version of the help package here.

 Future enhancements — VIDE is under active development and will continue to improve. Additions
planned include an interface to grep, CVS version control support, spelling checking, C++ class
browser, gcc profiler interface, and other features as supplied or requested from the VIDE user
community.

The executable version of VIDE is totally freeware. Use it, share it, do whatever you want. The source of

V IDE User Guide 2


http://www.objectcentral.com/vide/help/vhelp.htm

VIDE

VIDE falls under the GNU General Public License, and is normally included with the V GUI distribution.

See the file COPYING included with the distribution for more information. Its development is not always in
phase with the current V distribution, so there will be additional releases of executable versions as they
become available. With the added support for Java, it is likely that the standalone executable version will se
broader use than the source version included with V.

This program is provided on an "as is" basis, without warranty of any kind. The entire risk as to the quality
and performance of the program is borne by you.

Features that are planned for the near future include:

» Support for more editor command sets, including Emacs.

« Integrated spelling checking.

 Support for CVS/RCS.

» Code templates.

 Predefined Project files for various configurations — GUI, console, Mingw32, Cygnus, etc.

This document describes how to use VIDE. Because the process is slightly different for C/C++ and Java,
there is a brief tutorial section for each language. Following the tutorials, all the commands available from th
menus are described.

VIDE Overview

The design of VIDE has been somewhat evolutionary, but you should find that it is not that much different
than other IDEs you may have used. Because VIDE is a free, open source program, it probably lacks some
the polish of commercial IDEs. However, it is still quite functional, and it is really easier to develop programs
with it than it is to use a command line interface.

Generally, any application you write will consist of various source files (with associated header files for
C/C++), and required data files. These files are generally dependent on each other. By defining a VIDE
Project for your application, all the file dependencies are automatically handled. The standard tool make is
used for C/C++ files, while the JDK Java compiler automatically handles dependencies.

Using VIDE, the normal work cycle goes:

1. Design your application.
VIDE currently has no capabilities to help with this stage.
2. Start VIDE, and create a Project File.
This will include all source files, compiler options, and other information needed to compile your
application.
3. Build your project.
This stage compiles your source into object code. Compilation errors are displayed in the status
window, and you can simply right—click on the error to go to the offending line in your source code.
After making corrections, you repeat this step until all compilation and linking errors are removed.
4. Run your program.
You can start your program from within VIDE.
5. Debug your program.
VIDE for MS-Windows has integrated support for the gdb debugger for GNU C/C++. Because the
DDD debugger available for Linux is so good, VIDE for Linux does not have integrated debugging

V IDE User Guide 3



VIDE

support, but will automatically launch DDD. There is no support for debugging Borland BCC32
programs.

6. Write documentation for your application.
VIDE has syntax highlighting for HTML to make that job easier. You can also automatically launch
your web browser to view the resulting HTML pages. Really neat.

VIDE Help System

VIDE is distributed with this complete VIDE documentation. A complete set of HTML documents with
useful help topics are available_at www.objectcentral.com. VIDE also knows about the documentation that
comes with the Sun Java distribution. All this help is easily available from the VIDE Help menu. The vide
help system is described in tiéDE command reference.

Debugging with VIDE

VIDE supports GNU gdb and the Sun JDK jdb debuggers. The VIDE interface to the debuggers has been
designed to make the most common debugging tasks easy. The goal is to make using the native debuggers
easy as possible for casual users, while maintaining the full power of the debugger for experienced users.
VIDE accomplishes this by showing a command window interface to the debugger. You can enter any nativi
debugger command in this window, and thus have full access to all debugger features.

VIDE makes using the debugger easier by providing an easy to use dialog with the most often used
commands. Breakpoints are highlighted in yellow. And as you debug, VIDE will open the source file in an
editor window and highlight in red the current execution line on breakpoints or steps. It is very easy to trace
program execution by setting breakpoints, and clicking on the Step or Next dialog buttons. VIDE also allows
you to inspect variable values by highlighting the variable in the source and clicking the print button.

VIDE for MS—-Windows

VIDE for Windows is distributed as a self-installing executable file. You might want to create a desktop icon
to start VIDE. As of 1.08, VIDE supports drag and drop to edit files. If you want any files with particular
extensions to automatically start in VIDE, use the Start—>>Settings—>Folder Options—>File Types dialog

to associate the file type with VIDE.

VIDE for Linux

The Linux version of VIDE is distributed as a statically linked binary version for recent versions of Linux. It
is based on the Motif version of V, and is statically linked to the MetroLink Motif library. To install, unzip
and untar the distribution. You can install the binary almost anywhere you want.

Because this version is based on Matif, it isn't as well behaved as it might be with the KDE or Ghome

windows managers. It will start with the default Motif blue color scheme. It is easy to get a better looking
color scheme by using the —bg startup switch. This changes all the Motif decorations to be based on the col

V IDE User Guide 4


http://www.objectcentral.com

VIDE

you specify. For example, starting VIDE with VIDE —bg gray75 gives a nice gray based color scheme.
You can make a desktop shortcut with either KDE or Gnome that will automatically use the —bg switch.

Release Notes

* Version 1.08 — 04Mar2000
Version 1.08 is an important release. It corrects some bugs in the Borland BCC32 5.5 interface. It
adds drag and drop for the MS—-Windows version. But it also finally supports the Motif Linux
version. This is the first binary release in some time for a Linux version. It is also important because
it corresponds to the finally released V GUI Version 1.24, which contains the source for VIDE 1.08.
* Version 1.07 — 25Feb2000
Version 1.07 is a major upgrade. The main new additon is support for the new free version of the
Borland C++ Compiler 5.5. In the process of adding this support, some features were improved.

¢ BCC32 support fully integrated to VIDE. A separateference document for the Borland
support has been added.

¢ Easier resource files — It is now easier to include .rc resource files on Windows.

¢ Improved Project Editor — The project editor is a bit more intelligent about rebuilding the
Makefile now, and won't automatically regenerate it as often.

* Version 1.06 — 8Feb2000
Version 1.06 has several significant new features added. Gee, this thing is starting to get real!

¢ ctags support — you can easily find the declaration or definition of any program symbol.

¢ C++ Project Wizard — When you create a new C++ project, you can easily specify options
such as project type (console, GUI, library), compiler options, and more.

+ Significant upgrades of the documentation, including a new editor tips section.

+ Syntax highlighting added for Fortran. There is no project support for Fortran, however.

¢ Syntax highlighing for LaTeX files. Additional support for LaTeX is likely in the future.

* Version 1.05 — 21Jan2000

¢ Autoindent for code files has been added. This option is found on the Options—>Editor
dialog.

¢ Code beautifier now supports KRbrace placement in addition to braces on separate lines.

+ Syntax highlighting added for Perl. There is no project support for Perl, however.

¢ Screen updating for Windows version significantly faster.

+ A few bugs have been fixed.

* Version 1.04 - 18Nov1999
Version 1.04 includes major enhancements to the debugger interfaces. Debug commands have beel
removed from the tool bar, and now are in a pop up dialog when you run the debugger. The biggest
improvement is that breakpoints are now highlighted in yellow in the source file windows. The
current execution line is shown in red. The Debug menu has been removed.
With the release of gdb 4.18, programs developed with the V GUI can now be debugged reliably.
With the release of gcc 2.95 for mingw32, and the new Cygnus Version 1.0, all the problems
associated with earlier releases seem to have been resolved. You should be using the latest version
of gcc!

V IDE User Guide 5


bcc32.html
bcc32.html

VIDE

* Version 1.03 - 250c¢t1999
This version has some minor enhancements with the gdb and jdb interfaces. The documentation
HTML has been changed to use the default browser background colors.

* Version 1.02 - 110ct1999
This version includes new support for different syntax highlighting color schemes and different
background colors. There are six choices under the Options:Editor menu dialog.

Installing VIDE

It is probably easiest to use a pre-compiled version of VIDE. The VIDE executable binary is a complete
static program. It does not use any external files or DLLs. You can place the binary where ever you want.
However, you might want to install VIDE to its own directory tree. This is most likely to be compatible with
later versions of VIDE. For now, the tree just includes /vide/bin and /vide/help. You can run VIDE from the
desktop without setting a PATH, but if you use V and want to start the Appgen and Icon editor from within
VIDE, then those programs must be on your PATH. If you are using mostly GNU gcc/g++, then you may
want to install the VIDE executables on the same /bin directory the compiler is on. If you are using Java, the
you can create a /vide directory for the VIDE system. You may want to add a desktop shortcut if you use it &
lot.

If you want to use the help files other than VIDE help, you will need to download the separate help file
archive. It is best to install the help files in the /vide/help directory. After you've installed the help files, you
will need to use the VIDE Options:Editor command to set the path to the help files.

VIDE doe not provide Java help. You will need to find and download the Sun JDK yourself. Then use the
VIDE Options—>Editor menu command to set the Java directory.

If you are building VIDE from the V distribution, then apply the above comments to the version you build. If
you want to use the V appgen program, or the V Icon Editor, you need to get those from the V distribution.

Known VIDE problems

Errors generated by the compiler are passed via two temporary files. Sometimes these files are not deleted,
and are left behind on the hard disk. If two instances of VIDE are running, it is possible to have an access
conflict to these files from one of the instances. This can prevent builds with error messages from displaying
those messages in the message window.

If g++ has a fatal error, it can hang VIDE. Because all files are saved right before running g++, there is no
data loss.

The syntax highlighting doesn't work right for multi-line "/* comment */" style comments. If the lines
between the opening "/*" and the closing "*/" have a "*" as the first character (which is the normal
convention for Java programs!), syntax highlighting works correctly. Otherwise, those lines will not get the
comment highlight. This is purely a cosmetic problem, but is unlikely to be fixed because of difficulties
imposed by the internal structure used by the editor. (Note (3Sep99): Gee, | feel better! | was just playing
with Microsoft VC++ 6.0, and guess what? Their editor doesn't do /* */ comments right, either! | guess if
Microsoft can sell a commercial product that can't do proper syntax highlighting, then | can do it for a free

V IDE User Guide 6



VIDE

product.)

The tidy/prettyprint command doesn't handle the last case of a switch properly. This won't be fixed. Also not
that the formatting is based on the indent of the previous line, so you must start at a known good indent poir

Help make VIDE better!

The V IDE is GPL freeware. It has been written using the V C++ GUI framework. | get no compensation for
either V or VIDE, so please don't get too fussy about features or problems. | welcome bug reports and
requests for new features, but | make no promises.

My goal for VIDE is to make it a great alternative to Emacs. | know Emacs will do almost anything you
would ever want, but the learning curve is huge. VIDE is much more GUI oriented, and | want to keep it
simple enough for beginning programmers to use.

So, even more welcome than bug reports would be offers to help add features to VIDE! Since the source co
for both V and VIDE are GPL and LGPL, they are available for enhancement. If you would like to make
contributions to VIDE, please contact me directly by e-mail. VIDE is currently ahead of the V GUI release
cycle, so | will need to provide you with the latest versions of all the source code.

| welcome any contributions or ideas, but right now the following projects:

» Support for other editor command sets. My goal is not to provide exact clones of other editors, but to
provide the basic commands of other editors at a "finger memory" level. It is fairly easy to add a new
editor command interpreter. | spent less than two days writing the Vi emulation. Because | use the
See command set myself, it is a bit hard for me to write a command interpreter for other editors that
provide true "finger memory" compatibility. | hope the Vi emulation meets this kind of compatibility.
I'd like to see an emulation for Emacs, but any emulation is welcome. | think the emulation will be
better if it is written by someone who actually uses that editor.

* Spelling checking.

* An interface to CVS.

* An interface to grep.

* A class browser for both C++ and Java. | have a stand alone V C++ browser that could serve as a
starting point.

* An interface to other Java tools such as Javadoc.
* An interface to Jikes.

If you'd like to help on any of these projects, please contact me and | will do everything | can to help you get
started.

V IDE User Guide 7



VIDE

No Warranty

This program is provided on an "as is" basis, without warranty of any kind. The entire risk as to the quality
and performance of the program is borne by you.

V IDE Reference Manual — Version 1.08 — 04Mar2000
Copyright © 1999-2000, Bruce E. Wampler
All rights reserved.

Bruce E. Wampler, Ph.D.

bruce@objectcentral.com
www.objectcentral.com

V IDE User Guide 8


mailto:bruce@objectcentral.com
http://www.objectcentral.com

VIDE - Command Reference

This section provides a summary of the all the VIDE commands available from the menus.

* File Menu

» Edit Menu

* Project Menu
» Build Menu

* Tools Menu

» Options Menu
» Help Menu

» Debug Dialog
* Warranty

File Menu top_

New

Dpen..
View..
Save

Save as...
Close.

Save Al
Save / Close

Send to Biowser
Exit.

The File menu is used for source files. Use the Project menu to open and edit project files.

File:New Q_J

Create a new source file. Syntax highlighting doesn't take effect until you've done a File:Save as and
repainted the screen.

File:Open... E’j

Open an existing file.

File:View...

Open an existing file for viewing. The file is read—only, and you won't be able to make any changes.

VIDE - Command Reference 9



VIDE

File:Save EJ

Save the current file to disk.

File:Save as...

Save the current file using a new name you will specify.

File:Close

This will close the existing file. If you've made any changes, you will be prompted if you want to save them.

File:Save All

Saves all currently open files.

File:Save/Close

Save the current file, then close it.

File:Send to Browser

Save the current file, then open it with default browser. This command has a quick and dirty implementation
and it passes just the default file name to the system routine that opens the browser. Thus, this command c:
fail if the file doesn't have a full path qualification. This can happen when you type a file name in directly to
the file open dialog. On MS-Windows, you must have .htm and .html files associated properly with your
browser. This command won't do anything for non—HTML files. This association will usually be set
automatically when you install your browser.

File:Exit

Exit from VIDE.

Edit Menu tp__

VIDE - Command Reference 10



VIDE

The edit menu has some basic commands to edit text in the current file.

Edit:Undo %

Restores the last text deleted. Only one level. Doesn't undo insertions or position changes. Also, doesn't un
deletions greater than 8K characters.

Edit:Cut

Delete the highlighted text, and copy it to the clipboard. Standard GUI operation — use mouse to highlight
region of text, then cut

Edit:Copy

Copy highlighted text to clipboard.

Edit:Paste

Paste the text on the clipboard to the current text position.

Edit:Find...

Find a text pattern in the file. Brings up a dialog.

Edit:Find Next

Find the next occurrence of the current pattern in the file.

VIDE - Command Reference 11



VIDE

Edit:Replace... R’.J

Find a pattern in the file, and replace it with a new one. Brings up a dialog.

Edit:Find Matching Paren

If the cursor is over a paren character, i.e., ()[[{}, the cursor will be moved to the matching opposite paren.

Edit:Set BP

This command will set (or preset if the debugger isn't running) a breakpoint on the current line. Breakpoints
will be highlighted in yellow. Usually, you set breakpoints after you run the debugger, but VIDE remembers
breakpoints across debugger sessions. (However, VIDE does not remember breakpoints across VIDE
sessions!)

Edit:Delete BP

This command will delete the breakpoint on the current line.

Edit:Edit Help

Displays a list of the command supported by the current editor command set.

Project Menu twp__

Open

New C++ Project

New Java Project
it :

Gloee

By Proiechioss
Fretld akehle

Select Makefile or Jaya file

. rae;
Project:Open &

Open an existing project file. Project files all have a .vpj extension. VIDE automatically detects C/C++ or
Java projects.
Project:New C++ Project

This will create a new C/C++ project. The options on the dialog are describeddfCthe section of this
documentation.

VIDE - Command Reference 12



VIDE

Project:New Java Project

This will create a new Java project. The submenu allows you to create a new Applet, Windowed App, or a
Console App. The details are described in the Java section of this document.

Project:Edit

Edit the currently open project. See C/CartJava sections for details.

Project:Close

Save and close the currently open project.

Project:Save as...

Save the current project under a new name. This is useful for creating "template" projects that have specific
settings for your development environment. These templates can be opened later, then saved under a new
name again for the real project.

Project:Rebuild Makefile

OK, I admit it. VIDE doesn't handle all cases of changes to your files. If you add a new #include to a
source file, for example, VIDE won't automatically rebuild the Makefile to add this new dependency. This
command helps get around that problem.

Project:Select Makefile or Java file

Instead of using a VIDE project, you can simply use an existing Makefile, or even a Java source file. Use thi
menu item to specify the Makefile or Java source file instead of a VIDE project. When you have a Makefile
or Java source file selected, the Makefile will be run, or the Java source passed to the Java compiler when
you click the make tool bar button.

Build Menu top__

Make C++/Compile-Jaya
Make clean

Make cleanall

Make cleanbin

Make <target>

Generate clags

SAGH Mals

Used to build and compile projects.

VIDE - Command Reference 13



VIDE

Build:Make C++/Compile Java %
Build the project. This command first saves all your open files. It then runs make for C/C++ projects, or the

Java compiler for Java projects. Errors are displayed in the message window, and you can go directly to the
error by right—clicking on the error line in the message window.

Build:Make clean

Build:Make cleanall

Build:Make cleanbin

Runs make with the given target: clean to clean object files, cleanall to clean objects and binaries, and
cleanbin to clean binaries only. Used only for C/C++ projects.

Build:Make <Target>

Runs make to make the target you specify. Used only for C/C++ projects.

Build:Generate ctags

Use this command to generate or regenerate the ctags file for the current directeditd®egaqgs for more
information.

Build:Stop Make

For C/C++ makes, will stop the make after the current file is finished being compiled.

Tools Menu top__

Run program w/ ergs

Start Debugger
Run OS Shell

V App Gen
V lcon Editor

VIDE - Command Reference 14



VIDE

Tools:Run program w/ args

Runs a specified program. Allows you to specify arguments to the program.

Tools:Run project ?.J

Runs the program from the existing project. Note: VIDE does not check to recompile before running an
object.

Tools:Start Debugger _%1

Opens a new command window to interface to the debugger. Will use the current executable file.

Tools:Run OS Shell

Runs a basic OS shell.

Tools:V App Gen

Runs the V tool V App Gen.

Tools:V Icon Editor

Runs the V Icon Editor.

Options Menu top__

VIDE
Editor
Font

The Options menu allows you to customize various aspects of VIDE, including paths, editor attributes, and
font. These settings are saved in a standard system place. For example, they are saved in
C:/windows/vide.ini on MS-Windows. They will be in $(HOME)/.Viderc on Linux or other

Unix-like systems.

Options:VIDE

VIDE - Command Reference 15



VIDE

This item allows you to set the paths VIDE uses to find the VIDE help system files as well as the standard
help file included with the Sun JDK.

This item also allows you to specify which command shell and debugger are used. These two options are
most useful on Linux/Unix systems.

You can also set the default args used when running ctagedi@mectags. If you set the "Automatically run
ctags" box, then VIDE will automatically generate a hew ctags file whenever you open a project. Note that
running ctags is a very fast operation.

The Windows version also includes a line to specify the "Borland root". This is used for support of the
Borland C++ Compiler 5.5. See tBerland reference.

Options:Editor

The options include:

» AutoSave - VIDE will automatically save changed versions of edited files every N minutes. Use O
for no autosave. Note: while autosave might save a lot of lost work for you sometime, it can have
problems, too. Unless you check the "Make Backup File" option, VIDE only keeps the current copy
of your file. After you have saved the file, either by a manual save, or by autosave, previous versions

VIDE - Command Reference 16


bcc32.html
bcc32.html

VIDE

of your file are lost. If you quit the editor, and answer no to saving changes, you won't necessarily ge
back to your original file if you have autosave on.

» Tab Spacing — the number of spaces for each TAB character. The most widely used value is 8.

« {} Indentation — This applies to beautifying Java and C++ code. With a value of 0, braces { and }
will be lined up with the outer indentation level. With a value of 2, braces are indented 2 from the
outer level. It is most common to line up with the outer level (value 0) in code that lines up braces,
but | find the extra 2 spaces makes the braces stand out better, and is easier to read. This should be
for KRstyle code.

» Text wrap — If you are editing text or HTML files, each editor emulation will provide a command
that will automatically fill text. The text wrap value is the column used to determine the wrapping.

« Editor emulation — Select which editor command set you want to use.

+ Standard Editor
¢ See
* Vi

The editor emulation changes for new edit windows you open. The editor you chose will be saved in
the preferences file.

» Make backup file — if this is checked, VIDE will make a backup version of the original file. The
backup will retain the original name and extension, but add a ".bak" to the name. For example,
"foo.cpp” will be saved as "foo.cpp.bak". This feature can be handy when used in conjunction with
AutoSave to be sure there is an unchanged copy of the original file.

» Color scheme — By popular request, VIDE now includes several color schemes for the editor
windows. The standard version is black letters on a white background, with various other colors usec
for syntax highlighting. The color scheme option lets you pick from several other color schemes. You
can only pick from the fixed schemes. If you have a color combination you'd really like to see, send
e—mail and | will consider adding it for the next version. When you select a color scheme, it is not
applied until you open a new editor window.

» Autoindent Code — When this is checked, VIDE will autoindent when you are entering new code.
When you enter a newline, VIDE will automatically insert the same indentation as the previous line
(spaces and tabs). This will be done only for code files (C++, Perl, Java).

Options:Font

Lets you specify the font used in the display window. The font will change in the current window, and in
future windows, but not in already open windows. The font you chose will be saved in the preferences file.

Help Menu tp__

VIDE

Editar Command Set
VIDE Help Systam
Win3z AP

V.GUI

Java JDK

Java AP

HTML

HTML-CSS

AboutVIDE

VIDE - Command Reference 17



VIDE

Help:VIDE

Opens your browser with this file.

Help:Editor Command Set

Shows a dialog box with a command summary of the editor command set currently being used.

Help:GNU, Other Tools

Opens your browser with the VIDE Help System page. This contains links to various GNU software, g++,
libraries, and HTML. This is the page distributed as the VIDE Help Package.

Help:WIN32 API

This will try to open the Borland WIN32 API .hlp file. The hlp format file should be available at Windows
API| Reference from Borland.

Help:V GUI

Opens the V GUI Reference Manual.

Help:Java JDK

Opens the top level Sun JDK Help pages. You must set the Java help path in the Options:Editor menu, and
download the help files from Sun.

Help:Java API

Opens the Sun JDK API Help pages. These cover all the standard elements and library classes of Java, ant
probably the reference you will most often use. You must set the Java help path in the Options:Editor menu,
and download the help files from Sun.

Help:HTML

Opens a guide to HTML tags.

Help:HTML - CSS

Opens a guide to HTML Cascading Style Sheets.

VIDE - Command Reference 18


http://www.borland.com/devsupport/borlandcpp/patches/BC52HLP1.ZIP
http://www.borland.com/devsupport/borlandcpp/patches/BC52HLP1.ZIP
http://www.borland.com/devsupport/borlandcpp/patches/BC52HLP1.ZIP

VIDE

Window Menu

Standard MS-Windows Window menu.

Debug Dialog top__

gab | Jovajdb |
RUN | Com RUN | Comt |
Step | Nea Step. | MNem
Und | K Steplp | Up
Up | Down Hep | Down

Dispay Values Dizplay Values

| Aige | Stack Prrt | Class
Locals | Help | Memory |
Set | Delete Se | Delete

~ Deldt | Show Deldl | Show

gdb Dialog jdb Dialog

In general, the commands on the debug dialog work very similarly for the gdb and jdb debuggers. For more
specifics for gdb and jdpsee th&C++ Tutorialor theJava Tutorial.

Commands:RUN

Run the program being debugged from the start. You will usually want to set some breakpoints first.

Commands:Cont

Continue running program until the next breakpoint is reached.

Commands:Step
Step into the current statement. This will break at the first statement of a called function. For non—function

calls, this will have the same effect as the Next command. When you use Step or Next, the new current
program line will be highlighted in red.

VIDE - Command Reference 19



VIDE

Commands:Next

Step over the current statement. If the statement is a function call, the program will break after the function
has returned.

Commands:Until

Continue running the program until the current line in the editor window is reached. (gdb only)

Commands:Kill

Stop execution of the running program. (gdb only)

Commands:Up

Move execution up stack frame.

Commands:Down

Move execution down stack frame.

Commands:StepUp

Execute until the current method returns to its caller. (jdb only)

Display Values:Args

Display args to current function. (gdb only)

Display Values:Stack

Display the call stack.

VIDE - Command Reference 20



VIDE

Display Values:Print
Display the value of the variable highlighted in the editor window. The variable must be available in the
current context of the running program. To use this command, use the mouse to highlight the variable name

you want to inspect. It is easiest to double click over the symbol to highlight it. Then click this command in
the dialog.

Display Values:Print*

Line Print, but does indirection. Useful for C/C++ pointers. (gdb only)

Display Values:Locals

Print all local variables in current stack frame.

Display Values:Class

List currently known classes. (jdb only)

Display Values:Memaory

Report memory usage. (jdb only)

Breakpoints:Set

Set a breakpoint at the current line in the editor window. To use this (and other commands that use the
"current line"), first get focus to the editor window of the source file you want to work with. Then go to the
line you want to work with, either with the mouse or cursor movement commands. Finally, click the

Set button in the dialog box (or the Edit:Set DB menu). Breakpoints will be highlighted in yellow. Usually,
you set breakpoints after you run the debugger, but VIDE remembers breakpoints across debugger session
(However, VIDE does not remember breakpoints across VIDE sessions!) When you hit a breakpoint, the
current program line will be highlighted in red.

Breakpoints:Delete

Delete the breakpoint set at the current line. This command isn't as easy to use as it could be because the
editor doesn't highlight lines with breakpoints. The current version doesn't keep its own list of breakpoints,
but relies on the debugger. Thus, you have to know in advance which line you want to debug. It is sometime
easier to just use the debugger command line interface for this. | hope this one gets better in the future.

VIDE - Command Reference 21



VIDE

Breakpoints:DelAll

Delete all set breakpoints.

Breakpoints:Show

Show all set breakpoints. Uses native debugger commands for this.

(Breakpoints,Display Values):Help

Show debugger help. Uses debugger native help command.

No Warranty twp__

This program is provided on an "as is" basis, without warranty of any kind. The entire risk as to the quality
and performance of the program is borne by you.

VIDE Reference Manual
Copyright © 1999-2000, Bruce E. Wampler
All rights reserved.

Bruce E. Wampler, Ph.D.

bruce@objectcentral.com
www.objectcentral.com

VIDE - Command Reference 22


mailto:bruce@objectcentral.com
http://www.objectcentral.com

VIDE - Editor Reference

» The VIDE Editor
* Getting started — Tips
¢ Everybody Does It! — General Editing
¢ Do It Your Way! — Emulations
¢ Do It To What? — Selecting text
¢ Where Is 1t? - Finding text and symbols
¢ Move It! — Moving text
+ Make It Pretty! — Looking good
¢ Do It Again! — Macros

¢ 1 Did It Wrong! — Undoing
* VIDE Features

¢ Keyboard Macros
+ Code Beautifier
¢ Syntax Highlighting

¢ ctags
¢+ Other Features

» Editor command summaries

+ Common to all emulations
+ Standard Editor

¢ See

¢ Vi

The VIDE Editor

What is the most important part of any IDE? Why, the editor, of course! No matter how easy an IDE makes |
to compile and debug your programs, you will still spend most of your time in the editor. The VIDE editor is
based on the V TextEditor class, and has a long history.

| wrote the first version of the editor over twenty years ago in a language called Ratfor. Over the years, this
editor code has evolved. It went from Ratfor to C to its current C++ version, and from supporting a simple
console terminal to the current GUI version in an IDE. Over all this time, | always have found it easier to por
the editor rather than learn a new one. This editor has the features that I've found the most useful as a
programmer. For most of its life, the editor supported my own command interface called See, but the curren
version supports a standard GUI interface, as well as a Vi command emulation. No matter which command
interface you use, the VIDE editor has a long history and includes many features very useful to a
programmer.

Getting Started — TipsS wp __
As | just noted, the VIDE editor has evolved into a fully featured programmer's editor. But in order for you to

get the full value of these features, you have to know about them. This section will help you get started usin
the VIDE editor. It contains some tips for getting the most out of the VIDE editor —— understanding both its

VIDE - Editor Reference 23



VIDE

features, and its quirks. Do yourself a favor, and read this section!

» Everybody Does It! — General Editing

Of course the editor supports all the standard things you usually do with an editor — moving the
cursor, adding text, changing text, finding text, and so on. Just how you do these actions depends or
the editor command emulation you are using. (See next section.) VIDE has a very extensive help
system, but there is an extra menu command that you will likely find useful as you are first learning
the editor. Using the Edit—>Editor Help menu command will bring up a dialog box with a list of the
commands supported by the current editor emulation.

Do It Your Way! — Emulations

The current version of VIDE supports several command sets. The default is a generic modeless
command set typical of most GUI editors. The second command set is based on the See editor whic
is the editor I've been using for 20 years. It is not well known — yet. There is also a very good
emulation for Vi that will keep your fingers happy if you use Vi. It is possible to add a new emulation
with just several hours of work. Adding an emacs emulation has been on my list for a long time, but
I've yet to receive even one request to do it. The main idea of any emulation is to support "finger
memory" — allowing your fingers to do what they have learned as you've used your favorite editor.
Thus, | hope I've succeeded making the generic GUI editor like most other GUI based editors, and
having the Vi emulation work as you would expect. You can select the emulation from the

Options—>Editor dialog.

Some features of the editor are available mainly through menus and mouse actions. For example, al
emulations use the mouse to access the ctags features. Some of the searching and replace features
available only through the Edit menu.

» Do It To What? — Selecting text

GUI applications all allow you to highlight text for some kind of action — copy to the clipboard,
delete, and so on. VIDE supports standard mouse based selection. You can also use
Shift+<arrow-keys> to highlight selections. Because of limitations in the V library, you can use the
mouse only to select currently showing text. You can use the Shift+:<arrow—keys> to select text off
the display window.

You can left—click to select text. The first click positions the cursor. The second click will select the
word (a-z, 0-9, and _) under the cursor. A third click will try to select a complete programming
symbol (although the selection algorithm still needs some improvement). A fourth click will select
the entire line. This selection method is very useful for looking up ctags and setting breakpoints.

» Where Is It? - Finding text and symbols

Of course, one of the main things an editor lets you do is find text within a file by using a find or
search command. The VIDE editor supports this, but it also lets you easily find the definition of a
program symbol using another program call ctags.

¢ Searching
The VIDE editor supports finding (and replacing) text two ways. There are three Edit menu
options: Find, Find Next, and Replace. The menu forms use dialogs to enter the patterns.

VIDE - Editor Reference 24



VIDE

Each editor will also have keyboard commands that let you enter the patterns without a
dialog. The patterns are echoed on the status line. VIDE does not support regular expression
in its find patterns.

¢ ctags
The ctags program has been used for years on Unix systems. Essentially, ctags builds an
extensive cross-reference of the symbols (variables, function names, defines, etc.) in your
program files. The VIDE editor uses the ctags file to let you find the original declaration of
any symbol in your source file. It is simple to use. Highlight the symbol you want to look up
(double left—clicking over the symbol is the easiest way to do this). Then right click on the
highlit symbol. The VIDE status window will then show locations where the symbol has
been defined or declared. If you then want to see the actual definition, right click on the line
in the status window, and the file will be opened right on that line. Neat!

* Move It! — Moving Text

Moving big blocks of text around is a common editing operation. The standard GUI way to do this is
to cut and paste the selection. The See and Vi emulations also support other very powerful ways to
move blocks of text, including reading and writing files. See the See "Save buffer commands" and
the Vi "Yank buffer commands" for more details. Currently, the standard GUI editor does not support
this concept.

» Make It Pretty! — Looking good

Having nice looking code is a very important part of the programming process. A well formatted,
properly indented program makes it far easier to read, understand, and maintain. The VIDE has
several features that make it easier for you to write good looking code. It even has some features to
let you write documentation — in plain old text or HTML.

¢ Auto-indent
If you are editing code files, the VIDE editor has an auto—indent mode (enabled in the
Options—>Editor dialog). When auto—-indent is on, the editor will automatically indent the
same number of tabs and spaces on the previous line whenever you insert a new line. If you
need to unindent, simply press the backspace key.

¢ Beautifier
| personally don't like auto—-indent that much. Instead, | prefer to use the VIDE beautifier.
This feature will automatically beautify (set the proper indentation) source code, and fill text.
The neat thing is that you can do this any time, and it will clean up your code even after
you've done extensive editing. A beautifier may not sound really important, but over the
years, I've found that it is one of the most important features of the editor, and | would find it
difficult to program without it. There are more details inGbde Beautifier section.

¢ Syntax highlighting
The VIDE editor knows how to highlight the syntax of C, C++, Java, Perl, and HTML.
Syntax highlighting makes it much easier to read your code. There are several standard colo
choices available in the Options—>Editor dialog.

¢ HTML support
VIDE is not a full blown HTML environment, but it does have a few features that help. Is
use it for most of my HTML editing. As a programmer, | find it pretty easy to use the

VIDE - Editor Reference 25



VIDE

standard HTML tags, and find that the editor | use (VIDE/See) is more important. In addition
to HTML syntax highlighting, the File—>Send To Browser command is most useful. It will
close the current file, and then use the default browser to open it. This is pretty effective.
Once the current file has been loaded into the browser, it is often easier to click the save file
tool bar button, and then the reload button in the browser. I've been doing that a lot as | write
this, and it is almost as good as a full HTML editor.

* Do It Again! — Macros

There are a lot of editing tasks that are repetitive. VIDE has a couple of features that makes these
tasks easier. First, most editor commands all you to add a count at the beginning. Thus, you can ent
a command that says go down 53 lines instead of pressing the down arrow 53 times. The mechanisr
for entering counts depends on the command syntax of the given emulation.

Even more powerful than simple counts is the VIDE macro facility. Essentially, a macro is a small
editing program that you can execute. You first define a macro consisting of editor commands
needed to perform the task, and then execute the macro as many times as needed. See the
macros section for more details.

« | Did It Wrong! — Undoing

You mean you make mistakes when editing? VIDE has a few features to help you undo editing
errors.

¢ Undo
VIDE has an undo command, but it is only one level, which works for the most common
situations. Essentially, you can undo the last delete operation, which most of the time will be
enough. You can't undo a long insertion (do it by hand!), or a series of single character
deletes. VIDE's undo facility is one place where the 20 year heritage of the code limits it
functionality — the internal editor code just doesn't lend itself to multiple undos and redos.

+ Autosave
Probably the biggest safety feature of VIDE is autosave. You set the value in the
Options—>Editor dialog. The current state of your file will be automatically saved at the
frequency you specify. This is five minutes by default.

¢ Backup file You can also use the Options—>Editor dialog to tell VIDE to make a backup
copy of the original file when you open it. With this enabled, you will always have the
original copy of the file to revert to in case of a major editing error.

VIDE features tp__

This section describes some of the features of the VIDE editor emulations that are especially useful for
programming. While most of these features are found in other editors, some are not native to the original
editors VIDE emulates. In those cases, VIDE tries to fit the features into the natural command syntax of the
original editor.

VIDE - Editor Reference 26



VIDE

VIDE Keyboard Macros twp__

The Standard, See, and Vi emulations all support a simple, yet powerful macro facility. There are 26 buffers
called "Q—-Registers". You can record character keystrokes into any of the Q-registers, and then execute
those characters as a set of commands. A set of commands like this is often called a macro, or in VIDE
terminology, Q—Macros. (Note: when you record special keys such as the arrow keys, they are all echoed a:
"{fn}" —— you won't be able to tell from the echo which key you entered.) You can enter any command into
the editor, including find patterns and insertion strings.

The general procedure for using Q—Macros is the same on the currently supported emulations (the commar
for using Q—Macros are different). First, you record a sequence of keystrokes into one of the 26 Q—Register
The keystrokes you enter will be echoed on the status line. You can use backspace to edit your input. You
terminate the Q—Macro by entering the special end—macro character defined for the emulation.

Once you have a macro recorded, you can then execute it using the execute—macro command of the
emulation. You can provide a count, and thus execute the macro many times. Q—Macros terminate when ar
given command fails. For example, if a find fails, the macro will end. There are commands to specify which
Q—-Macro to execute.

Code Beautifier top__

The VIDE editor has a code beautifier for C, C++, and Java. How the beautifier works for Perl has not been
fully tested. The editor will also fill text lines for text files.

To use the beautifier, you place the cursor on the line after a line that is already properly indented. Then ent
the beautify command (as defined by the given emulation), and your code will be automatically indented,
subject to a few limitation described later. Some parameters of the filling and beautification process can be
adjusted in the Options—>Editor dialog.

Code Beaudtifier

VIDE will format your C, C++, and Java source code by following a fairly simple set of rules. Because VIDE
doesn't fully parse the code, you will have to follow some coding conventions, and may have to "help"
manually sometimes. On the whole, however, VIDE's beautify command works better than using
auto—-indent. It is especially useful after you've revised a section of code.

« Indentation is based on steps of four spaces. Following the normal Unix convention of 8 spaces per
tab, your code will be indented to an even multiple of 4 spaces, even tab stops, or tab stops plus 4
spaces.

» The standard language keywords plus curly braces ({}) are used to determine indentation.

« Lines with non—-whitespace in the first column are left as they are.

» Formatting is based on the indentation of the previous non-blank line. Thus, when you beautify your
code, you must start at a place where the indentation is already correct.

» Because VIDE doesn't completely parse the source code, it doesn't always correctly handle case an
default statements. You can usually work around this by manually formatting the first line of a
case group or default group.

» Beginning with version 1.05, the VIDE beautifier can automatically handle two coding conventions.
The preferred style assumes you have braces ({}) on lines by themselves, perhaps with a trailing

VIDE - Editor Reference 27



VIDE

comment. VIDE also tries formatting source code that uses the convention of placing the opening
brace ({) at the end of a control statement such as if or while (sometimes known as KRstyle).
Support for KRstyle is not quite as robust as keeping braces on separate lines, but it is still good.
Having a pair of braces on the same line can confuse VIDE's formatting.

Hint: when you are entering new code, it is often easier to not worry too much about the indentation. Just
leave some whitespace at the beginning of each line, then go back and beautify it after you have your
statement structure complete.

Hint: Using a command count often is especially useful when beautifying blocks of code. Remember to start
on a line that is indented the way you want already.

Text Filling

When you use the beautify command on text files, VIDE will fill the text to the column set in the
Options:Editor dialog. If the first column of the text has certain special characters or character sequences,
VIDE will skip filling that line. This feature is intended to make filling of HTML and other markup language
files work better. VIDE won't fill if the line is blank, or begins with a space, a period, a tab, a latex keyword,
or a block oriented HTML command.

Syntax Highlighting twp __

C, C++, Java, Perl

VIDE editors will highlight C, C++, Perl, and Java source code. The following default conventions are used:
keywords in blue; constants in red; comments in green; C/C++ preprocessor directives in cyan; remainder ir
black. Other colors are used for alternate color schemes.

HTML

Highlighting of HTML files is very simple minded, but can really help you to read the HTML source code.
Angle brackets (<, >) are always highlighted. If the first character sequence after the opening < is a valid
HTML command, then it is also highlighted. Other parameter keywords within an HTML command are not
highlighted. String constants and numbers are also highlighted. The "'character is also highlighted.

CtagS top__

Beginning with version 1.06, VIDE supports the ctags program. Ctags will generate a cross-reference tag fil
of C++ and Java source files. VIDE can read this file and locate the original definition or declaration of a
symbol.

To use the ctags feature, first use the Build—>Generate ctags command. This will generate a file called
"tags" in the current directory. Then, to locate a symbol's definition, highlight it anywhere in a source file. (It
is easiest to do this by double clicking over the symbol.) Any instances of that symbol will then be displayed
in the status window. If the symbol is defined in multiple files, there will be multiple lines shown. There is

VIDE - Editor Reference 28



VIDE

extra information supplied about the symbol, and you can usually tell which is the instance you want. Often
the information shown in the status window will beenoughh to help. If you need to see the actual definition o
declaration, then right click the appropriate line in the status window, and the file will be opened.

Sometimes ctags will not include the symbol in the tags file. It does not generate entries for symbols local to
a function, or for function parameters. And it will not automatically include symbols from libraries you use.

If you want library symboils included in the tags file, you need to include the path to the library on the ctags
args line.

By default, the arguments supplied to ctags are "—n", which is required for VIDE to use the tags file properly
and "*", which will make ctags use all the source and header files in the current directory. Most of the time,
this will be just what you need. However, ctags has many options, and can tag files from other directories
given the proper options.

You can change the default "*" argument using the Options—>VIDE dialog. You can also supply a project
specific ctags argument list using the project editor. Note that the "—-n" switch will always be used.

To use the ctags feature, you normally don't have do anything other than be sure ctags is available. The
Windows distribution of VIDE will install the ctags executable on the VIDE directory, and ctags is normally
found on Linux systems. (You may have to add the VIDE directory to your AUTOEXEC.BAT PATH.)
VIDE provides the ctags version knownEsauberant Ctags. A local tegbpy of thectags man page is also
included with VIDE. The source of Exuberant Ctags is available at its web site.

Other features top__

Wide lines

One attribute of the VIDE editor is how it handles lines wider than the window. It does not use a horizontal
scroll bar. Instead, as you move right on long lines, the text will automatically shift to show more of the line.
The last character displayed in the window of a wide line will be the last character in the line, and not the
character that actually is in that column.

Auto save

You can set the Auto save value in the Options:Editor dialog to tell VIDE to automatically save open files at
a given interval. This approach is different than some programmer's editors. You can end up with files that
are in a state of transition. VIDE also supports making a backup file of the original when you edit. Note that
whenever you do a project build, open files are automatically saved.

Time stamp
If you put a comment containing the string "date:" anywhere in the first 12 lines of your source code file

(C++, Java, Perl, HTML), VIDE will automatically add a time stamp after the "date:" whenever you make
changes to the file.

VIDE - Editor Reference 29


http://darren.hiebert.com/ctags/index.html
http://darren.hiebert.com/ctags/index.html
ctagsman.txt
ctagsman.txt
ctagsman.txt

Commands common to all editors wp

In an effort to comply with standard interface design, especially as it applies to MS-Windows, there are
several commands that are common to all editor emulations. These common commands are explained in th

section.

In addition to the following keyboard commands, the action of the mouse to move the cursor and select text

VIDE

conforms to normal interface design.

Key

Command Description

Selection Highlighting

nShift-UpArrow

Extend selection n lines up.

nShift—-DownArrow

Extend selection n lines down.

Shift-LeftArrow

Extend selection left one character.

Shift-RightArrow

Extend selection right one character.

Shift-Home Extend selection beginning of line.
Ctrl-Shift-Home | Extend selection beginning of file.
Shift-End Extend selection end of line.
Ctrl-Shift-End Extend selection end of file.

Clipboard

AX [Menu Edit:Cut]

Cut selection to clipboard.

~C [Menu Copy selection to clipboard.
Edit:Copy]
"V [Menu Paste clipboard to insertion point.
Edit:Paste]
Menu Commands
File:New Create a new file. You will be prompted for the name of the new file.
File:Open Open an existing file.
File:View Open an existing file for read only access.
File:Save Save (write) current file.
File:Save As Save current file under a new name. New file becomes current file.

VIDE - Editor Reference

30



VIDE

File:Close

Close current file.

File:Save All

Save all open files.

File:Save / Close

Save and close current file.

File:Send to Send current HTML file to browser. This is an effective way to edit HTML

Browser files and view the results.

Edit:Undo VIDE's undo is a bit limited. Undo will undo the last text delete. It doeg not
undo inserts, clipboard operations, or cursor movement.

Edit:Find Opens the VIDE Find dialog. This dialog gives you all the options
available for finding text. The emulations will support both dialog based

finds, and command line finds.

Edit:Find next [F3]

Find next occurrence of find pattern.

Edit:Replace

This opens the Find and Replace dialog. If you check the Confirm Replace

option, you will be prompted before the replace is done. That confirmg
dialog will also allow you to go ahead and replace all or cancel the fin
replace.

ition
| and

Edit:Find Matching
Paren

Why is this a menu command? Because the command is useful for
beginners who will often use menu commands over keyboard comma

hds.

Edit:Editor Help

Brings up a dialog with a command summary for the editor emulation.

Note about selections. You can use the mouse to highlight an area of text as well as the keyboard commands listed above. If yoL
need to select more text than shows in the window, you will have to use the key selection commands (e.g., Shift-Down).

The Standard Editor wp, __

The generic command set of the VIDE editor is very similar to those found in many GUI based text editors. |
is modeless. Commands are either special keys (e.g., arrow keys), or control keys (indicated by a ” or Ctrl).
Several commands use a meta modifier, Ctrl-A (*A) as a prefix. You can enter counts (noted by an "n") for
commands by first pressing the Esc key, then a count, then the command. Not all commands are supported
command keys, and require you to use the menus (replace, for example). Note that the See and Vi editors

have some features not found in the standard editor.

The Standard Command Set twp__

Key Command Description

Esc Prefix to enter count n
Movement Commands

Arrow keys | Standard function

VIDE - Editor Reference

31



VIDE

=]

e

nLeft Move left [*L]

nCtl-Left |Move left a word

nuUp Move up [*U]

nRight Move right [*'R]

nCtl-Right |Move right a word

nDown Move down [*D]

Home Goto beg of line [*A}]

Ctrl-Home | Goto beg of file

End Goto end of line [*A.]

Ctrl-End | Goto end of file

nPgUp Move a screenful up

nCtrl-PgUp| Scroll a screenful up

nPgDn Move a screenful down

nCtrl-PgDn| Scroll a screenful down
Searching commands

A Balance match

F Find pattern (non—dialog). This form of find allows you to enter the find patter
directly from the keyboard. The find pattern is terminated with the Esc key. T
pattern is echoed on the status bar. This form of find is useful for Q—Macros.

NANF Find pattern — use find dialog.

Shift-"F Find next

[F3]
Insertion Commands

n"Alns Insert char with value of n

n"O Open a new blank line

Ins Toggle insert/overtype
Editing commands

NABkspace | Delete to line begin [*A']

VIDE - Editor Reference

32



VIDE

start on a code line that is indented how you want it. After that, 'n' lines will bg
formatted based on the starting indentation. This command is very useful if y
use the V indent style. You can set the indentation for braces in the
Options:Editor dialog. For text files (including HTML), this command will fill
lines to the column specified in the Options:Editor dialog.

NADel Delete to line end ["A]

nShft-"C |Fold case

"C Copy highlight to clipboard

v Paste from clipboard

X Cut highlight to clipboard

nBkspace |Delete previous char

nDel Delete next char

nShft-Del |Delete line
Macros

NAg<a-z |Set register to use (a-z)

Q Record keystrokes in Q—Register until *Q

n"E Execute current Q—Register N times
Misc. commands

"AM Center Cursor in screen

NAvV Repaint screen

n"G Goto line n

n"K Kill line

n"B Beautify code. This beautifies code or fills text. The beautify command will fofmat
C/C++, and Java code according to the V style conventions. To use this command,

The See Editor wp__

The command set of the See editor dates back to the late 1970's. The editor was originally called TVX, and
the command set was modeled after the TECO editor. See, like Vi, has command mode and insert mode, al
is normally in command mode. The commands are mnemonic. U for up, L for left, F for find, etc. It is very
good for touch typists, and minimizes the need to move your fingers from the home row of the keyboard. If

VIDE - Editor Reference

33



VIDE

you don't have a favorite editor yet, or if you don't have a command mode editor you like, consider giving the
See command set a try. It is really an efficient way to edit.

To use the See command set, start VIDE and select 'See' in the Options:Editor dialog. VIDE will remember
your selection.

See is normally in Command mode. You can supply a count value to many commands by entering a value
before the command. For example, entering 35d will move down 35 lines. When you enter insert mode, key:
you type are inserted until you press the Esc key. The f find command lets you enter a find pattern that is
echoed on the status line, and can include tabs. Press Esc to begin the search. The F version of find display
a dialog to enter the pattern.

In most cases, you can use a standard dedicated key (such as the arrow keys) as well as the equivalent
mnemonic See command. You can highlight text with the mouse, and cut and paste in the usual fashion.

The See Command Set twp__

Key Command Description

Movement Commands

nl Move left [Left Arrow]

nr Move right [Right Arrow]

nu Move up to beginning of line/TD>
nd Move down to beginning of line
n"U Move up [Up Arrow]

n"D Move down [Down Arrow]

n[ Move left a word

nTab Move right a word [Ctrl-Right]
n"P Move a screenful up [PgUp]

np Move a screenful down [PgDn]

: Goto beginning of line [Home]

Goto end of line [End]

b Goto beginning of file [Ctrl-Home]
e Goto end of file [Ctrl-End]
i Jump back to previous location. This is an easy way to get back to where you were

before a find command, or a large movement.

n~L Goto line n

VIDE - Editor Reference 34



VIDE

>

e

m Center Cursor in screen.

nn note (mark) location n. Locations go from 1 to 25. This is a bookmark feature

n"N Goto noted location n

nCtrl-PgUp| Scroll a screenful up

nCtrl-PgDn| Scroll a screenful down
Searching commands

nJ Balance match. Find the matching
paren, bracket, or brace.

f Find pattern (non—-dialog). This form of find allows you to enter the find patter
directly from the keyboard. The find pattern is terminated with the Esc key. T
pattern is echoed on the status bar. This form of find is useful for Q—Macros.

F Find pattern (dialog)

X Find next

F Find/replace (dialog)

Insertion Commands

ni Insert char with value of n. This lets you enter Escapes or other non—printing
characters.

i Enter insert mode

Esc Exit from Insert Mode

O Toggle insert/overtype [Ins]

no Open a new blank line
Kill/change commands

"C Copy highlight to clipboard

v Paste from clipboard

X Cut highlight to clipboard

' Delete to line beginning

\" Delete to line end

n"K Kill line

VIDE - Editor Reference

35



VIDE

n~ Toggle case

/ Kill 'last thing'. The 'last thing' is determined by the previous command.
Commands that set the last thing include find, move a word, save, append, ahd get.
Thus, a common way to perform a replace is to find a pattern, then use '=' to|insert
the replacement.

= Change 'last thing'. Delete last thing and enter insert mode.

nt Tidy (beautify) n lines. This will beautify C/C++, and Java code according to the V
style conventions. To use this command, start on a code line that is indented|how
you want it. After that, 'n' lines will be formatted based on the starting indentaion.
This command is very useful if you use the V indent style. You can set the
indentation for braces in the Options:Editor dialog. For text files (including
HTML), this command will fill lines to the column specified in the
Options:Editor dialog.

nBackspacqg Delete previous character

nDel Delete next character
Save buffer commands

ns Save n lines in save buffer. See provides a buffer that allows you to save lings.
Using the save buffer is often easier than cut and paste. After saving lines, ypu can
use the /' delete last thing command to delete the lines you just saved. The $ee
save buffer is independent of the clipboard, and is local for each file being edited.

na Append n lines to save buffer

g Get contents of save buffer. Inserts the contents of the save buffer at the curfent
location.

y Yank file to save buffer. This is an easy way to import text from an external file.

Ny Write save buffer to file. This lets you save part of your file in a new external file.
Using 'y and "y' is often an easy to copy parts of one file to another, or inclugle
standard text into new files.
Macros

\<a-z Set register to use (a-z)

q Record keystrokes in Q—Register until *Q

n@ Execute current Q—Register N times

Misc. commands

VIDE - Editor Reference

36



VIDE

v Repaint screen
? Help
Q Save and close

Macros for See top__
This section gives some specific examples of using Q—Macros with the See emulation.

First, consider search and replace. Even though VIDE has a search and replace function on the menu, you
do the same thing with a Q-register macro. Consider the following set of See commands:

fthe$=THE$
The '$' represents the Esc key. You would enter this macro by selecting a Q—Register (e.g., \a to select
Q-Register 'a"), entering a 'q' command, then entering the command sequence, and ending the recording th

sequence with a Control-Q (*Q). The characters you enter will be echoed on the status bar (which will
indicate you are recording). Then execute the macro (22 times, for example):

\a22@

The next 22 occurrences of 'the’ will be changed to 'THE'. The corresponding command in Vi would be:
/the<CR>XiTHE$ where '<CR>'is a Return, and '$' is 'Escape’. Then execute it with 22@a. Note that in
this emulation of Vi, 'x" will delete the pattern just found.

If you want to execute the macro for the whole file, give a very large count. The macro will exit after any
command, such as a find, fails.

This is a See example for placing a ** ' at the beginning of every line that contains the word 'special'.
\agfspecial$,i** $d"Q and execute \a1000@
The same function in Vi:

ga/special<CR>0i** $j0"Q and execute 1000@a

Future additions twp__
Things missing from the editor that WILL be included in future versions:
» Auto indent for C/C++ code

* Selectable highlight colors
» Formatted source code printing

VIDE - Editor Reference 37



VIDE

The Vi Editor Emulation w, __

VIDE now includes an emulation of the Vi command set. The emulation is not yet complete, and it is likely it
will never be a complete emulation of Vi. However, it is a pretty good "finger memory" emulation. For the
most part, the right things will happen when you edit using your automatic “finger memory" of Vi
commands. This emulation should improve over time. See the limitations section for a description of the
current limitations and differences of this emulation.

To use the Vi emulation set, start VIDE and select 'Vi' in the Options—>Editor dialog. VIDE will remember
your selection.

The Vi Command Set

(* after cmd means emulation not exact)

Key Command Description

*** Movement Commands ***

h,<Left> cursor N chars to the left

j,<Down> cursor N lines downward

k,<Up> cursor N lines up

l,<Right>,<Space> cursor N chars to the right

m<a-z> set mark <a—z> at cursor position

CTRL-D scroll Down N lines (default: half a screen)
CTRL-U scroll N lines Upwards (default: half a screen)

CTRL-B,<PageUp> scroll N screens Backwards

CTRL-F,<PageDown> |scroll N screens Forward

<CR> cursor to the first CHAR N lines lower

0 cursor to the first char of the line

$ cursor to the end of Nth next line

<Home> line beginning

<CTRL-Home> file beginning

<End> line end

<CTRL-End> file end

B* cursor N WORDS backward ['word' not same]
"b cursor N words backward

VIDE - Editor Reference 38



VIDE

‘<a-z> cursor to the first CHAR on the line with mark <a-z>
cursor to the position before latest jump
'<a-z> cursor to the first CHAR on the line with mark <a-z>

cursor to first CHAR of line where cursor was before latest jump

<MouseClick>

move cursor to the mouse click position

*** Searching commands ***

Kpattern}<CR> search forward for {pattern}
/<CR> search forward for {pattern} of last search
?{pattern}<CR> search backward for {pattern}
?<CR> search backward for {pattern} of last search
N repeat the latest /' or '?' in opposite direction
n repeat the latest '/ or "?'
% go to matching paren (){}{]
*** Insertion Commands ***
A append text after the end of the line
a append text after the cursor
i,<Insert> insert text before the cursor (until Esc)
0] begin a new line above cursor and insert text
0 begin a new line below the cursor and insert text
R* toggle replace mode: overtype existing characters [just toggle]
CTRL-C Copy to clipboard
CTRL-V Paste from clipboard
CTRL-X Cut to clipboard
*** Kill/lchange commands ***
C change from cursor position to end of line, and N-1 more
cc delete N lines and start insert
c[bBhjklwW$0] delete Nmotion and start insert

VIDE - Editor Reference

39



VIDE

D

delete chars under cursor until end of line and N-1 more

dd

delete N lines

d[bBhjKIWW$0]

delete Nmotion

J*

Join 2 lines [2 lines only]

S delete N lines and start insert;
S (substitute) delete N characters and start insert
u undo changes
X, <BS>* delete N characters before the cursor
X, <Del> delete N characters under and after cursor
~ switch case of N characters under cursor
*** Yank buffer commands ***
P put the text on line before cursor
p put the text on line after the cursor
Y* yank N lines; synonym for 'yy' [cursor at end]
y< read file into yank buffer
y> write yank buffer to file
*** Misc. commands ***
CTRL-L redraw screen
zZ save file and close window
gb beautify N lines of C/C++/Java code, fill text
gm center cursor in screen
"<a-z> set g-reg/buff for next op
['<a-z>]q record to g-register until *Q
['<a-z>]@ execute g-register N times

Emulation Limitations wp __

As much as possible, this emulation tries to do the same thing Vi would do with the same command.

Probably one of the main things missing in this emulation is the total lack of Ex support, i.e., there are no
commands supported. In fact, this should be a minor limitation as there are usually menu commands that

VIDE - Editor Reference

40

n.an



VIDE

support the most important ":" equivalents. You can also record macros that can duplicate many of the
functions typically done with ":" commands.

Another major difference is the lack of support for a count for insert and find operations. Thus, "5ifoo$" will
not insert 5 instances of "foo". This is true for some other commands as well. Generally, if you enter a
command expecting some kind of repeated operation, and the VIDE Vi emulation does not support repeat,
then the operation will be done only once. Again, you can use macros to get around this limitation.

The following list summarizes some of the other differences in how this emulation works.

» ¢ and d commands are somewhat limited. The currently motions supported after the 'c' or 'd' include:
‘b, ‘B, 'h, KT W, WS, '0Y, as well as the ‘et and 'dd' forms. Currently, only the full line
motions add text to the yank buffer. Most of the other somewhat obscure motion commands used wi
'c' and 'd' can often be done using the mouse to cut and paste.

» The y command currently supports only the 'yy' form of the command. In addition, the new VIDE
version commands 'y<' and 'y>' have been added. These are used to support external files. Use 'y<'
read an external file into the yank buffer, and 'y>' to save the contents of the yank buffer to an
external file.

» The Backspace key deletes the character in front of the cursor like almost all other apps you are
likely to use instead of moving left. A little note: The backspace key is really CTRL-H. For
consistency, the original Vi used CTRL-H and 'h' as left cursor. Now why are 'h', '}, 'k', and 'I' used
for cursor movements? Because the computer lab at UCB where Vi was written had mostly ADM-3a
terminals. (ADM-3a terminals were far cheaper than most other terminals available at the time.) And
the 'H', 'J', 'K', and 'L' keys had cursor arrows printed on each of them. Thus, the "hjkl" commands fol
cursor motion.

» Cut, Copy, and Paste are implemented using the standard system clipboard. The standard 'CTRL-X
'CTRL-C', and 'CTRL-V' commands are used to support clipboard operations.

» The find commands will highlight the pattern found. If you press 'X' or 'X' while the pattern is still
highlighted, the pattern will be deleted. While this is different than standard Vi, it is really handy for
search and replace.

 This emulation doesn't use the visual '$' marker for some kinds of edits on partial lines, it just does
the edits. Another left over from the ADM-3a days, | think.

« Left and right cursor movements flow to the adjacent lines. The V editor class just doesn't support
movement limited to one line.

» The 'J' command will only join 2 lines.

» The find command (/") echoes the pattern on the status bar, and not in the text window. You can use
an 'Esc' to terminate the pattern as well as a 'CR'. Find does not support regular expressions. Select
find from the tool bar or menu brings up a dialog box instead of using the status bar.

» Use menu command or the tool bar button for find/replace.

» The 'gt' command formats C, C++, and Java code. See a more complete description of the See 't'
command. Right now, the formatting is limited to the V standard, but support for other styles will
likely be added.

» The 'R' command toggles Insert and Overtype mode. It doesn't force overtype (replace) mode.

» The '%' command works a bit differently. It currently only supports paren-like characters, and you
must place the cursor on the paren you want to match.

» The cursor doesn't change shape for Insert and Normal modes. The mode is shown on the status bz

* You need to use the menus to load and save files.

» VIDE's concept of a 'word' is different than Vi's. There is no difference between 'w' and 'W', for
example. This might get fixed. Because you get visual feedback, this probably isn't a big problem.

» The Vi emulation was built starting with the See command interpreter code. This saved lots and lots
of work with minimal compatibility issues. One however, involves counts. The current code can't

VIDE - Editor Reference 41



VIDE

distinguish from the default count of 1 and an explicitly entered count of 1. Thus, commands that use
default counts might not work correctly when explicitly given a count of 1. For example, the 'G'
command can't go to line 1 —— it goes to the last line.

» The 'gm' command is used to center text on the screen.

The following list summarizes most of the Vi features that have not yet been implemented. They are likely to
be added in future releases.

» The '." command is not supported. | hope | can figure out a way to add it, but the basic V editing clas:
is not very compatible with this command.

» There is only one yank buffer. Named buffers are not yet supported.

« If there are Vi features that are important to you, please let me know by e—mail, and | will try to add
them. | won't add "' command support, but | may add the equivalent support via an extended
command set. If some of the emulated commands don't quite work how you expect, let me know anc
I will try to make them work more closely to Vi.

« If you really want to add some features (like ' support), the source code is available! Fix away!

No Warranty twp__

This program is provided on an "as is" basis, without warranty of any kind. The entire risk as to the quality
and performance of the program is borne by you.

VIDE Reference Manual
Copyright © 1999-2000, Bruce E. Wampler
All rights reserved.

Bruce E. Wampler, Ph.D.

bruce@objectcentral.com
www.objectcentral.com

VIDE - Editor Reference 42


mailto:bruce@objectcentral.com
http://www.objectcentral.com

VIDE C/C++ Tutorial

* VIDE Overview

« Using VIDE with GNU gcc/g++

« Using VIDE with Borland C++ 5.5
* VIDE Projects

« VIDE Help System

« Debugqing with VIDE

* No Warranty

VIDE Overview

The design of VIDE has been somewhat evolutionary, but you should find that it is not that much different
than other IDEs you may have used. Because VIDE is a free, open source program, it probably lacks some
the polish of commercial IDEs. However, it is still quite functional, and it is really easier to develop programs
with it than it is to use a command line interface.

Generally, any application you write will consist of various source files (with associated header files for
C/C++), and required data files. These files are generally dependent on each other. By defining a VIDE
Project for your application, all the file dependencies are automatically handled. The standard tool make is
used for C/C++ files, while the JDK Java compiler automatically handles dependencies.

Using VIDE, the normal work cycle goes:

1. Design your application.
VIDE currently has no capabilities to help with this stage.
2. Start VIDE, and create a Project File.
This will include all source files, compiler options, and other information needed to compile your
application.
3. Build your project.
This stage compiles your source into object code. Compilation errors are displayed in the status
window, and you can simply right—click on the error to go to the offending line in your source code.
After making corrections, you repeat this step until all compilation and linking errors are removed.
4. Run your program.
You can start your program from within VIDE.
5. Debug your program.
VIDE for MS-Windows has integrated support for the gdb debugger for C/C++. Because the
DDD debugger available for Linux is so good, VIDE for Linux does not have integrated debugging
support, but will automatically launch DDD.
VIDE currently does not support the jdb debugger for Java, but it will "any day now."
6. Write documentation for your application.
VIDE has syntax highlighting for HTML to make that job easier. You can also automatically launch
your web browser to view the resulting HTML pages. Really neat.

VIDE C/C++ Tutorial 43



VIDE

Using VIDE with GNU gcc/g++ wp _

The main C/C++ compiler VIDE is designed to work with is the GNU Compiler Collection (gcc), either on a
Unix-like system, or on MS-Windows with the GNU GCC compiler. (VIDE will work with either the

MinGW version of GCC, or the Cygnus version. Try the latest merged GCC 2.95.2!) Functionality of

VIDE for gcc is based on standard GNU makefiles. VIDE uses a standard GNU make Makefile to build your
project. Thus, you must have a Makefile defined. This Makefile can be one created automatically by VIDE
itself from your Project file, one generated by the vgen V application generator, or even one you've written
yourself. If you have your own Makefile, then you probably won't need to use a VIDE Project.

VIDE assumes you have your gcc/g++ compiler already installed on your system and the PATH correctly se
For Unix/Linux systems, this is a given. If you are using a MS—Windows version (Mingw32 or Cygnus), then
you must follow the instructions provided with their distributions. You might find it helpful to copy the VIDE
executables to the /bin directory that has your g++ compiler. VIDE requires GNU make (it is not compatible
with some other versions of make), the GNU C/C++ compiler (preferably the latest GCC 2.95) and associate
utilities, and the GNU gdb debugger. You also may want the V utilities vgen and viconed.

Using VIDE with Borland C++ 5.5 «, __

VIDE 1.07 has added support for the free Borland compiler. This support does not include a debugger! More
complete information about using VIDE with the Borland compiler is found iwWtB& Borland reference

guide. It is essential that you read the information in that reference to get a properly working version of VIDE
with Borland BCC32.

Functionality of VIDE for BCC32 is based on the non-standard Borland MAKE program. VIDE uses a
Borland make Makefile to build your project. Thus, you must have a Makefile defined. This Makefile can be
one created automatically by VIDE itself from your Project file, or one you've written yourself. If you have
your own Makefile, then you probably won't need to use a VIDE Project.

VIDE assumes you have your Borland compiler already installed on your system and the PATH correctly se
When working with the Borland compiler, VIDE requires the Borland make.

VIDE Projects wp__

General procedures

Once you start VIDE, you will see a blank window labelled "No Makefile, Project, or .java file Specified.”
This opening window is the message window, and is used to output the results of your make. A typical first
step after starting VIDE is to open a VIDE Project or select an existing Makefile.

Once you've opened a project or specified a Makefile, you can build your project with the Build:Make

C++ menu command, or click on the Make button on the tool bar. This runs the make utility with the default
target (often "all"). VIDE first runs the Makefile in dry run mode. It uses that output to then run the
commands generated. It intercepts the error messages for g++ and put them in the message window. You ¢
then right—click the error line, and VIDE will open up the file in question, and put the cursor on the offending
line. This all assumes that the source and makefile are in the same directory. VIDE also assumes all your fil
have unique names (i.e., you don't have files in your project with the same name but in different directories).

VIDE C/C++ Tutorial 44


bcc32.html
bcc32.html

VIDE

After you correct the problem, rerun make.

You can also make a specific target in your makefile by using the Make menu: Make:Make <target>. If you
include a "clean" target in your Makefile, Make:Make Clean will run make clean. (The Makefile generated
by VIDE from a Project has a "clean" target.)

The tools menu allows you to run your program. If you are using a VIDE Project, then Tools:Run

project will run the project you just built. If you are using your own Makefile, then Tools:Run project will
prompt you for the file to run.

VIDE C/C++ Projects wp__

Project Type: G CC
Taiget niame:  [vide.exe
Type of build Release/Debug
" Console Application % Release Version
' GU| Application " Debug Version
¥ Use V GUI {static) Compas
I™ UseVGUI DLL) & Mingwaz
™ Use OpenGL e
" Stafic Library oo
" Borland BCC32
C Dther compiler
0K | _Concel |

When you are first creating a new project (or moving an existing program to VIDE), click on the
Project:New C++ Project menu. After you select a name for your project, a "wizard" dialog will open that
will let you begin defining a project. The first thing to fill in is the name of the program you are building
(Target name). If you are building an application, this will be something like "foo.exe" on Windows, or
simply "foo" on Linux or Unix systems. Libraries end with a ".a" extension: "foo.a" on both platforms, or a
".lib" for Borland.

Next, select the type of project you want to build. A Console Application runs in a shell or console window,
and does not use any GUI components. A GUI application uses a graphical interface. On Windows, this will
be the standard WIN32 API, while on X systems, you will have a choice of Athena, Motif, or gtk. You can
also use the V GUI. You will be given a choice between using the static V library or a dynamically loaded
library. If you are using OpenGL or Mesa, check that box.

You can also build a static library. Static libraries are usually easy to build. Both Windows and Linux support
dynamic libraries (called DLLs on Windows and shared libraries on Linux). However, the rules for defining
and getting a shared library (especially DLLs) is somewhat beyond the scope of VIDE. The VIDE project file
can support DLLs and shared libraries, but you have to just how to put a dynamic library together first. See
the later section on Advanced options for a few more details of building a DLL.

VIDE C/C++ Tutorial 45



VIDE

You can also select which you are building, a release version, or simply a debugging version of your project
These options simply determine some switches to the compiler. VIDE does not support both a release and ¢
debug build within the same session. The easiest work around for this is to first build one version, then use
File—>Save As to save the alternate version.

The Windows version also lets you select which compiler you are using — mingw32, Cygnus, or Borland.
Setting the "-mno—cygwin" option will build an application under Cygwin without using the Cygwin DLL.

Once the initial project attributes have been selected, You will get the project editor dialog box with various
tabbed items. Most of the fields will be filled in according to the values you set in the opening dialog. The
main thing you will probably want to do is add source files using the Files tab. You can set defines as neede
in the other tabs. Once you have added the files needed and click "Done," VIDE will create a Makefile
suitable to compile your project with gcc or Borland BCC32.

Each of the project editor tabs are described in more detail in the following sections. (These screen shots wi
taken from the project file that builds VIDE itself using the V GUI library.)

Names

[ Names Fies | Paths | Defines | Advanced |
Target File Name: Ividcdlleocc

Makefde Name: |Makefiae vl
Comper =

Compiler Flags [0

Linket Flags, |-mmndtnvs WDLL
HOMEV: | \mingw32

DKl

This pane lets you set the target name for the executable or library. You can also change the name of the
generated Makefile. Usually, you will use g++ as the compiler. The Borland compiler is BCC32. The The
target name determines what kind of final target is built. A ".exe" extension on Windows, or no extension on
Linux, causes an executable to be built. If the target name ends in ".a" (or ".lib" for Borland), then a static
library will be built. It is important to get these extensions right to generate the correct kind of target.

Compiler Flags line lets you pass switches to the compiler, such as —O for optimize, or whatever. The linker
flags are passed to the linker, and usually consist of a set of library references. The new project wizard will
usually fill these fields in as needed for console, GUI, and V apps. The HOMEV value is required for
programs that use the V library if the V GUI system has not been installed in the same places as other
libraries and include files on your system.

You may have to change some of the default switches for your specific compiler or operating system. You
should only have to do this once for a project. If you will be creating other projects, you can save a template

VIDE C/C++ Tutorial 46



VIDE

project in a file of your choice, and then use it as a starting point for new projects.

TheBorland guide gives some specific details for the Borland version.

Files

C++ Project Editor I

Momes | Fles  Paths | Defines | Advanced |

Source Files:

abtvdlg.cpp -
enewmdlg cpp

cprojdig.cpp

gdbdig cpp

idbdig.cpp

proidig.cpp

manaker.cpp

prefmdig cpp

vbasecicpp

vdbcmdw.cpp

vdberv.cpp

videapp.cpp =|

] o 0 |

This lets you add the names of the source files included in the project. Clicking ADD brings up a file
selection dialog. When you select a file, the file is added without any path name. To delete the selected entr
use the Del button. Until V adds multi-line selection (someday soon), you have to add files one at a time.

On Windows, the source file can be a ".rc" resource file as well. If you include a ".rc" file, VIDE will
automatically add the dependency to the Makefile, and use the appropriate resource compiler (WINDRES fc
gcc or BRCC32 for Borland) to compile a ".0" file for gcc or a ".res" file for Borland.

Note: Adding relative file paths

The current mechanism for adding files does not support adding relative or absolute paths in front of a file
name using the file selection dialog. Normally, VIDE assumes that you will have your source files in the
directory specified in the source directory path. Thus it strips any leading path. However, you can add
relative paths. If you need to add a relative (or absolute) path, first add the file using the file selection dialog.
Then, select the file from the list file, and click Edit to hand edit the entry. Then add the relative path to the
file.

(Note: using the file selection dialog can leave the current directory set to something other than the default
source directory, and when you exit the project editor, the generation of the Makefile may fail because thing:
get started in the wrong directory. This problem is a bit hard to fix, and only happens when you use the file
dialog box to select a file from a different directory. Just edit the project again, and the Makefile will be
generated correctly. Someday | may fix this, but | have higher priorities for now. Sorry.)

VIDE C/C++ Tutorial 47



VIDE

Paths

i

Cee faroject Editor

This lets you specify the directory for the source files, the directory where you want object files to be
generated, and the directory where the binary should be written to. It is best to use relative paths for these
whenever possible. You can also list paths for include and library directories. These are passed to g++ as tf
appropriate switches.

Defines

It is often helpful to provide compile time defines for C and C++ programs. This tab lets you add compile
time defines. The left list shows a a pool of definitions that you might want to use. To have them included at
compile time add them to the Active Definitions list using the ">" button between the lists. The pool will stay
constant, while the Active side can be a bit more dynamic as you work with your project. Note that you have
to supply the full g++ definition switch: -DFOO or ~-UNOTFOO.

VIDE C/C++ Tutorial 48



VIDE

Advanced

T |

clags sgs I--c~typcs-~p ¥ Ancludew/v"h

User Makefile Optiors: User Target Dptions:
# Resource file: vide.rc ] # compde tesowce te
EXDRJS += $HoDirl/vide.o ${cDirl/vide o $Src)/vide.sc

windres ${Srclvide ic ${oDiAvide o

OK I

The first field of the Advanced pane lets you define a project specific argument for the ctags program. For
example, the entry "—c—-types=+p * ../includew/v/*.h" does several things. First, it adds extra information
about function prototypes. Then it includes the V library headers in the tags file for easy lookup of functions
used from the library. Check the ctags documentation for other switches you might want to use.

The other advanced panels let you add lines to the Makefile in one of two places. You will have to have a
pretty good understanding of Makefile in order to make effective use of these options.

Anything you add to the "User Makefile Options" list will be written to the generated Makefile immediately
after the standard definitions. You could use it to define your own symbols, or whatever.

The "User Targets" list lets you add new targets other than the defaults to make. You can use these to defin
specific values you want to add to your Makefile. The Borland support uses these to define the default
runtime libraries.

If you want to build something other than an executable or a library, there is one important feature provided
by the user targets list. If the first entry has "#all" in the it, then VIDE will not generate an "all" target
(usually the same name as the target name) for the make file. It assumes you are providing the all target he
instead.

Note that when you need a leading tab for the makefile, enter a "\t' into the project. It will be automatically
converted to a real tab in the final makefile.

Direct Project File Editing

A VIDE .vpj project files is in fact regular text file. It is laid out in clearly labeled sections. While you can

add entries to any section using the Project Editor, advanced users may find it easier to edit the V project fil
directly to add definitions and targets that aren't generated automatically. Using these two mechanisms
(defines and targets), you can build complicated makefiles which will be automatically generated from the
project file. It is possible to define practically anything you might need to include in a makefile. For example,

VIDE C/C++ Tutorial 49



VIDE

all the options needed to generate the Windows DLL version of V are included in a VIDE project file.

I'm not going to explain every detail of the project file format here. Any programmer reasonably familiar with
makefiles will be able to see some of the potential of the VIDE project file. For example, VIDE uses a set of
standard variable names such as "oDir" and "EXOBJS". The standard make targets are defined using
symbols, too. It is easy to define entries in the user defined symbol section that use the makefile "+="
operator to modify and add to the standard symbols. You can add very complicated targets to the user targe
section, especially when you override the "all" target with the "#all" convention. Perhaps the best thing to do
is look as a VIDE Project File, and study the VIDE and VGUI project files for examples of some of the
things you can do. The main advantage of using a project file is the automatic generation of dependencies &
other features that will be eventually included in VIDE.

VIDE Help System «wp__

VIDE now includes a Help menu. Most of the help is supplied in a separate distribution file, and is in HTML
format. V Help uses your default Web Browser to show the help files.

| have attempted to collect the most useful documentation | could find for the various GNU C++ tools. If you
download and install the Help files, you should have a very complete and useful set of documents for C, C+:
and Java programming at your finger tips. Bealling VIDE for more instructions on how to install VIDE

help.

If there are other HTML based documents you would like added to the VIDE distribution, please let me
know.

Debugging with VIDE w, __

VIDE supports the standard GNU gdb and Sun jdb debuggers. The VIDE interface to the debuggers makes
far easier to debug your code, but is of minimalist design. The goal is to make using the native debuggers a:
easy as possible for casual users, while maintaining the full power of the debugger for experienced users.
VIDE accomplishes this by showing a command window interface to the debugger. You can enter any nativi
debugger command in this window, and thus have full access to all debugger features.

VIDE makes using the debugger easier by providing a popup dialog with the most often used commands.
And most importantly, VIDE will open the source file in an editor window and highlight the current

execution line on breakpoints or steps. It is very easy to trace program execution by setting breakpoints, anc
clicking on the Step over or Step into dialog buttons. VIDE also allows you to inspect variable values by
highlighting the variable in the source and right clicking the mouse.

A description of debug dialog commands is provided irMiizE Command Reference section.

VIDE C/C++ Tutorial 50



VIDE

Debugging C/C++ with gdb

To debug C/C++ programs with gdb, you must first compile the program with debugging information. This is
accomplished with the —g switch on the compile line. The current version of VIDE does not provide
automatic generation of debug or release makefiles. The easiest way to define VIDE projects for both debuc
and release versions is to use the Project:Save Project as... command. First, define a release version of the
project. Then, using that project as a template, change the switches as needed for your debug version, and
save the project under a different name.

The full power of gdb is available in the debugger command window. You may enter any standard gdb
command after the "(gdb)" prompt. In fact, there really is limited interaction between VIDE and gdb, mostly
handling breakpoints. VIDE starts gdb using the "—f* switch, which causes gdb to send a special output
sequence after each break, which VIDE then uses to open and display the highlighted break line.

VIDE maintains its own list of breakpoints, which it keeps even if you start and stop the debugger. It is
important that you use VIDE commands to set and delete breakpoints. If you enter breakpoints directly into
the gdb command window, VIDE won't know about them, and won't highlight them in your source code.

Limitations with gdb

* [MS-Windows 9x/NT] Output from console applications isn't properly displayed in the gdb
command window. If you run gdb from a command window, the output is displayed as it is
generated. With the VIDE gdb command window, the output from the running program is not
displayed until the very end when the program terminates. | have no idea why gdb behaves like this,
but it must have something to do with the way | use CreateProcess. Any help on this problem would
be appreciated.

» [MS-Windows NT] On Windows NT, gdb seems to bring up a message dialog trying to open some
file over the network. | don't have a networked NT machine, so | don't know if this is a general gdb
feature or what, but gdb seems to work if you just press the appropriate button to ignore the problem
when the dialog is displayed.

No Warranty wp__

This program is provided on an "as is" basis, without warranty of any kind. The entire risk as to the quality
and performance of the program is borne by you.

VIDE Reference Manual
Copyright © 1999-2000, Bruce E. Wampler
All rights reserved.

Bruce E. Wampler, Ph.D.

bruce @objectcentral.com
www.objectcentral.com

VIDE C/C++ Tutorial 51


mailto:bruce@objectcentral.com
http://www.objectcentral.com

VIDE

GUI vIDE User Guide

Editor Reference

VIDE Java Tutorial

I0E

VIDE Version 1.08 — 04Mar00

VIDE C++ Tutorial

Command Reference
il 11

VIDE C/C++ Tutorial

52


videdoc.htm
videedit.htm
videcmds.htm
videcpp.htm

Using VIDE with the Sun JDK

* VIDE Overview

« The Development Cycle

* Java and the Sun JDK

» The Development Cycle using VIDE

¢ Defining the VIDE Java Project
¢ Compiling your program
¢ Running your program
¢ Debugging with VIDE
« VIDE Help System
* No Warranty

VIDE Overview p__

An Integrated Development Environment (IDE) is a software tool intended to make the process of writing
programs easier. An IDE typically works as a unit with your compiler environment. It allows you to edit your
program source code, compile it with the compiler, fix syntax errors, run it, and debug it, all from inside a
consistent and convenient environment.

VIDE has been designed to work with Sun's JDK (Java Development Kit). Instead of using the compiler and
interpreter from command shells (MS-DOS prompts), you interact with them using VIDE. The entire
development process is simplified.

I will discuss the specifics of Sun JDK later (if you have programmed before, or if you have used an IDE
before, you can probably skip to that section right now). But first, here's the general procedure for building a
working Java application using VIDE and Sun's JDK.

Generally, any application you write will consist of various source files, and required data files. In order to
get your program to compile and run, you must have all the files available. To track all the files, and to set
various options required by the compiler, you will create a VIDE Project for your application. The VIDE
Project file contains all the information needed to build and run your application using the JDK tools.

Thus, using VIDE, the normal work cycle goes something like this:

1. Design your application.
Sorry, you have to do this part yourself. While there are software tools that can help you do this,
VIDE currently has no capabilities to help with this stage.

2. Start VIDE, and create a Project.
You should almost always start with a new Project, even if you don't yet have any source code
entered. It is best to name the project the same name as your Java application name. By creating a
new project, you will define the application name, and thus the name of the main source file. You
also can define compiler options, and other information needed to compile your application.

Using VIDE with the Sun JDK 53



VIDE

3. Create your source code.
Typically you will need to create the source code. VIDE provides an excellent programmer's editor.
Programmer's editors are really somewhat different than a generic text—pad like editor, or even a
word processor. Typically, they have commands appropriate for programming, and support special
features like syntax highlighting and automatic program formatting. VIDE is no exception. It has
syntax highlighting, program formatting, and an extensive help system designed just for
programmers.

4. Build your project.
Once you have your programs entered, you will need to compile your source to object code. It is
almost certain that your code will have both typos and logic errors. When you compile your code
from within VIDE, you will see compilation errors displayed in the status window. You can simply
right—click on the error, and VIDE will open the source code file, and go to the offending line. After
making corrections, you repeat this step until all compilation and linking errors are removed.

5. Run your program.
You can start your program from within VIDE by clicking the run icon.

6. Debug your program.
Your program will almost certainly have logic errors in it as well. A debugger is used to help you
find the logic errors in your program.

7. Write documentation for your application.
Once you have an application running and tested, you will likely need to write documentation for it.
VIDE provides some extra support for HTML, including syntax highlighting. You can also
automatically launch your web browser to view the resulting HTML pages. Really neat.

Java and the Sun JDK o, _

Java Basics

Getting a Java program to run on your machine normally takes several steps. First you create the source file
(using the VIDE editor). That source code is then compiled by the Java compiler javac, which produces
Java bytecode output. Java bytecode can be run on any computer that supports Java. Using the JDK, you
typically execute your bytecode by running the Java bytecode interpreter. There are two versions for
MS-Windows: java (for console apps), and javaw (for GUI window apps). On Linux, because

applications are started much differently than on MS-Windows, there is just one: java.

If you have an applet, you need an HTML file to go with the applet bytecode, and then run the applet either
by running your usual web browser, or using the JDK's appletviewer.

Typically, you run the compiler and interpreter from a command window. This is usually an MS-DOS
Prompt on Windows, or the normal command shell or console window on Linux. (Note that using VIDE,

Using VIDE with the Sun JDK 54



VIDE

however, eliminates the need to explicitly use a command window.)
To summarize:

 Java console application:
Source code —> javac —> java

» Java MS-Windows GUI window application:
Source code —> javac —> javaw

« Java Linux GUI window application:
Source code —> javac —> java

» Java applet:
Source code —> javac —> + HTML —> browser
Source code —> javac —> + HTML —> appletviewer

Important Note: MS—-Windows vs. Linux consoles

Linux and MS—-Windows start programs in a fundamentally different way. Because of this, Sun supplies bott
java and javaw for MS-Windows. And because Sun supported the JDK for MS-Windows first, VIDE was
designed to work best for that environment. This means there is a little difference between the Linux and the
MS-Windows version.

When you run a Java console app from inside VIDE, you need to create a console shell to see your output.
VIDE uses the fact that you've specified java as the interpreter to decide to run your app in a console. If
you've specifed javaw, then VIDE will launch your app so that it does not have a console. Even though the
Linux version of the Sun JDK does not have a javaw interpreter, you still need to specify javaw for Linux
GUI apps. When you create a new Java project, VIDE will automatically fill in javaw. When you actually
run your app, VIDE will run the correct java, even though the project file says javaw. This slightly strange
convention allows VIDE project files to be identical on MS—Windows or Linux.

Sun JDK Specifics top__

As distributed, VIDE has been designed to use the default conventions of Sun's JDK 1.2 (Java 2). It should |
easy to change the default values to whatever is required by earlier JDKs. VIDE assumes you have correctl
installed JDK according to Sun's instructions, and have appropriately set whatever environment variables yc
need in your AUTOEXEC.BAT file on Windows, or the appropriate shell initialization file on Linux.

VIDE allows you to interact with the JDK tools from within VIDE rather than running all the JDK
components directly from a command window. VIDE also takes advantage of some of the advanced feature
found in the JDK component. VIDE lets the JDK compiler javac handle all the file dependencies for

projects that require more than one source file.

Once you start VIDE, the first action normally is to open a VIDE Java Project or select a Java source file.

Using VIDE with the Sun JDK 55



VIDE

The opening window is the message window, and is used to output the results of your compiles. If you have
small Java application (not an applet), you can simply specify the name of the top level Java class file from
the Project:Select Makefile or Java file menu. However, it is almost always better to use a VIDE Java
Project. If you have an applet or need to specify compiler options, you must create a new Java Project file.

Once you've opened a project or specified a Java source file, you can compile your project with
theBuild:Compile Java menu command, or click on the Make/Compile button on the tool bar. This runs the
Java compiler, javac. The results of the compile are shown in the message window. If you get an error, you
can usually right click on the error line and the source file will be loaded into an edit window, and the cursor
placed on the offending line.

The Development Cycle using VIDE

Defining the VIDE Java Project wp __

When you are first creating a new project (or moving an existing program to VIDE), click on the
Project:New Java Project menu. You will get a dialog box with various tabbed items. You will only need to
use the Main and Files tabs for most projects. Once you've specified the required information, you can
compile your project as described earlier.

HINT: When you open a new project file, VIDE assumes some options and switch settings that are
commonly appropriate to use with the compiler. It is likely that the defaults will not be the one you want.
There is an easy solution. Simply create a new project, change the settings to be just what you want, and th
save that project as a "template" using an appropriate name. Next time, open that template project file, and
immediately use Project:Save Project As... to save it under the working name of the new project.

Main

[ Man e | Compor | invopretac || Debugper |

‘ JuaApp/w;l Nare I?-r‘CJeE xarple
Applet HTML sounce: I ronss
CLASSPATH I

Java Project Editor: Main

This pane lets you specify the name of your application or applet. This should be the Java Class name of th
top class. You don't need to add .java or other extension. If you are creating an applet, then you will need to
specify the name of the file with the HTML code that runs your applet. When you run an applet, VIDE uses
JDK's appletviewer.

Using VIDE with the Sun JDK 56



VIDE

If you have JDK 1.2, you usually won't need to use the CLASSPATH setting. However, earlier JDKs and
some circumstances may require the CLASSPATH to be specified. This information is passed to the compil
and interpreter via switches. See Sun's documentation for more information about CLASSPATH.

Files

| Java Project Editor
i . -

Java Project Editor: Files

This pane is unused in the current version of VIDE. It will eventually let you specify which files are included
in your project, as well as the source directory. In this version, VIDE simply uses the app nhame specified in
the Main tab. However, the information will be used in later versions.

Compiler

f Java Project Editor

Jva Project Editor: Compiler

This pane lets you specify which Java compiler to use. It is almost always javac, but you can change it for
other development environments. The Compiler Switch Pool has the standard switches supported by JDK
1.2. Click the > button to use a switch. You can add your own switches to the Pool if you need to (for other
JDKs, for example).

Using VIDE with the Sun JDK 57



VIDE

Interpreter

~. :.,:',7 I

Java Project Editor: Interpreter

This pane lets you specify the interpreter to use to run you app. The default value is java, which is suitable
for running console-type apps. If you use awt or swing for GUI base apps, you should use javaw. You

can still use java to run GUI apps, but you will get an extra command window on the screen as well as your
GUI window.

Note that you specify java or javaw on Linux, even though the Linux JDK does not have a javaw. VIDE
will start your app correctly automatically: java means a console app, javaw means a GUI app.

Java applets are handled differently. To view an applet, you must specify the HTML source in the Main pane
which will cause VIDE to launch appletviewer. If you want to see your applet inside a browser window,
you can edit the associated HTML file, and use File:Send to Browser to start your browser.

Debugger

Ja Project Editor: Debugger

This pane will let you specify options you may need for the debugger.

Using VIDE with the Sun JDK 58



VIDE

Compiling your program wp __

Once you have created your source files and created your project, you will compile your Java code from
inside VIDE. It is this part of the development cycle that VIDE really shines and makes your life easier. All
programmers, but especially beginning programmers, make errors when entering the source program. Thes
errors result in what are called syntax errors, and cause the compiler to generate error output.

When you use the compiler from a command window, you first must enter the compiler command and the
name of the file. For example, javac Calculator.java. The output of the compiler is then displayed
in the command window as shown in the following figure:

|71‘ 6 x 10 'I

Java Syntax Error in Command Window

Often, a single syntax error will cause the compiler to generate multiple errors. If there are too many errors,
the error output often scrolls off the command window. And then you have to edit the source code by finding
each line with an error.

Using VIDE is much simpler. To como'}le, you either use the Build:MakeC++/Compile Java menu

command, or click on the build buttd#. \When you run the compiler from within VIDE, the resulting error
output is put in the VIDE status window:

Using VIDE with the Sun JDK 59



VIDE

|Running Java compiler, please wait.,.

| javac Calculator, java

| Calculacor,jeva:75: Invelid expression statexent,

! geault == rvaluate (nextip, casult, nextlusber);
»

| 1.erxor

pn\chiit/Caloulator jnva

nextRusber » Savitchin. readlinebouble() ;-
result fe= evaluate (nexelp, result, nextNumber):
Systea.out.printin(“resuls " 4+ pextOp + ~ "

+ nexthusber + © « 7 + result);
Systen.out.princin(“updated cesult « " 4+ resulty;

Java Syntax Error in VIDE

If there are too many errors, you can scroll the window to see them all. But best of all, you can right—click on
error line, and VIDE will open the source file, and put the cursor on the line with the error.

(Note: you must put the cursor on a line that has the form "Filename:line#:message". If you click on a
different line, VIDE will not open the source file.)

Once you've corrected the syntax error, you can simply click the build button again, and recompile the
program. You continue this process until your program compiles successfully.

Makofl

o 1%

! Caléulator. java:75: Invalid expresaion statesent,
| result «+ svaluate (nexclp, tesult, nexthuober);
\ ‘

! 1 etzor
Compile falled, Fight click on the erxrox line (filename:#dfinag) co open file,
Runnsng Java compiler, plesse wasc..,
jsvac Calculstor.jsva
~e=-Dong---=

nextRusber » Savitchin. readlinsbouble() ;-
result | evaluate(nextp, result, nextfusber):
Systea.cut.printin(“result “ + npextOp + ~ "

+ nexthumber + “ « 7 + result);
Syaten.out.princin(“updated result « " 4 resulty;

Java Syntax Eror in VIDE - Fized!

Using VIDE with the Sun JDK 60



VIDE

Running your program o, _

Once you have your program compiled, you need to run, it with the Java interpreter. When you enter the

Tools:Run Project menu command, or click the run ic.?.;l, you will run your program with the interpreter
set in the Interpreter pane of the project dialog. The java interpreter will run both console-type apps and
GUI apps, but is really more suitable for running console—type apps. If you use awt or swing for GUI base
apps, you should use javaw.

Java applets are handled differently. To view an applet, you must specify the HTML source in the Main pane
of the project dialog. VIDE will then use the JDK appletviewer to run your applet. If you want to see

your applet inside a browser window, you can edit the associated HTML file, and use File:Send to

Browser to start your browser. Run your program by clicking the run button.

Debugging with VIDE «, __

Just as most program have syntax errors when they are first created, they have logic errors when you first r
them. There are three main ways to find logic errors.

Most programmers neglect what is often the best way to find logic bugs — simply reading the source code
carefully. While reading code isn't as much fun as running a debugger, it often is faster and easier. You
should try to look at the code carefully first!

The second common way to find errors is to insert well placed print statements into your code. Print
statements can easily show how far your code has gotten, and show values of variables. It also works well
because you have to read the code to decide where to put the print statements.

The third way to find bugs is with the debugger. This way seems like the most fun, but often takes longer to
find the bug than the more traditional code reading or trace print statements.

The most common way to find bugs with a debugger is to set breakpoints. By setting a breakpoint, the
debugger will stop your program when it tries to execute that statement. By setting breakpoints on statemen
just before and after the spot where the program seems to be going wrong, and then examining the values ¢
variables after the breakpoint hits, you can often find out what is going wrong, and then fix the logic error in
the code.

Besides examining variable values at a breakpoint, you can also step through the code a statement at at tirr
This will show you exactly which statements your program is executing.

As valuable as a debugger is for finding logic errors, it often is a real time waster. It is very easy to waste lot
of time setting breakpoints where there is no error, or single stepping through perfectly correct code. Even s
there are many bugs that just can't be found without a debugger.

VIDE supports the standard GNU gdb and Sun jdb debuggers. The VIDE interface to the debuggers makes
far easier to debug your code, but is of minimalist design. The goal is to make using the native debuggers a
easy as possible for casual users, while maintaining the full power of the debugger for experienced users.
VIDE accomplishes this by showing a command window interface to the debugger. You can enter any native
debugger command in this window, and thus have full access to all debugger features.

Using VIDE with the Sun JDK 61



VIDE

VIDE makes using the debugger easier by providing a dialog box with the most often used commands. And
most importantly, VIDE will open the source file in an editor window and highlight the current execution line
on breakpoints or steps. It is very easy to trace program execution by setting breakpoints, and clicking on th
Step over or Step into debug dialog buttons. VIDE also allows you to inspect variable values by highlighting
the variable in the source and right clicking the mouse.

A description of debug dialog commands and tool bar buttons is providedvtiiBeCommand
Reference section.

Debugging Java with jdb wp __

To effectively use jdb, you need a pretty good understanding of Java. One of the most confusing aspects of
using jdb is threads. Many java apps, especially Java GUI apps, use threads, and this can lead to some
confusion of just what you are debugging, and what will be displayed. This is just part of using Java.

To debug Java programs with jdb, you must first compile the program with debugging information. This is
accomplished with the —g switch on the compile line. The current version of VIDE does not provide
automatic generation of debug or release versions. The easiest way to define VIDE projects for both debug
and release versions is to use the Project:Save Project as... command. First, define a release version of the
project. Then, using that project as a template, change the switches as needed for your debug version, and
save the project under a different name.

The full power of jdb is available in the debugger command window. You may enter any standard jdb
command after the ">" prompt. In fact, there really is limited interaction between VIDE and jdb, mostly
handling breakpoints. VIDE maintains its own list of breakpoints, which it keeps even if you start and stop
the debugger. It is important that you use VIDE commands to set and delete breakpoints. If you enter
breakpoints directly into the jdb command window, VIDE won't know about them, and won't highlight them
in your source code.

Applets vs. Apps

Depending on whether you are debugging a Java app or a Java applet, you must start jdb differently. The
standard way to start jdb from a command line is jdb AppName. To debug an applet, you would start jdb
with appletviewer —debug Applet.ntml. What does this mean to you? It means when you want to

debug an applet, you need to use the Java Project Editor (Project—>Edit) and set the debugger name to
"appletviewer —debug" on the Debugger tab. Normally, the debugger name is set to "jdb". If you created an
applet project initially, this will be done automatically. Note that the appletviewer with the debugger is likely
to take a long time to begin execution. Be patient.

Limitations with jdb

VIDE works quite well with jdb. In fact, it extends some of the capabilities by allowing you to delete all
breakpoints at once.

Using VIDE with the Sun JDK 62



VIDE

VIDE Help System wp__

The VIDE help system has been designed to provide an excellent help environment for the programmer. Th
help files are supplied in HTML format. Different files are supplied depending on which VIDE distribution
you have. The entire set of help files are available in a separate download from the ObjectCentral web site.
Help uses your default Web Browser to show the help files.

There are several help topics available from the VIDE help menu.

|
Editor Command Set
VIDE Help System
Win3z AP
Y GUI
JavaJDK
HTML
HTML - £S5

SboutV IDE

VIDE

This is the documentation for VIDE, including this file. It is included with all versions of VIDE.

Editor Command Set

This will display a dialog with a summary of the commands available for the current editor emulation. It is
not an HTML file, but is internal to VIDE.

VIDE Help System
This will display the full VIDE Help System, which includes the best free documentation on GNU uitilities,
the GNU gcc compiler, C++, and HTML. The actual content for this help is available only as a separate

download from the ObjectCentral web site. Clicking on this help before it is has been installed shows an
HTML file with instructions for downloading the full version.

Win32 API

This item will bring up an HTML file telling how to download a Windows .HLP file that contains the WIN32
API reference. After you've installed that help file, this item will show it.

V GUI

This will show the V Reference Manual if you have downloaded the full V GUI distribution.

Using VIDE with the Sun JDK 63



VIDE

Java JDK

If you have installed the Sun JDK documentation, and set the Java Help path in the Options menu, this will
bring up the entire Sun JDK help documentation in your browser.

HTML

This will bring up an HTML reference manual if it is installed. The HTML reference is normally included in
the VIDE/Java distribution.

HTML - CSS

This will bring up an HTML reference manual if it is installed. The HTML reference is normally included in
the VIDE/Java distribution.

No Warranty twp__

This program is provided on an "as is" basis, without warranty of any kind. The entire risk as to the quality
and performance of the program is borne by you.

VIDE Reference Manual
Copyright © 1999-2000, Bruce E. Wampler
All rights reserved.

Bruce E. Wampler, Ph.D.

bruce@objectcentral.com
www.objectcentral.com

GUI
I0E

L vIDE User Guide

Using VIDE with the Sun JDK 64


mailto:bruce@objectcentral.com
http://www.objectcentral.com
videdoc.htm

The Borland C++ Compiler 5.5

 Getting and Using the Free Borland C++ Compiler 5.5
* Setting up BCC 5.5

« Using Borland C++ with VIDE
* BCC32.EXE Switches

o [LINK32.EXE — Switches
* BCC32 Libraries

* Help Improve VIDE for BCC
* Disclaimer

This document is intended to help you use the free version of the Borland C++ compiler with VIDE.
The Borland compiler is a good compiler, but the free version has some serious deficiencies. VIDE
helps make up for many of the problems, but the most serious is the lack of a debugger. This issue i
not likely to be resolved soon. The free version is also a bit thin on its documentation. This situation
is likely to improve, and this document is a small step in that direction.

Getting and Using the Free Borland C++ Compiler 5.5 «p

The Borland C++ Compiler 5.5 is available at http://www.borland.com/bcppbuilder/freecompiler/.
You have to fill out a bunch of web forms, and eventually get to download the compiler. The
download is about 8 Megabytes long.

Once you download, you have to install the compiler. The download is a self-extracting installer. It
is probably a good idea to install it in the default location: c:\borland\bcc55. Once you've
installed it, you need to read the README.TXT file.

Setting up BCC 5.5 top__

Configuration Files

The most important thing you need to do is set up two configuration files on the \bin directory. The
Borland instructions don't make that location clear. Assuming you installed the compiler to the
default locations, you need to create two files. The first,

C:\Borland\BCC55\bin\bcc32.cfg should contain:

—I"c:\Borland\Bcc55\include”
—-L"c:\Borland\Bcc55\lib;c:\Borland\Bcc55\lib\psdk™

The second, C:\Borland\BCC55\bin\ilink32.cfg should contain:

-L"c:\Borland\Bcc55\lib;c:\Borland\Bcc55\lib\psdk™

The purpose of these two files is to allow the compiler to find the standard system include and library
files. Note that the Borland README.TXT leaves out the \psdk entry. If you leave that out, then
the compiler won't be able to find all the standard Windows API files contained there.

Also note that you can add other entries to these files to change the default behavior of the compiler

The Borland C++ Compiler 5.5 65


http://www.borland.com/bcppbuilder/freecompiler/

VIDE

For example, you might want to add —wuse— to bcc32.cfg to stop the compiler from issuing
warnings about variables that are declared but never used. See the next section on specific switches
recommended for VIDE.

Environment Path

In addiion to these two configuration files, you need to add the compiler \bin directory to the
PATH environment variable. On Windows9x, you edit the file C:\autoexec.bat. Simply add
c:\borland\bcc55\bin to the PATH command. On NT, you use the system settings menu off

the Start menu to change the PATH in the environment. Note that if you are using VIDE, you will
need to have the VIDE directory on your path, too.

General Notes

Note that many switches can be negated by following it with a '-'. For example, '-v—' means no
debugging information.

If you want to make any of these switches the default behavior, you can add them to the BCC32.CF(
and ILINK32.CFG files in the /bin directory of the Borland command line tools.

Using Borland C++ with VIDE tp __

VIDE hides most of the details of using the command line tools from you. However, underneath it
all, the command line tools are still there. This section explains some of the details of using VIDE
with BCC32.

Borland Configuration files

It is essential that you have the two compiler .cfg files set up in the \bin directory. The following
files are suggested:

bcc32.cfg

-W
—I"c:\Borland\Bcc55\include™
-L"c:\Borland\Bcc55\lib;c:\Borland\Bcc55\lib\psdk™

The '-w' switch turn on warnings. You might want to refine the with some '-wxxx—" switches to
supress some of the warnings.

ilink32.cfg

-X
—-L"c:\Borland\Bcc55\lib;c:\Borland\Bcc55\lib\psdk™

The '=x' switch turn off the map file. If you want to supress incremental linking, you can add the

The Borland C++ Compiler 5.5 66



VIDE

'-Gn' switch.

VIDE Options

To use VIDE with the Borland compiler, you MUST set the path to the root of the compiler directory
in the Options—>VIDE dialog. You should set the Borland root: value to the directory of the

Borland compiler (not the \bin directory). If you installed BCC32 to the default directory, then this
would be c:\Borland\bcc55.

Default Project Values

Depending on whether you generate GUI or a Console application, the VIDE project file sets some
default values. These are visible in the Project—>Edit project editor dialog.

The default compiler flags look like: =P —-O1 —v—. The —P switch means C++ files, -O1 is
optimization for size, and —v- turns off debugging. Remember that you may have other switches in
the bcc32.cfg file.

The linker flags line looks like: —v— —-Tpe —ap —c -limport32 —-I$(BCC32RTLIB).

These switches control the linker, and may change depending if you have a Console or GUI app. Th
last two values are the names of the run time libraries needed. Import32 is always needed, and the
other, BCC32RTLIB is the It can be a static or dynamic version, and cw32.lib static version is

used by default.

The linker also must include a startup object code file, which varies for GUI ("cOw32.0bj") and
console apps ("c0x32.0bj"). There are also wide—char versions of these two startup libraries. You cal
override the defaults by changing the value of BCC32STARTUP in the project editor.

Runtime Libraries

BCC32 comes with 4 runtime libraries. There are single threaded and multithreade versions, and a
static and dynamic version of each. The default library is "cw32.lib", the single-threaded static
library. You can use the dyanmic version of this library by changing the value of BCC32RTLIB in

the advanced tab of the project editor to "cw32i" (no .lib, which is added automatically by VIDE).
You also must either add the —D_RTLDLL define from the defines tab, or add the —tWR switch to the
compiler flags line, and recompile your program. You can do switch to the static multi-threaded
library ("cw32mt") or dynamic library ("cw32mti") in a similar fashion.

Specifying Libraries

VIDE allows you to specify libraries to link with on the Linker flags line of the Names tab of the
project editor. This line is used for linker flags, and the names of libraries you need to add. You can
see the default —limport32 -I$(BCC32RTLIB) when you create a new project. You can add

your own library names to this line, preferably before the —limport32 entry. This —I syntax is not
part of the Borland command line options, but is converted by VIDE to the form appropriate in the

The Borland C++ Compiler 5.5 67



VIDE

generated Makefile.

BCC32 Quick Reference

BCC32.EXE Switches tp__
+filename
Use alternate configuration file named filename
@filename

Read compiler options from the response file filename

-3
Generate 80386 protected—mode compatible instructions. (Default for 32-bit
compiler)
-4
Generate 80386/80486 protected—mode compatible instructions.
-5
Generate Pentium protected—mode compatible instructions.
-6
Generate Pentium Pro protected—mode compatible instructions.
-a
Default (—a4) data alignment; —a— is byte.
-an
Align to n. 1=byte, 2=word (2 bytes), 4=double word (default), 8=quad word (8
bytes), 16=paragraph (16 bytes)
-A
Use only ANSI keywords. (Extensions like the far and near modifier no longer
recognized.)
—A- (Default)

The Borland C++ Compiler 5.5

68



VIDE

Enable Borland C++ keyword extensions: near, far, huge, asm, cdecl, pascal,
interrupt, _export, _ds, cs, _Ss, _es.

-AK
Use only KRkeywords.
-AT
Use Borland C++ keywords (Alternately specified by —A-)
-AU
Use UNIX V keywords. (Extensions like the far and near modifier no longer
recognized.)
-b
Make enums always integer—sized. (Default: —b make enums integer size)
-B
Compiles assembly and calls TASM or TASM32. If you don't have TASM in your
path, checking this option generates an error. Also, old versions of TASM might
have problems with 32-hbit generated assembler code.
-C
Compileource files, but does not execute a link command.
-C
Turn nested comments on. (Default: —C- turn nested comments off.)
-d
Merge duplicate strings. (Default)
-Didentifier

Define identifier to the null string.
—Didentifier=string
Define identifier to string.
—efilename
Derives the executable program's name from filename by adding the file extension

.EXE (the program name is then filename.EXE). filename must immediately follow
the —e, with no intervening whitespace. Without this option, the linker derives the

The Borland C++ Compiler 5.5 69



VIDE

.EXE file's name from the name of the first source or object file in the file name list.
—-Efilename

Use filename as the name of the assembler to use. (Default = TASM)

—f
Emulate floating point. (Default)
_f_
No Floating Point
—ff
Fast floating point. (Default)
-F
Uses fast huge pointers.
—Ff
Create far variables automatically.
-Ff=1
Array variable 'identifier' is near warning. (Default)
-Fm
Enables all the other —F options (-Fc, —Ff, and —Fs). Use this to quickly port code
from other 16-bit compilers.
-gb
Stop batch compilatoin after first file with warnings (Default: —gb-).
—gn
Stop compiling after n messages. (Default: 255.)
-G
Optimize code for speed. (Default: -G- optimize code for size.)
-H

Generate and use precompiled headers. It might be called BC32DEF.CSM.

The Borland C++ Compiler 5.5 70



VIDE

—H-(Default)

Does not generate and use precompiled headers.
—Hfilename

Sets the name of the file for precompiled headers
—H=filename

Set the name of the file for precompiled headers to filename.

-Hc
Cache precompiled headers. Use with —H, —Hxxx, —Hu, or —Hfilename. This option
is useful when compiling more than one precompiled header.
—Hu
Use but do not generate precompiled headers.
=in
Make significant identifier length to be n, where n is between 8 and 250. (Default =
250)
—lIpath
Set search path for directories for include files to path.
_Jb
Stop batch compilation after first file with errors. (default: off)
—jn
Errors: stop after n messages. (Default = 25)
-Ja
Expand all template members, including unused members.
~Jg
Generate definitions for all template instances and merge duplicates. (Default)
-Jgd

Generate public definitions for all template instances; duplicates result in redefinition
errors.

The Borland C++ Compiler 5.5 71



VIDE

-Jgx
Generate external references for all template instances.
-k
Turn on standard stack frame. (Default)
_k_
Turn off standard stack frame. Generates smaller code, but it can't be easily
debugged.
-K
Default character type unsigned. (Default: —K- default character type signed.)
—Ix
Pass option x to the linker. More than one option can appear after the —I (which is a
lowercase L).
—I-x
Disable option x for linker.
—-Lpath
Set search path for library files.
-M
Instruct linker to create a full link map.
—npath
Set the output directory to path.
-0
Optimize jumps. (Default: on)
-01
Generate smallest possible code.
-02
Generate fastest possible code.
-Od

The Borland C++ Compiler 5.5 72



-0Ox

-0S

—Pext

-rd

-R

VIDE

Disable all optimizations.

There are a bunch of tiny optimizations, but it is probably only necessary to used
—-01 and —-02, so they are not covered here.

Pentium instruction schedluling. (Default: off: -O-S)

Use Pascal calling convention. (This is a lowercase p.)

Use C calling convention. (Default same as —pc or —p-)

Use fastcall calling convention for passing parameters in registers.

Use stdcall calling convention (32-bit compiler only).

Perform a C++ compile regardless of source file extension. (Default when extension
is not specified. This is an uppercase P.)

Perform a C++ compile regardless of source file extension and set the default
extension to ext. This option is available because some programmers use .C or
another extension as their default extension for C++ code.

Quiet — suppress compiler banner.

Use register variables. (Default)

Allow only declared register variables to be kept in registers.

The Borland C++ Compiler 5.5 73



VIDE

Include browser information in generated .OBJ files.

-RT
Enable runtime type information. (Default)
=S
Generate assembler source compiles the named source files and produces assembly
language output files ((ASM), but does not assemble. When you use this option,
Borland C++ includes the C or C++ source lines as comments in the produced .ASM
file.
—tw
Make the target a Windows .EXE with all functions exportable. (Default)
—-twC
Make the target a console .EXE.
—-twD
Make the target a Windows .DLL with all functions exportable.
—-tWM
Make a multithreaded application or DLL.
—-tWR
Target uses the dynamic runtime lib. Can use —-D_RTLDLL instead.
-T-
Remove all previous assembler options.
—Tstring
Pass string as an option to TASM, TASM32, or assembler specified with —E.
-u
Generate underscores for symbols. (Default)
-Uname
Undefines any previous definitions of the named identifier name.
-V

The Borland C++ Compiler 5.5 74



VIDE

Turn on source debugging.

—Vi
Turn on inline expansion (-vi— turns off inline expansion).
-V
Create smart C++ virtual tables. (Default) This means the .objs are compatible only
with Borland tools. The VO and V1 can apparently be used with other tools, but
why?
-VO0
Create external C++ virtual tables.
-V1
Create public C++ virtual tables.
-Vmd
Use the smallest representation for member pointers.
-Vmm
Member pointers support multiple inheritance.
-Vmp
Honor the declared precision for all member pointer types.
-Vms
Member pointers support single inheritance.
-Vmv
Member pointers have no restrictions (most general representation). (Default)
-VX
Zero—-length empty class member functions.
-w
Display warnings on.
-w!

Do not compile to .OBJ if warnings were found. (Note: there is no space between the

The Borland C++ Compiler 5.5 75



VIDE

-w and the )
-wmsg

Enable user define #pragma messages.
—W—XXX

Disable xxx warning message.
—WXXX

Enable xxx warning message.

amb —Ambiguous operators need parentheses.

amp —-Superfluous with function.

asm - Unknown assembler instruction.

aus - 'identifier' is assigned a value that is never used. (Default)

bbf — Bit fields must be signed or unsigned int.

bei - Initializing 'identifier' with 'identifier'. (Default)

big — Hexadecimal value contains more than three digits. (Default)

ccc — Condition is always true OR Condition is always false. (Default)

cln — Constant is long.

cpt — Nonportable pointer comparison. (Default)

def — Possible use of ‘identifier' before definition.

dpu - Declare type 'type' prior to use in prototype (Default)

dsz - Array size for 'delete’ ignored. (Default)

dup - Redefinition of 'macro’ is not identical (Default)

eas — 'type' assigned to 'enumeration'. (Default)

eff — Code has no effect. (Default)

ext - 'identifier' is declared as both external and static (Default)

hch — Handler for '<typel>' Hidden by Previous Handler for '<type2>'

hid - 'function1' hides virtual function "function2' (Default)

ibc — Base class '<basel>'is also a base class of '<base2>' (Default)

ill - lll-formed pragma. (Default)

inl — Functions containing reserved words are not expanded inline (Default)
lin — Temporary used to initialize 'identifier'. (Default)

Ivc — Temporary used for parameter ‘parameter’ in call to ‘function’' (Default)
mpc — Conversion to type fails for members of virtual base class base. (Default)
mpd — Maximum precision used for member pointer type type. (Default)
msg — User—defined warnings . This option allows user—defined messages to appear
in the IDE message window.

nak — Non—-ANSI Keyword Used: '<keyword>' (Note: Use of this option is a
requirement for ANSI conformance.)

ncf — Non-const function 'function’ called for const object. (Default)

nci — The constant member 'identifier' is not initialized. (Default)

nod — No declaration for function ‘function’

nsf — Declaration of static function 'func(...)" ignored.

nst — Use qualified name to access nested type 'type' (Default)

ntd — Use '> >' for nested templates instead of '>>'. (Default)

nvf — Non-volatile function function called for volatile object. (Default)

obi — Base initialization without a class name is now obsolete (Default)

The Borland C++ Compiler 5.5 76



VIDE

obs - Identifier is obsolete. (Default)

ofp — Style of function definition is now obsolete. (Default)
ovl — Overload is now unnecessary and obsolete. (Default)
par — Parameter '‘parameter’ is never used. (Default)

pch — Cannot create precompiled header: header. (Default)
pia — Possibly incorrect assignment. (Default)

pin — Initialization is only partially bracketed.

pre — Overloaded prefix operator 'operator' used as a postfix operator.
pro — Call to function with no prototype. (Default)

rch — Unreachable code. (Default)

ret — Both return and return of a value used. (Default)

rng — Constant out of range in comparison. (Default)

rpt — Nonportable pointer conversion. (Default)

rvl — Function should return a value. (Default)

sig — Conversion may lose significant digits.

stu — Undefined structure 'structure’

stv — Structure passed by value.

sus — Suspicious pointer conversion. (Default)

ucp — Mixing pointers to different ‘char' types.

use — 'identifier' declared but never used.

voi — Void functions may not return a value. (Default)

xxx — Enable xxx warning message. (Default)

zdi — Division by zero (Default)

-W

Creates a Windows GUI application. (same as —tW)
-WC

Creates a 32-hit console mode application. (same as —tWC)
-WD

Creates a GUI DLL with all functions exportable. (same as —tWD)
-WM

Make a multithreaded application or DLL. (same as —tWM)
-Wu

Generates Unicode application. Uses —txxxx macros in tchar.h.
-X

Enable exception handling. (Default)
-xd

Enable destructor cleanup. (Default)

The Borland C++ Compiler 5.5 77



VIDE

—xf

Enable fast exception prologs.
-Xp

Enable exception location information.
-Xp

Enable slow exception epilogues.
-X

Disable compiler autodependency output. (Default: —X- use compiler

autodependency output.)
-y

Line numbers on.
—zAname

Code class set to name.
—zBname

BSS class set to name.
—zCname

Code segment class set to name.
—zDname

BSS segment set to name.
—zGname

BSS group set to name.
—zPname

Code group set to name.
—zRname

Data segment set to name.
—zSnhame

The Borland C++ Compiler 5.5

78



VIDE

Data group set to name.
—zTname

Data class set to name.
—7X*

Use default name for X. For example, —zA assigns the default class name CODE to
the code segment class.

Enable register load suppression optimization.

ILINK32.EXE — Switches twp__
ILINK32 objfiles, exefile, mapfile, libfiles, deffile, resfiles

@xxxx indicates use response file xxxx

—-ax
Specify application type (known x's follow)
-aa
Generate a protected—mode executable that runs using the 32-bit Windows API
—ap
Generate a protected—mode executable file that runs in console mode
—Ao:nnnn
Specify object alignment
—b:xxxx
Specify image base addr
-C
Case sensitive linking
-C

Clear state before linking

The Borland C++ Compiler 5.5 79



VIDE

—Dstring

Set image description

-d

Delay load a .DLL
—-Enn

Max number of errors
-Gi

Generate import library
-Gl

Static package
-Gn

No state files
-Gpd

Design time only package
-Gpr

Runtime only package
-Gt

Fast TLS
-Gz

Do image checksum
-GC

Specify image comment string
-GD

Generate .DRC file
-GF

Set image flags

The Borland C++ Compiler 5.5

80



VIDE

-GS

Set section flags
—H:xxxx

Specify heap reserve size
—Hc:xxxx

Specify heap commit size

Intermediate output dir
-]

Specify object search paths
-L

Specify library search paths
-m

Map file with publics
-M

Map with mangled names
—-q

Supress banner
-r

Verbose linking
—-Rr

Replace resources
-s

Detailed segment map
—SIXXXX

Specify stack reserve size

The Borland C++ Compiler 5.5

81



VIDE

—SCIXXXX

Specify stack commit size
—Txx

Display time spent on link
—Txx

Specify output file type
-Tpd

Target a Windows .DLL file
-Tpe

Target a Windows .EXE file
—Tpp

Generate package
-Ud.d

Specify image user version
-V

Full debug information
-Vvd.d

Specify subsystem version

Dilable all warnings.
—WXXX

Warning control

def — No .DEF file

dpl — Duplicate symbol in lib

imt — Import does not match previous definition
msk — Multiple stack segment

bdk - using based linking in .DLL

dil - .EXE module built with .DLL extension
dup - Duplicate symbol

ent — No entry point

The Borland C++ Compiler 5.5

82



VIDE

ing — Extern not qualified with __import
srf — Self-relative fixup overflow
stk — No stack

-X

No map

BCC32 Libraries top__
The following is an incomplete listing of the main startup and runtime libraries included with
BCC32. If you have more details, please send them, and | will include them here.

OBJ Files

C0D32.0BJ

32-bit DLL startup module (cod32w: wide—char version; cod32x: no exception
handling)

C0S32.0BJ
Unknown

COW32.0BJ
32-bit GUI EXE startup module (cOw32w: wide—char)

C0X32.0BJ
32-bit console-mode EXE startup module (cOx32w: wide—char)

FILEINFO.OBJ
Passes open file—handle information to child processes. Include this file in your link
to pass full information about open files to child processes created with exec and
spawn. Works with the C++ runtime library to inherit this information.

GP.OBJ
Prints register—-dump information when an exception occurs.

WILDARGS.OBJ
If you want wild—card expansion for you console—mode applications, then you
should also link in this file when you link your console—mode application. It

apparently doesn't work for GUI apps. It does the normal DOS-like wild card
expansion and passes them to argv and argc of your main.

The Borland C++ Compiler 5.5 83



VIDE

LIB Files
CWa32.LIB
32-bit single—-threaded static library
CW32I.LIB
32-bit single-thread, dynamic RTL import library for CW3250.DLL. To use this
import library, you must compile your programs with either -D_RTDLL or -tWR
options to the compiler. This probably applies to the other "i" libs as well.
CW32MT.LIB
32-bit multithread static library
CW32MTI.LIB
Import lib for 32—bit multithread dynamic RTL import library for CW3250MT.DLL
IMPORT32.LIB
32-bit import library
dxextra.lib
DirectX static library
inet.lib
Import lib for MS Internet DLLs
noeh32.lib
No exception handling support lib
ole2w32.lib
Import lib for 32—bit OLE 2.0 API
oleaut32.lib
Unknown
uuid.lib

GUID static lib for Direct3d, DirectDraw, DirectSound, Shell extensions, DAO,
Active Scripting, etc.

wininet.lib

The Borland C++ Compiler 5.5 84



VIDE

Unknown
ws2_32.lib

Import lib for WinSock 2.0 API

Help Improve VIDE for BCC twp__

Please note that VIDE will reamain primarily focused on the GNU MinGW gcc compiler. However, |
do plan to continue support for the free Borland BCC 5.5. Remember that VIDE is GPLed, so the
code is avaialble for modification.

First, if I've gotten some default behavior wrong, please suggest a reasonable alternative. But
remember, | chose the defaults here mainly to simplify typical, simple applications. Advanced users
are expected to edit the Project file or makefile to get more options.

If you don't like the layout of this document (like tables might be better), chip in and fix it. I'll fold it
back into the standard distriubtion.

The BIG hole is the missing debugger. But the tools emit debugging information. That mean it would
be possible to write a free debugger to go with this compiler. | have some ideas on how to approach
such a project, but no time to do it. | think even a very simple interface that just had breakpoints and
variable value inspection would be a GIANT improvement. If you are interested in this, send me
some e—mail, and I'll be happy to discuss the project with you.

Disclaimer twp__

First, the Borland C++ 5.5 compiler is not the main compiler supported by VIDE (gcc is). | tried to
get most of the stuff right with the first release (1.07), but there may be glitches. Help me out, and
report them. I'll try to fix them a soon as | can.

This information was assembled for publicly available sources and is intended merely to help use
VIDE with Borland BCC32. There is no guarantee of its accuracy, although it seems to be correct,
but may be incomplete. Last revision: 3—-4-00.

No Warranty twp__

This program is provided on an "as is" basis, without warranty of any kind. The entire risk as to the
guality and performance of the program is borne by you.

VIDE Reference Manual
Copyright © 1999-2000, Bruce E. Wampler
All rights reserved.

Bruce E. Wampler, Ph.D.
bruce @objectcentral.com

The Borland C++ Compiler 5.5 85


mailto:bruce@objectcentral.com

www.objectcentral.com

The Borland C++ Compiler 5.5

VIDE

86


http://www.objectcentral.com

	Table of Contents
	V IDE User Guide
	VIDE - Command Reference
	VIDE - Editor Reference
	VIDE C/C++ Tutorial
	Using VIDE with the Sun JDK
	The Borland C++ Compiler 5.5

