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PART I: Numerical Python

Numerical Python (“Numpy”) adds a fast multidimensional array facility to Python. This
part contains all you need to know about “Numpy” arrays and the functions that operate
upon them.
11
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1. Introduction

This chapter introduces the Numeric Python extension and outlines the rest of the
document.

The Numeric Python extensions (NumPy henceforth) is a set of extensions to the Python programmi
guage which allows Python programmers to efficiently manipulate large sets of objects organized in gr
fashion. These sets of objects are called arrays, and they can have any number of dimensions: one dim
arrays are similar to standard Python sequences, two-dimensional arrays are similar to matrices from l
gebra. Note that one-dimensional arrays are also different from any other Python sequence, and that two-dime
sional matrices are also different from the matrices of linear algebra, in ways which we will mention later in t
text.

Why are these extensions needed? The core reason is a very prosaic one, and that is that manipulatin
a million numbers in Python with the standard data structures such as lists, tuples or classes is much 
and uses too much space. Anything which we can do in NumPy we can do in standard Python – we j
not be alive to see the program finish. A more subtle reason for these extensions however is that the 
operations that programmers typically want to do on arrays, while sometimes very complex, can often
composed into a set of fairly standard operations.  This decomposition has been developed similarly in m
ray languages.  In some ways, NumPy is simply the application of this experience to the Python languag
many of the operations described in NumPy work the way they do because experience has shown tha
be a good one, in a variety of contexts. The languages which were used to guide the development of Nu
clude the infamous APL family of languages, Basis, MATLAB, FORTRAN, S and S+, and others. This
tage will be obvious to users of NumPy who already have experience with these other languages. This 
however, does not assume any such background, and all that is expected of the reader is a reasonable
knowledge of the standard Python language.

This document is the “official” documentation for NumPy. It is both a tutorial and the most authoritative s
of information about NumPy with the exception of the source code. The tutorial material will walk you thr
a set of manipulations of simple, small, arrays of numbers, as well as image files. This choice was m
cause: 

• Aconcrete data set makes explaining the behavior of some functions much easier to motivate than
talking about abstract operations on abstract data sets;

• Every reader will at least an intuition as to the meaning of the data and organization of image files, and

• The result of various manipulations can be displayed simply since the data set has a natural graph
resentation. 

All users of NumPy, whether interested in image processing or not, are encouraged to follow the tutori
a working NumPy installation at their side, testing the examples, and, more importantly, transferring the
standing gained by working on images to their specific domain. The best way to learn is by doing – the
this tutorial is to guide you along this “doing.”
12
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Here is what the rest of this part contains:

• “Installing NumPy” on page 15 provides information on testing Python, NumPy, and compiling and in
ing NumPy if necessary.

• “The NumTut package” on page 18 provides information on testing and installing the NumTut pac
which allows easy visualization of arrays.

• “High-Level Overview” on page 20 gives a high-level overview of the components of the NumPy sy
as a whole.

• “Array Basics” on page 23 provides a detailed step-by-step introduction to the most important asp
NumPy, the multidimensional array objects.

• “Ufuncs” on page 39 provides information on universal functions, the mathematical functions which 
ate on arrays and other sequences elementwise.

• “Pseudo Indices” on page 45 covers syntax for some special indexing operators.

• “Array Functions” on page 47 is a catalog of each of the utility functions which allow easy algorithmic
cessing of arrays.

• “Array Methods” on page 59 discusses the methods of array objects.

• “Array Attributes” on page 61 presents the attributes of array objects.

• “Special Topics” on page 63 is a collection of special topics, from the organization of the codebase
mechanisms for customizing printing.

• “Writing a C extension to NumPy” on page 72 is an tutorial on how to write a C extension which
NumPy arrays.

• “C API Reference” on page 79 is a reference for the C API to NumPy objects (both PyArrayObjec
UFuncObjects).

• “Glossary” on page 88 is a glossary of terms.

• Reference material for the optional packages distributed with Numeric Python are described in the ne
“Optional Packages” on page 89.

Where to get information and code

Numerical Python and its documentation are available at SourceForge. The main web site is:

http://numpy.sourceforge.net

Downloads, bug reports, and patch facility, and releases are at the main project page, reachable from t
site or directly at: http://sourceforge.net/projects/numpy

The Python web site is www.python.org

Acknowledgments

Numerical Python is the outgrowth of a long collaborative design process carried out by the Matrix SIG
Python Software Activity (PSA). Jim Hugunin, while a graduate student at MIT, wrote most of the cod
initial documentation. When Jim joined CNRI and began working on JPython, he didn’t have the time to
tain Numerical Python so Paul Dubois at LLNL agreed to become the maintainer of Numerical Python.
Ascher, working as a consultant to LLNL, wrote most of this document, incorporating contributions from
rad Hinsen and Travis Oliphant, both of whom are major contributors to Numerical Python. 
13
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2. Installing NumPy

This chapter explains how to install and test NumPy, from either the source distribution or
from the binary distribution.

Before we start with the actual tutorial, we will describe the steps needed for you to be able to follow alo
examples step by step. These steps including installing Python, the NumPy extensions, and some tools 
ple files used in the examples of this tutorial.

Testing the Python installation

The first step is to install Python if you haven’t already. Python is available from the Python website’s dow
directory at http://www.python.org/download. Click on the link corresponding to your platform, and follow th
instructions described there.  When installed, starting Python by typing python  at the shell or double-clicking
on the Python interpreter should give a prompt such as:

Python 1.5.1 (#0, Apr 13 1998, 20:22:04) [MSC 32 bit (Intel)] on win32
Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam
>>>

If you have problems getting this part to work, consider contacting a local support person or emailing python-
help@python.org for help. If neither solution works, consider posting on the comp.lang.python newsgroup
tails on the newsgroup/mailing list are available at http://www.python.org/psa/MailingLists.html#clp).

Testing the Numeric Python Extension Installation

The standard Python distribution does not come as of this writing with the Numeric Python extensions in
but your system administrator may have installed them already. To find out if your Python interpret
NumPy installed, type import  Numeric  at the Python prompt. You’ll see one of two behaviors (through
this document, bold  Courier New  font indicates user input, and standard  Courier New  font indicates
output):

>>> import Numeric
Traceback (innermost last):
 File "<stdin>", line 1, in ?
ImportError: No module named Numeric
>>>

indicating that you don’t have NumPy installed, or:

>>> import Numeric
>>> 

indicating that you do. If you do, go on to the next step. If you don’t, you have to get the NumPy extens

Installing NumPy

The release facility at SourceForge is accessed through the project page, http://sourceforge.net/projects
Click on the “numpy” releases and you will be presented with a list of the available files. The files whose 
end in “.tar.gz” are source code releases. The others are “prebuilt” for a given platform. 
15
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On Windows, we currently have .zip files that should be unzipped into the top of your Python distribution
is no “Setup” to run. 

In general, there may not be a prebuilt version of a particular kind available in every minor release. If yo
a prebuilt version, choose the most recent version available. 

The source distribution should be uncompressed and unpacked using the the tar program:

csh> tar xfz Numeric-n.m.tar.gz

Follow the instructions in the top-level directory for compilation and installation. Note that there are ption
must consider before beginning.

• Read the README file. With many software distributions, this is an optional step. It isn’t for Numeric
thon. Your build won’t work unless you make a decision about LAPACK and the BLAS.

• Subdirectory Packages contains some optional packages you may wish to install. The Makefile in t
level directory can be used to do this after you have completed the main installation. These packa
described in “Optional Packages” on page 89.

Once your lapack_lite decision is made and the library built if necessary, installation is usually as simpl

python setup.py install

However, please (please!) see the README itself for the latest details.

�
Just like all Python modules and packages, the Numeric module can be invoked us-
ing either the import Numeric  form, or the from Numeric import ...  
form.  Because most of the functions we’ll talk about are in the Numeric module, in 
this document, all of the code samples will assume that they have been preceded by 
a statement: 

from Numeric import *

At the SourceForge...

The SourceForge facility is at http://sourceforge.net/projects/numpy. Look on SourceForge also for vario
meric-based packages supplied by individuals.

The Numeric Discussion List

You can subscribe to a discussion list about Numeric python using the project page at SourceForge. Th
a good place to ask questions and get help. Send mail to numpy-discussion@lists.sourceforge.net.

Bugs and Patches

Bug tracking and patch-management facilities is provided on the SourceForge project page.

CVS Repository

You can get the latest and greatest (albeit less tested and trustworthy) version of Numeric directly fr
CVS repository.
16
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FTP Site

The FTP Site contains this documentation in several formats, plus maybe some other goodies we ha
around.

Pyfort

One tool for connecting Fortran to Numeric and Python is Pyfort, sourceforge.net/projects/pyfortran. 
17
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3. The NumTut package

This chapter leads the user through the installation and testing of the NumTut package,
which should have been distributed with this document.

Testing the NumTut package

This tutorial assumes that the NumTut package has been installed. This package contains a few sampl
and utility functions for displaying arrays and the like. To find out if NumTut has been installed, do:

>>> from NumTut import *
>>> view(greece)

If a picture of a greek street shows up on your screen, you’re all set, and you can go to the next chapte

Possible reasons for failure:

>>> import NumTut
Traceback (innermost last):
  File "<stdin>", line 1, in ?
ImportError: No module named NumTut

This message indicates that you do not have the NumTut package installed in your PythonPath. NumTu
tributed along with the Python source in the Demo subdirectory. Copy the NumTut subdirectory some
into your Python path, or just execute python from the Demo directory. 

On Win32, the NumTut directory can be placed in the main directory of your Python installation. On U
can be placed in the site-packages directory of your installation.

Win32

>>> import NumTut
Traceback (innermost last):
18
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ConfigurationError: view needs Tkinter on Win32, and either threads or 
the IDLE editor"

or:

ConfigurationError: view needs either threads or the IDLE editor to be 
enabled.

On Win32 (Windows 95, 98, NT), the Tk toolkit is needed to view the images. Additionally, either the P
interpreter needs to be compiled with thread support (which is true in the standard win32 distribution) 
need to call the NumTut program from the IDLE interactive development environment.

If you do not wish to modify your Python installation to match these requirements, you can simply igno
references to the demonstrations which use the view()  command later in this document. Using NumPy do
not require image display tools, they just make some array operations easier to understand.

Unix

On Unix machines, NumTut will work best with a Python interpreter with Tk support (not true in the de
configuration), with the Tkinter GUI framework available and optionally with the tkImaging add-on (part o
Python Imaging Library). If this is not the case, it will try to use an external viewer which is able to read
files. The default viewer is ’xv’, a common image viewer available from ftp://ftp.cis.upenn.edu/pub/xv. If xv is
not installed, you will get an error message similar to:

>>> import NumTut
Traceback (innermost last):
[...]
ConfigurationError: PPM image viewer ’xv’ not found

You can configure NumTut to use a different image viewer, by typing e.g.:

>>> import NumTut
>>> NumTut.view.PPMVIEWER = ’ppmviewer’
>>> from NumTut import *
>>> view(greece)

If you do not have a PPM image viewer, you can simply ignore the references to the demonstrations wh
the view()  command later in this document. Using NumPy does not require image display tools, the
make some array operations easier to understand.
19



 well as
 called

Among
er Trans-

umbers
  Array
within

es. An
e may

ed 

ughout

 (it can
s a tuple

 life of

rmat,

l mem-
ead per
4. High-Level Overview

In this chapter, a high-level overview of the extensions is provided, giving the reader the
definitions of the key components of the system.  This section defines the concepts used by
the remaining sections.

Numeric Python consists of a set of modules:

• Numeric.py  (and its helper modules multiarray  and umath .)

This module defines two new object types, and a set of functions which manipulate these objects, as
convert between them and other Python types.  The objects are the new array object (technically
multiarray  objects), and universal functions (technically ufunc  objects).   

• Other optional packages shipped with Numeric are discussed in “Optional Packages” on page 89. 
these a packages for linear algebra, random numbers, masked or missing values, and Fast Fouri
forms.

Array Objects

The array objects are generally homogeneous collections of potentially large numbers of numbers.  All n
in a multiarray are the same kind (i.e. number representation, such as double-precision floating point).
objects must be full (no empty cells are allowed), and their size is immutable.  The specific numbers 
them can change throughout the life of the array.

Note: In some applications arrays of numbers may contain entries representing invalid or missing valu
optional package “MA” is available to represent such arrays. Attempting to do so by using NaN as a valu
lead to disappointment or lack of portability.

Mathematical operations on arrays return new arrays containing the results of these operations performele-
mentwise on the arguments of the operation.

The size of an array is the total number of elements therein (it can be 0 or more). It does not change thro
the life of the array.

The shape of an array is the number of dimensions of the array and its extent in each of these dimensions
be 0, 1 or more). It can change throughout the life of the array. In Python terms, the shape of an array i
of integers, one integer for each dimension that represents the extent in that dimension.

The rank of an array is the number of dimensions along which it is defined. It can change throughout the
the array. Thus, the rank is the length of the shape.

The typecode of an array is a single character description of the kind of element it contains (number fo
character or Python reference). It determines the itemsize of the array.

The itemsize of an array is the number of 8-bit bytes used to store a single element in the array. The tota
ory used by an array tends to its size times its itemsize, as the size goes to infinity (there is a fixed overh
array, as well as a fixed overhead per dimension).
20
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To put this in more familiar mathematicial language: A vector is a rank-1 array (it has only one dimension
which it can be indexed).  A matrix as used in linear algebra is a rank-2 array (it has two dimensions
which it can be indexed).  There are also rank-0 arrays, which can hold single scalars -- they have no di
along which they can be indexed, but they contain a single number. 

Here is an example of Python code using the array objects (bold text refers to user input, non-bold text 
puter output):

>>> vector1 = array((1,2,4,5))
>>> print vector1
[1 2 3 4 5]
>>> matrix1 = array(([0,1],[1,3]))
>>> print matrix1
[[0 1]
 [1 3]]
>>> print vector1.shape, matrix1.shape
(5,) (2,2)
>>> print vector1 + vector1
[ 2  4  6  8  10]]
>>> print matrix1 * matrix1
[[0 1] # note that this is not the matrix 
 [1 9]] # multiplication of linear algebra

If this example does not work for you because it complains of an unknown name “array”, you forgot to
your session with 

from Numeric import *

See page 16.

Universal Functions

Universal functions (ufuncs) are functions which operate on arrays and other sequences.  Most ufuncs 
mathematical operations on their arguments, also elementwise.  

Here is an example of Python code using the ufunc objects:

>>> print sin([pi/2., pi/4., pi/6.])
[ 1.        ,  0.70710678,  0.5       ]
>>> print greater([1,2,4,5], [5,4,3,2])
[0 0 1 1]
>>> print add([1,2,4,5], [5,4,3,2])
[6 6 7 7]
>>> print add.reduce([1,2,4,5])
12 # 1 + 2 + 3 + 4 + 5

Ufuncs are covered in detail in “Ufuncs” on page 39. 

Convenience Functions

The Numeric module provides, in addition to the functions which are needed to create the objects abov
of powerful functions to manipulate arrays, select subsets of arrays based on the contents of other arr
other array-processing operations.

>>> data = arange(10) # convenient homolog of builtin 
range()
>>> print data
[0 1 2 3 4 5 6 7 8 9]
21



>>> print where(greater(data, 5), -1, data)
[ 0  1  2  3  4  5 -1 -1 -1 -1] # selection facility
>>> data = resize(array((0,1)), (9, 9))
>>> print data
[[0 1 0 1 0 1 0 1 0]
 [1 0 1 0 1 0 1 0 1]
 [0 1 0 1 0 1 0 1 0]
 [1 0 1 0 1 0 1 0 1]
 [0 1 0 1 0 1 0 1 0]
 [1 0 1 0 1 0 1 0 1]
 [0 1 0 1 0 1 0 1 0]
 [1 0 1 0 1 0 1 0 1]
 [0 1 0 1 0 1 0 1 0]]

All of the functions which operate on NumPy arrays are described in “Array Functions” on page 47.
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5. Array Basics

This chapter introduces some of the basic functions which will be used throughout the text.

Basics

Before we explore the world of image manipulation as a case-study in array manipulation, we should f
fine a few terms which we’ll use over and over again. Discussions of arrays and matrices and vectors
confusing due to disagreements on the nomenclature. Here is a brief definition of the terms used in this 
and more or less consistently in the error messages of NumPy.

The python objects under discussion are formally called “multiarray” objects, but informally we’ll just
them “array” objects or just “arrays.” These are different from the array objects defined in the standard 
array  module (which is an older module designed for processing one-dimensional data such as sound

These array objects hold their data in a homogeneous block of elements, i.e. their elements all have the
type (such as a 64-bit floating-point number). This is quite different from most Python container objects,
can contain heterogeneous collections. (You can, however, have an array of Python objects, as discuss

Any given array object has a rank, which is the number of “dimensions” or “axes” it has. For example, a
in 3D space [1, 2, 1] is an array of rank 1 – it has one dimension. That dimension has a length of 3. 

As another example, the array 

1.0 0.0 0.0
0.0 1.0 2.0

is an array of rank 2 (it is 2-dimensional). The first dimension has a length of 2, the second dimensio
length of 3. Because the word “dimension” has many different meanings to different folks, in general th
“axis” will be used instead. Axes are numbered just like Python list indices: they start at 0, and can a
counted from the end, so that axis -1 is the last axis of an array, axis -2 is the penultimate axis, etc. 

There are two important and potentially unintuitive behaviors of NumPy arrays which take some gettin
to. The first is that by default, operations on arrays are performed element-wise. This means that when
two arrays, the resulting array has as elements the pairwise sums of the two operand arrays. This is tr
operations, including multiplication. Thus, array multiplication using the * operator will default to elem
wise multiplication, not matrix multiplication as used in linear algebra. Many people will want to use arra
linear algebra-type matrices (including their rank-1 versions, vectors). For those users, the Matrix cla
vides a more intuitive interface. We defer discussion of the Matrix class until later. 

The second behavior which will catch many users by surprise is that functions which return arrays wh
simply different views at the same data will in fact share their data. This will be discussed at length when w
have more concrete examples of what exactly this means.

Now that all of these definitions and warnings are laid out, let's see what we can do with these arrays. 
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Creating arrays from scratch

array() and typecodes

There are many ways to create arrays. The most basic one is the use of the array()  function: 

>>> a = array([1.2, 3.5, -1])

to make sure this worked, do: 

>>> print a
[ 1.2  3.5 -1. ]

The array(numbers, typecode=None, savespace=0) function takes three arguments – the firs
one is the values, which have to be in a Python sequence object (such as a list or a tuple). The optiona
argument is the typecode of the elements. If it is omitted, as in the example above, Python tries to find 
type which can represent all the elements. The third is discussed in “Saving space” on page 34. 

Since the elements we gave our example were two floats and one integer, it chose `float' as the type o
sulting array. If one specifies the typecode, one can specify unequivocally the type of the elements – th
pecially useful when, for example, one wants to make sure that an array contains floats even though 
cases all of its elements are integers: 

>>> x,y,z = 1,2,3
>>> a = array([x,y,z]) # integers are enough for 1, 2 and 3
>>> print a
[1 2 3]
>>> a = array([x,y,z], Float) # not the default type
>>> print a
[ 1.  2.  3.]

�
Pop Quiz: hat will be the type of an array defined as follows:

>>> mystery = array([1, 2.0, -3j])
Hint: -3j  is an imaginary number.
Answer: try it out! 

�
A very common mistake is to call array with a set of numbers as arguments, as in 
array(1,2,3,4,5) . This doesn’t produce the expected result as soon as at least 
two numbers are used, because the first argument to array()  must be the entire 
data for the array -- thus, in most cases, a sequence of numbers.  The correct way to 
write the preceding invocation is most likely array((1,2,3,4,5)) .

Possible values for the second argument to the array  creator function (and indeed to any function which a
cepts a so-called typecode for arrays) are: 

1. One type corresponding to single ASCII characters: Character .

2. One unsigned numeric type: UnsignedInt8 , used to store numbers between 0 and 255.

3. Many signed numeric types:

• Signed integer choices: Int , Int0 , Int8 , Int16 , Int32 , and on some platforms, Int64  and
24
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Int128  (their ranges depend on their size).

• Floating point choices: Float , Float0 , Float8 , Float16 , Float32 , Float64 , and on some
platforms, Float128 .

• Complex number choices: Complex , Complex0 , Complex8 , Complex16 , Complex32 ,
Complex64 , Complex128 .

The meaning of these is as follows:

• The versions without any numbers (Int , Float , Complex ) correspond to the int , float  and
complex  datatypes in Python.  They are thus long integers and double-precision floating point
bers, with a complex number corresponding to two double-precision floats.

• The versions with a number following correspond to whatever words are available on the sp
platform you are using which have at least that many bits in them.  Thus, Int0  corresponds to the
smallest integer word size available, Int8  corresponds to the smallest integer word size availa
which has at least 8 bits, etc.  The word sizes for the complex numbers refer to the total num
bits used by both the real and imaginary parts (in other words, the data portion of an arra
Complex128  elements uses up the same amount of memory as the data portions of two arr
typecode  Float64  with 2N elements).

4. One non-numeric type, PyObject .  Arrays of typecode PyObject  are arrays of Python references, an
as such their data area can contain references to any kind of Python objects.

The last typecode deserves a little comment. Indeed, it seems to indicate that arrays can be filled with 
thon objects. This appears to violate the notion that arrays are homogeneous. In fact, the typecode PyObject
does allow heterogeneous arrays. However, if you plan to do numerical computation, you're much be
with a homogeneous array with a potentially “large” type than with a heterogeneous array. This is bec
heterogeneous array stores references to objects, which incurs a memory cost, and because the spee
putation is much slower with arrays of PyObject 's than with uniform number arrays. Why does it exist, the

A very useful features of arrays is the ability to slice them, dice them, select and choose from them, e
feature is so nice that sometimes one wants to do the same operations with, e.g., arrays of class inst
such cases, computation speed is not as important as convenience. Also, if the array is filled with object
are instances of classes which define the appropriate methods, then NumPy will let you do math with th
jects. For example, if one creates an object class which has an __add__  method, then arrays (created with th
PyObject  typecode) of instances of such a class can be added together. 

Multidimensional Arrays

The following example shows one way of creating multidimensional arrays: 

>>> ma = array([[1,2,3],[4,5,6]])
>>> print ma
[[1 2 3]
 [4 5 6]]

The first argument to array()  in the code above is a single list containing two lists, each containing thre
ements. If we wanted floats instead, we could specify, as discussed in the previous section, the option
code we wished: 

>>> ma_floats = array([[1,2,3],[4,5,6]], Float)
>>> print ma_floats
[[ 1.  2.  3.]
 [ 4.  5.  6.]]

This array allows us to introduce the notion of `shape'. The shape of an array is the set of numbers whic
its dimensions. The shape of the array ma defined above is 2 by 3.  More precisely, all arrays have a shap
tribute which is a tuple of integers.  So, in this case: 
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>>> print ma.shape
(2, 3)

Using the earlier definitions, this is a shape of rank 2, where the first axis has length 2, and the seond axis
length 3. The rank of an array A is always equal to len(A.shape) . 

Note that shape  is an attribute of  array  objects. It is the first of several which we will see throughout th
tutorial. If you're not used to object-oriented programming, you can think of attributes as  “features” or “
ties” of individual arrays. The relation between an array and its shape is similar to the relation between a
and their hair color. In Python, it's called an object/attribute relation. 

What if one wants to change the dimensions of an array? For now, let us consider changing the shape of
without making it “grow.” Say, for example, we want to make the 2x3 array defined above (ma) an array of rank
1: 

>>> flattened_ma = reshape(ma, (6,))
>>> print flattened_ma
[1 2 3 4 5 6]

One can change the shape of arrays to any shape as long as the product of all the lengths of all the ax
constant (in other words, as long as the number of elements in the array doesn’t change): 

>>> a = array([1,2,3,4,5,6,7,8])
[1 2 3 4 5 6 7 8]
>>> print a
>>> b = reshape(a, (2,4)) # 2*4 == 8
[[1 2 3 4]
 [5 6 7 8]]
>>> print b
>>> c = reshape(b, (4,2) # 4*2 == 8 
>>> print c
[[1 2]
 [3 4]
 [5 6]
 [7 8]]

Notice that we used a new function, reshape() . It, like array() , is a function defined in the Numeric
module. It expects an array as its first argument, and a shape as its second argument. The shape has 
quence of integers (a list or a tuple). Keep in mind that a tuple with a single element needs a comma at 
the right shape tuple for a rank-1 array with 5 elements is (5,) , not (5) . 

One nice feature of shape tuples is that one entry in the shape tuple is allowed to be -1 .  The -1  will be auto-
matically replaced by whatever number is needed to build a shape which does not change the size of th
Thus: 

>>> a = reshape(array(range(25)), (5,-1))
>>> print a, a.shape 
[[ 0  1  2  3  4]
 [ 5  6  7  8  9]
 [10 11 12 13 14]
 [15 16 17 18 19]
 [20 21 22 23 24]] (5, 5)

The shape of an array is a modifiable attribute of the array. You can therefore change the shape of an a
ply by assigning a new shape to it: 

>>> a = array([1,2,3,4,5,6,7,8,9,10]) 
>>> a.shape
26
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>>> a.shape = (2,5) 
>>> print a
[[ 1  2  3  4  5]
 [ 6  7  8  9 10]]
>>> a.shape = (10,1) # second axis has length 1
>>> print a
[[ 1]
 [ 2]
 [ 3]
 [ 4]
 [ 5]
 [ 6]
 [ 7]
 [ 8]
 [ 9]
 [10]]
>>> a.shape = (5,-1) # note the -1 trick described above
>>> print a
[[ 1  2]
 [ 3  4]
 [ 5  6]
 [ 7  8]
 [ 9 10]]

As in the rest of Python, violating rules (such as the one about which shapes are allowed) results in exc

>>> a.shape = (6,-1)
Traceback (innermost last):
  File "<stdin>", line 1, in ?
ValueError: total size of new array must be unchanged

�
The default printing routine provided by the Numeric module prints arrays as fol-
lows:
1 The last axis is always printed left to right
2 The next-to-last axis is printed top to bottom
3 The remaining axes are printed top to bottom with increasing numbers of sepa-

rators 

This explains why rank-1 arrays are printed from left to right, rank-2 arrays have the first dimension 
down the screen and the second dimension going from left to right, etc. 

If you want to change the shape of an array so that it has more elements than it started with (i.e. grow 
you have many options: One solution is to use the concat()  method discussed later. An alternative is to u
the array()  creator function with existing arrays as arguments: 

>>> print a
[0 1 2 3 4 5 6 6 7]
>>> b = array([a,a]) 
>>> print b
[[1 2 3 4 5 6 7 8]
 [1 2 3 4 5 6 7 8]] 
>>> print b.shape
27
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A final possibility is the resize() function, which takes a “base” array as its first argument and the des
shape as the second argument. Unlike reshape() , the shape argument to resize()  can corresponds to a
smaller or larger shape than the input array.  Smaller shapes will result in arrays with the data at the “beg
of the input array, and larger shapes result in arrays with data containing as many replications of the inp
as are needed to fill the shape. For example, starting with a simple array

>>> base = array([0,1])  

one can quickly build a large array with replicated data: 

>>> big = resize(base, (9,9)) 
>>> print big
[[0 1 0 1 0 1 0 1 0]
 [1 0 1 0 1 0 1 0 1]
 [0 1 0 1 0 1 0 1 0]
 [1 0 1 0 1 0 1 0 1]
 [0 1 0 1 0 1 0 1 0]
 [1 0 1 0 1 0 1 0 1]
 [0 1 0 1 0 1 0 1 0]
 [1 0 1 0 1 0 1 0 1]
 [0 1 0 1 0 1 0 1 0]]

and if you imported the view  function from the NumTut package, you can do:

>>> view(resize(base, (100,100)))
# grey grid of horizontal lines is shown
>>> view(resize(base, (101,101)))
# grey grid of alternating black and white pixels is shown

�
Sections denoted such as this one with an “eye” symbol will be used to indicate as-
pects of the functions which may not be needed for a first introduction at NumPy, but 
which should be mentioned for the sake of completeness.

The array  constructor takes a mandatory data  argument, an optional typecode, 
and optional savespace  argument, and an optional copy  argument.  If the data  
argument is a sequence, then array creates a new object of type multiarray, and fills 
the array with the elements of the data  object. The shape of the array is determined 
by the size and nesting arrangement of the elements of data.

If data  is not a sequence, then the array returned is an array of shape ()  (the empty 
tuple), of typecode ’O’ , containing a single element, which is data .

Creating arrays with values specified `on-the-fly' 

zeros() and ones() 

Often, one needs to manipulate arrays filled with numbers which aren't available beforehand. The N
module provides a few functions which create arrays from scratch: 

zeros()  and ones()  simply create arrays of a given shape filled with zeros and ones respectively: 
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>>> z = zeros((3,3))  
>>> print z  
[[0 0 0]
 [0 0 0]
 [0 0 0]]
>>> o = ones([2,3])  
>>> print o
[[1 1 1]
 [1 1 1]]

Note that the first argument is a shape – it needs to be a list or a tuple of integers. Also note that the def
for the returned arrays is Int , which you can feel free to override using something like: 

>>> o = ones((2,3), Float)  
>>> print o
[[ 1.  1.  1.]
 [ 1.  1.  1.]]

arrayrange() 

The arrayrange()  function is similar to the range()  function in Python, except that it returns an array 
opposed to a list. 

>>> r = arrayrange(10) 
>>> print r
[0 1 2 3 4 5 6 7 8 9] 

Combining the arrayrange()  with the reshape()  function, we can get: 

>>> big = reshape(arrayrange(100),(10,10))
>>> print big
[[ 0  1  2  3  4  5  6  7  8  9]
 [10 11 12 13 14 15 16 17 18 19]
 [20 21 22 23 24 25 26 27 28 29]
 [30 31 32 33 34 35 36 37 38 39]
 [40 41 42 43 44 45 46 47 48 49]
 [50 51 52 53 54 55 56 57 58 59]
 [60 61 62 63 64 65 66 67 68 69]
 [70 71 72 73 74 75 76 77 78 79]
 [80 81 82 83 84 85 86 87 88 89]
 [90 91 92 93 94 95 96 97 98 99]]
>>> view(reshape(arrayrange(10000),(100,100)))
# array of increasing lightness from top down (slowly) and from left to
# right (faster) is shown

arange()  is a shorthand for arrayrange() .  

One can set the start, stop and step arguments, which allows for more varied ranges: 

>>> print arrayrange(10,-10,-2)
[10  8  6  4  2  0  -2  -4  -6  -8]

An important feature of arrayrange is that it can be used with non-integer starting points and strides:

>>> print arrayrange(5.0)
[ 0. 1. 2. 3. 4.]
>>> print arrayrange(0, 1, .2)
[ 0.   0.2  0.4  0.6  0.8]
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If you want to create an array with just one value, repeated over and over, you can use the * operator ap
lists 

>>> a = array([[3]*5]*5)
>>> print a
[[3 3 3 3 3]
 [3 3 3 3 3]
 [3 3 3 3 3]
 [3 3 3 3 3]
 [3 3 3 3 3]]

but that is relatively slow, since the duplication is done on Python lists. A quicker way would be to star
0's and add 3: 

>>> a = zeros([5,5]) + 3
>>> print a
[[3 3 3 3 3]
 [3 3 3 3 3]
 [3 3 3 3 3]
 [3 3 3 3 3]
 [3 3 3 3 3]]

The optional typecode argument can force the typecode of the resulting array, which is otherwise the “h
of the starting and stopping arguments. The starting argument defaults to 0 if not specified. arange  is a syn-
onym for arrayrange . Note that if a typecode is specified which is “lower” than that which arrayrange wo
normally use, the array is the result of a precision-losing cast (a round-down, as that used in the astype  method
for arrays.)

Creating an array from a function: fromfunction()

Finally, one may want to create an array with contents which are the result of a function evaluation. This 
using the fromfunction()  function, which takes two arguments, a shape and a callable object (usu
function).  For example: 

>>> def dist(x,y):
...   return (x-5)**2+(y-5)**2 # distance from point (5,5) squared
...
>>> m = fromfunction(dist, (10,10))
>>> print m
[[50 41 34 29 26 25 26 29 34 41]
 [41 32 25 20 17 16 17 20 25 32]
 [34 25 18 13 10  9 10 13 18 25]
 [29 20 13  8  5  4  5  8 13 20]
 [26 17 10  5  2  1  2  5 10 17]
 [25 16  9  4  1  0  1  4  9 16]
 [26 17 10  5  2  1  2  5 10 17]
 [29 20 13  8  5  4  5  8 13 20]
 [34 25 18 13 10  9 10 13 18 25]
 [41 32 25 20 17 16 17 20 25 32]]
>>> view(fromfunction(dist, (100,100))
# shows image which is dark in topleft corner, and lighter away from it.
>>> m = fromfunction(lambda i,j,k: 100*(i+1)+10*(j+1)+(k+1), (4,2,3))
>>> print m
[[[111 112 113]
  [121 122 123]]
 [[211 212 213]
  [221 222 223]]
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 [[311 312 313]
  [321 322 323]]
 [[411 412 413]
  [421 422 423]]]

By examining the above examples, one can see that fromfunction()  creates an array of the shape specifi
by its second argument, and with the contents corresponding to the value of the function argument (the
gument) evaluated at the indices of the array.  Thus the value of m[3,4]  in the first example above is the valu
of dist  when x=3  and y=4 .  Similarly for the lambda function in the second example, but with a rank-3 ar

The implementation of fromfunction consists of:

def fromfunction(function, dimensions):
    return apply(function, tuple(indices(dimensions)))

which means that the function function is called for each element in the sequence indices(dimensions)
scribed in the definition of indices, this consists of arrays of indices which will be of rank one less tha
specified by dimensions. This means that the function argument must accept the same number of argu
there are dimensions in dimensions, and that each argument will be an array of the same shape as that
by dimensions. Furthermore, the array which is passed as the first argument corresponds to the indice
element in the resulting array along the first axis, that which is passed as the second argument corres
the indices of each element in the resulting array along the second axis, etc. A consequence of this is
function which is used with fromfunction will work as expected only if it performs a separable computati
its arguments, and expects its arguments to be indices along each axis. Thus, no logical operation on 
ments can be performed, or any non-shape preserving operation. The first example below satisfies t
quirements, hence works (the x  and y  arrays both get 10x10 arrays as input corresponding to the values o
indices along the two dimensions), while the second array attemps to do a comparison test on an array
ces, which fails.

>>> def buggy(test):
...     if test > 4: return 1
...     else: return 0
...
>>> print fromfunction(buggy, (10,))
Traceback (innermost last):
  File "<stdin>", line 1, in ?
  File "C:\PYTHON\LIB\Numeric.py", line 157, in fromfunction
    return apply(function, tuple(indices(dimensions)))
  File "<stdin>", line 2, in buggy
TypeError: Comparison of multiarray objects is not implemented.

identity()

The simplest array constructor is the identity(n)  function, which takes a single integer argument and 
turns a square identity array of that size of integers: 

>>> print identity(5)
[[1 0 0 0 0]
 [0 1 0 0 0]
 [0 0 1 0 0]
 [0 0 0 1 0]
 [0 0 0 0 1]]
>>> view(identity(100))
# shows black square with a single white diagonal
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Coercion and Casting

We’ve mentioned the typecodes of arrays, and how to create arrays with the right typecode, but we have
ered what happens when arrays with different typecodes interact.

Automatic Coercions and Binary Operations

The rules followed by NumPy when performing binary operations on arrays mirror those used by Pyt
general.  Operations between numeric and non-numeric types are not allowed (e.g. an array of charact
be added to an array of numbers), and operations between mixed number types (e.g. floats and intege
and omplex numbers, or in the case of NumPy, operations between any two arrays with different numer
codes) first perform a coercion of the ’smaller’ numeric type to the type of the ‘larger’ numeric type.  Fi
when scalars and arrays are operated on together, the scalar is converted to a rank-0 array first. Thus,
“small” integer to a “large” floating point array is equivalent to first casting the integer “up” to the typecod
the array:

>>> arange(0, 1.0, .1) + 12
array([ 12. ,  12.1,  12.2,  12.3,  12.4,  12.5,  12.6,  12.7,  12.8,  
12.9])

The automatic coercions are described in Figure 1. Avoiding upcasting is discussed in “Saving spa
page 34.

Figure 1 Up-casts are indicated with arrows.  Down-casts are allowed by the 
astype()  method, but may result in loss of information.

Deliberate up-casting: The asarray function

One more array constructor is the asarray()  function. It is used if you want to have an array of a speci
typecode and you don't know what typecode array you have (for example, in a generic function which c
erate on all kinds of arrays, but needs them to be converted to complex arrays). If the array it gets as 

PyObject
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Complex64

Complex128
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Float64

Float128

Float16
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Char

Int32

Int64

Int128

Int16

Int8UnsignedInt8

Same-type coercion
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ment is of the right typecode, it will get sent back unchanged. If the array is not of the right typecode
element of the new array will be the result of the coercion to the new type of the old elements.  asarray()
will refuse to operate if there might be loss of information -- in other words, asarray()  only casts ’up’. 

asarray  is also used when you have a function that operates on arrays, but you want to allow people
it with an arbitrary python sequence object. This gives your function a behavior similar to that of most 
builtin functions that operate on arrays. 

The typecode value table

The typecodes identifiers (Float0 , etc.) have as values single-character strings.  The mapping between
code and character strings is machine dependent.  An example of the correspondences between typec
acters and the typecode identifiers for 32-bit architectures are shown in Table 3-X.

Consequences of silent upcasting

When dealing with very large arrays of floats and if precision is not important (or arrays of small integers
it may be worthwhile to cast the arrays to “small” typecodes, such as Int8 , Int16  or Float32 .  As the stan-
dard Python integers and floats correspond to the typecodes Int32  and Float64 , using them in apparently
“innocent” ways will result in up-casting, which may null the benefit of the use of small typecode arrays
example:

>>> mylargearray.typecode()
’f’ #  a.k.a. Float32 on a Pentium
>>> mylargearray.itemsize()
4
>>> mylargearray = mylargearray + 1 # 1 is an Int64 on a Pentium
>>> mylargearray.typecode() # see Fig. 1 for explanation.
’d’
>>> mylargearray.itemsize()
8

Note that the sizes returned by the itemsize()  method are expressed in bytes.

Table 1: Typecode character/identifier table on a Pentium computer

Character
# of 
bytes

# of 
bits

Identifiers

D 16 128 Complex, Complex64

F 8 64 Complex0, Complex16, Complex32, Complex8

d 8 64 Float, Float64

f 4 32 Float0, Float16, Float32, Float8

l 4 32 Int

1 1 8 Int0, Int8

s 2 16 Int16

i 4 32 Int32
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Saving space

Numeric arrays can be created using an optional, keyworded argument to the constructor, saves
savespace is set to 1, Numeric will attempt to avoid the silent upcasting behavior. The status of an arra
queried with the spacesaver() method. If x.spacesaver() is true, x has its space-saving flag set. The fla
set with the savespace method: x.savespace(1) to set it, x.savespace(0) to clear it.

Deliberate casts (potentially down): the astype method

You may also force NumPy to cast any number array to another number array.  For example, to take a
of any numeric type (IntX or FloatX or ComplexX or UnsignedInt8) and convert it to a 64-bit float, one ca

>>> floatarray = otherarray.astype(Float64)

The typecode can be any of the number typecodes, “larger” or “smaller".  If it is larger, this is a cast-u
asarray() had been used.  If it is smaller, the standard casting rules of the underlying language (C) a
which means that truncation or loss of precision can occur:

>>> print x
[ 0.   0.4  0.8  1.2  1.6]
>>> x.astype(Int)
array([0, 0, 0, 1, 1])

If the typecode used with astype()  is the original array’s typecode, then a copy of the original array is
turned.

Operating on Arrays

Simple operations 

If you have a keen eye, you have noticed that some of the previous examples did something new. It 
number to an array. Indeed, most Python operations applicable to numbers are directly applicable to ar

>>> print a
[1 2 3]
>>> print a * 3
[3 6 9]
>>> print a + 3
[4 5 6]

Note that the mathematical operators behave differently depending on the types of their operands. Whe
the operands is an array and the other is a number, the number is added to all the elements of the arra
resulting array is returned. This is called broadcasting. This also occurs for unary mathematical operations su
as sin and the negative sign

>>> print sin(a)
[ 0.84147098  0.90929743  0.14112001]
>>> print -a
[-1 -2 -3]

When both elements are arrays with the same shape, then a new array is created, where each element 
of the corresponding elements in the original arrays: 

>>> print a + a
[2 4 6]

If the operands of operations such as addition are arrays which have the same rank but different non-in
mensions, then an exception is generated: 
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>>> print a
[1 2 3]
>>> b = array([4,5,6,7]) # note this has four elements
>>> print a + b
Traceback (innermost last):
  File ``<stdin>``, line 1, in ?
ArrayError: frames are not aligned

This is because there is no reasonable way for NumPy to interpret addition of a (3,)  shaped array and a (4,)
shaped array.

Note what happens  when adding arrays with different rank 

>>> print a
[1 2 3]
>>> print b
[[ 4  8 12]
 [ 5  9 13]
 [ 6 10 14]
 [ 7 11 15]]
>>> print a + b
[[ 5 10 15]
 [ 6 11 16]
 [ 7 12 17]
 [ 8 13 18]]

This is another form of broadcasting. To understand this, one needs to look carefully at the shapes of a and b: 

>>> a.shape
(3,)
>>> b.shape
(4,3)

Because array a’s last dimension had length 3 and array b’s last dimension also had length 3, those two dime
sions were “matched” and a new dimension was created and automatically “assumed” for array a.  The
ready in a was “replicated” as many times as needed (4, in this case) to make the two shapes of the o
arrays conform.  This replication (broadcasting) occurs when arrays are operands to binary operations a
shapes differ and when the following conditions are true:

• starting from the last axis, the axis lengths (dimensions) of the operands are compared

• if both arrays have an axis length greater than 1, an exception is raised

• if one array has an axis length greater than 1, then the other array’s axis is “stretched” to ma
length of the first axis -- if the other array’s axis is not present (i.e., if the other array has sm
rank), then a new axis of the same length is created.

This algorithm is complex, but intuitive in practice.  For more details, consult the Numeric Reference.

Getting and Setting array values

Just like other Python sequences, array contents are manipulated with the [] notation. For rank-1 array
are no differences between list and array notations:

>>> a = arrayrange(10)
>>> print a[0] # get first element
0
>>> print a[1:5] # get second through fifth element
[1 2 3 4]
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>>> print a[:-1] # get last element
9

The first difference with lists comes with multidimensional indexing.  If an array is multidimensional (of 
> 1), then specifying a single integer index will return an array of dimension one less than the original a

>>> a = arrayrange(9)
>>> a.shape = (3,3)
>>> print a
[[0 1 2]
 [3 4 5]
 [6 7 8]]
>>> print a[0] # get first row, not first element!
[0 1 2]
>>> print a[1] # get second row
[3 4 5]

To get to individual elements in a rank-2 array, one specifies both indices separated by commas:

>>> print a[0,0] # get elt at first row, first column
0
>>> print a[0,1] # get elt at first row, second column
1
>>> print a[1,0] # get elt at second row, first column
3
>>> print a[2,-1] # get elt at third row, last column
8

Of course, the []  notation can be used to set values as well: 

>>> a[0,0] = 123
>>> print a
[[123   1   2]
 [  3   4   5]
 [  6   7   8]]

Note that when referring to rows, the right hand side of the equal sign needs to be a sequence which “fits
referred array subset (in the code sample below, a 3-element row):

>>> a[1] = [10,11,12]
>>> print a
[[123   1   2]
 [ 10  11  12]
 [  6   7   8]]

Slicing Arrays 

The standard rules of Python slicing apply to arrays, on a per-dimension basis. Assuming a 3x3 array: 

>>> a = reshape(arrayrange(9),(3,3))
>>> print a
[[0 1 2]
 [3 4 5]
 [6 7 8]]

The plain [:] operator slices from beginning to end:

>>> print a[:,:]
[[0 1 2]
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 [3 4 5]
 [6 7 8]]

In other words, [:] with no arguments is the same as [:] for lists – it can be read ``all indices along this ax
to get the second row along the second dimension: 

>>> print a[:,1]
[1 4 7]

Note that what was a “column” vector is now a “row” vector -- any “integer slice” (as in the 1 in the exa
above) results in a returned array with rank one less than the input array.

If one does not specify as many slices as there are dimensions in an array, then the remaining slices are
to be ``all''. If A is a rank-3 array, then

A[1] == A[1,:] == A[1,:,:]

There is one addition to the slice notation for arrays which does not exist for lists, and that is the option
argument, meaning the ``step size'' also called stride or increment.  Its default value is 1, meaning retu
element in the specified range.  Alternate values allow one to skip some of the elements in the slice: 

>>> a = arange(12)
>>> print a
[ 0  1  2  3  4  5  6  7  8  9 10 11]
>>> print a[::2] # return every *other* element
[ 0  2  4  6  8 10]

Negative strides are allowed as long as the starting index is greater than the stopping index:

>>> a = reshape(arrayrange(9),(3,3))
>>> print a
[[0 1 2]
 [3 4 5]
 [6 7 8]]
>>> print a[:, 0]
[0 3 6]
>>> print a[0:3, 0]
[0 3 6]
>>> print a[2:-1, 0]
[6 3 0]

If a negative stride is specified and the starting or stopping indices are omitted, they default to “end of ax
“beginning of axis” respectively.  Thus, the following two statements are equivalent for the array given:

>>> print a[2:-1, 0]
[6 3 0]
>>> print a[::-1, 0]
[6 3 0]
>>> print a[::-1] # this reverses only the first axis
[[6 7 8]
 [3 4 5]
 [0 1 2]]
>>> print a[::-1,::-1] # this reverses both axes  
[[8 7 6]
 [5 4 3]
 [2 1 0]]
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One final way of slicing arrays is with the keyword ...  This keyword is somewhat complicated. It stands f
``however many `:' I need depending on the rank of the object I'm indexing, so that the indices I *do* s
are at the end of the index list as opposed to the usual beginning.`` 

So, if one has a rank-3 array A, then A[...,0]  is the same thing as A[:,:,0]  but if B is rank-4, then
B[...,0] is the same thing as: B[:,:,:,0] . Only one ...  is expanded in an index expression, so if on
has a rank-5 array C, then:  C[...,0,...]  is the same thing as  C[:,:,:,0,:] .
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6. Ufuncs 

What are Ufuncs?

The operations on arrays that were mentioned in the previous section (element-wise addition, multipl
etc.) all share some features -- they all follow similar rules for broadcasting, coercion and “element-wis
ation".  Just like standard addition is available in Python through the add function in the operator module
operations are available through callable objects as well.  Thus, the following objects are available in t
meric module:

All of these ufuncs can be used as functions.  For example, to use add , which is a binary ufunc (i.e. it takes two
arguments), one can do either of:

>>> a = arange(10)
>>> print add(a,a)
[ 0  2  4  6  8 10 12 14 16 18]
>>> print a + a
[ 0  2  4  6  8 10 12 14 16 18]

In other words, the + operator on arrays performs exactly the same thing as the add  ufunc when operated on
arrays.  For a unary ufunc such as sin , one can do, e.g.:

>>> a = arange(10)
>>> print sin(a)
[ 0.          0.84147098  0.90929743  0.14112001 -0.7568025  -0.95892427
      -0.2794155   0.6569866   0.98935825  0.41211849]

Unary ufuncs return arrays with the same shape as their arguments, but with the contents correspondi
corresponding mathematical function applied to each element (sin(0)=0, sin(1)=0.84147098, etc.).  

Table 2: Universal Functions, or ufunc s. The operators which invoke them when 
applied to arrays are indicated in parentheses. The entries in slanted 
typeface refer to unary ufuncs, while the others refer to binary ufuncs.

add (+) subtract (-) multiply (*) divide (/)

remainder (%) power (**) arccos arccosh

arcsin arcsinh arctan arctanh

cos cosh exp log

log10 sin sinh sqrt

tan tanh maximum minimum

conjugate equal (==) not_equal  (!=) greater (>)

greater_equal (>=) less (<) less_equal (<=) logical_and (and)

logical_or (or) logical_xor logical_not (not) bitwise_and (&)

bitwise_or (|) bitwise_xor bitwise_not (~)
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There are three additional features of ufuncs which make them different from standard Python functions
can operate on any Python sequence in addition to arrays; they can take an “output” argument; they 
tributes which are themselves callable with arrays and sequences. Each of these will be described in tu

Ufuncs can operate on any Python sequence

Ufuncs have so far been described as callable objects which take either one or two arrays as arguments
ing on whether they are unary or binary).  In fact, any Python sequence which can be the input to the
constructor can be used.  The return value from ufuncs is always an array.  Thus:

>>> add([1,2,3,4], (1,2,3,4))
array([2, 4, 6, 8])

Ufuncs can take output arguments

In many computations with large sets of numbers, arrays are often used only once.  For example, a com
on a large set of numbers could involve the following step

    dataset = dataset * 1.20

This operation as written needs to create a temporary array to store the results of the computation, a
eventually free the memory used by the original dataset array (provided there are no other references to
it contains).  It is more efficient, both in terms of memory and computation time, to do an “in-place” oper
This can be done by specifying an existing array as the place to store the result of the ufunc.  In this ex
one can write:

    multiply(dataset, 1.20, dataset)

This is not a step to take lightly, however.  For example, the “big and slow” version (dataset = dataset
* 1.20 ) and the “small and fast” version above will yield different results in two cases:  

• If the typecode of the target array is not that which would normally be computed, the operatio
fail and raise a TypeError exception.

• If the target array corresponds to a different “view” on the same data as either of the source 
inconsistencies will result.  For example, 

          >>> a = arange(5, typecode=Float64)
          >>> print a[::-1] * 1.2
          [ 4.8  3.6  2.4  1.2  0. ]
          >>> multiply(a[::-1], 1.2, a)
          array([ 4.8 ,  3.6 ,  2.4 ,  4.32,  5.76])
          >>> print a
          [ 4.8   3.6   2.4   4.32  5.76]

This is because the ufunc does not know which arrays share which data, and in this case th
writing of the data contents follows a different path through the shared data space of the two 
thus resulting in strangely distorted data.

Ufuncs have special methods

The reduce ufunc method

If you don't know about the reduce  command in Python, review section 5.1.1 of the Python Tutorial (http://
www.python.org/doc/tut/functional.html). Briefly, reduce  is most often used with two arguments, a callab
object (such as a function), and a sequence.  It calls the callable object with the first two element of 
quence, then with the result of that operation and the third element, and so on, returning at the end the
sive “reduction” of the specified callable object over the sequence elements.  Similarly, the reduce  method of
ufuncs is called with a sequence as an argument, and performs the reduction of that ufunc on the sequ
an example, adding all of the elements in a rank-1 array can be done with:
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>>> a = array([1,2,3,4])
>>> print add.reduce(a)
10 

When applied to arrays which are of rank greater than one, the reduction proceeds by default along the f

>>> b = array([[1,2,3,4],[6,7,8,9]])
>>> print b
[[1 2 3 4]
 [6 7 8 9]]
>>> print add.reduce(b)
[ 7  9 11 13]

A different axis of reduction can be specified with a second integer argument:

>>> print b
[[1 2 3 4]
 [6 7 8 9]]
>>> print add.reduce(b, 1)
[10 30] 

The accumulate ufunc method

The accumulate  ufunc method is simular to reduce , except that it returns an array containing the interm
diate results of the reduction: 

>>> a = arange(10)
>>> print a
[0 1 2 3 4 5 6 7 8 9]
>>> print add.accumulate(a)
[ 0  1  3  6 10 15 21 28 36 45] # 0, 0+1, 0+1+2, 0+1+2+3, ... 0+...+9
>>> print add.reduce(a)
45 # same as add.accumulate(...)[-1]

The outer ufunc method

The third ufunc method is outer , which takes two arrays as arguments and returns the “outer ufunc” of the
arguments. Thus the outer  method of the multiply  ufunc, results in the outer product. The outer method
only supported for binary methods. 

>>> print a
[0 1 2 3 4]
>>> print b
[0 1 2 3]
>>> print add.outer(a,b)
[[0 1 2 3]
 [1 2 3 4]
 [2 3 4 5]
 [3 4 5 6]
 [4 5 6 7]]
>>> print multiply.outer(b,a)
[[ 0  0  0  0  0]
 [ 0  1  2  3  4]
 [ 0  2  4  6  8]
 [ 0  3  6  9 12]]
>>> print power.outer(a,b)
[[ 1  0  0  0]
 [ 1  1  1  1]
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 [ 1  2  4  8]
 [ 1  3  9 27]
 [ 1  4 16 64]]

The reduceat ufunc method

The final ufunc method is the reduceat  method, which I’d love to explain it, but I don’t understand it (XXX

Ufuncs always return new arrays

Except when the ’output’ argument are used as described above, ufuncs always return new arrays whic
share any data with the input array.

Which are the Ufuncs?

Table 1 lists all the ufuncs. We will first discuss the mathematical ufuncs, which perform operations ver
ilar to the functions in the math  and cmath  modules, albeit elementwise, on arrays.  These come in two for
unary and binary:

Unary Mathematical Ufuncs (take only one argument) 

The following ufuncs apply the predictable functions on their single array arguments, one element at 
arccos , arccosh ,  arcsin ,  arcsinh ,  arctan ,  arctanh ,  cos ,  cosh ,  exp ,  log ,  log10 ,
sin ,  sinh ,  sqrt ,  tan ,  tanh .

As an example:

>>> print x
[0 1 2 3 4]
>>> print cos(x)
[ 1.          0.54030231 -0.41614684 -0.9899925  -0.65364362]
>>> print arccos(cos(x))
[ 0.          1.          2.          3.          2.28318531]
# not a bug, but wraparound: 2*pi%4 is 2.28318531

The conjugate  ufunc takes an array of complex numbers and returns the array with entries which a
complex conjugates of the entries in the input array.  If it is called with real numbers, a copy of the arra
turned unchanged.

Binary Mathematical Ufuncs

These ufuncs take two arrays as arguments, and perform the specified mathematical operation on them
of elements at a time: add , subtract , multiply , divide , remainder , power . 

Logical Ufuncs

The ``logical'' ufuncs also perform their operations on arrays in elementwise fashion, just like the ``mat
ical'' ones.

Two are special (maximum and miminum ) in that they return arrays with entries taken from their input arra

>>> print x
[0 1 2 3 4]
>>> print y
[ 2.   2.5  3.   3.5  4. ]
>>> print maximum(x, y)
[ 2.   2.5  3.   3.5  4. ]
>>> print minimum(x, y)
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[ 0.  1.  2.  3.  4.]

The others all return arrays of 0’s or 1’s: equal , not_equal , greater , greater_equal , less ,
less_equal , logical_and , logical_or , logical_xor , logical_not , bitwise_and ,
bitwise_or , bitwise_xor , bitwise_not .

These are fairly self-explanatory, especially with the associated symbols from the standard Python ve
the same operations in Table 1 above.  The logical_*  ufuncs perform their operations (and, or, etc.) usi
the truth value of the elements in the array (equality to 0 for numbers and the standard truth test for P
arrays).  The bitwise_*  ufuncs, on the other hand, can be used only with integer arrays (of any word 
and will return integer arrays of the larger bit size of the two input arrays:

>>> x
array([7, 7, 0],'1')
>>> y
array([4, 5, 6])
>>> bitwise_and(x,y)
array([4, 5, 0],'i')

We've already discussed how to find out about the contents of arrays based on the indices in the array
what the various slice mechanisms are for. Often, especially when dealing with the result of computat
data analysis, one needs to ``pick out'' parts of matrices based on the content of those matrices. For ex
might be useful to find out which elements of an array are negative, and which are positive. The com
ufuncs are designed for just this type of operation. Assume an array with various positive and negative n
in it (for the sake of the example we'll generate it from scratch): 

>>> print a
[[ 0  1  2  3  4]
 [ 5  6  7  8  9]
 [10 11 12 13 14]
 [15 16 17 18 19]
 [20 21 22 23 24]]
>>> b = sin(a)
>>> print b
[[ 0.          0.84147098  0.90929743  0.14112001 -0.7568025 ]
 [-0.95892427 -0.2794155   0.6569866   0.98935825  0.41211849]
 [-0.54402111 -0.99999021 -0.53657292  0.42016704  0.99060736]
 [ 0.65028784 -0.28790332 -0.96139749 -0.75098725  0.14987721]
 [ 0.91294525  0.83665564 -0.00885131 -0.8462204  -0.90557836]]
>>> print less_equal(b, 0)
[[1 0 0 0 1]
 [1 1 0 0 0]
 [1 1 1 0 0]
 [0 1 1 1 0]
 [0 0 1 1 1]]

This last example has 1’s where the corresponding elements are less than or equal to 0, and 0’s everyw

>>> view(greater(greeceBW, .3))
# shows a binary image with white where the pixel value was greater than 
.3

Ufunc shorthands

Numeric  defines a few functions which correspond to often-used uses of ufuncs: for example, add.re-
duce()  is synonymous with the sum()  utility function: 

>>> a = arange(5) # [0 1 2 3 4]
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>>> print sum(a) # 0 + 1 + 2 + 3 + 4
10

Similarly, cumsum is equivalent to add.accumulate  (for ``cumulative sum``), product  to multi-
ply.reduce , and cumproduct  to multiply.accumulate .

Additional ``utility'' functions which are often useful are alltrue  and sometrue , which are defined as
logical_and.reduce  and logical_or.reduce  respectively:

>>> a = array([0,1,2,3,4])
>>> print greater(a,0)
[0 1 1 1 1]
>>> alltrue(greater(a,0))
0
>>> sometrue(greater(a,0))
1
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7. Pseudo Indices

Tbis chapter discusses pseudo-indices, which allow arrays to have their shapes modified
by adding axes, sometimes only for the duration of the evaluation of a Python expression.

Consider multiplication of a rank-1 array by a scalar: 

>>> a = array([1,2,3])
>>> a * 2
[2 4 6]

This should be trivial to you by now. We've just multiplied a rank-1 array by a scalar (which is converte
rank-0 array). In other words, the rank-0 array was broadcast to the next rank. This works for adding so
rank-1 arrays as well: 

>>> print a
[1 2 3]
>>> a + array([4])
[5 6 7]

but it won't work if either of the two rank-1 arrays have non-matching dimensions which aren't 1 – put a
way, broadcast only works for dimensions which are either missing (e.g. a lower-rank array) or for dime
of 1. 

With this in mind, consider a classic task, matrix multiplication. Suppose we want to multiply the row v
[10,20] by the column vector [1,2,3]. 

>>> a = array([10,20])
>>> b = array([1,2,3])
>>> a * b
Traceback (innermost last):
  File "<stdin>", line 1, in ?
ValueError: frames are not aligned example 

This makes sense – we're trying to multiply a rank-1 array of shape (2,) with a rank-1 array of shape (3
violates the laws of broadcast. What we really want to do is make the second vector a vector of shape 
that the first vector can be broadcast accross the second axis of the second vector. One way to do this
the reshape function: 

>>> a.shape
(2,)
>>> b.shape
(3,)
>>> b2 = reshape(b, (3,1))
>>> print b2
[[1]
 [2]
 [3]]
>>> b2.shape
(3, 1)
>>> print a * b2
[[10 20]
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 [20 40]
 [30 60]]

This is such a common operation that a special feature was added (it turns out to be useful in many othe
as well) – the NewAxis  ``pseudo-index'', originally developed in the Yorick language.  NewAxis  is an index,
just like integers, so it is used inside of the slice brackets []. It can be thought of as meaning ``add a n
here,'' in much the same ways as adding a 1 to an array's shape adds an axis. Again, examples help c
situation: 

>>> print b
[1 2 3]
>>> b.shape
(3,)
>>> c = b[:, NewAxis]
>>> print c
[[1]
 [2]
 [3]]
>>> c.shape
(3,1) 

Why use such a pseudo-index over the reshape function or shape assignments? Often one doesn't rea
new array with a new axis, one just wants it for an intermediate computation. Witness the array multipl
mentioned above, without and with pseudo-indices: 

>>> without = a * reshape(b, (3,1))  
>>> with = a * b[:,NewAxis]

The second is much more readable (once you understand how NewAxis  works), and it's much closer to the in
tended meaning. Also, it's independent of the dimensions of the array b You might counter that using som
like reshape(b, (-1,1))  is also dimension-independent, but 1) would you argue that it's as readab
how would you deal with rank-3 or rank-N arrays? The NewAxis -based idiom also works nicely with highe
rank arrays, and with the ...  ``rubber index'' mentioned earlier. Adding an axis before the last axis in an a
can be done simply with: 

>>> a[...,NewAxis,:]
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8. Array Functions 

Most of the useful manipulations on arrays are done with functions. This might be surprising given Pytho
ject-oriented framework, and that many of these functions could have been implemented using meth
stead. Choosing functions means that the same procedures can be applied to arbitrary python sequence
to  a r ra ys .  Fo r  e xam p le ,  wh i l e  t r ans pose ( [ [ 1 ,2 ] , [ 3 ,4 ] ] )  wo r ks  j us t  f i ne ,
[[1,2],[3,4]].transpose()  can’t work. This approach also allows uniformity in interface betwe
functions defined in the Numeric Python system, whether implemented in C or in Python, and functions d
in extension modules. The use of array methods is limited to functionality which depends critically on t
plementation details of array objects.  Array methods are discussed in the next chapter. 

We've already covered two functions which operate on arrays,  reshape  and resize .

take(a, indices, axis=0) 

take  is in some ways like the slice operations. It selects the elements of the array it gets as first argume
on the indices it gets as a second argument. Unlike slicing, however, the array returned by take  has the same
rank as the input array. This is again much easier to understand with an illustration: 

>>> print a
[[ 0  1  2  3  4]
 [ 5  6  7  8  9]
 [10 11 12 13 14]
 [15 16 17 18 19]]
>>> print take(a, (0,)) # first row 
[ [0 1 2 3 4]]
>>> print take(a, (0,1)) # first and second row
[[0 1 2 3 4]
 [5 6 7 8 9]]
>>> print take(a, (0,-1)) # first and last row
[[ 0  1  2  3  4]
 [15 16 17 18 19]]

The optional third argument specifies the axis along which the selection occurs, and the default value (a
examples above) is 0, the first axis. If you want another axis, then you can specify it: 

>>> print take(a, (0,), 1) # first column
[[ 0]
 [ 5]
 [10]
 [15]]
>>> print take(a, (0,1), 1) # first and second column
[[ 0  1]
 [ 5  6]
 [10 11]
 [15 16]]
>>> print take(a, (0,-1), 1) # first and last column
[[ 0  4]
 [ 5  9]
 [10 14]
 [15 19]]
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This is considered to be a ``structural'' operation, because its result does not depend on the content of t
or the result of a computation on those contents but uniquely on the structure of the array. Like all suc
tural operations, the default axis is 0 (the first rank). I mention it here because later in this tutorial, we w
functions which have a default axis of -1. 

Take is often used to create multidimensional arrays with the indices from a rank-1 array.  As in the ear
amples, the shape of the array returned by take()  is a combination of the shape of its first argument and 
shape of the array that elements are “taken” from -- when that array is rank-1, the shape of the return
has the same shape as the index sequence. This, as with many other facets of Numeric, is best understo
periment.

>>> x = arange(10) * 100
>>> print x
[  0 100 200 300 400 500 600 700 800 900]
>>> print take(x, [[2,4],[1,2]])
[[200 400]
 [100 200]]

A typical example of using take()  is to replace the grey values in an image according to a “translation ta
For example, let’s consider a brightening of a greyscale image.  The view()  function defined in the NumTut
package automatically scales the input arrays to use the entire range of grey values, except if the inpu
are of typecode ’b’  unsigned bytes -- thus to test this brightening function, we’ll first start by converting
greyscale floating point array to a greyscale byte array:

>>> BW = (greeceBW*256).astype('b')
>>> view(BW) # shows black and white picture

We then create a table mapping the integers 0-255 to integers 0-255 using a “compressive nonlinearity

>>> table = (255- arange(256)**2 / 256).astype('b')
>>> view(table) # shows the conversion curve

To do the “taking” into an array of the right kind, we first create a blank image array with the same sha
typecode as the original array:

>>> BW2 = zeros(BW.shape, BW.typecode())

and then perform the take() operation

>>> BW2.flat[:] = take(table, BW.flat)
>>> view(BW2)

put (a, indices, values)

put  is the opposite of take . The values of the array a at the locations specified in indices  are set to the
corresponding value of values . The array a must be a contiguous array. The argument indices can be
integer sequence object with values suitable for indexing into the flat form of a. The argument values  must
be any sequence of values that can be converted to the typecode of a.

>>> x = arange(6)
>>> put(x, [2,4], [20,40])
>>> print x
[ 0  1 20  3 40  5]

Note that the target array a is not required to be one-dimensional. Since a is contiguous and stored in row-majo
order, the array indices  can be treated as indexing a’s elements in storage order. 
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The routine put  is thus equivalent to the following (although the loop is in C for speed):

ind = array(indices, copy=0)
v = array(values, copy=0).astype(a.typecode())
for i in len(ind): a.flat[i] = v[i]

putmask (a, mask, values)

putmask sets those elements of a for which mask is true to the corresponding value  in values. The array a
must be contiguous. The argument mask must be an integer sequence of the same size (but not necessar
same shape) as a. The argument values  will be repeated as necessary; in particular it can be a scalar.
array values  must be convertible to the type of a.

>>> x=arange(5) 
>>> putmask(x, [1,0,1,0,1], [10,20,30,40,50])
>>> print x
[10  1 30  3 50]
>>> putmask(x, [1,0,1,0,1], [-1,-2])
>>> print x
[-1  1 -1  3 -1]

Note how in the last example, the third argument was treated as if it was [-1, -2, -1, -2, -1].

transpose(a, axes=None) 

transpose  takes an array and returns a new array which corresponds to a with the order of axes spec
the second argument. The default corresponds to flipping the order of all the axes (it is equiva
a.shape[::-1]  if a is the input array). 

>>> print a
[[ 0  1  2  3  4]
 [ 5  6  7  8  9]
 [10 11 12 13 14]
 [15 16 17 18 19]]
>>> print transpose(a)
[[ 0  5 10 15]
 [ 1  6 11 16]
 [ 2  7 12 17]
 [ 3  8 13 18]
 [ 4  9 14 19]]
>>> greece.shape # it’s a 355x242 RGB picture
(355, 242, 3)
>>> view(greece)
# picture of greek street is shown
>>> view(transpose(greece, (1,0,2))) # swap x and y, not color axis!
# picture of greek street is shown sideways

repeat(a, repeats, axis=0) 

repeat  takes an array and returns an array with each element in the input array repeated as often as i
by the corresponding elements in the second array. It operates along the specified axis.  So, to stretch
evenly, one needs the repeats array to contain as many instances of the integer scaling factor as the s
specified axis:

>>> view(repeat(greece, 2*ones(greece.shape[0])))  # double in X
>>> view(repeat(greece, 2*ones(greece.shape[1]), 1))  # double in Y
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choose(a, (b0, ..., bn)) 

a is an array of integers between 0 and n. The resulting array will have the same shape as a, with eleme
ed from b0,...,bn as indicating by the value of the corresponding element in a. 

Assume a is an array a that you want to ``clip'' so that no values are greater than 100.0. 

>>> choose(greater(a, 100.0), (a, 100.0))  

Everywhere that greater(a, 100.0) is false (ie. 0) this will ``choose'' the corresponding value in a. Ever
else it will ``choose'' 100.0. 

This works as well with arrays. Try to figure out what the following does: 

>>> ret = choose(greater_than(a,b), (c,d)) 

ravel(a) 

returns the argument array a as a 1d array. It is equivalent to reshape(a, (-1,))  or a.flat . Unlike
a.flat , however, ravel  works with non-contiguous arrays.

>>> print x
[[ 0  1  2  3]
 [ 5  6  7  8]
 [10 11 12 13]]
>>> x.iscontiguous()
0
>>> x.flat
Traceback (innermost last):
  File "<stdin>", line 1, in ?
ValueError: flattened indexing only available for contiguous array
>>> ravel(x)
array([ 0,  1,  2,  3,  5,  6,  7,  8, 10, 11, 12, 13])

nonzero(a) 

nonzero() returns an array containing the indices of the elements in a that are nonzero. These indices on
sense for 1d arrays, so the function refuses to act on anything else. As of 1.0a5 this function does not 
complex arrays. 

where(condition, x, y) 

where(condition,x,y) returns an array shaped like condition and has elements of x and y where conditio
spectively true or false 

compress(condition, a, axis=0) 

returns those elements of a corresponding to those elements of condition that are nonzero. condition mu
same size as the given axis of a. 

>>> print x
[0 1 2 3]
>>> print greater(x, 2)
[0 0 0 1]
>>> print compress(greater(x, 2), x)
[3]
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diagonal(a, k=0) 

returns the entries along the k th diagonal of a (k is an offset from the main diagonal). This is designed
arrays. For larger arrays, it will return the diagonal of each 2d sub-array.

>>> print x
[[ 0  1  2  3  4]
 [ 5  6  7  8  9]
 [10 11 12 13 14]
 [15 16 17 18 19]
 [20 21 22 23 24]]
>>> print diagonal(x)
[ 0  6 12 18 24]
>>> print diagonal(x, 1)
[ 1  7 13 19]
>>> print diagonal(x, -1)
[ 5 11 17 23]

trace(a, k=0) 

returns the sum of the elements in a along the k th diagonal. 

>>> print x
[[ 0  1  2  3  4]
 [ 5  6  7  8  9]
 [10 11 12 13 14]
 [15 16 17 18 19]
 [20 21 22 23 24]]
>>> print trace(x) # 0 + 6 + 12 + 18 + 24
60
>>> print trace(x, -1) # 5 + 11 + 17 + 23
56
>>> print trace(x, 1) # 1 + 7 + 13 + 19
40

searchsorted(a, values) 

Called with a rank-1 array sorted in ascending order, searchsorted()  will return the indices of the posi-
tions in a where the corresponding values would fit. 

>>> print bin_boundaries
[ 0.   0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1. ]
>>> print data
[ 0.3029573   0.79585496  0.82714031  0.77993884  0.55069605  0.76043182
       0.28511823  0.29987358  0.40286206  0.68617903]
>>> print searchsorted(bin_boundaries, data)
[4 8 9 8 6 8 3 3 5 7]

This can be used for example to write a simple histogramming function:

>>> def histogram(a, bins):
... n = searchsorted(sort(a), bins)
... n = concatenate([n, [len(a)]])
... return n[1:]-n[:-1]
...
>>> print histogram([0,0,0,0,0,0,0,.33,.33,.33], arange(0,1.0,.1))
[7 0 0 3 0 0 0 0 0 0]
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>>> print histogram(sin(arange(0,10,.2)), arange(-1.2, 1.2, .1))
[0 0 4 2 2 2 0 2 1 2 1 3 1 3 1 3 2 3 2 3 4 9 0 0]

sort(a, axis=-1) 

This function returns an array containing a copy of the data in a, with the same shape as a, but with the order
of the elements along the specified axis sorted. The shape of the returned array is the same as a’s. Thus,
sort(a, 3)  will be an array of the same shape as a, where the elements of a have been sorted along th
axis. 

>>> print data
[[5 0 1 9 8]
 [2 5 8 3 2]
 [8 0 3 7 0]
 [9 6 9 5 0]
 [9 0 9 7 7]]
>>> print sort(data) # Axis -1 by default
[[0 1 5 8 9]
 [2 2 3 5 8]
 [0 0 3 7 8]
 [0 5 6 9 9]
 [0 7 7 9 9]]
>>> print sort(data, 0)
[[2 0 1 3 0]
 [5 0 3 5 0]
 [8 0 8 7 2]
 [9 5 9 7 7]
 [9 6 9 9 8]] 

argsort(a, axis=-1) 

argsort  will return the indices of the elements of a needed to produce sort(a) . In other words, for a rank-
1 array, take(a, argsort(a)) == sort(a) . 

>>> print data
[5 0 1 9 8]
>>> print sort(data)
[0 1 5 8 9]
>>> print argsort(data)
[1 2 0 4 3]
>>> print take(data, argsort(data))
[0 1 5 8 9]

argmax(a, axis=-1), argmin(a, axis=-1) 

The argmax()  function returns an array with the arguments of the maximum values of its input array a 
the given axis. The returned array will have one less dimension than a. argmin()  is just like argmax() , ex-
cept that it returns the indices of the minima along the given axis. 

>>> print data
[[9 6 1 3 0]
 [0 0 8 9 1]
 [7 4 5 4 0]
 [5 2 7 7 1]
 [9 9 7 9 7]]
>>> print argmax(data)
[0 3 0 2 0]
52



•
A

rra
y F

u
n

ctio
n

s

ed for
that use
t the

-
n right

 ele-

m that is
 Entries

of a new
ensions
f

uch that
e array.
>>> print argmax(data, 0)
[0 4 1 1 4]
>>> print argmin(data)
[4 0 4 4 2]
>>> print argmin(data, 0)
[1 1 0 0 0]

fromstring(string, typecode) 

Will return the array formed by the binary data given in string of the specified typecode. This is mainly us
reading binary data to and from files, it can also be used to exchange binary data with other modules 
python strings as storage (e.g. PIL). Note that this representation is dependent on the byte order. To find ou
byte ordering used, use the byteswapped()  method described on page 59.

dot(m1, m2) 

The dot()  function returns the dot product of m1 and m2. This is equivalent to matrix multiply for rank-2 ar
rays (without the transpose). Somebody who does more linear algebra really needs to do this functio
some day! 

matrixmultiply(m1, m2) 

The matrixmultiply(m1, m2)  multiplies matrices or matrices and vectors as matrices rather than
mentwise. Compare:

>>> print a
[[0 1 2]
 [3 4 5]]
>>> print b
[1 2 3]
>>> print a*b
[[ 0  2  6]
 [ 3  8 15]]
>>> print matrixmultiply(a,b)
[ 8 26]

clip(m, m_min, m_max) 

The clip function creates an array with the same shape and typecode as m, but where every entry in 
less than m_min is replaced by m_min, and every entry greater than m_max is replaced by m_max.
within the range [m_min, m_max] are left unchanged. 

>>> a = arange(9, Float)
>>> clip(a, 1.5, 7.5)
1.5000 1.5000 2.0000 3.0000 4.0000 5.0000 6.0000 7.0000 7.5000 

indices(shape, typecode=None)

The indices function returns an array corresponding to the shape given. The array returned is an array 
shape which is based on the specified shape, but has an added dimension of length the number of dim
in the specified shape. For example, if the shape specified by the shape  argument is (3,4), then the shape o
the array returned will be (2,3,4) since the length of (3,4) is 2. The contents of the returned arrays are s
the ith subarray (along index 0, the first dimension) contains the indices for that axis of the elements in th
An example makes things clearer:

>>> i = indices((4,3))
>>> i.shape
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(2, 4, 3)
>>> print i[0]
[[0 0 0]
 [1 1 1]
 [2 2 2]
 [3 3 3]]
>>> print i[1]
[[0 1 2]
 [0 1 2]
 [0 1 2]
 [0 1 2]]

So, i[0]  has an array of the specified shape, and each element in that array specifies the index of that 
in the subarray for axis 0. Similarly, each element in the subarray in i[1]  contains the index of that position
in the subarray for axis 1. 

swapaxes(a, axis1, axis2)

Returns a new array which shares the data of a, but which has the two axes specified by axis1  and axis2
swapped. If a is of rank 0 or 1, swapaxes simply returns a new reference to a.

>>> x = arange(10)
>>> x.shape = (5,2,1)
>>> print x
[[[0]
  [1]]
 [[2]
  [3]]
 [[4]
  [5]]
 [[6]
  [7]]
 [[8]
  [9]]]
>>> y = swapaxes(x, 0, 2)
>>> print y.shape
(1, 2, 5)
>>> print y
[ [[0 2 4 6 8]
  [1 3 5 7 9]]]

concatenate((a0, a1, ... , an), axis=0)

Returns a new array containing copies of the data contained in all arrays a0 ... an . The arrays ai will be
concatenated along the specified axis (0 by default). All arrays ai must have the same shape along ev
except for the one given. To concatenate arrays along a newly created axis, you can use array((a0, ...,
an))  as long as all arrays have the same shape. 

>>> print x
[[ 0  1  2  3]
 [ 5  6  7  8]
 [10 11 12 13]]
>>> print concatenate((x,x))
[[ 0  1  2  3]
 [ 5  6  7  8]
 [10 11 12 13]
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 [ 0  1  2  3]
 [ 5  6  7  8]
 [10 11 12 13]]
>>> print concatenate((x,x), 1)
[[ 0  1  2  3  0  1  2  3]
 [ 5  6  7  8  5  6  7  8]
 [10 11 12 13 10 11 12 13]]
>>> print array((x,x) )
[[[ 0  1  2  3]
  [ 5  6  7  8]
  [10 11 12 13]]
 [[ 0  1  2  3]
  [ 5  6  7  8]
  [10 11 12 13]]]

innerproduct(a, b)

innerproduct produces the inner product of arrays a and b. It is equivalent to matrixmultiply(a, transpos

array_repr()

See section on Textual Representations of arrays.

array_str()

See section on Textual Representations of arrays.

resize(a, new_shape)

The resize  function takes an array and a shape, and returns a new array with the specified shape, an
with the data in the input array. Unlike the reshape  function, the new shape does not have to yield the sa
size as the original array. If the new size of is less than that of the input array, the returned array cont
appropriate data from the “beginning” of the old array. If the new size is greater than that of the input arr
data in the input array is repeated as many times as needed to fill the new array.

>>> x = arange(10)
>>> y = resize(x, (4,2)) # note that 4*2 < 10
>>> print x
[0 1 2 3 4 5 6 7 8 9]
>>> print y
[[0 1]
 [2 3]
 [4 5]
 [6 7]]
>>> print resize(array((0,1)), (5,5)) # note that 5*5 > 2
[[0 1 0 1 0]
 [1 0 1 0 1]
 [0 1 0 1 0]
 [1 0 1 0 1]
 [0 1 0 1 0]]

diagonal(a, offset=0, axis1=-2, axis2=-1)

The diagonal function takes an array a, and returns an array of rank 1 containing all of the elements o
that the difference between their indices along the specified axes is equal to the specified offset. With the
values, this corresponds to all of the elements of the diagonal of a along the last two axes. Currently this is bro-
ken for offsets other than -1, 0 and 1, and for non-square arrays.
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repeat (a, counts, axis=0)

The repeat function uses repeated copies of a to create a result. The axis argument refers to the axis o
will be replicated. The counts argument tells how many copies of each element to make. The length of
must be the len(shape(a)[axis]). 

In one dimension this is straightforward:

>>> y
array([0, 1, 2, 3, 4, 5])
>>> repeat(y, (1,2,0,2,2,3))
array([0, 1, 1, 3, 3, 4, 4, 5, 5, 5])

In more than one dimension it sometimes gets harder to understand. Consider for example this array 
shape is (2,3).

>>> x
array([[0, 1, 2],
       [3, 4, 5]])

>>> repeat(x, (2,6))
array([[0, 1, 2],
       [0, 1, 2],
       [3, 4, 5],
       [3, 4, 5],
       [3, 4, 5],
       [3, 4, 5],
       [3, 4, 5],
       [3, 4, 5]])

>>> repeat(x, (6,3), 1)
array([[0, 0, 0, 0, 0, 0, 1, 1, 1],
       [2, 2, 2, 2, 2, 2, 3, 3, 3]])

convolve (a, v, mode=0)

The convolve function returns the linear convolution of two rank 1 arrays. The output is a rank 1 array 
length depends on the value of mode which is zero by default. Linear convolution can be used to find
sponse of a linear system to an arbitrary input. If the input arrays correspond to the coefficients of a poly
and mode=2, the output of linear convolution corresponds to the coefficients of the product of the polyno

The mode parameter requires a bit of explanation. True linear convolution is only defined over infinite se
es. As both input arrays must represent finite sequences, the convolve operation assumes that the in
quences represented by the finite inputs are zero outside of their domain of definition. In other wor
sequences are zero-padded. If mode is 2, then the non-zero part of the full linear convolution is returned
output has length len (a)+len (v)-1. Call this output f. If mode is 0, then any part of f which was affected 
zero-padding is chopped from the result. In other words, let b be the input with smallest length and let c
other input. The output when mode is 0 is the middle len (c)-len (b)+1 elements of f. When mode is 1, the
is the same size as c and is equal to the middle len (c) elements of f.
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cross_correlate (a, v, mode=0)

The cross_correlate function computes the cross_correlation between two rank 1 arrays. The output is 
array representing the inner product of a with shifted versions of v. This is very similar to convolution. Th
ference is that convolution reverses the axis of one of the input sequences but cross_correlation does n
it is easy to verify that convolve (a, v, mode) = cross_correlate (a, v [::-1], mode) 

where (condition, x, y)

The where function creates an array whose values are those of x at those indices where condition is true, and
those of y otherwise. The shape of the result is the shape of condition. The type of the result is determ
the types of x and y. Either or both of x and y and be a scalar, which is then used for any element of co
which is true.

identity(n)

The identity function returns an n by n array where the diagonal elements are 1, and the off-diagonal e
are 0.

>>> print identity(5)
[[1 0 0 0 0]
 [0 1 0 0 0]
 [0 0 1 0 0]
 [0 0 0 1 0]
 [0 0 0 0 1]]

sum(a, index=0)

The sum function is a synonym for the reduce method of the add ufunc. It returns the sum of all of the e
in the sequence given along the specified axis (first axis by default).

>>> print x
[[ 0  1  2  3]
 [ 4  5  6  7]
 [ 8  9 10 11]
 [12 13 14 15]
 [16 17 18 19]]
>>> print sum(x)
[40 45 50 55] # 0+4+8+12+16, 1+5+9+13+17, 
2+6+10+14+18, ...
>>> print sum(x, 1)
[ 6 22 38 54 70] # 0+1+2+3, 4+5+6+7, 8+9+10+11, ...

cumsum(a, index=0)

The cumsum function is a synonym for the accumulate  method of the add  ufunc.

product(a, index=0)

The product  function is a synonym for the reduce  method of the multiply  ufunc.

cumproduct(a, index=0)

The cumproduct  function is a synonym for the accumulate  method of the multiply  ufunc.

alltrue(a, index=0)

The alltrue  function is a synonym for the reduce  method of the logical_and  ufunc.
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sometrue(a, index=0)

The sometrue  function is a synonym for the reduce  method of the logical_or  ufunc.
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9. Array Methods 

As we discussed at the beginning of the last chapter, there are very few array methods for good reas
these all depend on the the implementation details. They're worth knowing, though: 

itemsize() 

The itemsize() method applied to an array returns the number of bytes used by any one of its elements

>>> a = arange(10)
>>> a.itemsize()
4
>>> a = array([1.0])
>>> a.itemsize()
8
>>> a = array([1], Complex)
>>> a.itemsize()
16

iscontiguous() 

Calling an array's iscontiguous() method returns true if the memory used by A is contiguous. A non-cont
array can be converted to a contiguous one by the copy() method. This is useful for interfacing to C r
only, as far as I know. 

>>> XXX example 

typecode() 

The `typecode()' method returns the typecode of the array it is applied to. While we've been talking abo
as Float, Int, etc., they are represented internally as characters, so this is what you'll get: 

>>> a = array([1,2,3])
>>> a.typecode()
'l'
>>> a = array([1], Complex)
>>> a.typecode()
'D'

byteswapped() 

The byteswapped  method performs a byte swapping operation on all the elements in the array.

>>> print a
[1 2 3]
>>> print a.byteswapped()
[16777216 33554432 50331648] 

tostring() 

The tostring  method returns a string representation of the data portion of the array it is applied to.  

>>> a = arange(65,100)
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>>> print a.tostring()
A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T
U   V   W   X   Y   Z   [   \   ]   ^   _   `   a   b   c 

tolist() 

Calling an array's tolist() method returns a hierarchical python list version of the same array:

>>> print a
[[65 66 67 68 69 70 71]
 [72 73 74 75 76 77 78]
 [79 80 81 82 83 84 85]
 [86 87 88 89 90 91 92]
 [93 94 95 96 97 98 99]]
>>> print a.tolist()
[[65, 66, 67, 68, 69, 70, 71], [72, 73, 74, 75, 76, 77, 78], [79, 80, 
81, 82, 83, 84, 85], [86, 87, 88, 89, 90, 91, 92], [93, 94, 95, 96, 97, 
98, 99]] 
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10. Array Attributes 

We've already seen a very useful attribute of arrays, the shape attribute. There are three more, flat, 
imaginary. 

flat  

Accessing the flat  attribute of an array returns the flattened, or ravel() 'ed version of that array, without
having to do a function call. The returner array has the same number of elements as the input array, 
rank-1.  One cannot set the flat attribute of an array, but one can use the indexing and slicing notations to
the contents of the array:

>>> print a
[[0 1 2]
 [3 4 5]
 [6 7 8]]
>>> print a.flat
[0 1 2 3 4 5 6 7 8]
>>> a.flat = arange(9,18)
Traceback (innermost last):
  File "<stdin>", line 1, in ?
AttributeError: Attribute does not exist or cannot be set
>>> a.flat[4] = 100
>>> print a
[[  0   1   2]
 [  3 100   5]
 [  6   7   8]]
>>> a.flat[:] = arange(9, 18)
>>> print a
[[ 9 10 11]
 [12 13 14]
 [15 16 17]]

real  and imaginary  

These attributes exist only for complex arrays. They return respectively arrays filled with the real and ima
parts of their elements. .imag  is a synonym for .imaginary . The arrays returned are not contiguous (exce
for arrays of length 1, which are always contiguous.). .real , .imag  and .imaginary  are modifiable: 

>>> print x
[ 0.        +1.j          0.84147098+0.54030231j  0.90929743-0.41614684j]
>>> print x.real
[ 0.          0.84147098  0.90929743]
>>> print x.imag
[ 1.          0.54030231 -0.41614684]
>>> x.imag = arange(3)
>>> print x
[ 0.        +0.j  0.84147098+1.j  0.90929743+2.j] 
>>> x = reshape(arange(10), (2,5)) + 0j # make complex array
>>> print x
[[ 0.+0.j  1.+0.j  2.+0.j  3.+0.j  4.+0.j]
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 [ 5.+0.j  6.+0.j  7.+0.j  8.+0.j  9.+0.j]]
>>> print x.real
[[ 0.  1.  2.  3.  4.]
 [ 5.  6.  7.  8.  9.]]
>>> print x.typecode(), x.real.typecode()
D d
>>> print x.itemsize(), x.imag.itemsize()
16 8
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11. Special Topics

This chapter holds miscellaneous information which did not neatly fit in any of the other
chapters.

Subclassing

Subclassing Numeric arrays is not possible due to a limitation of Python. The approach taken in the M
Array facility (“Masked Arrays” on page 103) is one answer. UserArray.py, described below, can be
classed, but this is often unsatisfactory unless you put in a similar effort to that in MA.

Code Organization

Numeric.py and friends

Numeric.py  is the most commonly used interface to the Numeric extensions.  It is a Python module 
imports all of the exported functions and attributes from the multiarray  module, and then defines some uti
ity functions.  As some of the functions defined in Numeric.py  could someday be moved into a supportin
C module, the utility functions and the multiarray  object are documented together, in this section.  T
multiarray  objects are the core of Numeric Python – they are extension types written in C which a
signed to provide both space- and time-efficiency when manipulating large arrays of homogeneous dat
with special emphasis to numeric data types.

UserArray.py

In the tradition of UserList.py  and UserDict.py , the UserArray.py  module defines a class whos
instances act in many ways like array objects. 

Matrix.py

The Matrix.py  python module defines a class Matrix  which is a subclass of UserArray . The only dif-
ferences between Matrix  instances and UserArray  instances is that the *  operator on Matrix  performs a
matrix multiplication, as opposed to element-wise multiplication, and that the power operator **  is disallowed
for Matrix  instances.

Precision.py

The Precision.py module contains the code which is used to determine the mapping between typecod
and values, by building small arrays and looking at the number of bytes they use per element.

ArrayPrinter.py

The ArrayPrinter.py module defines the functions used for default printing of arrays. See the section on 
Representations of arrays on page 69,

Mlab.py

The Mlab.py module provides some functions which are compatible with the functions of the same nam
MATLAB programming language. These are:
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bartlett(M)

returns the M-point Bartlett window.

blackman(M)

returns the M-point Blackman window.

corrcoef(x, y=None)

The correlation coefficient

cov(m,y=None)

returns the covariance

cumprod(m)

returns the cumulative product of the elments along the first dimension of m.

cumsum(m)

returns the cumulative sum of the elements along the first dimension of m.

diag(v, k=0)

returns the k-th diagonal if v is a matrix or returns a matrix with v as the k-th diagonal if v is a vector.

diff(x, n=1)

calculates the first-order, discrete difference approximation to the derivative.

eig(m)

returns the the eigenvalues of m in x and the corresponding eigenvectors in the rows of v.

eye(N, M=N, k=0, typecode=None)

returns a N-by-M matrix where the k-th diagonal is all ones, and everything else is zeros.

fliplr(m)

returns a 2-D matrix m with the rows preserved and columns flipped in the left/right direction. Only works
2-D arrays.

flipud(m)

returns a 2-D matrix with the columns preserved and rows flipped in the up/down direction. Only works
2-D arrays.

hamming(M)

returns the M-point Hamming window.

hanning(M)

returns the M-point Hanning window.

kaiser(M, beta)

returns a Kaiser window of length M with shape parameter beta. It depends on the cephes module for t
ified bessel function i0.
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max(m)

returns the maximum along the first dimension of m.

mean(m)

returns the mean along the first dimension of m. Note: if m is an integer array, integer division will occu

median(m)

returns a mean of m along the first dimension of m.

min(m)

returns the minimum along the first dimension of m.

msort(m)

returns a sort along the first dimension of m as in MATLAB.

prod(m)

returns the product of the elements along the first dimension of m.

ptp(m)

returns the maximum - minimum along the first dimension of m.

rand(d1, ..., dn)

returns a matrix of the given dimensions which is initialized to random numbers from a uniform distribut
the range [0,1).

rot90(m,k=1)

returns the matrix found by rotating m by k*90 degrees in the counterclockwise direction.

sinc(x)

returns sin(pi*x)/(pi*x) at all points of array x.

squeeze(a)

removes any ones from the shape of a

std(m)

returns the standard deviation along the first dimension of m. The result is unbiased meaning divis
len(m)-1.

sum(m)

returns the sum of the elements along the first dimension of m.

svd(m)

return the singular value decomposition of m [u,x,v]

trapz(y,x=None)

integrates y = f(x) using the trapezoidal rule.
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tri(N, M=N, k=0, typecode=None)

returns a N-by-M matrix where all the diagonals starting from lower left corner up to the k-th are all one

tril(m,k=0)

returns the elements on and below the k-th diagonal of m. k=0 is the main diagonal, k > 0 is above and
below the main diagonal.

triu(m,k=0)

returns the elements on and above the k-th diagonal of m. k=0 is the main diagonal, k > 0 is above and
below the main diagonal.

The multiarray object

The array objects which Numeric Python manipulates is actually a multiarray object, given this name to
guish it from the one-dimensional array object defined in the standard array module.  From here on, ho
the terms array and multiarray will be used interchangeably to refer to the new object type.  multiarray 
are homogeneous multidimensional sequences.  Starting from the back, they are sequences.  This m
they are container (compound) objects, which contain references to other objects.  They are multidime
meaning that unlike standard Python sequences which define only a single dimension along which one

erate through the contents, multiarray objects can have up to 40 dimensions.1  Finally, they are homogeneous
This means that every object in a multiarray must be of the same type.  This is done for efficiency rea
storing the type of the contained objects once in the array means that the process of finding the type-
operation to operate on each element in the array needs to be done only once per array, as opposed to
element.  Furthemore, as the main purpose of these arrays is to process numbers, the numbers can be
rectly, and not as full-fledged Python objects (PyObject *), thus yielding memory savings.  It is howeve
sible to make arrays of Python objects, which relinquish both the space and time efficiencies but
heterogeneous contents (as we shall see, these arrays are still homogeneous from the Numeric perspe
are just arrays of Python object references).

Typecodes

The kind of number stored in an array is described by its typecode. This code is stored internally as a
character Python string, but more descriptive names corresponding to the typecodes are made availab
Python programmer in the Precision.py module. The typecodes are defined as follows:

1. This limit is modifiable in the source code if higher dimensionality is needed.

Table 3: Typecode Listing

Variable defined in
Typecode  module

Typecode
character

Description

Char ’c’ Single-character strings

PyObject ’O’ Reference to Python object

UnsignedInt8 ’b’ Unsigned integer using a single byte.

Int ’l’ Python standard integers (i.e. C long integers)

Float ’d’ Python standard floating point numbers
(i.e. C double-precision floats)

n/a ’f’ Single-precision floating point numbers
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Note on number fomat: the binary format used by Python is that of the underlying C library. [notes abou
formats, etc?]

Indexing in and out, slicing

Indexing arrays works like indexing of other Python sequences, but supports some extensions which a

yet not implemented for other sequence types1. The standard [start:stop] notation is supported, with start 
faulting to 0 (the first index position) and stop defaulting to the length of the sequence, as for lists and
In addition, there is an optional stride argument, which specifies the stride size between successive in
the slice. It is expressed by a integer following a second : immediately after the usual start:stop slice
[0:11:2]  will slice the array at indices 0, 2, 4, .. 10. The start and stop indices are optional, but the first
be specified for the stride interpretation to occur. Therefore, [::2]  means slice from beginning to end, with 
stride of 2 (i.e. skip an index for each stride). If the start index is omitted and the stride is negative, the in
starts from the end of the sequence and works towards the beginning of the sequence. If the stop index i
and the stride is negative, the indexing stops at the beginning of the sequence.

>>> print x
[ 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19]
>>> print x[10]
10
>>> print x[:10]
[0 1 2 3 4 5 6 7 8 9]
>>> print x[5:15:3]
[ 5  8 11 14]
>>> print x[:10:2]

Complex ’D’ Complex numbers consisting of two double-preci-
sion floats

n/a ’F’ Complex numbers consisting of two single-precision
floats

Int0, Int8, Int16, 
Int32, Int64, Int128

n/a These correspond to machine-dependent typecode
Int0  returns the typecode corresponding to the 
smallest available integer, Int8  that corresponding 
to the smallest available integer with at least 8 bits, 
Int16  that with at least 16 bits, etc. If a typecode is
not available (e.g. Int64  on a 32-bit machine), the 
variable is not defined.

Float0, Float8, Float16, 
Float32, Float64, 
Float128

n/a Same as Int0 , Int8  etc. except for floating point 
numbers.

Complex0, Complex8, 
Complex16, Complex32, 
Complex64, Complex128

n/a Same as Float0 , etc., except that the number of 
bits refers to the precision of each of the two (real 
and imaginary) parts of the complex number.

1. The Python syntax can allow other Python datatypes to use both the stride notation and multidime
sional indexing, and it is relatively simple to write Python classes which support these operations. S
the Python Reference manual for details.

Table 3: Typecode Listing

Variable defined in
Typecode  module

Typecode
character

Description
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[0 2 4 6 8]
>>> print x[10::-2]
[10  8  6  4  2  0]
>>> print x[::-1]
[19 18 17 16 15 14 13 12 11 10  9  8  7  6  5  4  3  2  1  0]

It is important to note that the out-of-bounds conditions follow the same rules as standard Python index
that slices out of bounds are trimmed to the sequence boundaries, but element indexing with out-of-bo
dices yields an IndexError:

>>> print x[:100]
[ 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19]
>>> print x[-200:4]
[0 1 2 3]
>>> x[100]
Traceback (innermost last):
  File "<stdin>", line 1, in ?
IndexError: index out of bounds

The second difference between array indexing and other sequences is that arrays provide multidimens
dexing. An array of rank N can be indexed with up to N indices or slices (or combinations thereof. In
should be integers (with negative integers indicating offsets from the end of the dimension, as for other 
sequences), and slices can have, as explained above, one or two :’s separating integer arguments. The
and slies must be separated by commas, and correspond to sequential dimensions starting from the
(first) index on. Thus a[3]  means index 3 along dimension 0. a[3,:,-4]  means the slice of a along thre
dimensions: index 3 along the first dimension, the entire range of indices along the second dimension, 
4th from the end index along the third dimension. If the array being indexed has more dimensions than a
ified in the multidimensional slice, those dimensions are assumed to be sliced from beginning to end. T
a is a rank 3 array,

a[0] == a[0,:] == a[0,:,:]

Ellipses

A special slice element called Ellipses (and written ... ) is used to refer to a variable number of slices fro
beginning to end along the current dimension. It is a shorthand for a set of such slices, specifically the 
of dimensions of the array being indexed minus those which are already specified. Only the first (leftmo
lipses in an multidimensional slice is expanded, while the others are single dimensional slices from be
to end.

Thus, if a is a rank-6 array,

a[3,:,:,:,-1,:] == a[3,...,-1,:] == a[3,...,-1,...] .

NewAxis

There is another special symbol which can be used inside indexing operations to create new dimension
returned array. The reference NewAxis, used as one of the comma-separated slice elements, does no
the selection of the subset of the array being indexed, but changes the shape of the array returned by the
operation, so that an additional dimension (of length 1) is created, at the dimension position correspon
the location of NewAxis within the indexing sequence. Thus, a[:,3,NewAxis,-3]  will perform the index-
ing of a corresponding to the slice [a:,3,-3] , but will also modify the shape of a so that the new shape oa
is (a.shape[0], a.shape[1], 1, a.shape[2]) . This operation is especially useful in conjunctio
with the broadcasting feature described next, as it replaces a lengthy but common operation with a sim
tation (in the example above, the same effect can be had with

reshape(a[:,3,-1], (a.shape[0], a.shape[1], 1, a.shape[2])).
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Set-indexing and Broadcasting

The indexing rules described so far specify exactly the behavior of get-indexing. For set-indexing, the ru
exactly the same, and describe the slice of the array on the left hand side of the assignment operator
the target of the assignment. The only point left to mention is the process of assigning from the source
right hand side of the assignment) to the target (on the left hand side).

If both source and target have the same shape, then the assignment is done element by element. The
of the target specifies the casting which can be applied in the case of a typecode mismatch between so
target. If the typecode of the source is “lower” than that of the target, then an ’up-cast’ is performed and 
in precision results. If the typecode of the source is “higher” than that of the target, then a downcast
formed, which may lose precision (as discussed in the description of the array call, these casts are tr
casts, not rounding casts). Complex numbers cannot be cast to non-complex numbers.

If the source and the target have different shapes, Numeric Python attempts to broadcast the conten
source over the range of the target. This broadcasting occurs for all dimensions where the source has d
1 or 0 (i.e., is absent). If there exists a dimension for which the two arrays have differing lengths, and the
of that dimension in the source is not 1, then the assignment fails and an exception (ValueError) is raise
fying the user that the arrays are not aligned.

Axis specifications

In many of the functions defined in this document, indices are used to refer to axes. The numbering sc
the same as that used by indexing in Python: the first (leftmost) axis is axis 0, the second axis is axis 1, e
-1 refers to the last axis, -2 refers to the next-to-last axis, etc.

Textual representations of arrays

The algorithm used to display arrays as text strings is defined in the file ArrayPrinter.py, which defines a
tion array2string (imported into Numeric’s namespace) which offers considerable control over how arra
output. The range of options to the array2string function will be described first, followed by a descript
which options are used by default by str  and repr .

array2string(a, max_line_width = None, precision = None,
suppress_small = None, separator=' ', array_output=0):

The array2string  function takes an array and returns a textual representation of it. Each dimension
dicated by a pair of matching square brackets ([] ), within which each subset of the array is output. The orie
tation of the dimensions is as follows: the last (rightmost) dimension is always horizontal, so that the fr
rank-1 arrays use a minimum of screen real-estate. The next-to-last dimension is displayed vertically if p
and any earlier dimension is displayed with additional bracket divisions. For example:

>>> a = arange(24)
>>> print array2string(a)
[ 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23]
>>> a.shape = (2,10)
>>> print array2string(a)
[[ 0  1  2  3  4  5  6  7  8  9 10 11]
 [12 13 14 15 16 17 18 19 20 21 22 23]]
>>> a.shape = (2,3,4)
>>> print array2string(a)
[[[ 0  1  2  3]
  [ 4  5  6  7]
  [ 8  9 10 11]]
 [[12 13 14 15]
  [16 17 18 19]
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The max_line_width  argument specifies the maximum number of characters which the array2string
tine uses in a single line. If it is set to None, then the value of the sys.output_line_width  attribute is
looked up. If it exists, it is used. If not, the default of 77 characters is used.

>>> print array2string(x)
[ 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
      26 27 28 29]
>>> sys.output_line_width = 30
>>> print array2string(x)
[ 0  1  2  3  4  5  6  7  8  9
      10 11 12 13 14 15 16 17
      18 19 20 21 22 23 24 25
      26 27 28 29]

The precision  argument specifies the number of digits after the decimal point which are used. If a va
None is used, the value of the sys.float_output_precision  is looked up. If it exists, it is used. If not
the default of 8 digits is used.

>>> x = array((10.11111111111123123111, pi))
>>> print array2string(x)
[ 10.11111111   3.14159265]
>>> print array2string(x, precision=3)
[ 10.111   3.142]
>>> sys.float_output_precision = 2
>>> print array2string(x)
[ 10.11   3.14]

The suppress_small  argument specifies whether small values should be suppressed (and output as 
value of None is used, the value of the sys.float_output_suppress_small  is looked up. If it exists,
it is used (all that matters is whether it evaluates to true or false). If not, the default of 0 (false) is used. Th
able also interacts with the precision parameters, as it can be used to suppress the use of exponential 

>>> print x
[ 1.00000000e-005  3.14159265e+000]
>>> print array2string(x)
[ 1.00000000e-005  3.14159265e+000]
>>> print array2string(x, suppress_small=1)
[ 0.00001     3.14159265]
>>> print array2string(x, precision=3)
[ 1.000e-005  3.142e+000]
>>> print array2string(x, precision=3, suppress_small=1)
[ 0.     3.142]

The separator  argument is used to specify what character string should be placed between two nu
which do not straddle a dimension. The default is a single space.

>>> print array2string(x)
[   0  100  200  300  400  500  600  700  800  900 100]
>>> print array2string(x, separator = ', ')
[   0,  100,  200,  300,  400,  500,  600,  700,  800,  900, 100]

Finally, the last attribute, array_output, specifies whether to prepend the string "array(” and append eit
string ")" or ", ’X’)" where X is a typecode for non-default typecodes (in other words, the typecode will on
displayed if it is not that corresponding to Float, Complex or Int, which are the standard typecodes ass
with floating point numbers, complex numbers and integers respectively). The array() is so that an eva
returned string will return an array object (provided a comma separator is also used).
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>>> array2string(arange(3))
[0 1 2]
>>> eval(array2string(arange(3), array_output=1))
Traceback (innermost last):
  File "<stdin>", line 1, in ?
  File "<string>", line 1
    array([0 1 2])
             ^
SyntaxError: invalid syntax
>>> type(eval(array2string(arange(3), array_output=1, separator=',')))
<type 'array'>
>>> array2string(arange(3), array_output=1)
'array([0, 1, 2])'
>>> array2string(zeros((3,), 'i') + arange(3), array_output=1)
"array([0, 1, 2],'i')"

The str  and repr  operations on arrays call array2string  with the max_line_width , precision
and suppress_small  all set to None, meaning that the defaults are used, but that modifying the attri
in the sys  module will affect array printing. str uses the default separator and does not use the array
while repr uses a comma as a separator and does use the array(...) text.

>>> x = arange(3)
>>> print x
[0 1 2]
>>> str(x)
'[0 1 2]'
>>> repr(x)
'array([0, 1, 2])' # note the array(...) and ,’s
>>> x = arange(0,.01,.001)
>>> print x
[ 0.     0.001  0.002  0.003  0.004  0.005  0.006  0.007  0.008  0.009]
>>> import sys
>>> sys.float_output_precision = 2
>>> print x
[ 0.    0.    0.    0.    0.    0.01  0.01  0.01  0.01  0.01]

Comparisons

Comparisons of multiarray objects results using the normal comparison operators (such as == or >) r
exceptions. Python requires that the result of a comparison be a scalar, not the vector we would want as 
of elementwise comparison. 

Therefore, for comparisons you must use the routines for comparison describe in “Logical Ufuncs” on pa

Pickling and Unpickling -- storing arrays on disk

This documentation has not yet been written, but pickling of Numeric arrays is possible.

Dealing with floating point exceptions

Attempts to use NaN’s as missing values have proven frustrating and not very portable. Consider “Mas
rays” on page 103 instead.

fpectl should be documented here ...
71



n C (or
s the ad-

s CPU
arrays
 to their

ll your
ath,

 ar-
. If you
ipu-

y

 rules
,” avail-
12. Writing a C extension to NumPy

Introduction

There are two applications that require using the NumPy array type in C extension modules: 

• Access to numerical libraries: Extension modules can be used to make numerical libraries written i
languages linkable to C, such as Fortran) accessible to Python programs. The NumPy array type ha
vantage of using the same data layout as arrays in C and Fortran. 

• Mixed-language numerical code: In most numerical applications, only a small part of the total code i
time intensive. Only this part should thus be written in C, the rest can be written in Python. NumPy 
are important for the interface between these two parts, because they provide equally simple access
contents from Python and from C. 

This document is a tutorial for using NumPy arrays in C extensions. 

Preparing an extension module for NumPy arrays

To make NumPy arrays available to an extension module, it must include the header file arrayobject.h ,
after the header file Python.h that is obligatory for all extension modules. The file arrayobject.h  comes
with the NumPy distribution; depending on where it was installed on your system you might have to te
compiler how to find it. By default Distutils installed in a subdirectory Numeric in your Python include p
and so you should include it this way:

#include “Numeric/arrayobject.h”

�
Is your C extension using Numeric blowing up? Maybe you didn’t call 
import_array().

In addition to including arrayobject.h , the extension must call import_array()  in its initialization
function, after the call to Py_InitModule() . This call makes sure that the module which implements the
ray type has been imported, and initializes a pointer array through which the NumPy functions are called
forget this call, your extension module will crash on the first call to a NumPy function!  If you will be man
lating ufunc objects, you should also include the file ufuncobject.h , also available as part of the NumP
distribution in the Include  directory and usually installed in subdirectory Numeric.

All of the rules related to writing extension modules for Python apply.  The reader unfamiliar with these
is encouraged to read the standard text on the topic, “Extending and Embedding the Python Interpreter
able as part of the standard Python documentation distribution.
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Accessing NumPy arrays from C

Types and Internal Structure

NumPy arrays are defined by the structure PyArrayObject , which is an extension of the structure PyOb-
ject . Pointers to PyArrayObject  can thus safely be cast to PyObject  pointers, whereas the inverse i
safe only if the object is known to be an array. The type structure corresponding to array obje
PyArray_Type . The structure PyArrayObject  has four elements that are needed in order to access th
ray's data from C code: 

int nd

The number of dimensions in the array.

int *dimensions

A pointer to an array of nd integers, describing the number of elements along each dimension
sizes are in the conventional order, so that for any array a, 
a.shape==(dimensions[0], dimensions[1], ..., dimensions[nd]) .

int *strides

A pointer to an array of nd  integers, describing the address offset between two successive dat
ments along each dimension. Note that strides can also be negative!  Each number gives the
of bytes to add to a pointer to get to the next element in that dimension. For example, if myptr  cur-
rently points to element of a rank-5 array at indices 1,0,5,3,2  and you want it to point to elemen
1,0,5,4,2  then you should add strides[3]  to the pointer: myptr += strides[3] . This
works even if (and is especially useful when) the array is not contiguous in memory.

char *data

A pointer to the first data element of the array.

The address of a data element can be calculated from its indices and the data and strides pointers. For
element [i, j]  of a two-dimensional array has the address data + i*array->strides[0] + j*ar-
ray->strides[1] . Note that the stride offsets are in bytes, not in storage units of the array elements. 
fore address calculations must be made in bytes as well, starting from the data pointer, which is alway
pointer. To access the element, the result of the address calculation must be cast to a pointer of the
type. The advantage of this arrangement is that purely structural array operations (indexing, extraction
arrays, etc.) do not have to know the type of the array elements. 

Element data types

The type of the array elements is indicated by a type number, whose possible values are defined as con
arrayobject.h , as given in Table 3.

Table 4: C constants corresponding to storage types

Constant element data type

PyArray_CHAR char

PyArray_UBYTE unsigned char

PyArray_SBYTE signed char

PyArray_SHORT short

PyArray_INT int
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The type number is stored in array->descr->type_num . Note that the names of the element type co
stants refer to the C data types, not the Python data types. A Python int  is equivalent to a C long , and a Py-
thon float  corresponds to a C double . Many of the element types listed above do not have correspon
Python scalar types (e.g. PyArray_INT ). 

Contiguous arrays

An important special case of a NumPy array is the contiguous array. This is an array whose elements o
single contiguous block of memory and have the same order as a standard C array. In a contiguous a
value of array->strides[i]  is equal to the size of a single array element times the product of array-
>dimensions[j]  for j  up to i-1 . Arrays that are created from scratch are always contiguous; non-co
uous arrays are the result of indexing and other structural array operations. The main advantage of co
arrays is easier handling in C; the pointer array->data  is cast to the required type and then used like a C
ray, without any reference to the stride values. This is particularly important when interfacing to existing 
ies in C or Fortran, which typically require this standard data layout. A function that requires input array
contiguous must call the conversion function PyArray_ContiguousFromObject() , described in the
section “Accepting input data from any sequence type".

Zero-dimensional arrays

NumPy permits the creation and use of zero-dimensional arrays, which can be useful to treat scalars and
dimensional arrays in the same way. However, library routines for general use should not return zero-
sional arrays, because most Python code is not prepared to handle them. Moreover, zero-dimensional a
create confusion because they behave like ordinary Python scalars in many circumstances but are of a
type. A comparison between a Python scalar and a zero-dimensional array will always fail, for example
if the values are the same. NumPy provides a conversion function from zero-dimensional arrays to Pyth
lars, which is described in the section “Returning arrays from C functions". 

A simple example

The following function calculates the sum of the diagonal elements of a two-dimensional array, verifyin
the array is in fact two-dimensional and of type PyArray_DOUBLE . 

static PyObject *
trace(PyObject *self, PyObject *args)
{
  PyArrayObject *array;
  double sum;
  int i, n;

  if (!PyArg_ParseTuple(args, "O!",

PyArray_LONG long

PyArray_FLOAT float

PyArray_DOUBLE double

PyArray_CFLOAT float[2]

PyArray_CDOUBLE double[2]

PyArray_OBJECT PyObject *

Table 4: C constants corresponding to storage types

Constant element data type
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                        &PyArray_Type, &array))
    return NULL;
  if (array->nd != 2 || array->descr->type_num != PyArray_DOUBLE) {
    PyErr_SetString(PyExc_ValueError,
                    "array must be two-dimensional and of type float");
    return NULL;
  }

  n = array->dimensions[0];
  if (n > array->dimensions[1])
    n = array->dimensions[1];
  sum = 0.;
  for (i = 0; i < n; i++)
    sum += *(double *)(array->data + i*array->strides[0] + i*array-
>strides[1]);

  return PyFloat_FromDouble(sum);
}

Accepting input data from any sequence type

The example in the last section requires its input to be an array of type double. In many circumstance
sufficient, but often, especially in the case of library routines for general use, it would be preferable to 
input data from any sequence (lists, tuples, etc.) and to convert the element type to double automatical
possible. NumPy provides a function that accepts arbitrary sequence objects as input and returns an e
array of specified type (this is in fact exactly what the array constructor Numeric.array()  does in Python
code): 

PyObject *
PyArray_ContiguousFromObject(PyObject *object,
                             int type_num,
                             int min_dimensions,
                             int max_dimensions);

The first argument, object, is the sequence object from which the data is taken. The second arg
type_num, specifies the array element type (see the table in the section “Element data types". If you w
function to the select the ``smallest'' type that is sufficient to store the data, you can pass the speci
PyArray_NOTYPE . The remaining two arguments let you specify the number of dimensions of the res
array, which is guaranteed to be no smaller than min_dimensions  and no larger than max_dimensions ,
except for the case max_dimensions == 0 , which means that no upper limit is imposed.

If the input data is not compatible with the type or dimension restrictions, an exception is raised. Since th
returned by PyArray_ContiguousFromObject()  is guaranteed to be contiguous, this function also p
vides a method of converting a non-contiguous array to a contiguous one. If the input object is already
tiguous array of the specified type, it is passed on directly; there is thus no performance or memory pen
calling the conversion function when it is not required. Using this function, the example from the last s
becomes 

static PyObject *
trace(PyObject *self, PyObject *args)
{
  PyObject *input;
  PyArrayObject *array;
  double sum;
  int i, n;
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  if (!PyArg_ParseTuple(args, "O", &input))
    return NULL;
  array = (PyArrayObject *)
          PyArray_ContiguousFromObject(input, PyArray_DOUBLE, 2, 2);
  if (array == NULL)
    return NULL;

  n = array->dimensions[0];
  if (n > array->dimensions[1])
    n = array->dimensions[1];
  sum = 0.;
  for (i = 0; i < n; i++)
    sum += *(double *)(array->data + i*array->strides[0] + i*array-
>strides[1]);
  
  Py_DECREF(array);
  return PyFloat_FromDouble(sum);
}

Note that no explicit error checking is necessary in this version, and that the array reference that is retu
PyArray_ContiguousFromObject()  must be destroyed by calling Py_DECREF() . 

Creating NumPy arrays

NumPy arrays can be created by calling the function 

PyObject *
PyArray_FromDims(int n_dimensions,
                 int dimensions[n_dimensions],
                 int type_num);

The first argument specifies the number of dimensions, the second one the length of each dimension,
third one the element data type (see the table in the section “Element data types". The array that is re
contiguous, but the contents of its data space are undefined. There is a second function which permits
ation of an array object that uses a given memory block for its data space: 

PyObject *
PyArray_FromDimsAndData(int n_dimensions,
                        int dimensions[n_dimensions]
                        int item_type
                        char *data);

The first three arguments are the same as for PyArray_FromDims() . The fourth argument is a pointer to th
memory block that is to be used as the array's data space. It is the caller's responsibility to ensure that th
ory block is not freed before the array object is destroyed. With few exceptions (such as the creation o
porary array object to which no reference is passed to other functions), this means that the memory blo
never be freed, because the lifetime of Python objects are difficult to predict. Nevertheless, this function
useful in special cases, for example for providing Python access to arrays in Fortran common blocks. 

Returning arrays from C functions

Array objects can of course be passed out of a C function just like any other object. However, as has be
tioned before, care should be taken not to return zero-dimensional arrays unless the receiver is known t
pared to handle them. An equivalent Python scalar object should be returned instead. To facilitate th
NumPy provides a special function 

PyObject *
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PyArray_Return(PyArrayObject *array);

which returns the array unchanged if it has one or more dimensions, or the appropriate Python scalar o
case of a zero-dimensional array. 

A less simple example

The function shown below performs a matrix-vector multiplication by calling the BLAS function DGEMV. It
takes three arguments: a scalar prefactor, the matrix (a two-dimensional array), and the vector (a one
sional array). The return value is a one-dimensional array. The input values are checked for consistenc
dition to providing an illustration of the functions explained above, this example also demonstrates 
Fortran routine can be integrated into Python. Unfortunately, mixing Fortran and C code involves machin
cific peculiarities. In this example, two assumptions have been made: 

• The Fortran function DGEMV must be called from C as dgemv_. Many Fortran compilers apply this rule
but the C name could also be dgemv or DGEMV (or in principle anything else; there is no fixed standard

• Fortran integer s are equivalent to C long s, and Fortran double precision numbers are equivalent   
C doubles. This works for all systems that I have personally used, but again there is no standard.

Also note that the libraries that this function must be linked to are system-dependent; on my Linux syste
ing gcc /g77 ), the libraries are blas  and f2c . So here is the code: 

static PyObject *
matrix_vector(PyObject *self, PyObject *args)
{
  PyObject *input1, *input2;
  PyArrayObject *matrix, *vector, *result;
  int dimensions[1];
  double factor[1];
  double real_zero[1] = {0.};
  long int_one[1] = {1};
  long dim0[1], dim1[1];

  extern dgemv_(char *trans, long *m, long *n,
                double *alpha, double *a, long  *lda,
                double *x, long *incx,
                double *beta, double *Y, long *incy);

  if (!PyArg_ParseTuple(args, "dOO", factor, &input1, &input2))
    return NULL;
  matrix = (PyArrayObject *)
            PyArray_ContiguousFromObject(input1, PyArray_DOUBLE, 2, 2);
  if (matrix == NULL)
    return NULL;
  vector = (PyArrayObject *)
            PyArray_ContiguousFromObject(input2, PyArray_DOUBLE, 1, 1);
  if (vector == NULL)
    return NULL;
  if (matrix->dimensions[1] != vector->dimensions[0]) {
    PyErr_SetString(PyExc_ValueError,
                    "array dimensions are not compatible");
    return NULL;
  }

  dimensions[0] = matrix->dimensions[0];
  result = (PyArrayObject *)PyArray_FromDims(1, dimensions, 
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PyArray_DOUBLE);
  if (result == NULL)
    return NULL;

  dim0[0] = (long)matrix->dimensions[0];
  dim1[0] = (long)matrix->dimensions[1];
  dgemv_("T", dim1, dim0, factor, (double *)matrix->data, dim1,
         (double *)vector->data, int_one,
         real_zero, (double *)result->data, int_one);

  return PyArray_Return(result);
}

Note that PyArray_Return()  is not really necessary in this case, since we know that the array bein
turned is one-dimensional. Nevertheless, it is a good habit to always use this function; its performance
practically zero. 
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This chapter describes the API for ArrayObjects and Ufuncs.

ArrayObject C Structure and API

Structures

The PyArrayObject is, like all Python types, a kind of PyObject. Its definition is:

typedef struct { 
PyObject_HEAD 
char *data; 
int nd; 
int *dimensions, *strides; 
PyObject *base; 
PyArray_Descr *descr; 
int flags; 

} PyArrayObject; 

Where PyObject_HEAD  is the standard PyObject  header, and the other fields are:

char *data

A pointer to the first data element of the array.

int nd

The number of dimensions in the array.

int *dimensions

A pointer to an array of nd integers, describing the number of elements along each dimension
sizes are in the conventional order, so that for any array a, 
a.shape==(dimensions[0], dimensions[1], ..., dimensions[nd]) .

int *strides

A pointer to an array of nd  integers, describing the address offset between two successive dat
ments along each dimension. Note that strides can also be negative!  Each number gives the
of bytes to add to a pointer to get to the next element in that dimension. For example, if myptr  cur-
rently points to an element in a rank-5 array at indices 1,0,5,3,2  and you want it to point to ele-
ment 1,0,5,4,2  then you should add strides[3]  to the pointer: myptr += strides[3] .
This works even if (and is especially useful when) the array is not contiguous in memory.

PyObject *base

Used internally in arrays that are created as slices of other arrays. Since the new array shares
area with the old one, the original array’s reference count is incremented.  When the subarray
bage collected, the base array’s reference count is decremented.

PyArray_Desc *descr

See below.
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int flags

A bitfield indicating whether the array:

• is contiguous (rightmost bit)

• owns the dimensions (next bit to the left) (???)

• owns the strides (next bit to the left) (???)

• owns the data area

The ownership bits are used by NumPy internally to manage memory allocation and dealloc
They can be false if the array is the result of e.g. a slicing operation on an existing array.

PyArrayDescr *descr

a pointer to a data structure that describes the array and has some handy functions. The slot
structure are:

PyArray_VectorUnaryFunc *cast[]

an array of function pointers which will cast this arraytype to each of the other data types.

PyArray_GetItemFunc *getitem 

a pointer to a function which returns a PyObject of the appropriate type given a (char) poin
the data to get.

PyArray_SetItemFunc *setitem

a pointer to a function which sets the element pointed to by the second argument to con
Python Ojbect given as the first argument. 

int type_num

A number indicating the datatype of the array (i.e. a PyArray_XXXX )

char *one

A pointer to a representation of one for this datatype.

char *zero 

A pointer to a representation of zero for this datatype (especially useful for PyArray_OBJ
types)

char type

A character representing the array’s typecode (one of 'cb1silfdFDO' ). 

The ArrayObject API

In the following op  is a pointer to a PyObject  and arp  is a pointer to a PyArrayObject . Routines which
return PyObject *  return NULL to indicate failure (and follow the standard exception-setting mechanis
Functions followed by a dagger (†) are functions which return PyObjects whose reference count has bee
creased by one (new references). See the Python Extending/Embedding manual for details on referen
management.

int PyArray_Check(op) 

returns 1 if op  is a PyArrayObject  or 0 if it is not.

int PyArray_SetNumericOps(d) 

internally used by umath  to setup some of its functions.

int PyArray_INCREF(op)

Used for arrays of python objects (PyArray_OBJECT ) to increment the reference count of ever
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python object in the array op . User code does not typically need to call this.

int PyArray_XDECREF(op)

Used for arrays of python objects (PyArray_OBJECT ) to decrement the reference count of eve
python object in the array op .

PyArrayError

Exports the array error object. I don't know its use.

void PyArray_SetStringFunction(op,repr)

Sets the function for representation of all arrays to op which should be a callable PyObject . If
repr  is non-zero then the function corresponding to the repr  string representationis set, otherwise
that for the str  string representation is set.

PyArray_Descr PyArray_DescrFromType(type)

returns a PyArray_Descr  structure for the datatype given by type . The input type can be eithe
the enumerated types (PyArray_Float , etc.) or a character ('cb1silfdFDO' ).

PyObject *PyArray_Cast(arp, type) †

returns a pointer to a PyArrayObject  that is arp  cast to the array type specified by type . It is
just a wrapper around the function defined in arp->descr->cast  that handles non-contiguous
arrays and arrays of Python objects appropriately.

int PyArray_CanCastSafely(fromtype,totype)

returns 1 if the array with type fromtype  can be cast to an array of type totype  without loss of
accuracy, otherwise it returns 0. It allows conversion of long s to int s which is not safe on 64-bit
machines. The inputs fromtype  and totype  are the enumerated array types (e.
PyArray_SBYTE ).

int PyArray_ObjectType(op, min_type)

returns the typecode to use for a call to an array creation function given an input python seq
object op  and a minimum type value, min_type . It looks at the datatypes used in op , compares
this with min_type  and returns a consistent type value that can be used to store all of the d
op  and satisfying at the minimum the precision of min_type .

int _PyArray_multiply_list(list,n) 

is a utility routine to multiply an array of n integers pointed to by list .

int PyArray_Size(op) 

is a useful function for returning the total number of elements in op  if op  is a PyArrayObject , 0
otherwise.

PyObject *PyArray_FromDims(nd,dims,type) †

returns a pointer to a newly constructed PyArrayObject  (returned as a PyObject ) given the
number of dimensions in nd , an array dims  of nd  integers specifying the size of the array, and t
enumerated type of the array in type .

PyObject *PyArray_FromDimsAndData(nd,dims,type,data) †

This function should only be used to access global data that will never be freed (like FORT
common blocks). It builds a PyArrayObject  in the same way as PyArray_FromDims  but in-
stead of allocating new memory for the array elements it uses the bytes pointed to by data  (a
char * ).
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PyObject *PyArray_ContiguousFromObject(op,type,min_dim,max_dim) †

returns a contiguous array of type type  from the (possibly nested) sequence object op . If op  is a
contiguous PyArrayObject  then a reference is made; if op  is a non-contiguous then a copy is pe
formed to get a contiguous array; if op  is not a PyArrayObject  then a new PyArrayObject
is created from the sequence object and returned. The two parameters min_dim  and max_dim  let
you specify the expected rank of the input sequence. An error will result if the resulting PyArray-
Object  does not have rank bounded by these limits. To specify an exact rank requireme
min_dim = max_dim . To allow for an arbitrary number of dimensions specify min_dim =
max_dim = 0 .

PyObject *PyArray_CopyFromObject(op,type,min_dim,max_dim) †

returns a contiguous array similar to PyArray_ContiguousFromObject  except that a copy of
op  is performed even if a shared array could have been used.

PyObject *PyArray_FromObject(op,type,min_dim,max_dim) †

returns a reference to op  if op  is a PyArrayObject  and a newly constructed PyArrayObject
if op  is any other (nested) sequence object. You must use strides to access the elements of 
sibly discontiguous array correctly.

PyObject *PyArray_Return(apr) 

returns a pointer to apr  with some extra code to check for errors and be sure that zero-dimens
arrays are returned as scalars. If a scalar is returned instead of apr  then apr ’s reference count is
decremented, so it is safe to use this function in the form :
return PyArray_Return (apr);

PyObject *PyArray_Reshape(apr,op) †

returns a reference to apr  with a new shape specified by op  which must be a one dimensional se
quence object. One dimension may be specified as unknown by giving a value less than zero,
ue will be calculated from the size of apr .

PyObject *PyArray_Copy(apr) †

returns an element-for-element copy of apr

PyObject *PyArray_Take(a,indices,axis) †

the equivalent of take(a, indices, axis)  which is a method defined in the Numeric modu
that just calls this function. 

int PyArray_As1D(*op, char **ptr, int *n, int type)

This function replaces op  with a pointer to a contiguous 1-D PyArrayObject  (using
PyArray_ContiguousFromObject ) and sets as output parameters a pointer to the first byt
the array in ptr  and the number of elements in the array in n. It returns -1  on failure (op  is not a
1-D array or sequence object that can be cast to type type ) and 0 on success. 

int PyArray_As2D(*op, char **ptr, int *m, int *n, int type) 

This function replaces op  with a pointer to a contiguous 2-D PyArrayObject  (using
PyArray_ContiguousFromObject ). It returns -1 on failure (op is not a 2-D array or nest
sequence object that can be cast to type type) and 0 on success. It also sets as output param
array of pointers in ptr  which can be used to access the data as a 2-D array so that ptr[i][j] is a p
er to the first byte of element [i,j] in the array; m and n are set to respectively the number of rows an
columns of the array. 

int PyArray_Free(op,ptr) 

is supposed to free the allocated data structures and decrease object references whe
PyArray_As1D  and PyArray_As2D  but there are suspicions that this code is buggy.
82



•
C

 A
P

I R
efe

ren
ce

lues.

 Arrays
 its API
 of the
tc.) are
kes one
ines in
ximum

k this
 input
output
 code.
ing for
Notes

Number formats, overflow issues, NaN/Inf representations, fpectl module, how to deal with ’missing’ va

UfuncObject C Structure and API

C Structure

The ufuncobject is a generic function object that can be used to perform fast operations over Numeric
with very useful broadcasting rules and type conversions performed automatically. The ufuncobject and
make it easy and graceful to add arbitrary functions to Python which operate over Numeric arrays. All
unary and binary operators currently available in the Numerical extensions (like sin, cos, +, logical_or, e
implemented using this object. The hooks are all in place to make it very easy to add any function that ta
or two (double) arguments and returns a single (double) argument.  It is not difficult to add support rout
order to handle arbitrary functions whose total number of input/output arguments is less than some ma
number (currently 10).

typedef struct { 
PyObject_HEAD 
int *ranks, *canonical_ranks; 
int nin, nout, nargs; 
int identity; 
PyUFuncGenericFunction *functions; 
void **data; 
int ntypes, nranks, attributes; 
char *name, *types; 
int check_return; 

} PyUFuncObject;

where:

int *ranks

unused.

int *canonical_ranks

unused

int nin

the number of input arguments to function

int nout

the number of output arguments for the function

int nargs

the total number of arguments  = nin + nout

int identity

a flag telling whether the identity for this function is 0 or 1 for use in the reduce  method for a zero
size array input.

PyUFuncGenericFunction *functions

an array of functions that perform the innermost looping over the input and output arrays (I thin
is over a single axis). These functions call the underlying math function with the data from the
arguments along this axis and return the outputs of the function into the correct place in the 
arrayobject (with appropriate typecasting). These functions are called by the general looping
There is one function for each of the supported datatypes. Function pointers to do this loop
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types 'f' , 'd' , 'F' , and 'D' , are provided in the C-API for functions that take one or two arg
ments and return one argument. Each PyUFuncGenericFunction  returns void  and has the fol-
lowing argument list (in order):

args

an array of pointers to the data for each of the input and output arguments with input argu
first and output arguments immediately following. Each element of args  is a char *  to the
first byte in the corresponding input or output array.

dimensions

a pointer to a single int  giving the size of the axis being looped over.

steps

an array of int s giving the number of bytes to skip to go to the next element of the array for
loop. There is an entry in the array for each of the input and output arguments, with input
ments first and output arguments immediately following.

func

a pointer to the underlying math function to be called at each point in this inner loop. Thi
void *  and must be recast to the required type before actually calling the function e.g
pointer to a function that takes two double s and returns a double ). If you need to write your
own PyUFuncGenericFunction , it is most readable to also have a typedef  statement that
defines your specific underlying function type so the function pointer cast is somewhat rea

void **data

a pointer to an array of functions (each cast to void * ) that compute the actual mathematical fun
tion for each set of inputs and outputs. There should be a function in the array for each support
type. This function will be called from the PyUFuncGenericFunction  for the corresponding
type.

int ntypes

the number of datatypes supported by this function. For datatypes that are not directly suppo
coercion will be performed if possible safely, otherwise an error will be reported.

int nranks

unused.

int attributes

unused.

char *name

the name of this function (not the same as the dictionary label for this function object, but it is u
set to the same string). It is printed when __repr__  is called for this object, defaults to "?"  if set
to NULL.

char *types

an array of supported types for this function object. I'm not sure why but each supported da
(PyArray_FLOAT , etc.) is entered as many times as there are arguments for this function. (nargs )

int check_return

Usually best to set to 1. If this is non-zero then returned matrices will be cleaned up so that 
arrays will be returned as python scalars. Also, if non-zero, then any math error that sets the errno
global variable will cause an appropriate Python exception to be raised.
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UfuncObject C API

There are currently 15 pointers in the C-API array for the ufuncobject which is loaded by import_ufunc() .
The macros implemented by this API, available by including the file ufuncobject.h ,' are given below. The
only function normally called by user code is the ufuncobject creation func
PyUFunc_FromFuncAndData . Some of the other functions can be used as elements of an array to be p
to this creation function.

int PyUFunc_Check(op)

returns 1 if op is a ufunc object otherwise returns 0.

PyObject *PyUFunc_FromFuncAndData(functions, data, types, ntypes, nin, 
nout, identity, name, check_return)

returns the ufunc object given its parameters. This is the most important function call. It requir
fining three arrays to be passed as parameters: functions , data , and types . The arguments to
be passed are:

functions

an array of functions of type PyUFuncGenericFunction , there should be one function fo
each supported datatype. The functions should be in order so that datatypes listed toward
ginning of the array could be cast as datatypes listed toward the end.

data

an array of pointers to void* the same size as the functions array and in the same datatype
Each element of this array is the actual underlying math function (recast to a void * ) that will
be called from one of the PyUFuncGenericFunctions . It will operate on each element o
the input NumPy arrayobject (s) and return its element-by-element result in the outp
NumPy arrayobject(s). There is one function call for each datatype supported, (though fun
can be repeated if you handle the typecasting appropriately with the PyUFuncGenericFunc-
tion ).

types

an array of PyArray_Type s. The size of this array should be (nin+nout ) times the size of
one of the previous two arrays. There should be nin+nout  copies of PyArray_XXXXX  for
each datatype explicitly supported. (Remember datatypes not explicitly supported will still b
cepted as input arguments to the ufunc if they can be cast safely to a supported type.) 

ntypes

the number of supported types for this ufunc.

nin

the number of input arguments

nout

the number of output arguments

identity

PyUFunc_One, PyUFunc_Zero , or PyUFunc_None , depending on the desired value for th
identity. This is only relevant for functions that take two input arguments and return one o
argument. If not relevant use PyUFunc_None .

name

the name of this ufuncobject  for use in the __repr__  method.

check_return

the desired value for check_return for this ufuncobject.
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int PyUFunc_GenericFunction(self,args,mps)

allows calling the ufunc from user C routine. It returns 0 on success and -1 on any failures. T
the core of what happens when a ufunc is called from Python. Its arguments are:

self

the ufunc object to be called. INPUT

args

a Python tuple object containing the input arguments to the ufunc (should be Python seq
objects). INPUT

mps

an array of pointers to PyArrayObjects for the input and output arguments to this function
input NumPy arrays are elements mps[0]...mps[self->nin-1] . The output NumPy ar-
rays are elements mps[self->nin]...mps[self->nargs-1] . OUTPUT

The following are all functions of type PyUFuncGenericFunction  and are suitable for use in the func-
tions  argument passed to PyUFunc_FromFuncAndData :

PyUFunc_f_f_As_d_d

for a unary function that takes a double  input and returns a double  output as a ufunc that takes
PyArray_FLOAT  input and returns PyArray_FLOAT  output. 

PyUFunc_d_d

for a using a unary function that takes a double  input and returns a double  output as a ufunc that
takes PyArray_DOUBLE  input and returns PyArray_DOUBLE  output.

PyUFunc_F_F_As_D_D

for a unary function that takes a Py_complex  input and returns a Py_complex  output as a ufunc
that takes PyArray_CFLOAT  input and returns PyArray_CFLOAT  output.

PyUFunc_D_D

for a unary function that takes a Py_complex  input and returns a Py_complex  output as a ufunc
that takes PyArray_CFLOAT  input and returns PyArray_CFLOAT  output.

PyUFunc_O_O

for a unary function that takes a Py_Object *  input and returns a Py_Object *  output as a
ufunc that takes PyArray_OBJECT  input and returns PyArray_OBJECT  output

PyUFunc_ff_f_As_dd_d

for a binary function that takes two double  inputs and returns one double  output as a ufunc that
takes PyArray_FLOAT  input and returns PyArray_FLOAT  output.

PyUFunc_dd_d

for a binary function that takes two double  inputs and returns one double  output as a ufunc that
takes PyArray_DOUBLE  input and returns PyArray_DOUBLE  output.

PyUFunc_FF_F_As_DD_D

for a binary function that takes two Py_complex  inputs and returns a Py_complex  output as a
ufunc that takes PyArray_CFLOAT  input and returns PyArray_CFLOAT  output.

PyUFunc_DD_D

for a binary function that takes two Py_complex  inputs and returns a Py_complex  output as a
ufunc that takes PyArray_CFLOAT  input and returns PyArray_CFLOAT  output 
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PyUFunc_OO_O

for a unary function that takes two Py_Object *  input and returns a Py_Object * output as a
ufunc that takes PyArray_OBJECT  input and returns PyArray_OBJECT  output

PyUFunc_O_O_method

for a unary function that takes a Py_Object *  input and returns a Py_Object *  output and is
pointed to by a Python method as a ufunc that takes PyArray_OBJECT input and re
PyArray_OBJECT output

PyArrayMap

an exported API that was apparently considered but never implemented probably because th
tionality is already available with Python's map function. 
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14. Glossary

This section will define a few of the technical words used throughout this document.  [Please let us know
additions to this list which you feel would be helpful -- the authors]

typecode: a single character describing the format of the data stored in an array.  For example, ’b’ r
unsigned byte-sized integers (0-255).

ufunc / universal function: a ufunc is a callable object which performs operations on all of the eleme
its arguments, which can be lists, tuples, or arrays.  Many ufuncs are defined in the umath  module.

array / multiarray: an array refers to the Python object type defined by the NumPy extensions to sto
manipulate numbers efficiently.

UserArray: The UserArray module defines a UserArray class which should be subclassed by users 
to have classes which behave similarly to the array object type.

Matrix: The Matrix module defines a subclass Matrix of the UserArray class which is specialized for 
algebra matrices.  Most notably, it overrides the multiplication operator on Matrix instances to perform
trix multiplication instead of element-wise multiplication.

rank: the rank of an array is the number of dimensions it has, or the number of integers in its shape 

shape: array objects have an attribute called shape which is necessarily a tuple.  An array with an e
ple shape is treated like a scalar (it holds one element).
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PART II: Optional Packages

This part contains descriptions of the packages that are included with the distribution but
which are not necessary for using Numeric arrays. The packages are for the most part in
the Packages subdirectory of the source distribution, and can be installed anywhere in the
Python module search path. Each has its own “setup.py” to use to build and install the
package.

For historical reasons, some of these packages are currently installed inside the Numeric
package rather than on their own. We hope to remedy this in the future.

The subdirectory Packages contains directories, each of which contains its own installation script setup
with the main directory, these packages are generally compiled and installed using the command 

python setup.py install

The Makefile in the main directory will do this for all the packages provided. 

In addition, many people make available libraries that use Numeric. At the moment a centralized refere
these does not exist, but they are usually announced on the discussion list; also check the project web

Table 5: Descriptions of the Optional Packages

Package 
Name

Description Reference

FFT Fast Fourier Transforms “FFT Reference” on page 91

LinearAlgebra Basic linear algebra “LinearAlgebra Reference” on 
page 94

RandomArray Arrays of random numbers. “RandomArray Reference” on 
page 96

RNG Generators for independent streams of random 
numbers from various distributions and arrays 
of same.

“Independent Random Streams” on 
page 101

MA Masked arrays, that is, arrays that have miss-
ing or invalid entries.

“Masked Arrays” on page 103
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License and disclaimer for packages MA and RNG

Package MA was written by Paul Dubois, LLNL. Package RNG was written by Konrad Hinsen after mod
an earlier package UNRG by Paul Dubois and Fred Fritsch.

Copyright (c) 1999, 2000. The Regents of the University of California. All rights reserved. 

Permission to use, copy, modify, and distribute this software for any purpose without fee is hereby grante
vided that this entire notice is included in all copies of any software which is or includes a copy or modific
of this software and in all copies of the supporting documentation for such software.

This work was produced at the University of California, Lawrence Livermore National Laboratory under
tract no. W-7405-ENG-48 between the U.S. Department of Energy and The Regents of the University o
fornia for the operation of UC LLNL. 

DISCLAIMER

This software was prepared as an account of work sponsored by an agency of the United States Gov
Neither the United States Government nor the University of California nor any of their employees, mak
warranty, express or implied, or assumes any liability or responsibility for the accuracy, completeness,
fulness of any information, apparatus, product, or process disclosed, or represents that its use wo
infringe privately-owned rights. Reference herein to any specific commercial products, process, or ser
trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endor
recommendation, or favoring by the United States Government or the University of California. The view
opinions of authors expressed herein do not necessarily state or reflect those of the United States Gov
or the University of California, and shall not be used for advertising or product endorsement purposes.
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15. FFT Reference

The FFT.py module provides a simple interface to the FFTPACK FORTRAN library,
which is a powerful standard library for doing fast Fourier transforms of real and complex
data sets, or the C fftpack library, which is algorithmically based on FFTPACK and
provides a compatible interface.  On some platforms, optimized version of one of these
libraries may be available, and can be used to provide optimal performance (see
“Compilation Notes” on page 93).

Python Interface

The Python user imports the FFT module, which provides a set of utility functions which provide access
most commonly used FFT routines, and allows the specification of which axes (dimensions) of the input
are to be used for the FFT’s.  These routines are:

fft(data, n=None, axis=-1)

Performs a n-point discrete Fourier transform of the array data.  n defaults to the size of data.  It is most efficien
for n a power of two.   If n is larger than data , then data  will be zero-padded to make up the difference. If
is smaller than data, then data  will be aliased to reduce its size. This also stores a cache of working me
for different sizes of fft's, so you could theoretically run into memory problems if you call this too many 
with too many different n's.

The FFT is performed along the axis indicated by the axis  argument, which defaults to be the last dimensi
of data .

The format of the returned array is a complex array of the same shape as data , where the first element in the
result array contains the DC (steady-state) value of the FFT, and where each successive ...XXX

Example of use:

>>> print fft(array((1,0,1,0,1,0,1,0))+ 10).real
[ 84.   0.   0.   0.   4.   0.   0.   0.]
>>> print fft(array((0,1,0,1,0,1,0,1))+ 10).real
[ 84.   0.   0.   0.  -4.   0.   0.   0.]
>>> print fft(array((0,1,0,0,0,1,0,0))+ 10).real
[ 82.   0.   0.   0.  -2.   0.   0.   0.]

inverse_fft(data, n=None, axis=-1)

Will return the n point inverse discrete Fourier transform of data . n defaults to the length of data . This is
most efficient for n a power of two. If n is larger than data , then data  will be zero-padded to make up the
difference. If n is smaller than data , then data  will be aliased to reduce its size. This also stores a cach
working memory for different sizes of FFT’s, so you could theoretically run into memory problems if you
this too many times with too many different n's. 

real_fft(data, n=None, axis=-1)

Will return the n point discrete Fourier transform of the real valued array data . n defaults to the length of da-
ta . This is most efficient for n a power of two. The returned array will be one half of the symmetric comp
transform of the real array. 
91



le for
ations,
e also

and re-
a array,
the co-
he sec-
rray in
>>> x = cos(arange(30.0)/30.0*2*pi)
>>> print real_fft(x)
[ -1.        +0.j          13.69406641+2.91076367j
       -0.91354546-0.40673664j  -0.80901699-0.58778525j
       -0.66913061-0.74314483j  -0.5       -0.8660254j
       -0.30901699-0.95105652j  -0.10452846-0.9945219j
        0.10452846-0.9945219j    0.30901699-0.95105652j
        0.5       -0.8660254j    0.66913061-0.74314483j
        0.80901699-0.58778525j   0.91354546-0.40673664j
        0.9781476 -0.20791169j   1.        +0.j        ]

inverse_real_fft(data, n=None, axis=-1)

Will return the inverse FFT of the real valued array data .

fft2d(data, s=None, axes=(-2,-1))

Will return the 2-dimensional FFT of the array data .

real_fft2d(data, s=None, axes=(-2,-1))

Will return the 2d FFT of the real valued array data . 

C API

The interface to the FFTPACK library is performed via the fftpackmodule module, which is responsib
making sure that the arrays sent to the FFTPACK routines are in the right format (contiguous memory loc
right numerical storage format, etc).  It provides interfaces to the following FFTPACK routines, which ar
the names of the Python functions:

• cffti(i)

• cfftf(data, savearea)

• cfftb(data, savearea)

• rffti(i)

• rfftf(data, savearea)

• rfftb(data, savearea)

The routines which start with c  expect arrays of complex numbers, the routines which start with r  expect real
numbers only. The routines which end with i  are the initalization functions, those which end with f  perform
the forward FFTs and those which end with b perform the backwards FFTs.

The initialization functions require a single integer argument corresponding to the size of the dataset, 
turns a work array. The forward and backwards FFTs require two array arguments -- the first is the dat
the second is the work array returned by the initialization function. They return arrays corresponding to 
efficients of the FFT, with the first element in the returned array corresponding to the DC component, t
ond one to the first fundamental, etc.The length of the returned array is 1 + half the length of the input a
the case of real FFTs, and the same size as the input array in the case of complex data.

>>> x = cos(arange(30.0)/30.0*2*pi)
>>> w = rffti(30)
>>> f = rfftf(x, w)
>>> f[0]
(-1+0j)
>>> f[1]
(13.6940664103+2.91076367145j)
>>> f[2]
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(-0.913545457643-0.406736643076j)

Compilation Notes

On some platforms, precompiled optimized versions of the FFTPACK library are preinstalled on the ope
system, and the compilation procedure needs to be modified to force the fftpackmodule file to be linked 
those rather than the fftpacklite.c file which is shipped with NumPy.
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16. LinearAlgebra Reference

The LinearAlgebra.py module provides a simple interface to the low-level linear algebra
routines provided by either the LAPACK FORTRAN library or the compatible lapack_lite
C library.

Python Interface

solve_linear_equations(a, b)

This function solves a system of linear equations with a square non-singular matrix a and a right-hand-s
tor b. Several right-hand-side vectors can be treated simultaneously by making b a two-dimensional ar
a sequence of vectors). The function inverse(a) calculates the inverse of the square non-singular ma
calling solve_linear_equations(a, b) with a suitable b. 

inverse(a)

This function returns the inverse of the specified matrix a which must be square and non-singular. To
floating point precision, it should always be true that:

matrixmultiply(a, inverse(a)) == identity(len(a))

To test this claim, one can do e.g.:

>>> a = reshape(arange(25.0), (5,5)) + identity(5)
>>> print a
[[  1.   1.   2.   3.   4.]
 [  5.   7.   7.   8.   9.]
 [ 10.  11.  13.  13.  14.]
 [ 15.  16.  17.  19.  19.]
 [ 20.  21.  22.  23.  25.]]
>>> inv_a = inverse(a)
>>> print inv_a
[[ 0.20634921 -0.52380952 -0.25396825  0.01587302  0.28571429]
 [-0.5026455   0.63492063 -0.22751323 -0.08994709  0.04761905]
 [-0.21164021 -0.20634921  0.7989418  -0.1957672  -0.19047619]
 [ 0.07936508 -0.04761905 -0.17460317  0.6984127  -0.42857143]
 [ 0.37037037  0.11111111 -0.14814815 -0.40740741  0.33333333]]
>>> # Verify the inverse by printing the largest absolute element
... # of a * a^{-1} - identity(5)
... print "Inversion error:", \
... maximum.reduce(fabs(ravel(dot(a, inv_a)-identity(5))))
Inversion error: 2.6645352591e-015

eigenvalues(a)

This function returns the eigenvalues of the square matrix a. 

>>> print a
[[ 1.  0.  0.  0.  0.]
 [ 0.  2.  0.  0.  1.]
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 [ 0.  0.  3.  0.  0.]
 [ 0.  0.  0.  4.  0.]
 [ 0.  0.  0.  0.  1.]]
>>> print eigenvalues(a)
[ 1.  2.  3.  4.  1.]

eigenvectors(a)

This function returns both the eigenvalues and the eigenvectors, the latter as a two-dimensional array (
quence of vectors).

>>> print a
[[ 1.  0.  0.  0.  0.]
 [ 0.  2.  0.  0.  1.]
 [ 0.  0.  3.  0.  0.]
 [ 0.  0.  0.  4.  0.]
 [ 0.  0.  0.  0.  1.]]
>>> evalues, evectors = eigenvectors(a)
>>> print evalues
[ 1.  2.  3.  4.  1.]
>>> print evectors
[[ 1.          0.          0.          0.          0.        ]
 [ 0.          1.          0.          0.          0.        ]
 [ 0.          0.          1.          0.          0.        ]
 [ 0.          0.          0.          1.          0.        ]
 [ 0.         -0.70710678  0.          0.          0.70710678]]

singular_value_decomposition(a, full_matrices=0)

This function returns three arrays V, S, and WT whose matrix product is the original matrix a. V and WT are
unitary matrices (rank-2 arrays), whereas S is the vector (rank-1 array) of diagonal elements of the s
value matrix. This function is mainly used to check whether (and in what way) a matrix is ill-conditioned

generalized_inverse(a, rcond=1e-10)

This function returns the generalized inverse (also known as pseudo-inverse or Moore-Penrose-invers
matrix a. It has numerous applications related to linear equations and least-squares problems.

determinant(a)

This function returns the determinant of the square matrix a.

linear_least_squares(a, b, rcond=e-10)

This function returns the least-squares solution of an overdetermined system of linear equations. An o
third argument indicates the cutoff for the range of singular values (defaults to 10-10). There are four
values: the least-squares solution itself, the sum of the squared residuals (i.e. the quantity minimized by
lution), the rank of the matrix a, and the singular values of a in descending order.

Compilation Notes

On some platforms, precompiled optimized versions of the LAPACK library are preinstalled on the ope
system, and the setup procedure needs to be modified to force the lapackmodule.c file to be linked agai
rather than the lapack_lite library.
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17. RandomArray Reference

The RandomArray.py module (in conjunction with the ranlibmodule.c file) provides a
high-level interface to the ranlib module, which provides a good quality C implementation
of a random-number generator.

Python Interface

seed(x=0, y=0)

The seed()  function takes two integers and sets the two seeds of the random number generator to those
If the default values of 0 are used for both x and y, then a seed is generated from the current time, pro
pseudo-random seed.

get_seed()

The get_seed()  function returns the two seeds used by the current random-number generator. It is m
ten used to find out what seeds the seed() function chose at the last iteration. [thread-safety issue?]

random(shape=ReturnFloat)

The random()  function takes a shape, and returns an array of double-precision floatings point numbe
tween 0.0 and 1.0. Neither 0.0 nor 1.0 is ever returned by this function. If no argument is specified, the fu
returns a single floating point number (not an array). The array is filled from the generator following the c
ical array organization (see discussion of the .flat  attribute)

uniform(minimum, maximum, shape=ReturnFloat)

The uniform()  function returns an array of the specified shape and containing double-precision flo
point random numbers strictly between minimum and maximum. If no shape is specified, a single num
returned.

randint(minimum, maximum, shape=ReturnFloat)

The randint()  function returns an array of the specified shape and containing random (standard) in
greater than or equal to minimum  and strictly less than maximum. If no shape is specified, a single number 
returned.

permutation(n)

The permutation()  function returns an array of the integers between 0 and n-1 , in an array of shape (n,) ,
and with its elements randomly permuted.

An example use of the RandomArray module (exact output will be different each time!):

>>> from RandomArray import *
>>> seed() # Set seed based on current time
>>> print get_seed() # Find out what seeds were used
(897800491, 192000)
>>> print random()
0.0528018975065
>>> print random((5,2))
[[ 0.14833829  0.99031458]
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 [ 0.7526806   0.09601787]
 [ 0.1895229   0.97674777]
 [ 0.46134511  0.25420982]
 [ 0.66132009  0.24864472]]
>>> print uniform(-1,1,(10,))
[ 0.72168852 -0.75374185 -0.73590945  0.50488248 -0.74462822  0.09293685
      -0.65898308  0.9718067  -0.03252475  0.99611011]
>>> print randint(0,100, (12,))
[28  5 96 19  1 32 69 40 56 69 53 44]
>>> print permutation(10)
[4 2 8 9 1 7 3 6 5 0]
>>> seed(897800491, 192000) # resetting the same seeds
>>> print random() # yields the same numbers
0.0528018975065

Floating point random arrays

standard_normal (shape=ReturnFloat) 

The standard_normal () function returns an array of the specified shape that contains double precision
point numbers normally (Gaussian) distributed with mean zero and variance and standard deviation on
shape is specified, a single number is returned. 

normal (mean, stddev, shape=ReturnFloat) 

The normal () function returns an array of the specified shape that contains double precision floating poin
bers normally distributed with the specified mean and standard deviation. If no shape is specified, a sing
ber is returned. 

multivariate_normal (mean, covariance) or 
multivariate_normal (mean, covariance, leadingAxesShape) 

The multivariate_normal () function takes a one dimensional array argument mean and a two dimension
argument covariance. Suppose the shape of mean is (n,). Then the shape of covariance must be (
multivariate_normal () function returns a double precision floating point array. The effect of the le
gAxesShape parameter is: 

• If no leadingAxesShape is specified, then an array with shape (n,) is returned containing a vector of n
with a multivariate normal distribution with the specified mean and covariance.

• If leadingAxesShape is specified, then an array of such vectors is returned. The shape of the output
ingAxesShape.append ((n,)). The leading indices into the output array select a multivariate normal fr
array. The final index selects one number from within the multivariate normal.

In either case, the behavior of multivariate_normal () is undefined if covariance is not symmetric and positive
definite. 

exponential (mean, shape=ReturnFloat) 

The exponential () function returns an array of the specified shape that contains double precision floatin
numbers exponentially distributed with the specified mean. If no shape is specified, a single number is re

beta (a, b, shape=ReturnFloat) 

The beta () function returns an array of the specified shape that contains double precision floating poin
bers beta distributed with alpha parameter a and beta parameter b. If no shape is specified, a single n
returned. 
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gamma (a, r, shape=ReturnFloat) 

The gamma () function returns an array of the specified shape that contains double precision floating poi
bers beta distributed with location parameter a and distribution shape parameter r. If no shape is specifie
gle number is returned. 

chi_square (df, shape=ReturnFloat) 

The chi_square() function returns an array of the specified shape that contains double precision floatin
numbers with the chi square distribution with df degrees of freedom. If no shape is specified, a single n
is returned. 

noncentral_chi_square (df, nonc, shape=ReturnFloat) 

The noncentral_chi_square() function returns an array of the specified shape that contains double p
floating point numbers with the chi square distribution with df degrees of freedom and noncentrality para
nconc. If no shape is specified, a single number is returned. 

F (dfn, dfd, shape=ReturnFloat) 

The F () function returns an array of the specified shape that contains double precision floating point n
with the F distribution with dfn degrees of freedom in the numerator and dfd degrees of freedom in the d
inator. If no shape is specified, a single number is returned. 

noncentral_F (dfn, dfd, nconc, shape=ReturnFloat) 

The noncentral_F () function returns an array of the specified shape that contains double precision f
point numbers with the F distribution with dfn degrees of freedom in the numerator, dfd degrees of free
the denominator, and noncentrality parameter nconc. If no shape is specified, a single number is return

Integer random arrays

binomial (trials, prob, shape=ReturnInt) 

The binomial () function returns an array with the specified shape that contains integer numbers with th
mial distribution with trials trials and event probability prob. In other words, each value in the returned a
the number of times an event with probability prob occurred within trials repeated trials. If no shape is
fied, a single number is returned. 

negative_binomial (trials, prob, shape=ReturnInt)

The negative_binomial () function returns an array with the specified shape that contains integer numbe
the negative binomial distribution with trials trials and event probability prob. If no shape is specified, a 
number is returned. 

poisson (mean, shape=ReturnInt) 

The poisson () function returns an array with the specified shape that contains integer numbers with the 
distribution with the specified mean. If no shape is specified, a single number is returned. 

multinomial (trials, probs) or multinomial (trials, probs, leadingAxesShape) 

The multinomial () function returns an array with that contains integer numbers with the multinomial dis
tion with trials trials and event probabilities given in probs. probs must be a one dimensional array. Th
len(probs)+1 events. probs[i] is the probability of the i-th event for 0<=i<len(probs). The probability of e
len(probs) is 1.-Numeric.sum(prob). 
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The first form returns an integer array of shape (len(probs)+1,) containing one multinomially distributed v
The second form returns an array of shape (m, n, ..., len(probs)+1) where (m, n, ...) is leadingAxesShap
case, each output[i,j,...,:] is an integer array of shape (len(prob)+1,) containing one multinomially distr
vector.. 

Examples

Most of the functions in this package take zero or more distribution specific parameters plus an optiona
parameter. The shape parameter gives the shape of the output array: 

>>> from RandomArray import *  
>>> print standard_normal()  
-0.435568600893 
>>> print standard_normal(5)  
[-1.36134553 0.78617644 -0.45038718 0.18508556 0.05941355] 
>>> print standard_normal((5,2))  
[[ 1.33448863 -0.10125473] 

[ 0.66838062 0.24691346] 
[-0.95092064 0.94168913] 
[-0.23919107 1.89288616] 
[ 0.87651485 0.96400219]] 

>>> print normal(7., 4., (5,2)) #mean=7, std. dev.=4 
[[ 2.66997623 11.65832615] 

[ 6.73916003 6.58162862] 
[ 8.47180378 4.30354905] 
[ 1.35531998 -2.80886841] 
[ 7.07408469 11.39024973]] 

>>> print exponential(10., 5) #mean=10 
[ 18.03347754 7.11702306 9.8587961 32.49231603 28.55408891] 
>>> print beta(3.1, 9.1, 5) # alpha=3.1, beta=9.1 
[ 0.1175056 0.17504358 0.3517828 0.06965593 0.43898219] 
>>> print chi_square(7, 5)  # 7 degrees of freedom (dfs) 
[ 11.99046516 3.00741053 4.72235727 6.17056274 8.50756836] 
>>> print noncentral_chi_square(7, 3, 5) # 7 dfs, noncentrality 3  
[ 18.28332138 4.07550335 16.0425396 9.51192093 9.80156231] 
>>> F(5, 7, 5) # 5 and 7 dfs  
array([ 0.24693671, 3.76726145, 0.66883826, 0.59169068, 1.90763224]) 
>>> noncentral_F(5, 7, 3., 5) # 5 and 7 dfs, noncentrality 3  
array([ 1.17992553, 0.7500126 , 0.77389943, 9.26798989, 1.35719634]) 
>>> binomial(32, .5, 5) # 32 trials, prob of an event = .5 
array([12, 20, 21, 19, 17]) 
>>> negative_binomial(32, .5, 5) # 32 trials: prob of an event = .5  
array([21, 38, 29, 32, 36])

Two functions that return generate multivariate random numbers (that is, random vectors with some kn
lationship between the elements of each vector, defined by the distribution). They are multivariate_no
and multinomial (). For these two functions, the lengths of the leading axes of the output may be specifi
length of the last axis is determined by the length of some other parameter. 

>>> multivariate_normal([1,2], [[1,2],[2,1]], [2,3])  
array([[[ 0.14157988, 1.46232224], 

 [-1.11820295, -0.82796288], 
 [ 1.35251635, -0.2575901 ]], 

 [[-0.61142141, 1.0230465 ], 
 [-1.08280948, -0.55567217], 
 [ 2.49873002, 3.28136372]]]) 
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>>> x = multivariate_normal([10,100], [[1,2],[2,1]], 10000)  
>>> x_mean = sum(x)/10000  
>>> print x_mean  
[ 9.98599893 100.00032416] 
>>> x_minus_mean = x - x_mean  
>>> cov = matrixmultiply(transpose(x_minus_mean), x_minus_mean) / 9999.  
>>> cov  
array([[ 2.01737122, 1.00474408], 
[ 1.00474408, 2.0009806 ]])

The a priori probabilities for a multinomial distribution must sum to one. The prior probability argume
multinomial () doesn't give the prior probability of the last event: it is computed to be one minus the sum
others. 

>>> multinomial(16, [.1, .4, .2]) # prior probabilities [.1, .4, .2, .3] 
array([2, 7, 1, 6]) 
>>> multinomial(16, [.1, .4, .2], [2,3]) # output shape [2,3,4]  
array([[[ 1, 9, 1, 5], 

 [ 0, 10, 3, 3], 
 [ 4, 9, 3, 0]], 

 [[ 1, 6, 1, 8], 
 [ 3, 4, 5, 4], 
 [ 1, 5, 2, 8]]])
100
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18. Independent Random Streams

The RNG package provides any number of independent random number generators tied to
a distribution. Distributions include exponential, normal, and log-normal distributions, but
adding others is not difficult. Contributions of code for other distributions are welcome! 

Background

RNG was written by Konrad Hinsen based on the package URNG by Paul Dubois and Fred Fritsch of 
This package has been released for unlimited redistribution. Please see “License and disclaimer for p
MA and RNG” on page 90.

Usage

Package RNG installs two modules: RNG.RNG, and RNG.ranf. The former is a C extension that does t
eration. The latter is an easy-to-use interface for a single uniform distribution.

Module RNG
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•  0 ; Use the default initial seed value. 

• <0: ; Set a random value for the seed from the system clock. 

• >0 ; Set seed directly (32 bits only). 

The default distribution is a uniform distribution on [0., 1.); other distributions ��� �����
�� � ����� �
�

� ����
� ������
� ����� ���� �� � �����������
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• UniformDistribution(a, b) -- a uniform distribution of numbers in the interval [a, b) 

• NormalDistribution(mu, sigma) -- a normal distribution with mean mu and standard deviation sigma 

• ExponentialDistribution(l) -- an exponential distribution of positive numbers with decay constant l. 

• LogNormalDistribution(mean, std) -- a log normal distribution with given mean and standard deviatio

Generator objects

Once a generator is created, it contains these methods:

• sample(n) will return an array of n samples from the generator.

• ranf() will return one sample from the generator.
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Module ranf

Module ranf, whose main function ranf() is equivalent to the old ranf generator on Cray 1 computers, d
these facilities.

Attribute standard_generator is an instance of RNG.UniformDistribution(0., 1.).

ranf(): returns a random number from the standard_generator.

random_sample(*n) returns a Numeric array of samples from the standard_generator.

random_sample(n) = array of n random numbers;
random_sample(n1, n2, ...)= array of shape (n1, n2, ..)

Examples
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Here is one function from RNGdemo.py, showing a test of a normal distribution.

from Numeric import *
import RNG

def test_normal (mean, std, n=10000):
    dist = RNG.NormalDistribution(mean, std)
    rng = RNG.CreateGenerator(0, dist)
    values = rng.sample(n)
    m = sum(values)/n
    s = sqrt(sum((values-m)**2)/n)
    return (m, s)
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19. Masked Arrays

Masked arrays are arrays that may have missing or invalid entries. Module MA provides a
work-alike replacement for Numeric that supports data arrays with masks.

What is a masked array?

Masked arrays are arrays that may have missing or invalid entries. Module MA provides a work-alike re
ment for Numeric that supports data arrays with masks. A mask is either None or an array of ones an
that determines for each element of the masked array whether or not it contains an invalid entry. The p
assures that invalid entries are not used in calculations. 

A particular element is said to be masked (invalid) if the mask is not None and the corresponding elemen
mask is 1; otherwise it is unmasked (valid). 

This package was written by Paul F. Dubois at Lawrence Livermore National Laboratory. Please see t
notice in the software and on “License and disclaimer for packages MA and RNG” on page 90.

Installing and using MA

MA is one of the optional Packages and installing it requires a separate step as explained in the N
README. To install just the MA package using Distutils, in the MA top directory enter:

python setup.py install

Use MA as a replacement for Numeric:

from MA import *
x = array([1, 2, 3])

To create an array with the second element invalid, we would do:

y = array([1, 2, 3], mask = [0, 1, 0])

To create a masked array where all values “near” 1.e20 are invalid, we can do:

z = masked_values ([1.0, 1.e20, 3.0, 4.0], 1.e20)

For a complete discussion of creation methods for masked arrays please see “Constructing masked a
page 106.

The Numeric module is an attribute in MA, so to execute a method foo from Numeric, you can reference it a
Numeric.foo(...).

Usually people use both MA and Numeric this way, but of course you can always fully-qualify the name

import MA
x = MA.array([1, 2, 3])

The principal feature of module MA is class MA, the class whose instances are returned by the array co
tors and most functions in module MA. We will discuss this class first, and later cover the attributes an
tions in module MA. For now suffice it to say that among the attributes of the module are the constant
module Numeric including those for declaring typecodes, NewAxis, and the mathematical constants su
and e. An additional typecode, MaskType, is the typecode used for masks.
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Class MA

In Module MA, an array is an instance of class MA, which is defined in the module MA. An instance of
MA can be thought of as containing the following parts:

• An array of data, of any shape;

• A mask of ones and zeros of the same shape as the data; and,

• A “fill value” -- this is a value that may be used to replace the invalid entries in order to return a plai
meric array. The chief method that does this is the method filled  discussed below.

We will use the terms “invalid value” and “invalid entry” to refer to the data value at a place correspond
a mask value of 1. It should be emphasized that the invalid values are never used in any computation, and tha
the fill value is not used for any computational purpose. When an instance x of class MA is converted to its
string representation, it is the result returned by filled (x) that is converted to a string.

Attributes of masked arrays

flat : (deprecated) returns the masked array as one-dimensional. This is provided for compatibility with N
ic. ravel (x) is preferred.

real: returns the real part of the array if complex.

imaginary: returns the imaginary part of the array if complex.

shape: The shape of a masked array can be accessed or changed by using the special attribute shape, as with
Numerical arrays.

shared_data: This read-only flag if true indicates that the masked array shared a reference with the o
data used to construct it at the time of construction. Changes to the original array will affect the masked
(This is not the default behavior; see “Copying or not?” on page 108.) This flag is informational only.

shared_mask: This read-only flag if true indicates that the masked array currently shares a reference to the
mask used to create it. Unlike shared_data, this flag may change as the result of modifying the array c
as the mask uses copy on write semantics if it is shared.

Methods on masked arrays. 
Table 6: Methods on masked arrays; attributes, constructors and operations 

discussed separately.

Method Description Sample syntax

astype (typecode) return self as array of given type. y = x.astype (Float32)

compressed () return an array of the valid elements. Result 
is one-dimensional.

y = x.compressed()

filled (fill_value=None) filled(self, self.fill_value()); see description 
of module method filled.

y = x.filled()

fill_value () Get the current fill value. v = x.fill_value ()

filled (value = None) Same as filled(self, value); see “The filled 
function” on page 106.

numar = x.filled ()

get_shape () Return the tuple giving the current shape. 
Same as shape attribute.

s = x.get_shape ()
s = x.shape 

ids () Return the ids of the data and mask areas id1, id2 = x.ids ()
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is_contiguous () Is the data area contiguous? See Numeric 
manual.

if x.is_contiguous ()

mask () Return the data mask, or None. m = x.mask ()

put (values) Set the value at each non-masked entry to 
the corresponding entry in values. The mask 
is unchanged. See also module method put.

x.put (values)

putmask (values) Eliminate any masked values by setting the 
value at each masked entry to the corre-
sponding entry in values. Set the mask to 
None.

x.putmask(values)
assert getmask(x) is None

raw_data () A reference to the non-filled data; portions 
may be meaningless. Expert use only.

d = x.raw_data ()

savespace (v) Set the spacesaver attribute to v. x.savespace (1)

set_fill_value () Set the fill value to v. Omit v to restore 
default.

x.set_fill_value (1.e21)

set_shape (args...) shape (n, m, ...) sets the shape. x.set_shape (3, 12)

size (axis) Number of elements in array, or in a partic-
ular axis.

totalsize = x.size ()
col_len = x.size (1)

spacesaver() Query the spacesave flag. flag = x.spacesaver()

unshare_mask() If shared_mask is currently true, replaces 
the reference to it with a copy.

x.unshare_mask()

typecode () Return the type of the data. See module Pre-
cision.

z = x.typecode()

Table 6: Methods on masked arrays; attributes, constructors and operations 
discussed separately.

Method Description Sample syntax
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Constructing masked arrays

1. array  (data, typecode = None, copy = 1, savespace = 0, mask = None, fill_value = None) creates a m
array with the given data and mask. The name array  is simply an alias for the class name, MA . This con-
structor sets the data area of the resulting masked array to filled  (data, value = fill_value, copy = copy,
savespace = savespace), the mask to make_mask (mask, savespace), and the fill value is set to fill_valu
The class name MA  may also be used instead of the name array.

2. masked_array (data, mask = None, fill_value = None) is an easier to use version of array, for the com-
mon case of typecode = None, copy = 0. When data is newly-created this function can be used to make i
masked array without copying the data if data is already a Numeric array.

3. masked_values (data, value, rtol=1.e-5, atol=1.e-8, typecode = None, copy = 1, savespace = 0) const
a masked array whose mask is set at those places where 
abs (data - value) < atol + rtol * abs (data). 
That is a careful way of saying that those elements of the data that have value = value (to within a toler-
ance) are to be treated as invalid. 

4. masked_object (data, value, copy=1, savespace=0) creates a masked array with those entries marke
invalid that are equal to value. Again, copy and savespace are passed on to the Numeric array constructo

On entry to any of these constructors, data must be any object which the Numeric package can accept to cr
an array (with the desired typecode, if specified). The mask if given must be None or any object that 
turned into a Numeric array of integer type (it will be converted to typecode MaskType, if necessary), ha
same shape as data, and contain only values of 0 or 1.

If the mask is not None but its shape does not match that of the data, the mask used will be 

Numeric.resize (mask, data.shape)

It is important to understand what resize does; in particular, it never fails, but either truncates or replicate
an effort to fill up the desired shape. If you use the constructors array and masked_array, and you suppl
argument, be sure it is the shape you desire. 

See Figure , “Copying or not?,” on page 108for a discussion of whether or not the resulting array shares
or its mask with the arguments given to these constructors.

The filled  function

�
Be sure to read this: filled is very important. It converts its argument to a plain Nu-
meric array.

filled  (x, value = None, copy=0) returns x with any invalid locations replaced by a fill value. filled  is guaranteed
to return a plain Numeric array. The argument x does not have to be a masked array or even an array, just s
thing that Numeric can turn into one.

• If x is not a masked array, and not a Numeric array, Numeric.array (x) is returned.

• If x is a Numeric array, and copy is zero, then x is returned. If copy is nonzero, a copy of the array is re

• If x is a masked array, but the mask is None, then its data array or a copy of it is returned depending
value of copy. 

• If x is a masked array with an actual mask, then an array formed by replacing the invalid entries withvalue,
or fill_value (x) if value is None, is returned. If the fill value used is of a different type or precision thax,
the result may be of a different type or precision than x.
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The function filled  plays a central role in our design. It is the “exit” back to Numeric, and is used whenev
invalid values must be replaced before an operation. For example, adding two masked arrays a and b is

masked_array(filled(a, 0)+filled(b, 0), mask_or(getmask(a), getmask(b))

That is, fill the invalid entries a and b with zeros, add them up, and declare any entry of the result invali
ther a or b was invalid at that spot. The functions getmask and mask_or are discussed later.

filled (x)  also can be used to simply be certain that some expression is a Numerical array at little cost. I
gument is a Numeric array already, it is returned without copying.

fill_value (x), and the method x.fill_value() of the same name on masked arrays, returns a value suitable fo
ing x based on its type. If x is a masked array, then x.fill_value () results. The returned value for a give
can be changed by assigning to these names in module MA: They should be set to scalars or one eleme

default_real_fill_value = Numeric.array([1.0e20], Float32)
default_complex_fill_value = Numeric.array([1.0e20 + 0.0j], Complex32)
default_character_fill_value = masked
default_integer_fill_value = Numeric.array([0]).astype(UnsignedInt8)
default_object_fill_value = masked

The variable masked is a module variable of MA and is discussed in “Working with Masks” on page 107. C
ing filled  with a fill_value of masked sometimes produces a useful printed representation of a masked a
The function fill_value works on any kind of object.

Working with Masks

Each of the following is defined in module MA:

is_mask (m) is true if m is of a type and precision that would be allowed as the mask field of a masked 
(that is, it is an array of integers with Numeric’s typecode MaskType, or it is None). To be a legal mam
should contain only zeros or ones, but this is not checked.

make_mask (m, copy=0, flag=0) returns an object whose entries are equal to m and for which is_mask would
return true. If m is already a mask or None, it returns m or a copy of it. Otherwise it will attempt to make a mas
so it will accept any sequence of integers of for m. If flag is true, make_mask returns None if its return value
otherwise would contain no true elements. To make a legal mask, m should contain only zeros or ones, but th
is not checked.

getmask (x) returns x.mask(), the mask of x, if x is a masked array, and None otherwise. Note that getmask 
return None if x is a masked array but has a mask of None.

getmaskarray (x) returns x.mask() if x is a masked array and has a mask that is not None; otherwise it re
a zero mask array of the same shape as x. Unlike getmask, getmaskarray always returns an Numeric arra
typecode MaskType.

mask_or (m1, m2) returns an object which when used as a mask behaves like the element-wise “logical
m1 and m2, where m1 and m2 are either masks or None (e.g., they are the results of calling getmask). A None
is treated as everywhere false. If both m1 and m2 are None, it returns None. If just one of them is None, it 
turns the other. If m1 and m2 refer to the same object, a reference to that object is returned.

masked is a module constant equal to an instance of a class that prints as the word ‘masked’ and wh
throw an exception of type MAError if any attempt is made to do arithmetic upon it. This constant is ret
when an indexing operation results in a scalar result at a masked location.

set_fill_value (a, fill_value) is the same as a.set_fill_value (fill_value) if a is a masked array; otherwise it 
nothing.
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Copying or not?

Depending on the arguments results of constructors may or may not contain a separate copy of the data
arguments. The easiest way to think about this is as follows: the given field, be it data or a mask, is req
be a Numerical array, possibly with a given typecode, and a mask’s shape must match that of the dat
copy argument is zero, and the candidate array otherwise qualifies, a reference will be made instead o
If for any reason the data is unsuitable as is, an attempt will be made to make a copy that is suitable. Sh
fail, an exception will be thrown. Thus, a copy=0 argument is more of a hope than a command.

Since the default behavior for masks is to use a reference if possible, rather than a copy, which produce
able time and space savings, it is especially important not to modify something you used as a mask argu
a masked array creation routine, if it was a Numeric array of typecode MaskType.

Behaviors

A masked array defines the conversion operators str (x), repr (x), float (x), and int (x) by applying the 
sponding operator to the Numeric array filled  (x)

Indexing and Slicing

Indexing and slicing differ from Numeric: while generally the same, they return a copy, not a reference
used in an expression that produces a non-scalar result. Consider this example:

from Numeric import *
x = array([1.,2.,3.])
y = x[1:]
y[0] = 9.
print x

This will print [1., 9., 3.] since x[1:] returns a reference to a portion of x. Doing the same operation using

from MA import *
x = array([1.,2.,3.])
y = x[1:]
y[0] = 9.
print x

will print [1., 2., 3.], while y will be a separate array whose present value would be [9., 3.]. While sentime
the correct semantics here is divided amongst the Numeric community as a whole, it is not divided amon
author’s community, on whose behalf this package is written.

Indexing that produces a scalar result

If indexing into a masked array with one or more indices produces a scalar result, then a scalar value is 
rather than a one-element masked array. This raises the issue of what to return if that location is mask
answer is that the module constant masked, discussed above, is returned.

Assignment to elements and slices

Assignment of a normal value to a single element or slice of a masked array has the effect of clearing th
in those locations. In this way previously invalid elements become valid. The value being assigned is fille
so that you are guaranteed that all the elements on the left-hand side are now valid. 

Assignment of None to a single element or slice of a masked array has the effect of setting the mask 
locations, and the locations become invalid.

Since these operations change the mask, the result afterwards will no longer share a mask, since ma
copy-on-write semantics.
108



•
M

a
sked

 A
rrays

s for

u-

-
mething

at it “re-

also be

 also be

 0’s.
Module MA: Attributes

Constants e, pi, NewAxis from Numeric, and the constants from module Precision that define nice name
the typecodes. 

The special variable masked is discussed in “The instance masked” on page 111. 

The module Numeric is an element of MA, so after from MA import *, you can refer to the functions in N
meric such as Numeric.ones.

Module MA: Functions

Each of the operations discussed below returns an instance of class MA , having performed the desired opera
tion element-wise. In most cases the array arguments can be masked arrays or Numeric arrays or so
that Numeric can turn into a Numeric array, such as a list of real numbers.

Where Numeric has a function of the same name, the behavior of the one in MA is the same, except th
spects” the mask.

Unary functions

The result of a unary operation will be masked wherever the original operand was masked. It may 
masked if the argument is not in the domain of the function. Functions available are: 

sqrt, log, log10, exp, conjugate, sin, cos, tan, arcsin, arccos, arctan, sinh, cosh, tanh, absolute, fabs, nega-
tive (also as operator -x), nonzero, around, floor .

fabs (x) is the absolute value of x as a Float32 array. The other functions have their standard meaning.

Binary functions

Binary functions return a result that is masked wherever either of the operands were masked; it may
masked where the arguments are not in the domain of the function.

add (also as operator +), subtract (also as operator -), multiply  (also as operator *), divide (also as operator /
), power (also as operator **), remainder, fmod, hypot, arctan2, bitwise_and, bitwise_or, bitwise_xor.

Comparison operators

�
Due to limitations in Python, it is not meaningful to compare arrays using the sym-
bolic comparison operators such as “<“. Unfortunately, you can do it; the result just 
won’t mean anything.

To compare arrays, use the following binary functions. Each of them returns a masked array of 1’s and

equal, not_equal, less_equal, greater_equal, less, greater

Note that as in Numeric, you can use a scalar for one argument and an array for the other. 

Logical operators

Arrays of logical values can be manipulated with:

logical_not (unary), logical_or, logical_and, logical_xor.
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alltrue  (x) returns 1 if all elements of x are true. Masked elements are treated as true.

sometrue (x) returns 1 if any element of x is true. Masked elements are treated as false.

Special array operators

isarray (x), isMA (x) return true if x is a masked array.

rank  (x) is the number of dimensions in x. 

shape (x) returns the shape of x, a tuple of array extents.

resize (x, new_shape) returns a new array with specified shape.

reshape (x, new_shape) returns a copy of x with the given new shape. 

ravel (x) returns x as one-dimensional.

concatenate (arrays, axis=0) concatenates the arrays along the specified axis.

identity  (n) returns the identity matrix of shape n by n.

indices (dimensions, typecode = None) returns an array representing a grid of indices with row-only an
umn-only variation.

len (x) is defined to be x.size (). This differs from standard Numeric, where len (x) is not helpful.

size (x, axis = None) is the total size of x, or the length of a particular dimension axis whose index is 
When axis is given the dimension of the result is one less than the dimension of x.

count (x, axis = None) counts the number of (non-masked) elements in the array, or in the array along a
axis.When axis is given the dimension of the result is one less than the dimension of x.

arange, arrayrange, ones, and zeros are the same as in Numeric, but return masked arrays.

sum, product, and average are called the same way as count; the difference is that the result is the sum,
uct, or average respectively of the unmasked elements.

allclose (x, y, fill_value = 1, rtol = 1.e-5, atol = 1.e-8) tests whether or not arrays x and y are equal sub
the given relative and absolute tolerances. If fill_value is 1, masked values are considered equal, otherw
are considered different. The formula used for elements where both x and y have a valid value is:

| x - y | < atol + rtol * | y |

This means essentially that both elements are small compared to atol or their difference divided by the
is small compared to rtol.

allequal (x, y, fill_value = 1) is similar to allclose, except that exact equality is demanded.

take (a, indices, axis=0) returns a selection of items from a. See the documentation in the Numeric man

put (a, indices, values) is the opposite of take . The values of the array a at the locations specified in indi-
ces  are set to the corresponding value of values . The array a must be a contiguous array. The argument i
dices can be any integer sequence object with values suitable for indexing into the flat form of a. The argument
v must be any sequence of values that can be converted to the typecode of a.
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>>> x = arange(6)
>>> put(x, [2,4], [20,40])
>>> print x
[ 0  1 20  3 40  5 ]

Note that the target array a is not required to be one-dimensional. Since it is contiguous and stored in row-m
order, the array indices  can be treated as indexing a’s elements in storage order. 

The wrinkle on this for masked arrays is that if the locations being set by put are masked, the mask is cl
those locations.

choose (condition, t) has a result shaped like condition. t must be a tuple of two arrays t1 and t2. Each e
of the result is the corresponding element of t1 where condition is true, and the corresponding eleme
where condition is false. The result is masked where condition is masked or where the selected ele
masked.

where (condition, x, y) returns an array that is filled (x) where condition is true, filled (y) where the cond
is false, and masked where any of the three arguments is masked. This is not really right, needs work.

innerproduct  (a, b) and dot (a, b) work as in Numeric, but missing values don’t contribute. The result is alw
a masked array, possibly of length one, because of the possibility that one or more entries in it may be
since all the data contributing to that entry was invalid.

compress (condition, x, dimension=-1) compresses out only those valid values where condition is true.

maximum (x, y = None) and minimum (x, y = None) compute the minimum and maximum valid values o
if y is None; with two arguments, they return the element-wise larger or smaller of valid values, and ma
result where either x or y is masked.

sort (x, axis=-1, value = None) returns the array x sorted along the given axis, with masked values treated a
they have a sort value of value but they are masked in the result.

argsort (x, axis = -1, fill_value = None) is unusual in that it returns a Numeric array, equal to 
Numeric.argsort (filled (x, fill_value), axis); this is an array of indices for sorting along a given axis.

Controlling the size of the string representations

The functions get_print_limit () and set_print_limit (n=0) query and set the limit for converting arrays usin
str() or repr (). If an array is printed that is larger than this, the values are not printed; rather you are in
of the type and size of the array. If n is zero, the standard Numeric conversion functions are used.

When imported, MA sets this limit to 300, and the limit is also made to apply to standard Numeric arr
well.

Helper classes

This section discusses other classes defined in module MA.

MAError

Class MAError inherits from Exception, used to raise exceptions in the MA module. Other exceptions a
sible, such as errors from the underlying Numeric module.

The instance masked

A privately named class has one instance, the special instance named masked, in Module MA. This instance
serves several purposes.
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1. When a indexing operation on an MA instance returns a scalar result, but the location indexed was m
then masked is returned. For example, given a one-dimensional array x such that x.mask(3) is 1, then x[3
is masked.

2. When masked is assigned to elements of an array via indexing or slicing, those elements become ma
So after x[3] = masked, x[3] is masked.

3. masked.display() is a string that may be used to indicate those elements of an array that are masked
the array is converted to a string, as happens with the print statement. 

4. masked.set_display (string) can be used to change the value; the default is ‘--’.

5. masked.enable(flag) can be used to enable (flag = 1, default) the use of the display string. If disabled
(flag=0), the conversion to string becomes equivalent to str(self.filled()).

6. masked.enabled() returns the state of the display-enabling flag.

7. Most operations on masked will result in an exception being raised.

Example of masked behavior

>>> from MA import *
>>> x=arange(10)
>>> x[3] = masked
>>> print x
[0 ,1 ,2 ,-- ,4 ,5 ,6 ,7 ,8 ,9 ,]
>>> print repr(x)
*** Masked array, mask present ***
Data:
[0 ,1 ,2 ,-- ,4 ,5 ,6 ,7 ,8 ,9 ,]
Mask (fill value [0,])
[0,0,0,1,0,0,0,0,0,0,]

>>> print x[3]
--
>>> print x[3] + 1.0
Traceback (innermost last):
  File "<stdin>", line 1, in ?
  File "/pcmdi/dubois/prerelease/linux/lib/python1.5/site-packages/MA/
__init__.py", line 62, in nope
    raise MAError, 'Cannot do requested operation with a masked value.'
MA.MAError: Cannot do requested operation with a masked value.

Class masked_unary_function

Given a unary array function f (x), masked_unary_function (f, fill = 0, domain = None) is a function which
when applied to an argument x returns f applied to the array filled (x, fill), with a mask equal to 
mask_or (getmask (x), domain (x)). 

The argument domain therefore should be a callable object that returns true where x is not in the dom
The following domains are also supplied as members of module MA:

• domain_check_interval (a, b) (x) = true where x < a or y > b.

• domain_tan (eps) (x) is true where abs (cos (x)) < eps, that is, a domain suitable for the tangent fun

• domain_greater (v) (x) is true where x <= v.

• domain_greater_equal (v) (x) is true where x < v.

Class masked_binary_function

Given a binary array function f (x, y), masked_binary_function (f, fillx=0, filly=0, domain=None) define
function whose value at x is f (filled (x, fillx), filled (y, filly)) with a resulting mask of mask_or (getmask 
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getmask (y), mask_or’d again with those locations where domain (x, y) is true. The values fillx and filly
be chosen so that (fillx, filly) is in the domain of f. 

In addition, an instance of masked_binary_function has two methods defined upon it:

• reduce (target, axis = 0)

• accumulate (target, axis = 0)

These methods perform reduction and accumulation as discussed in the section “Ufuncs have special m
on page 40.

The following domains are available for use as the domain argument:

• domain_safe_divide () (x, y) is true where absolute(x)*1.e-35 > absolute (y). As the comments in th
say, “better ideas welcome”. This domain is used for the divide operator.

ActiveAttributes

MA contains a subpackage, MA.activeattr, which defines the class ActiveAttributes. Class MA inherits
ActiveAttributes. 

An active attribute is a name, say active, that appears to be an attribute of a class instance but which in fa
implemented by a triplet of functions, one each corresponding to the operations x.active, x.active = value, and
del x.active. To create such an attribute, you inherit from ActiveAttributes and in your classes’ initializa
routine you do:

ActiveAttributes.__init__(self) # safe for multiple inheritance
self.add_active_attribute_handler (“ active ”, self. actg , 

self.acts , self. actd )

Here actg, acts, and actd are the three handlers, which should be methods of this class with signatures a
acts(self, value), and actd(self). The last two arguments to add_active_attribute_handler can be None, 
case the “active” attribute will behave as if it is read-only.

The “attributes” shape, flat, real, and imag in class MA are actually “active” attributes.

ActiveAttributes also contains methods:

def get_active_attribute_handler (self, name):
        "Get current attribute handler associated with a name."
def get_active_attributes (self):
        "Return the list of attributes that have handlers."
def get_attribute_mode (self, name):
        "Get the mode of an attribute readonly ('r') or writeable ('w')."
def get_basic_attribute_handler (self):

“Returns the underlying methods that handle the three events.”
def remove_active_attribute_handler (self, name):

“Remove the ‘active’ behavior for name.”

Examples of Using MA

Data with a given value representing missing data

Suppose we have read a one-dimensional list of elements named x. We also know that if any of the values ar
1.e20, they represent missing data. We want to compute the average value of the data and the vector 
tions from average.

>>> from MA import *
>>> x = arange(5)
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>>> x[2] = 1.e20
>>> y = masked_values (x, 1.e20)
>>> print average(y)
2.0
>>> print y-average(y)
[ -2.00000000e+00, -1.00000000e+00,  --,  1.00000000e+00,
        2.00000000e+00,]

Filling in the missing data

Suppose now that we wish to print that same data, but with the missing values replaced by the average

>>> print filled (y, average(y))

Numerical operations

We can do numerical operations without worrying about missing values, dividing by zero, square roots 
ative numbers, etc.

>>> from MA import *
>>> x=array([1., -1., 3., 4., 5., 6.], mask=[0,0,0,0,1,0])
>>> y=array([1., 2., 0., 4., 5., 6.], mask=[0,0,0,0,0,1])
>>> print sqrt(x/y)
[  1.00000000e+00,  --,  --,  1.00000000e+00, --,  --,]

Note that four values in the result are invalid: one from a negative square root, one from a divide by ze
two more where the two arrays x and y had invalid data. Since the result was of a real type, the print co
printed str (filled (sqrt (x/y))).

Seeing the mask

There are various ways to see the mask. One is to print is directly, the other is to convert to the repr rep
tion, and a third is get the mask itself. Use of getmask(x) is more robust than x.mask(), since it will wo
turning None) if x is a Numeric array or list.

>>> x=arange(10)
>>> x[3:5] = masked
>>> print x
[0 ,1 ,2 ,-- ,-- ,5 ,6 ,7 ,8 ,9 ,]
>>> print repr(x)
*** Masked array, mask present ***
Data:
[0 ,1 ,2 ,-- ,-- ,5 ,6 ,7 ,8 ,9 ,]
Mask (fill value [0,])
[0,0,0,1,1,0,0,0,0,0,]

>>> print getmask(x)
[0,0,0,1,1,0,0,0,0,0,]

Filling it your way

If we want to print the data with -1’s where the elements are masked, we use filled .

>>> print filled(z, -1)      
[ 1.,-1.,-1., 1.,-1.,-1.,]
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