Python Audio Tools Documentation
Release 2.17

Brian Langenberger

April 03, 2011

CONTENTS

1 audiotools — the Base Python Audio Tools Module 3
1.1 AudioFile Objects e 5
1.2 MetaData Objects L e e e e 9
1.3 AlbumMetaData ObjJects o v i e e e e e e e e e e e e e e e 11
1.4 AlbumMetaDataFile Objects o . i e e e e e e e e 11
1.5 TImage Objects o i i i e e e e e e e e e e e e 13
1.6 ReplayGain Objects e 13
1.7 PCMReader Objects o v v ittt e e e e e e e 14
1.8 ChannelMask ObJectS i v i e e e e e e e e e e e e e e e e e e 17
1.9 CDDA ODBJECES . . v o v v o e 18
[.1I0 DVDAudio Objects o i it e e e e e e e e e e 19
1.11 ExecQueue Objects. o i e 21
1.12 ExecProgressQueue Objects i i i i e e e e e e e e 22
1.13 Messenger ObJectS o v v v e e e e e e e e 23
1.14 ProgressDisplay Objects o v i i e e e e e e e e e e e e 26
2 audiotools.pcm — the PCM FrameList Module 29
2.1 FrameList Objects o o o e e e e 30
2.2 FloatFrameList ObJects o i i e e e e e e e e e e e e e 31
3 audiotools.resample — the Resampler Module 33
3.1 Resampler Objects o o o i e e e e e e e e e e e e e e e e e 33
4 audiotools.replaygain — the ReplayGain Calculation Module 35
4.1 ReplayGain Objects i it e e e e e e 35
4.2 ReplayGainReader Objects i v v i i e e e e e e e e e e e e 35
5 audiotools.cdio — the CD Input/Output Module 37
5.1 CDDA ODJECES .« . v v vt e e i e e e e e e e e e e e 37
6 audiotools.cue — the Cuesheet Parsing Module 39
6.1 Cuesheet Objects o o o o e e 39
7 audiotools.toc — the TOC File Parsing Module 41
7.1 TOCFile Objects o v v i e e e e e e e e e e e 41
8 audiotools.player — the Audio Player Module 43
8.1 Player Objects e e 43
8.2 CDPlayer Objects v v i it e et e e e e e e e e e e e 44
8.3 AudioOutput Objects o o i e e e e e e e e e e 44

9 Meta Data Formats

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9

M4A

10 Indices and tables

Python Module Index

Index

47
47
49
50
51
53
55
58
58
59

61

63

65

Python Audio Tools Documentation, Release 2.17

Contents:

CONTENTS 1

Python Audio Tools Documentation, Release 2.17

2 CONTENTS

CHAPTER
ONE

AUDIOTOOLS — THE BASE PYTHON
AUDIO TOOLS MODULE

audiotools.VERSION
The current Python Audio Tools version as a plain string.

audiotools.AVAILABLE_TYPES

The audiotools module contains a number of useful base classes and functions upon which all of the other modules
depend.

A tuple of AudioFile-compatible classes of available audio types. Note these are types available to au-
diotools, not necessarily available to the user - depending on whether the required binaries are installed or not.

Class
AACAudio
AiffAudio
ALACAudio
AuAudio
FlacAudio
M4AAudio
MP3Audio
MP2Audio
OggFlacAudio
ShortenAudio
SpeexAudio
VorbisAudio
WaveAudio
WavPackAudio

Format

AAC in ADTS container

Audio Interchange File Format
Apple Lossless

Sun Au

Native Free Lossless Audio Codec
AAC in M4A container
MPEG-1 Layer 3

MPEG-1 Layer 2

Ogg Free Lossless Audio Codec
Shorten

Ogg Speex

Ogg Vorbis

Waveform Audio File Format
WavPack

audiotools.TYPE_MAP

A dictionary of type_name strings -> AudioF i le values containing only types which have all required binaries

installed.

audiotools.BIN

A dictionary-like class for performing lookups of system binaries. This checks the system and user’s config
files and ensures that any redirected binaries are called from their proper location. For example, if the user has

configured £lac (1) to be run from /opt/flac/bin/flac

>>> BIN["flac"]

"/opt/flac/bin/flac"

This class also has a can_execute () method which returns True if the given binary is executable.

Python Audio Tools Documentation, Release 2.17

>>> BIN.can_execute (BIN["flac"])
True

audiotools.open (filename)
Opens the given filename string and returns an AudioF ile-compatible object. Raises UnsupportedFile
if the file cannot identified or is not supported. Raises TOError if the file cannot be opened at all.

audiotools.open_files (ﬁlenames[, sorted[, messenger]])
Given a list of filename strings, returns a list of AudioF i1le-compatible objects which can be successfully
opened. By default, they are returned sorted by album number and track number. If sorted is False, they
are returned in the same order as they appear in the filenames list. If messenger is given, use that Messenger
object to for warnings if files cannot be opened. Otherwise, such warnings are sent to stdout.

audiotools.open_directory (directory[, sorted[, messenger]])
Given a root directory, returns an iterator of all the AudioF i 1e-compatible objects found via a recursive search
of that directory. sorted, and messenger work as in open_files ().

audiotools.group_tracks (audiofiles)
Given an iterable collection of AudioF ile-compatible objects, returns an iterator of objects grouped into
lists by album. That is, all objects with the same album_name and album_number metadata fields will be
returned in the same list on each pass.

audiotools.filename_to_type (path)
Given a path, try to guess its AudioF1ile class based on its filename suffix. Raises UnknownAudioType
if the suffix is unrecognized. Raises AmbiguousAudioType if more than one type of audio shares the same
suffix.

audiotools.transfer_data (from_function, to_function)
This function takes two functions, presumably analogous to write () and read () functions, respectively. It
calls to_function on the object returned by calling from_function with an integer argument (presum-
ably a string) until that object’s length is 0.

>>> infile = open("input.txt","r")

>>> outfile = open("output.txt","w")

>>> transfer_data(infile.read,outfile.write)
>>> infile.close ()

>>> outfile.close()

audiotools.transfer_ framelist_data (pcmreader, to_function[, signed[, big_endian]])
A natural progression of transfer_data (), this function takes a PCMReader object and transfers the
pcm.FrameList objects returned by its PCMReader . read () method to to_function after converting
them to plain strings.

>>> pcm_data = audiotools.open("file.wav") .to_pcm()
>>> outfile = open ("output.pcm", "wb")

>>> transfer_framelist_data (pcm_data,outfile)

>>> pcm_data.close ()

>>> outfile.close ()

audiotools.pem_cmp (pcmreaderl, pcmreader2)
This function takes two PCMReader objects and compares their PCM output. Returns True if that output
matches exactly, False if not.

audiotools.stripped_pecm_cmp (pcmreaderl, pcmreader?)
This function takes two PCMReader objects and compares their PCM output after stripping any O samples
from the beginning and end of each. Returns True if the remaining output matches exactly, False if not.

audiotools.pcm_frame_cmp (pcmreaderl, pcmreader2)
This function takes two PCMReade r objects and compares their PCM frame output. It returns the frame number

4 Chapter 1. audiotools — the Base Python Audio Tools Module

Python Audio Tools Documentation, Release 2.17

of the first mismatch as an integer which begins at frame number 0. If the two streams match completely, it
returns None. May raise IOError or ValueError if problems occur during reading.

audiotools.pem_split (pcmreader, pcm_lengths)
Takes a PCMReader object and list of PCM sample length integers. Returns an iterator of new PCMReader
objects, each limited to the given lengths. The original pcmreader is closed upon the iterator’s completion.

audiotools.applicable_replay_gain (audiofiles)
Takes a list of AudioF i1e-compatible objects. Returns True if ReplayGain can be applied to those files based
on their sample rate, number of channels, and so forth. Returns False if not.

audiotools.calculate_replay gain (audiofiles)
Takes a list of AudioFile-compatible objects. Returns an iterator of (audiofile, track_gain,
track_peak, album_gain, album_peak) tuples or raises ValueError if a problem occurs during
calculation.

audiotools.read _metadata_file (path)
Given a path to a FreeDB XMCD file or MusicBrainz XML file, returns an AlbumMetaDataF i 1e-compatible
object or raises a MetaDataFileException if the file cannot be read or parsed correctly.

audiotools.read_sheet (filename)
Reads a Cuesheet-compatible file such as toc.TOCFile or cue.Cuesheet or raises SheetException
if the file cannot be opened, identified or parsed correctly.

audiotools.to_pem_progress (audiofile, progress)
Given an AudioF ile-compatible object and progress function, returns a PCMReaderProgress object
of that object’s PCM stream.

If progress is None, the audiofile’s PCM stream is returned as-is.

1.1 AudioFile Objects

class audiotools.AudioFile
The AudioF1ile class represents an audio file on disk, such as a FLAC file, MP3 file, WAVE file and so forth. It
is not meant to be instantiated directly. Instead, functions such as open () will return AudioF i 1e-compatible
objects with the following attributes and methods.

AudioFile.NAME
The name of the format as a string. This is how the format is referenced by utilities via the -¢ option, and must
be unique among all formats.

AudioFile.SUFFIX
The default file suffix as a string. This is used by the % (suffix) s format field in the t rack_name () class-
method, and by the filename_to_type () function for inferring the file format from its name. However, it
need not be unique among all formats.

AudioFile.COMPRESSION_ MODES
A tuple of valid compression level strings, for use with the from_pcm () and convert () methods. If the
format has no compression levels, this tuple will be empty.

AudioFile.DEFAULT_COMPRESSION
A string of the default compression level to use with from_pcm () and convert (), if none is given. This is
not the default compression indicated in the user’s configuration file; it is a hard-coded value of last resort.

AudioFile.COMPRESSION_ DESCRIPTIONS
A dict of compression descriptions, as unicode strings. The key is a valid compression mode string. Not all
compression modes need have a description; some may be left blank.

1.1. AudioFile Objects 5

Python Audio Tools Documentation, Release 2.17

AudioFile.BINARIES
A tuple of binary strings required by the format. For example, the Vorbis format may require "oggenc" and
"oggdec™" in order to be available for the user.

AudioFile.REPLAYGAIN_BINARIES
A tuple of binary strings required for ReplayGain application. For example, the Vorbis format may require
"vorbisgain" in order to use the add_replay_gain () classmethod. This tuple may be empty if the
format requires no binaries or has no ReplayGain support.

classmethod AudioFile.is_type (file)
Takes a file-like object with read () and seek () methods that’s reset to the beginning of the stream. Returns
True if the file is determined to be of the same type as this particular AudioFile implementation. Returns
False if not.

AudioFile.bits_per_sample ()
Returns the number of bits-per-sample in this audio file as a positive integer.

AudioFile.channels ()
Returns the number of channels in this audio file as a positive integer.

AudioFile.channel _mask ()
Returns a ChannelMask object representing the channel assignment of this audio file. If the channel assign-
ment is unknown or undefined, that Channe1Mask object may have an undefined value.

AudioFile.sample_rate ()
Returns the sample rate of this audio file, in Hz, as a positive integer.

AudioFile.total frames ()
Returns the total number of PCM frames in this audio file, as a non-negative integer.

AudioFile.cd_frames ()
Returns the total number of CD frames in this audio file, as a non-negative integer. Each CD frame is 1/75th of
a second.

AudioFile.seconds_length ()
Returns the length of this audio file as a decimal.Decimal number of seconds.

AudioFile.lossless ()
Returns True if the data in the audio file has been stored losslessly. Returns False if not.

AudioFile.set_metadata (metadata)
Takes a MetaData-compatible object and sets this audio file’s metadata to that value, if possible. Raises
IOError if a problem occurs when writing the file.

AudioFile.get_metadata ()
Returns a Met aDat a-compatible object representing this audio file’s metadata, or None if this file contains no
metadata. Raises TOError if a problem occurs when reading the file.

AudioFile.delete_metadata ()
Deletes the audio file’s metadata, removing or unsetting tags as necessary. Raises IOError if a problem occurs
when writing the file.

AudioFile.to_pcm()
Returns this audio file’s PCM data as a PCMReade r-compatible object. May return a PCMReaderError if
an error occurs initializing the decoder.

classmethod AudioFile. from_pecm (filename, pcmreader[, compression])
Takes a filename string, PCMReader-compatible object and optional compression level string. Creates a new
audio file as the same format as this audio class and returns a new AudioFile-compatible object. Raises
EncodingError if a problem occurs during encoding.

In this example, we’ll transcode track . flac to track .mp3 at the default compression level:

6 Chapter 1. audiotools — the Base Python Audio Tools Module

Python Audio Tools Documentation, Release 2.17

>>> audiotools.MP3Audio.from _pcm("track.mp3",
audiotools.open("track.flac") .to_pcm())

AudioFile.convert (filename, target_class[, Compression[, progress]])
Takes a filename string, AudioF1ile subclass and optional compression level string. Creates a new audio file
and returns an object of the same class. Raises EncodingError if a problem occurs during encoding.

In this example, we’ll transcode track . flac to track.mp3 at the default compression level:

>>> audiotools.open("track.flac") .convert ("track.mp3",
audiotools.MP3Audio)

Why have both a convert method as well as to_pcm/from_pcm methods? Although the former is often
implemented using the latter, the pcm methods alone contain only raw audio data. By comparison, the convert
method has information about what is the file is being converted to and can transfer other side data if necessary.

For example, if .wav file with non-audio RIFF chunks is converted to WavPack, this method will preserve those
chunks:

>>> audiotools.open ("chunks.wav") .convert ("chunks.wv",
audiotools.WavPackAudio)

whereas the t o_pcm/f rom_pcm method alone will not.

The optional progress argument is a function which takes two integer arguments: amount_processed
and total_ amount. If supplied, this function is called at regular intervals during the conversion process
and may be used to indicate the current status to the user. Note that these numbers are only meaningful when
compared to one another; amount may represent PCM frames, bytes or anything else. The only restriction is
that total_amount will remain static during processing and amount_processed will progress from 0 to
total_amount.

>>> def print_progress(x, y):
print " "% (x x 100 / y)

>>> audiotools.open("track.flac") .convert ("track.wv",
audiotools.WavPackAudio,
progress=print_progress)

AudioFile.verify ([progress])
Verifies the track for correctness. Returns True if verification is successful. Raises an InvalidFile subclass
if some problem is detected. If the file has built-in checksums or other error detection capabilities, this method
checks those values to ensure it has not been damaged in some way.

The optional progress argument functions identically to the one provided to convert (). Thatis, it takes a
two integer argument function which is called at regular intervals to indicate the status of verification.

AudioFile.track_number ()
Returns this audio file’s track number as a non-negative integer. This method first checks the file’s metadata
values. If unable to find one, it then tries to determine a track number from the track’s filename. If that method
is also unsuccessful, it returns 0.

AudioFile.album number ()
Returns this audio file’s album number as a non-negative integer. This method first checks the file’s metadata
values. If unable to find one, it then tries to determine an album number from the track’s filename. If that method
is also unsuccessful, it returns 0.

classmethod AudioFile.track_name (file _path[, track_metadata[, format[, suﬁix]]])
Given a file path string and optional Met aDat a-compatible object a UTF-8 encoded Python format string, and
an ASCII-encoded suffix string, returns a filename string with the format string fields filled-in. If not provided by

1.1. AudioFile Objects 7

Python Audio Tools Documentation, Release 2.17

metadata, t rack_number and album_number will be determined from file_path, if possible. Raises
UnsupportedTracknameField if the format string contains unsupported fields.

Currently supported fields are:

Field Value

% (album_name) s track_metadata.album_name

% (album_number) s track_metadata.album_number

% (album_total)s track_metadata.album_total

% (album_track_number)s | album_number combined with t rack_number
% (artist_name) s track_metadata.artist_name

% (catalog)s track_metadata.catalog

% (comment) s track_metadata.comment

% (composer_name) s track_metadata.composer_name
% (conductor_name) s track_metadata.conductor_name
% (copyright)s track_metadata.copyright

% (date) s track_metadata.date

%$(ISRC) s track_metadata.ISRC

% (media) s track_metadata.year

% (performer_name) s track_metadata.performer_name
% (publisher) s track_metadata.publisher

% (suffix) s the AudioFile suffix

% (track_name) s track_metadata.track_name

% (track_number) 2.2d track_metadata.track_number

% (track_total)s track_metadata.track_total

% (year)s track_metadata.year

% (basename) s file_path basename without suffix

classmethod AudioFile.add_replay gain (ﬁlenames[, progress])
Given a list of filename strings of the same class as this AudioFile class, calculates and adds ReplayGain
metadata to those files. Raises ValueError if some problem occurs during ReplayGain calculation or ap-
plication. progress, if indicated, is a function which takes two arguments that is called as needed during
ReplayGain application to indicate progress - identical to the argument used by convert ().

classmethod AudioFile.can_add_replay_gain()
Returns True if this audio class supports ReplayGain and we have the necessary binaries to apply it. Returns
False if not.

classmethod AudioFile.lossless_replay gain|()
Returns True if this audio class applies ReplayGain via a lossless process - such as by adding a metadata tag
of some sort. Returns False if applying metadata modifies the audio file data itself.

AudioFile.replay_gain ()
Returns this audio file’s ReplayGain values as a ReplayGain object, or None if this audio file has no values.

AudioFile.set_cuesheet (cuesheet)
Takes a cuesheet-compatible object with catalog (), IRSCs (), indexes () and pcm_lengths () meth-
ods and sets this audio file’s embedded cuesheet to those values, if possible. Raises IOError if this
AudioFile supports embedded cuesheets but some error occurred when writing the file.

AudioFile.get_cuesheet ()
Returns a cuesheet-compatible object with catalog (), IRSCs (), indexes () and pcm_lengths ()
methods or None if no cuesheet is embedded. Raises TOError if some error occurs when reading the file.

classmethod AudioFile.has_binaries (system_binaries)
Takes the audiotools.BIN object of system binaries. Returns True if all the binaries necessary to imple-
ment this AudioFile-compatible class are present and executable. Returns False if not.

8 Chapter 1. audiotools — the Base Python Audio Tools Module

Python Audio Tools Documentation, Release 2.17

1.1.1 WaveContainer Objects

This is an abstract AudioF i le subclass suitable for extending by formats that store RIFF WAVE chunks internally,
such as Wave, FLAC, WavPack and Shorten. It overrides the AudioFile.convert () method such that any stored
chunks are transferred properly from one file to the next. This is accomplished by implementing three additional
methods.

class audiotools.WaveContainer

WaveContainer.to_wave (wave_ﬁlename[, progress])
Creates a Wave file with the given filename string from our data, with any stored chunks intact. progress, if
given, functions identically to the AudioFile.convert () method. May raise EndodingError if some
problem occurs during encoding.

classmethod WaveContainer. from_wave (filename, wave jlename[, compression[, progress]])
Like AudioFile.from_pcm(), creates a file with our class at the given filename string, from the
given wave_filename string and returns a new object of our class. compression is an optional com-
pression level string and progress functions identically to that of AudioFile.convert (). May raise
EndodingError if some problem occurs during encoding.

WaveContainer.has_foreign riff chunks ()
Returns True if our object has non-audio RIFF WAVE chunks.

1.1.2 AiffContainer Objects

Much like WaveContainer, this is an abstract AudioFile subclass suitable for extending by formats that store
AIFF chunks internally, such as AIFF, FLAC and Shorten. It overrides the AudioFile.convert () method such
that any stored chunks are transferred properly from one file to the next. This is accomplished by implementing three
additional methods.

class audiotools.AiffContainer

AiffContainer.to_aiff (aiﬁ‘_ﬁlename[, progress])
Creates an AIFF file with the given filename string from our data, with any stored chunks intact. progress, if
given, functions identically to the AudioFile.convert () method. May raise EndodingError if some
problem occurs during encoding.

classmethod AiffContainer.from_aiff (filename, aiff _ﬁlename[, compression[, progress]])
Like AudioFile.from_pcm(), creates a file with our class at the given filename string, from the
given aiff_filename string and returns a new object of our class. compression is an optional com-
pression level string and progress functions identically to that of AudioFile.convert (). May raise
EndodingError if some problem occurs during encoding.

AiffContainer.has_foreign_aiff chunks ()
Returns True if our object has non-audio AIFF chunks.

1.2 MetaData Objects

class audiotools.MetaData ([track_name[, track_number[, track_total [, album_name[, artist_name[,
performer_name|, composer_name|, conductor_name[, media[, ISRC [
catalog[, copyright[, publisher[, year[, data[, album number[, al-

bum_totall, comment[, images 1 11111T11111T11111D

The MetaData class represents an AudioFile‘s non-technical metadata. It can be instantiated directly
for use by the set_metadata () method. However, the get_metadata () method will typically return
MetaData-compatible objects corresponding to the audio file’s low-level metadata implementation rather than

1.2. MetaData Objects 9

Python Audio Tools Documentation, Release 2.17

actual MetaData objects. Modifying fields within a Met aDat a-compatible object will modify its underlying
representation and those changes will take effect should set_metadata () be called with that updated object.

The images argument, if given, should be an iterable collection of ITmage-compatible objects.

MetaData.track_name
This individual track’s name as a Unicode string.

MetaData.track_number
This track’s number within the album as an integer.

MetaData.track total
The total number of tracks on the album as an integer.

MetaData.album_name
The name of this track’s album as a Unicode string.

MetaData.artist_name
The name of this track’s original creator/composer as a Unicode string.

MetaData.performer_name
The name of this track’s performing artist as a Unicode string.

MetaData.composer_name
The name of this track’s composer as a Unicode string.

MetaData.conductor_name
The name of this track’s conductor as a Unicode string.

MetaData.media
The album’s media type, such as u”CD”, u”tape”, u”LP”, etc. as a Unicode string.

MetaData.ISRC
This track’s ISRC value as a Unicode string.

MetaData.catalog
This track’s album catalog number as a Unicode string.

MetaData.year
This track’s album release year as a Unicode string.

MetaData.date
This track’s album recording date as a Unicode string.

MetaData.album_ number
This track’s album number if it is one of a series of albums, as an integer.

MetaData.album_total
The total number of albums within the set, as an integer.

MetaData.comment
This track’s comment as a Unicode string.

classmethod MetaData.converted (metadata)
Takes a MetaDat a-compatible object (or None) and returns a new MetaData object of the same class, or
None. For instance, VorbisComment .converted () returns VorbisComment objects. The purpose of
this classmethod is to offload metadata conversion to the metadata classes themselves. Therefore, by using the
VorbisComment .converted () classmethod, the VorbisAudio class only needs to know how to handle
VorbisComment metadata.

Why not simply handle all metadata using this high-level representation and avoid conversion altogether? The
reason is that Met aData is often only a subset of what the low-level implementation can support. For example,
a VorbisComment may contain the FOO’ tag which has no analogue in MetaData‘s list of fields. But

10 Chapter 1. audiotools — the Base Python Audio Tools Module

Python Audio Tools Documentation, Release 2.17

when passed through the VorbisComment .converted () classmethod, that FOO’ tag will be preserved
as one would expect.

The key is that performing:

>>> track.set_metadata (track.get_metadatal())

should always round-trip properly and not lose any metadata values.

classmethod MetaData.supports_images ()
Returns True if this Met aData implementation supports images. Returns False if not.

MetaData.images ()
Returns a list of Image-compatible objects this metadata contains.

MetaData.front_covers ()
Returns a subset of images () which are marked as front covers.

MetaData.back_covers ()
Returns a subset of images () which are marked as back covers.

MetaData.leaflet_pages ()
Returns a subset of images () which are marked as leaflet pages.

MetaData.media_images ()
Returns a subset of images () which are marked as media.

MetaData.other_images ()
Returns a subset of images () which are marked as other.

MetaData.add_image (image)
Takes a Tmage-compatible object and adds it to this metadata’s list of images.

MetaData.delete_image (image)
Takes an Tmage from this class, as returned by images (), and removes it from this metadata’s list of images.

MetaData.merge (new_metadata)
Updates this metadata by replacing empty fields with those from new_metadata. Non-empty fields are left
as-is.

1.3 AlbumMetaData Objects

class audiotools.AlbumMetaData (metadata_iter)
This is a dictionary-like object of track_number -> MetaData values. It is designed to represent metadata
returned by CD lookup services such as FreeDB or MusicBrainz.

AlbumMetaData.metadata ()
Returns a single MetaData object containing all the fields that are consistent across this object’s collection of
MetaData.

1.4 AlbumMetaDataFile Objects

class audiotools.AlbumMetaDataFile (album_name, artist_name, year, catalog, extra,

o track_metadata)
This is an abstract parent class to audiotools.XMCD and audiotools.MusicBrainzReleaseXML.

It represents a collection of album metadata as generated by the FreeDB or MusicBrainz services. Modifying
fields within an AlbumMetaDataF ile-compatible object will modify its underlying representation and those

1.3. AlbumMetaData Objects 11

Python Audio Tools Documentation, Release 2.17

changes will be present when to_string () is called on the updated object. Note that audiotools.XMCD
doesn’t support the catalog field while audiotools.MusicBrainzReleaseXML doesn’t support the extra
fields.

AlbumMetaDataFile.album_ name
The album’s name as a Unicode string.

AlbumMetaDataFile.artist_name
The album’s artist’s name as a Unicode string.

AlbumMetaDataFile.year
The album’s release year as a Unicode string.

AlbumMetaDataFile.catalog
The album’s catalog number as a Unicode string.

AlbumMetaDataFile.extra
The album’s extra information as a Unicode string.

AlbumMetaDataFile.__len__ ()
The total number of tracks on the album.

AlbumMetaDataFile.to_string ()
Returns the on-disk representation of the file as a binary string.

classmethod AlbumMetaDataFile.from_string (string)
Given a binary string, returns an AlbumMetaDataFile object of the same class. Raises
MetaDataFileException if a parsing error occurs.

AlbumMetaDataFile.get_track (index)
Given a track index (starting from 0), returns a (track_name, track_artist, track_extra) tuple of Unicode strings.
Raises IndexError if the requested track is out-of-bounds.

AlbumMetaDataFile.set_track (index, track_name, track_artist, track_extra)
Given a track index (starting from 0) and a set of Unicode strings, sets the appropriate track information. Raises
IndexError if the requested track is out-of-bounds.

classmethod AlbumMetaDataFile.from_tracks (fracks)
Given a set of AudioF1ile objects, returns an AlbumMetaDataFile object of the same class. All files are
presumed to be from the same album.

classmethod AlbumMetaDataFile.from_cuesheet (cuesheet, total_frames, sample_rate[, metadata

D
Given a Cuesheet-compatible object with catalog (), IRSCs (), indexes () and pcm_lengths ()

methods; total_frames and sample_rate integers; and an optional Met aDat a object of the entire album’s meta-
data, returns an A1bumMetaDataF1ile object of the same class constructed from that data.

AlbumMetaDataFile.track_metadata (track_number)
Given a track_number (starting from 1), returns a Met aDat a object of that track’s metadata.

Raises IndexError if the track is out-of-bounds.

AlbumMetaDataFile.get (track_number, default)
Given a track_number (starting from 1), returns a Met aDat a object of that track’s metadata, or returns default
if that track is not present.

AlbumMetaDataFile.track metadatas ()
Returns an iterator over all the MetaData objects in this file.

AlbumMetaDataFile.metadata ()
Returns a single Met aData object of all consistent fields in this file. For example, if album_name is the same
in all MetaData objects, the returned object will have that album_name value. If track_name differs, the returned
object have a blank track_name field.

12 Chapter 1. audiotools — the Base Python Audio Tools Module

Python Audio Tools Documentation, Release 2.17

1.5 Image Objects

class audiotools.Image (data, mime_type, width, height, color_depth, color_count, description, type)
This class is a container for image data.

Image.data
A plain string of raw image bytes.

Image .mime_type
A Unicode string of this image’s MIME type, such as u’image/jpeg’

Image.width
This image’s width in pixels as an integer.

Image.height
This image’s height in pixels as an integer
Image.color_depth
This image’s color depth in bits as an integer. 24 for JPEG, 8 for GIF, etc.

Image.color_ count
For palette-based images, this is the number of colors the image contains as an integer. For non-palette images,
this value is 0.

Image.description
A Unicode string of this image’s description.

Image.type
An integer representing this image’s type.

Value | Type

0 front cover

1 back cover

2 leaflet page

3 media

4 other

Image.suffix ()
Returns this image’s typical filename suffix as a plain string. For example, JPEGs return " jpg"

Image.type_string /()
Returns this image’s type as a plain string. For example, an image of type O returns "Front Cover"

classmethod Image . new (image_data, description, type)
Given a string of raw image bytes, a Unicode description string and image type integer, returns an Image-
compatible object. Raises InvalidImage If unable to determine the image type from the data string.

Image.thumbnail (width, height, format)
Given width and height integers and a format string (such as "JPEG") returns a new Image object resized to
those dimensions while retaining its original aspect ratio.

1.6 ReplayGain Objects

class audiotools.ReplayGain (track_gain, track_peak, album_gain, album_peak)
This is a simple container for ReplayGain values.

ReplayGain.track_gain
A float of a track’s ReplayGain value.

1.5. Image Objects 13

Python Audio Tools Documentation, Release 2.17

ReplayGain.track_peak
A float of a track’s peak value, from 0.0 to 1.0

ReplayGain.album gain
A float of an album’s ReplayGain value.

ReplayGain.album_peak
A float of an album’s peak value, from 0.0 to 1.0

1.7 PCMReader Objects

class audiotools.PCMReader (file, sample_rate, channels, channel_mask, bits _per_sample[, process[,
signed[, big_endian]]])
This class wraps around file-like objects and generates pcm.FrameList objects on each call to read ().
sample_rate, channels, channel_mask and bits_per_sample should be integers. process is a
subprocess helper object which generates PCM data. signed is True if the generated PCM data is signed.
big_endianis True if the generated PCM data is big-endian.

Note that PCMReader-compatible objects need only implement the sample_rate, channels,
channel_mask and bits_per_sample fields. The rest are helpers for converting raw strings into
pcm.FramelList objects.

PCMReader.sample_rate
The sample rate of this audio stream, in Hz, as a positive integer.

PCMReader.channels
The number of channels in this audio stream as a positive integer.

PCMReader.channel_ mask
The channel mask of this audio stream as a non-negative integer.

PCMReader.bits_per_ sample
The number of bits-per-sample in this audio stream as a positive integer.

PCMReader .read (byfes)
Try toread a pcm. FrameLi st object of size bytes, if possible. This method is not guaranteed to read that
amount of bytes. It may return less, particularly at the end of an audio stream. It may even return FrameLists
larger than requested. However, it must always return a non-empty FrameList until the end of the PCM stream
is reached. May raise IOError if there is a problem reading the source file, or ValueError if the source file
has some sort of error.

PCMReader.close ()
Closes the audio stream. If any subprocesses were used for audio decoding, they will also be closed and waited
for their process to finish. May raise a DecodingError, typically indicating that a helper subprocess used
for decoding has exited with an error.

1.7.1 PCMReaderError Objects

class audiotools.PCMReaderError (error_message, sample_rate, channels, channel_mask,

bits_per_sample)
This is a subclass of PCMReader which always returns empty pcm.FrameList objects and always raises

a DecodingError with the given error_message when closed. The purpose of this is to postpone er-
ror generation so that all encoding errors, even those caused by unsuccessful decoding, are restricted to the
from_pcm () classmethod which can then propagate the DecodingError error message to the user.

14 Chapter 1. audiotools — the Base Python Audio Tools Module

Python Audio Tools Documentation, Release 2.17

1.7.2 PCMConverter Objects

class audiotools.PCMConverter (pcmreader, sample_rate, channels, channel_mask, bits_per_sample)
This class takes an existing PCMReader-compatible object along with a new set of sample_rate,
channels, channel_mask and bits_per_sample values. Data from pcmreader is then automati-
cally converted to the same format as those values.

PCMConverter.sample_rate
If the new sample rate differs from pcmreader‘s sample rate, audio data is automatically resampled on each
call to read ().

PCMConverter.channels
If the new number of channels is smaller than pcmreader ‘s channel count, existing channels are removed or
downmixed as necessary. If the new number of channels is larger, data from the first channel is duplicated as
necessary to fill the rest.

PCMConverter.channel mask
If the new channel mask differs from pcmreader‘s channel mask, channels are removed as necessary such
that the proper channel only outputs to the proper speaker.

PCMConverter.bits_per_ sample
If the new bits-per-sample differs from pcmreader‘s number of bits-per-sample, samples are shrunk or en-
larged as necessary to cover the full amount of bits.

PCMConverter.read ()
This method functions the same as the PCMReader . read () method.

PCMConverter.close ()
This method functions the same as the PCMReader.close () method.

1.7.3 BufferedPCMReader Objects

class audiotools.BufferedPCMReader (pcmreader)
This class wraps around an existing PCMReader object. Its calls to read () are guaranteed to return
pcm.FrameList objects as close to the requested amount of bytes as possible without going over by buffering
data internally.

The reason such behavior is not required is that we often don’t care about the size of the individual FrameLists
being passed from one routine to another. But on occasions when we need pcm.FrameList objects to be of
a particular size, this class can accomplish that.

1.7.4 ReorderedPCMReader Objects

class audiotools.ReorderedPCMReader (pcmreader, channel_order)
This class wraps around an existing PCMReader object. It takes a list of channel number integers (which
should be the same as pcmreader ‘s channel count) and reorders channels upon each call to read () .

For example, to swap channels 0 and 1 in a stereo stream, one could do the following:

>>> reordered = ReorderedPCMReader (original, [1, 01])

Calls to reordered. read () will then have the left channel on the right side and vice versa.

1.7. PCMReader Objects 15

Python Audio Tools Documentation, Release 2.17

1.7.5 PCMCat Objects

class audiotools.PCMCat (pcmreaders)
This class wraps around an iterable group of PCMReader objects and concatenates their output into a single
output stream.

Warning: PCMCat does not check that its input PCMReader objects all have the same sample rate, channels,
channel mask or bits-per-sample. Mixing incompatible readers is likely to trigger undesirable behavior from any
sort of processing - which often assumes data will be in a consistent format.

1.7.6 PCMReaderWindow Objects

class audiotools.PCMReaderWindow (pcmreader, initial_offset, total_pcm_frames)
This class wraps around an existing PCMReader object and truncates or extends its samples as needed.
initial_offset, if positive, indicates how many PCM frames to truncate from the beginning of the stream.
If negative, the beginning of the stream is padded by that many PCM frames - all of which have a value of
0. total_pcm_frames indicates the total length of the stream as a non-negative number of PCM frames.
If shorter than the actual length of the PCM reader’s stream, the reader is truncated. If longer, the stream is
extended by as many PCM frames as needed. Again, padding frames have a value of 0.

1.7.7 LimitedPCMReader Objects

class audiotools.LimitedPCMReader (buffered_pcmreader, total_pcm_frames)
This class wraps around an existing BufferedPCMReader and ensures that no more than
total_pcm_frames will be read from that stream by limiting reads to it.

Note: PCMReaderWindow is designed primarly for handling sample offset values in a CDTrackReader, or for
skipping a potentially large number of samples in a stream. LimitedPCMReader is designed for splitting a stream
into several smaller streams without losing any PCM frames.

Which to use for a given situation depends on whether one cares about consuming the samples outside of the sub-reader
or not.

1.7.8 PCMReaderProgress Objects

class audiotools.PCMReaderProgress (pcmreader, total_frames, progress)
This class wraps around an existing PCMReader object and generates periodic updates to a given progress
function. total_frames indicates the total number of PCM frames in the PCM stream.

>>> progress_display = SingleProgressDisplay (Messenger ("audiotools"), u"encoding file'")
>>> pcmreader = source_audiofile.to_pcm()
>>> source_frames = source_audiofile.total_ frames ()
>>> target_audiofile = AudioType.from_pcm("target_filename",
PCMReaderProgress (pcmreader,
source_frames,
progress_display.update))

16 Chapter 1. audiotools — the Base Python Audio Tools Module

Python Audio Tools Documentation, Release 2.17

1.8 ChannelMask Objects

class audiotools.ChannelMask (mask)
This is an integer-like class that abstracts channel assignments into a set of bit fields.

Mask
0x1

0x2

0x4
0x8
0x10
0x20
0x40
0x80
0x100
0x200
0x400
0x800
0x1000
0x2000
0x4000
0x8000
0x10000
0x20000

Speaker

front_left
front_right
front_center
low_frequency
back_left

back_right
front_left_of center
front_right_of_center
back_center
side_left

side_right
top_center
top_front_left
top_front_center
top_front_right
top_back_left
top_back_center
top_back_right

All channels in a pcm. FrameLi st will be in RIFF WAVE order as a sensible convention. But which channel
corresponds to which speaker is decided by this mask. For example, a 4 channel PCMReader with the channel
mask 0x33 corresponds to the bits 00110011

Reading those bits from right to left (least significant first) the front_left, front_right, back_left,
back_right speakers are set. Therefore, the PCMReader’s 4 channel FrameLists are laid out as follows:

O0.front_left

l.front_right

2.back_left

3.back_right

Since the front_center and low_frequency bits are not set, those channels are skipped in the returned

FrameLists.

Many formats store their channels internally in a different order. Their PCMReader objects will be expected to
reorder channels and set a ChannelMask matching this convention. And, their from_pcm () classmethods
will be expected to reverse the process.

A ChannelMask of 0 is “undefined”, which means that channels aren’t assigned to any speaker. This is an
ugly last resort for handling formats where multi-channel assignments aren’t properly defined. In this case, a
from_pcm () classmethod is free to assign the undefined channels any way it likes, and is under no obligation
to keep them undefined when passing back out to to_pcm ()

ChannelMask.defined ()
Returns True if this mask is defined.

ChannelMask.undefined ()
Returns True if this mask is undefined.

ChannelMask.channels ()
Returns the speakers this mask contains as a list of strings in the order they appear in the PCM stream.

1.8. ChannelMask Objects

17

Python Audio Tools Documentation, Release 2.17

ChannelMask.index (channel_name)
Given a channel name string, returns the index of that channel within the PCM stream. For example:

>>> mask = ChannelMask (0xB) #fL, fR, LFE, but no fC
>>> mask.index ("low_frequency")
2

classmethod ChannelMask . from_fields (**fields)
Takes channel names as function arguments and returns a Channe1Mask object.

>>> mask = ChannelMask.from_ fields (front_right=True,
front_left=True,

. front_center=True)
>>> int (mask)
7

classmethod ChannelMask . from_channels (channel_count)
Takes a channel count integer and returns a ChannelMask object.

Warning: from_channels () only works for 1 and 2 channel counts and is meant purely as a convenience
method for mono or stereo streams. All other values will trigger a ValueError

1.9 CDDA Obijects

class audiotools.CDDA (device[, speed[, perform_logging]])
This class is used to access a CD-ROM device. It functions as a list of CDTrackReader objects, each repre-
senting a CD track and starting from index 1.

>>> cd = CDDA("/dev/cdrom")

>>> len(cd)

17

>>> cd[1]

<audiotools.CDTrackReader instance at 0x170def0>
>>> cd[17]

<audiotools.CDTrackReader instance at 0x1341b00>

If True, perform_logging indicates that track reads should generate CDTrackLog entries. Otherwise,
no logging is performed.

Warning: perform_logging also determines the level of multithreading allowed during CD reading. If
logging is active, CDTrackReader‘s read method will block all other threads until the read is complete. If
logging is inactive, a read will not block other threads. This is an unfortunate necessity due to libcdio’s callback
mechanism implementation.

CDDA.length ()
The length of the entire CD, in sectors.

CDDA.first_sector ()
The position of the first sector on the CD, typically 0.

CDDA.last_sector ()
The position of the last sector on the CD.

18 Chapter 1. audiotools — the Base Python Audio Tools Module

Python Audio Tools Documentation, Release 2.17

1.9.1 CDTrackReader Objects

class audiotools.CDTrackReader (cdda, track_number[, perform_logging])
These objects are usually retrieved from CDDA objects rather than instantiated directly. Each is a PCMReader-
compatible object with a few additional methods specific to CD reading.

CDTrackReader.rip_log
A CDTrackLog object indicating cdparanoia’s results from reading this track from the CD. This attribute
should be checked only after the track has been fully read.

CDTrackReader.offset ()
Returns the offset of this track within the CD, in sectors.

CDTrackReader.length ()
Returns the total length of this track, in sectors.

1.9.2 CDTrackLog Objects

class audiotools.CDTrackLog
This is a dictionary-like object which should be retrieved from CDTrackReader rather than instantiated di-
rectly. Its __str___ () method will return a human-readable collection of error statistics comparable to what’s
returned by the cdda2wav program.

1.10 DVDAudio Objects

class audiotools.DVDAudio (audio_ts_path[, device])
This class is used to access a DVD-Audio. It contains a collection of titlesets. Each titleset contains a list of
DVDATit le objects, and each DVDATit le contains a list of DVDATrack objects. audio_ts_path is the
path to the DVD-Audio’s AUDIO_TS directory, such as /media/cdrom/AUDIO_TS. device is the path to
the DVD-Audio’s mount device, such as /dev/cdrom.

For example, to access the 3rd DVDATrack object of the 2nd DVDATit 1e of the first titleset, one can simply
perform the following:

>>> track = DVDAudio (path) [0][1][2]

Note: If device is indicated and the AUDIO_TS directory contains a DVDAUDIO.MKB file, unprotection will be
performed automatically if supported on the user’s platform. Otherwise, the files are assumed to be unprotected.

1.10.1 DVDATitle Objects

class audiotools.DVDATitle (dvdaudio, titleset, title, pts_length, tracks)
This class represents a single DVD-Audio title. dvdaudio is a DVDAudio object. titleset and title
are integers indicating this title’s position in the DVD-Audio - both offset from 0. pt s_length is the the total
length of the title in PTS ticks (there are 90000 PTS ticks per second). t racks is a list of DVDAT rack objects.

It is rarely instantiated directly; one usually retrieves titles from the parent DVDAudio object.

DVDATitle.dvdaudio
The parent DVDAudio object.

DVDATitle.titleset
An integer of this title’s titleset, offset from 0.

1.10. DVDAudio Objects 19

Python Audio Tools Documentation, Release 2.17

DVDATitle.title
An integer of this title’s position within the titleset, offset from O.

DVDATitle.pts_length
The length of this title in PTS ticks.

DVDATitle.tracks
A list of DVDATrack objects.

DVDATitle.info ()
Returns a (sample_rate, channels, channel_mask, bits_per_sample, type) tuple of integers.
type is 0xAQ if the title is a PCM stream, or 0xA1 if the title is an MLP stream.

DVDATitle.stream()
Returns an AOBSt ream object of this title’s data.

DVDATitle.to_pcm()
Returns a PCMReade r-compatible object of this title’s entire data stream.

1.10.2 DVDATrack Objects

class audiotools.DVDATrack (dvdaudio, titleset, title, track, first_pts, pts_length, first_sector,

last_sector)
This class represents a single DVD-Audio track. dvdaudio is a DVDAudio object. titleset, title and

track are integers indicating this track’s position in the DVD-Audio - all offset from 0. first_pts is the
track’s first PTS value. pts_length is the the total length of the track in PTS ticks. first_sector and
last_sector indicate the range of sectors this track occupies.

It is also rarely instantiated directly; one usually retrieves tracks from the parent DVDATit 1e object.

DVDATrack.dvdaudio
The parent DVDAudio object.

DVDATrack.titleset
An integer of this tracks’s titleset, offset from 0.

DVDATrack.title
An integer of this track’s position within the titleset, offset from O.

DVDATrack.track
An integer of this track’s position within the title, offset from O.

DVDATrack.first_pts
The track’s first PTS index.

DVDATrack.pts_length
The length of this track in PTS ticks.

DVDATrack.first_sector
The first sector this track occupies.

Warning: The track is not guaranteed to start at the beginning of its first sector. Although it begins within that
sector, the track’s start may be offset some arbitrary number of bytes from the sector’s start.

DVDATrack.last_sector
The last sector this track occupies.

20 Chapter 1. audiotools — the Base Python Audio Tools Module

Python Audio Tools Documentation, Release 2.17

1.10.3 AOBStream Objects

class audiotools.AOBStream (aob_files, first_sector, last_sector[, unprotector])
This is a stream of DVD-Audio AOB data. It contains several convenience methods to make unpacking that
data easier. aob_files is alist of complete AOB file path strings. first_sector and last_sector are
integers indicating the stream’s range of sectors. unprotector is a function which takes a string of binary
sector data and returns an unprotected binary string.

AOBStream.sectors ()
Iterates over a series of 2048 byte, binary strings of sector data for the entire AOB stream. If unprotector is
present, those sectors are returned unprotected.

AOBStream.packets ()
Iterates over a series of packets by wrapping around the sectors iterator. Each sector contains one or more
packets. Packets containing audio data (that is, those with a stream ID of 0xBD) are returned while non-audio
packets are discarded.

AOBStream.packet_payloads ()
Iterates over a series of packet data by wrapping around the packets iterator. The payload is the packet with its
ID, CRC and padding removed. Concatenating all of a stream’s payloads results in a complete MLP or PCM
stream suitable for passing to a decoder.

1.11 ExecQueue Objects

class audiotools.ExecQueue
This is a class for executing multiple Python functions in parallel across multiple CPUs.

ExecQueue.execute (function, args[, kwargs])
Queues a Python function, list of arguments and optional dictionary of keyword arguments.

ExecQueue. run ([max_processes])
Executes all queued Python functions, running max_processes number of functions at a time until the entire
queue is empty. This operates by forking a new subprocess per function, executing that function and then,
regardless of the function’s result, the child job performs an unconditional exit.

This means that any side effects of executed functions have no effect on ExecQueue’s caller besides those which
modify files on disk (encoding an audio file, for example).

class audiotools.ExecQueue2
This is a class for executing multiple Python functions in parallel across multiple CPUs and receiving results
from those functions.

ExecQueue?2 .execute (function, args[, kwargs])
Queues a Python function, list of arguments and optional dictionary of keyword arguments.

ExecQueue?2.run ([max_processes])
Executes all queued Python functions, running max_processes number of functions at a time until the entire
queue is empty. Returns an iterator of the returned values of those functions. This operates by forking a
new subprocess per function with a pipe between them, executing that function in the child process and then
transferring the resulting pickled object back to the parent before performing an unconditional exit.

Queued functions that raise an exception or otherwise exit uncleanly yield None. Likewise, any side effects of
the called function have no effect on ExecQueue’s caller.

1.11. ExecQueue Objects 21

Python Audio Tools Documentation, Release 2.17

1.12 ExecProgressQueue Objects

class audiotools.ExecProgressQueue (progress_display)
This class runs multiple jobs in parallel and displays their progress output to the given ProgressDisplay
object.

ExecProgressQueue.results
A dict of results returned by the queued functions once executed. The key is an integer starting from 0.

Note: Why not a list? Since jobs may finish in an arbitrary order, a dict is used so that results can be accumulated
out-of-order. Even using placeholder values such as None may not be appropriate if queued functions return None as
a significant value.

ExecProgressQueue.execute (function[, progress_text[, completion_output[, *args[, **kwargs]]]

Queues a Python function for execution. This function is passed the optional args and kwargs arguments
upon execution. However, this function is also passed an additional progress keyword argument which
is a function that takes current and total integer arguments. The executed function can then call that
progress function at regular intervals to indicate its progress.

If given, progress_text is a unicode string to be displayed while the function is being executed.

completion_output is displayed once the executed function is completed. It can be either a unicode string
or a function whose argument is the returned result of the executed function and which must output a unicode
string.

ExecProgressQueue.run ([max_processes])
Executes all the queued functions, running max_processes number of functions at a time until the
entire queue is empty. This operates by forking a new subprocess per function in which the running
progress and function output are piped to the parent for display to the screen or accumulation in the
ExecProgressQueue.results dict.

If an exception occurs in one of the subprocesses, that exception will be raised by
ExecProgressQueue.run () and all the running jobs will be terminated.

>>> def progress_function (progress, filename):
perform work here
progress (current, total)
more work

result.a = a
result.b = Db
result.c = c

return result

>>> def format_result (result):

o

return u" " % (result.a, result.b, result.c)

>>> queue = ExecProgressQueue (ProgressDisplay (Messenger ("executable")))
>>> queue.execute (function=progress_function,
progress_text=u" progress" % (filenamel),
completion_output=format_result,
filename=filenamel)

>>> queue.execute (function=progress_function,
progress_text=u" progress" % (filename2),
completion_output=format_result,
filename=filename?2)

22 Chapter 1. audiotools — the Base Python Audio Tools Module

Python Audio Tools Documentation, Release 2.17

>>> queue.run ()
>>> queue.results

1.13 Messenger Objects

class audiotools.Messenger (executable_name, options)
This is a helper class for displaying program data, analogous to a primitive logging facility. It takes a raw
executable_name string and optparse.OptionParser object. Its behavior changes depending on
whether the opt ions object’s verbosity attribute is "normal", "debug" or "silent".

Messenger .output (string)
Outputs Unicode st ring to stdout and adds a newline, unless verbosity level is "silent™".

Messenger.partial_output (string)
Output Unicode string to stdout and flushes output so it is displayed, but does not add a newline. Does
nothing if verbosity level is "silent".

Messenger.info (string)
Outputs Unicode st ring to stdout and adds a newline, unless verbosity level is "silent™".

Messenger.partial_info (string)
Output Unicode string to stdout and flushes output so it is displayed, but does not add a newline. Does
nothing if verbosity level is "silent".

Note: What’s the difference between Messenger.output () and Messenger.info()?
Messenger.output () is for a program’s primary data. Messenger.info () is for incidental informa-
tion. For example, trackinfo uses Messenger.output () for what it displays since that output is its primary
function. But track2track uses Messenger.info () forits lines of progress since its primary function is converting
audio and tty output is purely incidental.

Messenger.warning (string)
Outputs warning text, Unicode st ring and a newline to stderr, unless verbosity level is "silent".

>>> m = audiotools.Messenger ("audiotools",options)
>>> m.warning (u"Watch Out!")
*%% Warning: Watch Out!

Messenger.error (string)
Outputs error text, Unicode st ring and a newline to stderr.

>>> m.error (u"Fatal Error!")
*xx Error: Fatal Error!

Messenger.os_error (0serror)
Given an OSError object, displays it as a properly formatted error message with an appended newline.

Note: This is necessary because of the way OSError handles its embedded filename string. Using this method
ensures that filename is properly encoded when displayed. Otherwise, there’s a good chance that non-ASCII filenames
will be garbled.

Messenger .usage (string)
Outputs usage text, Unicode st ring and a newline to stderr.

1.13. Messenger Objects 23

Python Audio Tools Documentation, Release 2.17

>>> m.usage (u"<argl> <arg2> <arg3>")
*%x% Usage: audiotools <argl> <arg2> <arg3>

Messenger . filename (string)

Takes a raw filename string and converts it to a Unicode string.

Messenger.new_row ()

This method begins the process of creating aligned table data output. It sets up a new row in our output table to
which we can add columns of text which will be aligned automatically upon completion.

Messenger.output_column (string[, right_aligned])
This method adds a new Unicode string to the currently open row. If right_aligned is True, its text will
be right-aligned when it is displayed. When you’ve finished with one row and wish to start on another, call
Messenger.new_row () again.

Messenger.blank_row ()

This method adds a completely blank row to its table data. Note that the first row within an output table cannot

be blank.

Messenger.output_rows ()

Formats and displays the entire table data through the Messenger . output () method (which will do nothing
if verbosity levelis "silent™").

>>> m.new_row ()
>>> m.output_column (u"a", True)
>>> m.output_column (u” ", True)
>>> m.output_column (u"This is some test data")
>>> m.new_row ()
>>> m.output_column (u"ab", True)
>>> m.output_column (u" ", True)
>>> m.output_column (u"Another row of test data")
>>> m.new_row ()
>>> m.output_column (u"abc", True)
>>> m.output_column (u” ", True)
>>> m.output_column (u"The final row of test data")
>>> m.output_rows ()
a : This is some test data
ab : Another row of test data
abc : The final row of test data

Messenger.info_rows ()

Functions like Messenger.output_rows (), but displays output via Messenger.info () rather than

Messenger.output ().

Messenger.divider_row (dividers)
This method takes a list of vertical divider Unicode characters, one per output column, and multiplies those
characters by their column width when displayed.

>>> m.new_row ()
>>>

>>> .output_column

>>>

(

(u
.output_column (u"bar")

ul’

.output_column (u"foo")

n ",u","])

>>> .new_row ()
>>> .output_column (u"test™)
>>> .output_column (u"

m
m
m
m

>>> m.divider_row ([
m
m
m
>>> m
m

>>> m.output_rows ()

foo Dbar

.output_column (u"column™)

24

Chapter 1. audiotools — the Base Python Audio Tools Module

Python Audio Tools Documentation, Release 2.17

test column

Messenger .ansi (string, codes)
Takes a Unicode string and list of ANSI SGR code integers. If stdout is to a TTY, returns a Unicode string
formatted with those codes. If not, the string is returned as is. Codes can be taken from the many predefined
values in the Messenger class. Note that not all output terminals are guaranteed to support all ANSI escape

codes.

Messenger.ansi_err (string, codes)

This is identical to Messenger.ansi, but it checks whether stderr is a TTY instead of stdout.

Code Effect
Messenger .RESET resets current codes
Messenger .BOLD bold font
Messenger .FAINT faint font
Messenger.ITALIC italic font
Messenger .UNDERLINE underline text
Messenger .BLINK_SLOW | blink slowly
Messenger .BLINK_FAST | blink quickly
Messenger .REVERSE reverse text
Messenger.STRIKEOUT strikeout text
Messenger .FG_BLACK foreground black
Messenger .FG_RED foreground red
Messenger .FG_GREEN foreground green
Messenger.FG_YELLOW foreground yellow
Messenger .FG_BLUE foreground blue
Messenger .FG_MAGENTA | foreground magenta
Messenger .FG_CYAN foreground cyan
Messenger .FG_WHITE foreground write
Messenger .BG_BLACK background black
Messenger .BG_RED background red
Messenger.BG_GREEN background green
Messenger .BG_YELLOW background yellow
Messenger .BG_BLUE background blue
Messenger .BG_MAGENTA | background magenta
Messenger .BG_CYAN background cyan
Messenger .BG_WHITE background white

Messenger.ansi_clearline ()
Generates a ANSI escape codes to clear the current line.

This works only if stdout is a TTY, otherwise is does nothing.

>>>
>>>
>>>
>>>
>>>

Messenger.ansi_uplines (self, lines)

msg =

Messenger ("audiotools",

None)

msg.partial_output (u"working")
time.sleep (1)

msg.ansi_clearline()
msg.output (u"done")

Moves the cursor upwards by the given number of lines.

Messenger.ansi_cleardown (self)

Clears

all the output

Messenger.ansi_uplines().

below the current

line.

1.13. Messenger Objects

This typically used in conjuction with

Python Audio Tools Documentation, Release 2.17

>>> msg = Messenger ("audiotools", None)
>>> msg.output (u"line 1")

>>> msg.output (u"line 2")

>>> msg.output (u"line 3")

>>> msg.output (u"line 4")

>>> time.sleep(2)

>>> msg.ansi_uplines (4)

>>> msg.ansi_cleardown ()

>>> msg.output (u"done")

Messenger.terminal_size (fd)
Given a file descriptor integer, or file object with a fileno() method, returns the size of the current terminal as a
(height, width) tuple of integers.

1.14 ProgressDisplay Objects

class audiotools.ProgressDisplay (messenger)
This is a class for displaying incremental progress updates to the screen. It takes a Messenger object which
is used for generating output. Whether or not sys. stdout is a TTY determines how this class operates. If a
TTY is detected, screen updates are performed incrementally with individual rows generated and refreshed as
needed using ANSI escape sequences such that the user’s screen need not scroll. If a TTY is not detected, most
progress output is omitted.

ProgressDisplay.add_row (row_id, output_line)
Adds a row of output to be displayed with progress indicated. row_id should be a unique identifier, typically
an int. output_line should be a unicode string indicating what we’re displaying the progress of.

ProgressDisplay.update_row (row_id, current, total)
Updates the progress of the given row. current and total are integers such that current / total indi-
cates the percentage of progress performed.

ProgressDisplay.refresh ()
Refreshes the screen output, clearing and displaying a fresh progress rows as needed. This is called automatically
by update_row ().

ProgressDisplay.clear ()
Clears the screen output. Although refresh () will call this method as needed, one may need to call it
manually when generating output independently for the progress monitor so that partial updates aren’t left on
the user’s screen.

ProgressDisplay.delete_row (row_id)
Removes the row with the given ID from the current list of progress monitors.

class audiotools.SingleProgressDisplay (messenger, progress_text)
This is a subclass of ProgressDisplay used for generating only a single line of progress output. As such,
one only specifies a single row of unicode progress_text at initialization time and can avoid the row
management functions entirely.

SingleProgressDisplay.update (current, total)
Updates the status of our output row with current and total integers, which function identically to those
of ProgressDisplay.update_row ().

class audiotools.ReplayGainProgressDisplay (messenger, lossless_replay_gain)
This is another ProgressDisplay subclass optimized for the display of ReplayGain application
progress. messenger is a Messenger object and lossless_replay_gain is a boolean in-
dicating whether ReplayGain is being applied losslessly or not (which can be determined from the

26 Chapter 1. audiotools — the Base Python Audio Tools Module

Python Audio Tools Documentation, Release 2.17

AudioFile.lossless_replay_gain () classmethod). Whether or not sys.stdout is a TTY de-
termines how this class behaves.

ReplayGainProgressDisplay.initial_message ()
If operating on a TTY, this does nothing since progress output will be displayed. Otherwise, this indicates that
ReplayGain application has begun.

ReplayGainProgressDisplay.update (current, total)
Updates the status of ReplayGain application.

ReplayGainProgressDisplay.final_message ()
If operating on a TTY, this indicates that ReplayGain application is complete. Otherwise, this does nothing.

>>> rg_progress = ReplayGainProgressDisplay (messenger, AudioType.lossless_replay_gain())
>>> rg_progress.initial_message ()

>>> AudioType.add_replay_gain(filename_list, rg_progress.update)

>>> rg_Progress.final_message ()

class audiotools.ProgressRow (row_id, output_line)
This is used by ProgressDisplay and its subclasses for actual output generation. row_id is a unique
identifier and output_1line is a unicode string. It is not typically instantiated directly.

ProgressRow.update (current, total)
Updates the current progress with current and total integer values.

ProgressRow.unicode (width)
Returns the output line and its current progress as a unicode string, formatted to the given width in onscreen
characters. Screen width can be determined from the Messenger.terminal_size () method.

1.14.1 display_unicode Objects

This class is for displaying portions of a unicode string to the screen. The reason this is needed is because not all
Unicode characters are the same width. So, for example, if one wishes to display a portion of a unicode string to a
screen that’s 80 ASCII characters wide, one can’t simply perform:

>>> messenger.output (unicode_string[0:801])

since some of those Unicode characters might be double width, which would cause the string to wrap.
class audiotools.display unicode (unicode_string)

display_unicode.head (display_characters)
Returns anew display_unicode object that’s been truncated to the given number of display characters.

>>> s = u"".join (map (unichr, range(0x30al, 0x30al+25)))
>>> len(s)
25

>>> u = unicode (display_unicode (s) .head (40))

>>> len (u)

20

>>> print repr (u)
u’\u30al\u30a2\u30a3\u30ad4\u3dfa5\u30a6\u3dfa7\u30a8\u30a9\u3dfaal\u3lab\u30ac\u3lad\u3lae\u30af\u3C

display_unicode.tail (display_characters)
Returns a new display_unicode object that’s been truncated to the given number of display characters.

>>> s = u"".join (map (unichr, range(0x30al, 0x30al+25)))
>>> len (s)
25

>>> u = unicode (display_unicode (s) .tail (40))

1.14. ProgressDisplay Objects 27

Python Audio Tools Documentation, Release 2.17

>>> len (u)

20

>>> print repr (u)
u’\u30a6\u30a7\u30a8\u3d0a9\u3lfaal\u3d0ab\u30ac\u30ad\u30ae\u30af\u30b0\u30bl\u30b2\u30b3\u30b4\u3C

display_unicode.split (display_characters)

Returns a tuple of display_unicode objects. The firstis up to display_characters wide, while the
second contains the remainder.

>>> s = u"".join (map (unichr, range(0x30al, 0x30al+25)))

>>> (head, tail) = display_unicode(s) .split (40)

>>> print repr (unicode (head))
u’\u30all\u30a2\u30a3\u30ad4\u30a5\u30a6\u30a77\u3d0a8\u3dlad9\u3faa\u3dlab\u3lac\u30ad\u3dlae\u30af\u3C
>>> print repr (unicode (tail))

u’\u30b5\u30b6\u30b7\u30b8\u30b9’

28

Chapter 1. audiotools — the Base Python Audio Tools Module

CHAPTER
TWO

AUDIOTOOLS.PCM — THE PCM
FRAMELIST MODULE

The audiotools.pcm module contains the FrameList and FloatFrameList classes for handling blobs of raw data.
These classes are immutable and list-like, but provide several additional methods and attributes to aid in processing
PCM data.

audiotools.pcm. from_list (list, channels, bits_per_sample, is_signed)
Given a list of integer values, a number of channels, the amount of bits-per-sample and whether the samples are
signed, returns a new FrameList object with those values. Raises ValueError ifa FrameList cannot be
built from those values.

>>> f = from_list([-1,0,1,2]1,2,16,True)
>>> list (f)
[71/ Or ll 2]

audiotools.pcm.from_frames (frame_list)
Given a list of FrameList objects, returns a new FrameList whose values are built from those objects.
Raises ValueError if any of the objects are longer than 1 PCM frame, their number of channels are not
consistent or their bits_per_sample are not consistent.

>>> 1 = [from_ list([-1,0],2,16,True),
C from_list ([1,2],2,16,True)]
>>> f = from_frames (1)

>>> list (f)

[-1, 0, 1, 2]

audiotools.pcm. from_channels (frame_list)
Given a list of FrameList objects, returns a new FrameList whose values are built from those objects.
Raises ValueError if any of the objects are wider than 1 channel, their number of frames are not consistent
or their bits_per_sample are not consistent.

>>> 1 = [from_list([-1,1],1,16,True),
. from_list ([0,2],1,16,True)]
>>> f = from_channels (1)

>>> list (f)

[-1, 0, 1, 2]

audiotools.pcm.from_float_frames (float_frame_list)
Given a list of FloatFrameList objects, returns a new FloatFramelList whose values are built from
those objects. Raises ValueError if any of the objects are longer than 1 PCM frame or their number of
channels are not consistent.

29

Python Audio Tools Documentation, Release 2.17

>>> 1 = [FloatFrameList ([-1.0,0.01,2),
. FloatFrameList ([0.5,1.0]1,2)]
>>> f = from_float_frames (1)

>>> list (f)
[-1.0, 0.0, 0.5, 1.0]

audiotools.pcm.from_float_channels (float_frame_list)
Given a list of FloatFrameList objects, returns a new FloatFrameList whose values are built from
those objects. Raises ValueError if any of the objects are wider than 1 channel or their number of frames are
not consistent.

>>> 1 = [FloatFrameList ([-1.0,0.51,1),
c FloatFrameList ([0.0,1.01,1)]
>>> f = from_float_channels (1)

>>> list (f)
[-1.0, 0.0, 0.5, 1.0]

2.1 FramelList Objects

class audiotools.pcm.Framelist (string, channels, bits_per_sample, is_big_endian, is_signed)
This class implements a PCM FrameList, which can be envisioned as a 2D array of signed integers where each
row represents a PCM frame of samples and each column represents a channel.

During initialization, string is a collection of raw bytes, bits_per_sample is an integer and
is_big_endian and is_signed are booleans. This provides a convenient way to transforming raw data
from file-like objects into FrameList objects. Once instantiated, a FrameLi st object is immutable.

FrameList.frames
The amount of PCM frames within this object, as a non-negative integer.

FrameList.channels
The amount of channels within this object, as a positive integer.

FrameList.bits_per_ sample
The size of each sample in bits, as a positive integer.

FramelList .frame (frame_number)
Given a non-negative frame_number integer, returns the samples at the given frame as a new FrameList
object. This new FrameList will be a single frame long, but have the same number of channels and
bits_per_sample as the original. Raises IndexError if one tries to get a frame number outside this FrameList’s
boundaries.

Framelist .channel (channel_number)
Given a non-negative channel_number integer, returns the samples at the given channel as a new
FrameList object. This new FrameList will be a single channel wide, but have the same number of frames
and bits_per_sample as the original. Raises IndexError if one tries to get a channel number outside this
FrameList’s boundaries.

FramelList.split (frame_count)
Returns a pair of FrameList objects. The first contains up to frame_count number of PCM frames. The
second contains the remainder. If frame_ count is larger than the number of frames in the FrameList, the first
will contain all of the frames and the second will be empty.

FramelList.to_float ()
Converts this object’s values to a new FloatFrameList object by transforming all samples to the range -1.0
to 1.0.

30 Chapter 2. audiotools.pcm — the PCM FrameList Module

Python Audio Tools Documentation, Release 2.17

FramelList .to_bytes (is_big_endian, is_signed)
Given is_big_endian and is_signed booleans, returns a plain string of raw PCM data. This is much like
the inverse of Framelist ‘s initialization routine.

FrameList . frame_count (bytes)
A convenience method which converts a given byte count to the maximum number of frames those bytes could
contain, or a minimum of 1.

>>> FrameList ("",2,16,False, True) .frame_count (8)
2

2.2 FloatFramelList Objects

class audiotools.pcm.FloatFramelist (floats, channels)
This class implements a FrameList of floating point samples, which can be envisioned as a 2D array of signed
floats where each row represents a PCM frame of samples, each column represents a channel and each value is
within the range of -1.0 to 1.0.

During initialization, f1oats is a list of float values and channels is an integer number of channels.

FloatFramelList.frames
The amount of PCM frames within this object, as a non-negative integer.

FloatFramelList.channels
The amount of channels within this object, as a positive integer.

FloatFrameList . frame (frame_number)
Given a non-negative frame_number integer, returns the samples at the given frame as a new
FloatFrameList object. This new FloatFrameList will be a single frame long, but have the same number of
channels as the original. Raises IndexError if one tries to get a frame number outside this FloatFrameList’s
boundaries.

FloatFramelList.channel (channel_number)
Given a non-negative channel_number integer, returns the samples at the given channel as a new
FloatFrameList object. This new FloatFrameList will be a single channel wide, but have the same number
of frames as the original. Raises IndexError if one tries to get a channel number outside this FloatFrameList’s
boundaries.

FloatFrameList.split (frame_count)
Returns a pair of FloatFramelList objects. The first contains up to frame_count number of PCM
frames. The second contains the remainder. If frame_count is larger than the number of frames in the
FloatFrameList, the first will contain all of the frames and the second will be empty.

FloatFrameList.to_int (bits_per_sample)
Givenabits_per_ sample integer, converts this object’s floating point values to a new FrameList object.

2.2. FloatFramelList Objects 31

Python Audio Tools Documentation, Release 2.17

32

Chapter 2. audiotools.pcm — the PCM FrameList Module

CHAPTER
THREE

AUDIOTOOLS.RESAMPLE — THE
RESAMPLER MODULE

The audiotools.resample module contains a resampler for modifying the sample rate of PCM data. This
class is not usually instantiated directly; instead, one can use audiotools.PCMConverter which calculates the
resampling ratio and handles unprocessed samples automatically.

3.1 Resampler Objects

class audiotools.resample.Resampler (channels, ratio, quality)
This class performs the actual resampling and maintains the resampler’s state. channels is the number of
channels in the stream being resampled. ratio is the new sample rate divided by the current sample rate.
quality is an integer value between 0 and 4, where O is the best quality.

For example, to convert a 2 channel, 88200Hz audio stream to 44100Hz, one starts by building a resampler as
follows:

>>> resampler = Resampler (2, float (44100) / float (88200), 0)

Resampler.process (float_frame_list, last)
Given a FloatFrameList object and whether this is the last chunk of PCM data from the stream, returns a
pair of new FloatFrameList objects. The first is the processed samples at the new rate. The second is a set
of unprocessed samples which must be pushed through again on the next call to process ().

33

Python Audio Tools Documentation, Release 2.17

34

Chapter 3. audiotools.resample — the Resampler Module

CHAPTER
FOUR

AUDIOTOOLS .REPLAYGAIN — THE
REPLAYGAIN CALCULATION MODULE

The audiotools.replaygain module contains the ReplayGain class for calculating the ReplayGain gain
and peak values for a set of PCM data, and the ReplayGainReader class for applying those gains to a
audiotools.PCMReader stream.

4.1 ReplayGain Objects

class audiotools.replaygain.ReplayGain (sample_rate)
This class performs ReplayGain calculation for a stream of the given sample_rate. Raises ValueError if
the sample rate is not supported.

Replaygain.update (frame_list)
Takes a pcm.FramelList object and updates our ongoing ReplayGain calculation. Raises ValueError if
some error occurs during calculation.

ReplayGain.title_gain ()
Returns a pair of floats. The first is the calculated gain value since our lastcallto title_gain (). The second
is the calculated peak value since our lastcallto title_gain ().

ReplayGain.album gain ()
Returns a pair of floats. The first is the calculated gain value of the entire stream. The first is the calculated peak
value of the entire stream.

4.2 ReplayGainReader Objects

class audiotools.replaygain.ReplayGainReader (pcmreader, gain, peak)
This class wraps around an existing PCMReader object. It takes floating point gain and peak values and
modifies the pcmreader’s output as necessary to match those values. This has the effect of raising or lowering a
stream’s sound volume to ReplayGain’s reference value.

35

Python Audio Tools Documentation, Release 2.17

36

Chapter 4. audiotools.replaygain — the ReplayGain Calculation Module

CHAPTER
FIVE

AUDIOTOOLS.CcDIO— THE CD
INPUT/OUTPUT MODULE

The audiotools.cdio module contains the CDDA class for accessing raw CDDA data. One does not typically use
this module directly. Instead, the audiotools.CDDA class provides encapsulation to hide many of these low-level
details.

5.1 CDDA Objects

class audiotools.cdio.CDDA (device)

This class is used to access a specific CD-ROM device, which should be given as a string such as
"/dev/cdrom" during instantiation.

Note that audio CDs are accessed by sectors, each 1/75th of a second long - or 588 PCM frames. Thus, many of
this object’s methods take and return sector integer values.

CDDA.total_tracks ()

Returns the total number of tracks on the CD as an integer.

>>> cd = CDDA("/dev/cdrom")
>>> cd.total_tracks|()
17

CDDA.track_offsets (track_number)

Given a track_number integer (starting from 1), returns a pair of sector values. The first is the track’s first sector
on the CD. The second is the track’s last sector on the CD.

>>> cd.track_offsets (1)
(0, 15774)

>>> cd.track_offsets (2)
(15775, 31836)

CDDA.first_sector ()

Returns the first sector of the entire CD as an integer, typically O.

>>> cd.first_sector ()
0

CDDA.last_sector()

Returns the last sector of the entire CD as an integer.

>>> cd.last_sector ()
240449

37

Python Audio Tools Documentation, Release 2.17

CDDA.length_in_seconds ()
Returns the length of the entire CD in seconds as an integer.

>>> cd.length_in_seconds ()
3206

CDDA.track_type (track_number)
Given a track_number integer (starting from 1), returns the type of track it is as an integer.

CDDA. set_speed (speed)
Sets the CD-ROM’s reading speed to the new integer value.

CDDA. seek (sector)
Sets our current position on the CD to the given sector. For example, to begin reading audio data from the
second track:

>>> cd.track_offsets (2) [0]
15775
>>> cd.seek (15775)

CDDA.read_sector ()

Reads a single sector from the CD as a pcm.FrameList object and moves our current read position ahead by
1.

>>> f = cd.read_sector()

>>> f

<pcm.FrameList object at 0x2cal6f0>
>>> len (f)

1176

CDDA.read_sectors (sectors)
Given a number of sectors, reads as many as possible from the CD as a pcm.FrameList object and moves
our current read position ahead by that many sectors.

>>> f = cd.read_sectors (10)

>>> f

<pcm.FrameList object at 0x7f022e0d6c60>
>>> len (f)

11760

audiotools.cdio.set_read_callback (function)
Sets a global callback function which takes two integer values as arguments. The second argument is a cdpara-
noia value corresponding to errors fixed, if any:

Value | CDParanoia Value Meaning

0 PARANOIA_CB_READ Read off adjust ???

1 PARANOIA_CB_VERIFY Verifying jitter

2 PARANOIA_CB_FIXUP_EDGE Fixed edge jitter

3 PARANOIA_CB_FIXUP_ATOM Fixed atom jitter

4 PARANOIA_CB_SCRATCH Unsupported

5 PARANOIA_CB_REPAIR Unsupported

6 PARANOIA_CB_SKIP Skip exhausted retry
7 PARANOIA_CB_DRIFT Skip exhausted retry
8 PARANOIA_CB_BACKOFF Unsupported

9 PARANOIA_CB_OVERLAP Dynamic overlap adjust
10 PARANOIA_CB_FIXUP_DROPPED | Fixed dropped bytes
11 PARANOIA_CB_FIXUP_DUPED Fixed duplicate bytes
12 PARANOIA_CB_READERR Hard read error

38 Chapter 5. audiotools.cdio — the CD Input/Output Module

CHAPTER
SIX

AUDIOTOOLS.CUE — THE CUESHEET
PARSING MODULE

The audiotools.cue module contains the Cuesheet class used for parsing and building cuesheet files representing
CD images.

audiotools.cue.read_cuesheet (filename)
Takes a filename string and returns a new Cuesheet object. Raises CueException if some error occurs
when reading the file.

exception audiotools.cue.CueException
A subclass of audiotools.SheetException raised when some parsing or reading error occurs when
reading a cuesheet file.

6.1 Cuesheet Objects

class audiotools.cue.Cuesheet
This class is used to represent a .cue file. It is not meant to be instantiated directly but returned from the
read_cuesheet () function. The __str__ () value of a Cuesheet corresponds to a formatted file on disk.

Cuesheet .catalog()
Returns the cuesheet’s catalog number as a plain string, or None if the cuesheet contains no catalog number.

Cuesheet .single_file_ type ()
Returns True if the cuesheet is formatted for a single input file. Returns False if the cuesheet is formatted for
several individual tracks.

Cuesheet .indexes ()
Returns an iterator of index lists. Each index is a tuple of CD sectors corresponding to a track’s offset on disk.

Cuesheet .pem_lengths (total_length)
Takes the total length of the entire CD in PCM frames. Returns a list of PCM frame lengths for all audio tracks
within the cuesheet. This list of lengths can be used to split a single CD image file into several individual tracks.

Cuesheet .ISRCs ()
Returns a dictionary of track_number -> ISRC values for all tracks whose ISRC value is not empty.

classmethod Cuesheet . £file (sheet, filename)
Takes a Cuesheet-compatible object with catalog (), indexes (), ISRCs () methods along with a file-
name string. Returns a new Cuesheet object. This is used to convert other sort of Cuesheet-like objects into
actual Cuesheets.

39

Python Audio Tools Documentation, Release 2.17

40

Chapter 6. audiotools.cue — the Cuesheet Parsing Module

CHAPTER
SEVEN

AUDIOTOOLS.ToC — THE TOC FILE
PARSING MODULE

The audiotools.toc module contains the TOCFile class used for parsing and building TOC files representing CD
images.

audiotools.toc.read_tocfile (filename)
Takes a filename string and returns a new TOCF i 1 e object. Raises TOCExcept ion if some error occurs when
reading the file.

exception audiotools.toc.TOCException

A subclass of audiotools.SheetException raised when some parsing or reading error occurs when
reading a TOC file.

7.1 TOCFile Objects

class audiotools.toc.TOCFile
This class is used to represent a .toc file. It is not meant to be instantiated directly but returned from the
read_tocfile () function.

TOCFile.catalog()
Returns the TOC file’s catalog number as a plain string, or None if the TOC file contains no catalog number.

TOCFile.indexes ()
Returns an iterator of index lists. Each index is a tuple of CD sectors corresponding to a track’s offset on disk.

TOCFile.pcm_lengths (fotal_length)
Takes the total length of the entire CD in PCM frames. Returns a list of PCM frame lengths for all audio tracks
within the TOC file. This list of lengths can be used to split a single CD image file into several individual tracks.

TOCFile.ISRCs ()
Returns a dictionary of track_number -> ISRC values for all tracks whose ISRC value is not empty.

classmethod TOCFile. file (sheet, filename)
Takes a cue . Cuesheet-compatible object with catalog (), indexes (), ISRCs () methods along with
a filename string. Returns a new TOCF1ile object. This is used to convert other sort of Cuesheet-like objects
into actual TOC files.

41

Python Audio Tools Documentation, Release 2.17

42

Chapter 7. audiotools.toc — the TOC File Parsing Module

CHAPTER
EIGHT

AUDIOTOOLS .PLAYER — THE AUDIO
PLAYER MODULE

The audiotools.player module contains the Player and AudioOutput classes for playing AudioFiles.

audiotools.player.AUDIO_OUTPUT
A tuple of AudioOutput-compatible classes of available output types. As with AVAILABLE_TYPES, these
are classes that are available to audiotools, not necessarily availble to the user.

Class Output System
PulseAudioOutput PulseAudio
OSSAudioOutput 0SS
PortAudioOutput PortAudio
NULLAudioOutput | No output

8.1 Player Objects

This class is an audio player which plays audio data from an opened audio file object to a given output sink.

class audiotools.player.Player (audio_output[, replay_gain[, next_track_callback]])
audio_output is a AudioOutput object subclass which audio data will be played to. replay_gain is
either RG_NO_REPLAYGAIN, RG_TRACK_GAIN or RG_ALBUM_GAIN, indicating the level of ReplayGain
to apply to tracks being played back. next_track_callback is a function which takes no arguments, to be
called when the currently playing track is completed.

Player.open (audiofile)
Opens the given audiotools.AudioFile object for playing. Any currently playing file is stopped.

Player.play ()
Begins or resumes playing the currently opened audiotools.AudioF1ile object, if any.

Player.set_replay_ gain (replay_gain)
Sets the given ReplayGain level to apply during playback. Choose from RG_NO_REPLAYGAIN,
RG_TRACK_GAIN or RG_ALBUM_GAIN ReplayGain cannot be applied mid-playback. One must stop ()
and play () a file for it to take effect.

Player.pause ()
Pauses playback of the current file. Playback may be resumed with play () or toggle_play_pause ()

Player.toggle_play pause ()
Pauses the file if playing, play the file if paused.

43

http://www.pulseaudio.org
http://www.opensound.com
http://www.portaudio.com

Python Audio Tools Documentation, Release 2.17

Player.stop()
Stops playback of the current file. If play () is called, playback will start from the beginning.

Player.close()
Closes the player for playback. The player thread is halted and the AudioOutput object is closed.

Player.progress ()
Returns a (pcm_frames_played, pcm_frames_total) tuple. This indicates the current playback status
in terms of PCM frames.

8.2 CDPlayer Objects

This class is an audio player which plays audio data from a CDDA disc to a given output sink.

class audiotools.player.CDPlayer (cdda, audio_output[, next_tmck_callback])
cdda is a audiotools.CDDA object. audio_output is a AudioOutput object subclass which audio
data will be played to. next_track_callback is a function which takes no arguments, to be called when
the currently playing track is completed.

CDPlayer.open (track_number)
Opens the given track number for reading, where t rack_number starts from 1.

CDPlayer.play ()
Begins or resumes playing the currently opened track, if any.

CDPlayer.pause ()
Pauses playback of the current track. Playback may be resumed with play () or toggle_play_pause ()

CDPlayer.toggle_play pause()
Pauses the track if playing, play the track if paused.

CDPlayer.stop ()
Stops playback of the current track. If play () is called, playback will start from the beginning.

CDPlayer.close ()
Closes the player for playback. The player thread is halted and the AudioOutput object is closed.

CDPlayer.progress ()
Returns a (pcm_frames_played, pcm_frames_total) tuple. This indicates the current playback status
in terms of PCM frames.

8.3 AudioOutput Objects

This is an abstract class used to implement audio output sinks.
class audiotools.player.AudioOutput ()

AudioOutput . NAME
The name of the AudioOutput subclass as a string.

AudioOutput .compatible (pcmreader)
Returns True if the given audiotools.PCMReader is compatible with the currently opened output stream.
If False, one should call init () in order to reinitialize the output stream to play the given reader.

AudioOutput.init (sample_rate, channels, channel_mask, bits_per_sample)
Initializes the output stream for playing audio with the given parameters. This must be called prior to play ()
and close ().

44 Chapter 8. audiotools.player — the Audio Player Module

Python Audio Tools Documentation, Release 2.17

AudioOutput.framelist_converter ()
Returns a function which converts audiotools.pcm.FrameList objects to objects which are compatible
with our play () method, for the currently initialized stream.

AudioOutput .play (data)
Plays the converted data object to our output stream.

Note: Why not simply have the play () method perform PCM conversion itself instead of shifting it to
framelist_converter ()? The reason is that conversion may be a relatively time-consuming task. By shift-
ing that process into a subthread, there’s less chance that performing that work will cause playing to stutter while it
completes.

AudioOutput.close ()
Closes the output stream for further playback.

classmethod AudioOutput.available ()
Returns True if the AudioOutput implementation is available on the system.

8.3. AudioOutput Objects 45

Python Audio Tools Documentation, Release 2.17

46

Chapter 8. audiotools.player — the Audio Player Module

CHAPTER
NINE

META DATA FORMATS

Although it’s more convenient to manipulate the high-level audiotools.MetaData base class, one sometimes
needs to be able to view and modify the low-level implementation also.

9.1 ApeTag

class ApeTag (tags[, tag_length])
This is an APEv2 tag used by the WavPack, Monkey’s Audio and Musepack formats, among others. Dur-
ing initialization, it takes a list of ApeTagItem objects and an optional length integer (typically set only
by get_metadata () methods which already know the tag’s total length). It can then be manipulated
like a regular Python dict with keys as strings and values as ApeTagItem objects. Note that this is also a
audiotools.MetaData subclass with all of the same methods.

For example:

>>> tag = ApeTag ([ApeTagltem(0,False,’Title’,u’ Track Title’ .encode ('utf-87))1)
>>> tag.track_name

u’Track Title’

>>> tag[’Title’]

ApeTagltem(0,False,’Title’,’'Track Title’)

>>> tag[’Title’] = ApeTagltem(0,False,’Title’,u’'New Title’ .encode ('utf-8"))
>>> tag.track_name

u’New Title’

>>> tag.track_name = u’Yet Another Title’

>>> tag[’Title’]

ApeTagltem(0,False,’Title’,’Yet Another Title’)

The fields are mapped between ApeTag and audiotools.MetaData as follows:

47

http://wiki.hydrogenaudio.org/index.php?title=APEv2

Python Audio Tools Documentation, Release 2.17

APEv2 Metadata

Title track_name

Track track_number/track_total
Media album_number/album_total
Album album_name

Artist artist_name

Performer performer_name

Composer composer_name

Conductor conductor_name

ISRC ISRC

Catalog catalog

Copyright copyright

Publisher publisher

Year year

Record Date | date

Comment comment

Note that Track and Media may be “/’-separated integer values where the first is the current number and the
second is the total number.

>>> tag = ApeTag ([ApeTagltem(0,False,’Track’,u’l’ .encode('utf-87))1)
>>> tag.track_number

1

>>> tag.track_total

>>> tag = ApeTag ([ApeTagltem(0,False,’ Track’,u’2/3’ .encode('utf-87))1)
>>> tag.track_number

>>> tag.track_total
3

classmethod ApeTag. read (file)
Takes an open file object and returns an ApeTag object of that file’s APEv2 data, or None if the tag cannot be
found.

ApeTag.build()
Returns this tag’s complete APEv2 data as a string.

class ApeTagItem (item_type, read_only, key, data)
This is the container for ApeTag data. item_type is an integer with one of the following values:

UTF-8 data
binary data
external data
4 | reserved

(VST S

read_only is a boolean set to True if the tag-item is read-only. key is an ASCII string. data is a regular
Python string (not unicode).

ApeTagltem.build()
Returns this tag item’s data as a string.

classmethod ApeTagItem.binary (key, data)
A convenience classmethod which takes strings of key and value data and returns a populated ApeTagItem
object of the appropriate type.

classmethod ApeTagItem.external (key, data)
A convenience classmethod which takes strings of key and value data and returns a populated ApeTagItem
object of the appropriate type.

48 Chapter 9. Meta Data Formats

Python Audio Tools Documentation, Release 2.17

classmethod ApeTagItem. string (key, unicode)
A convenience classmethod which takes a key string and value unicode and returns a populated ApeTagItem
object of the appropriate type.

9.2 FLAC

class FlacMetaData (blocks)
This is a FLAC tag which is prepended to FLAC and Ogg FLAC files. It is initialized with a list of
FlacMetaDataBlock objects which it stores internally in one of several fields. It also supports all
audiotools.MetaData methods.

For example:

>>> tag = FlacMetaData ([FlacMetaDataBlock (

type=4,

c data=FlacVorbisComment ({u’ TITLE’ : [u’ Track Title’]1}) .build())])
>>> tag.track_name
u’Track Title’

>>> tag.vorbis_comment [u’ TITLE’]

[u’ Track Title’]

>>> tag.vorbis_comment = a.FlacVorbisComment ({u’ TITLE’ :[u’New Track Title’]})
>>> tag.track_name

u’New Track Title’

Its fields are as follows:

FlacMetaData.streaminfo
A FlacMetaDataBlock object containing raw STREAMINFO data. Since FLAC’s set_metadata ()
method will override this attribute as necessary, one will rarely need to parse it or set it.

FlacMetaData.vorbis_comment
A FlacVorbisComment object containing text data such as track name and artist name. If the FLAC file
doesn’t have a VORBISCOMMENT block, FlacMetaData will set an empty one at initialization time which
will then be written out by a call to set_metadata ().

FlacMetaData.cuesheet
A FlacCueSheet object containing CUESHEET data, or None.

FlacMetaData.image_blocks
Alistof FlacPictureComment objects, each representing a PICTURE block. The list may be empty.

FlacMetaData.extra blocks
Alist of raw FlacMetaDataBlock objects containing any unknown or unsupported FLAC metadata blocks.
Note that padding is not stored here. PADDING blocks are discarded at initialization time and then re-created as
needed by calls to set_metadata ().

FlacMetaData.metadata_blocks ()
Returns an iterator over all the current blocks as F1lacMetaDataBlock-compatible objects and without any
padding block at the end.

FlacMetaData.build([padding_size])
Returns a string of this F1lacMetaData object’s contents.

class FlacMetaDataBlock (fype, data)
This is a simple container for FLAC metadata block data. t ype is one of the following block type integers:

9.2. FLAC 49

http://flac.sourceforge.net/format.html#metadata_block

Python Audio Tools Documentation, Release 2.17

0 | STREAMINFO

1 | PADDING

2 | APPLICATION

3 | SEEKTABLE

4 | VORBIS_COMMENT
5 | CUESHEET

6 | PICTURE

data is a string.

FlacMetaDataBlock.build block ([last])
Returns the entire metadata block as a string, including the header. Set last to 1 to indicate this is the final
metadata block in the stream.

class FlacVorbisComment (vorbis_data[, vendor_string])
This is a subclass of VorbisComment modified to be FLAC-compatible. It utilizes the same initialization
information and field mappings.

FlacVorbisComment .build _block ([last])
Returns the entire metadata block as a string, including the header. Set last to 1 to indicate this is the final
metadata block in the stream.

class FlacPictureComment (type, mime_type, description, width, height, color_depth, color_count, data)
This is a subclass of audiotools. Image with additional methods to make it FLAC-compatible.

FlacPictureComment .build ()
Returns this picture data as a block data string, without the metadata block headers. Raises
FlacMetaDataBlockTooLarge if the size of its picture data exceeds 16777216 bytes.

FlacPictureComment .build_block ([last])
Returns the entire metadata block as a string, including the header. Set last to 1 to indicate this is the final
metadata block in the stream.

class FlacCueSheet (container[, sample_rate])
This is a audiotools.cue.Cuesheet-compatible object with catalog (), ISRCs (), indexes ()
and pcm_lengths () methods, in addition to those needed to make it FLAC metadata block compati-
ble. Its container argument is an audiotools.Con.Container object which is returned by calling
FlacCueSheet .CUESHEET.parse () on araw input data string.

FlacCueSheet .build _block ([last])
Returns the entire metadata block as a string, including the header. Set 1ast to 1 to indicate this is the final
metadata block in the stream.

classmethod FlacCueSheet . converted (sheet, total_frames [, sample_rate])
Takes another audiotools. cue.Cuesheet-compatible object and returns a new F1lacCueSheet object.

9.3 ID3v1

class ID3v1Comment (metadata)
This is an ID3v1 tag which is often appended to MP3 files. During initialization, it takes a tuple of 6 values - in
the same order as returned by ID3v1Comment . read_id3v1l_comment (). It can then be manipulated like
a regular Python list, in addition to the regular audiotools.MetaData methods. However, since ID3vl
is a nearly complete subset of audiotools.MetaData (the genre integer is the only field not represented),
there’s little need to reference its items by index directly.

For example:

50 Chapter 9. Meta Data Formats

http://www.id3.org/ID3v1

Python Audio Tools Documentation, Release 2.17

>>> tag = ID3vlComment ((u’Track Title’,u’’,u’’,u’’,u’’,1))
>>> tag.track_name

u’ Track Title’

>>> tag[0] = u’New Track Name’

>>> tag.track_name

u’New Track Name’

Fields are mapped between ID3v1Comment and audiotools.MetaData as follows:

Index | Metadata

0 track_name

1 artist_name
2 album_name

3 year

4 comment

5 track_number

ID3v1Comment .build tag()
Returns this tag as a string.

classmethod ID3v1Comment .build_id3v1l (song_title, artist, album, year, comment, track_number)
A convenience method which takes several unicode strings (except for t rack_number, an integer) and returns
a complete ID3v1 tag as a string.

classmethod ID3v1Comment . read id3vl_comment (filename)
Takes an MP?3 filename string and returns a tuple of that file’s ID3v1 tag data, or tag data with empty fields if no
ID3v1 tag is found.

9.4 ID3v2.2

class ID3v22Comment (frames)
This is an ID3v2.2 tag, one of the three ID3v2 variants used by MP3 files. During initialization, it takes a list
of ID3v22Frame-compatible objects. It can then be manipulated like a regular Python dict with keys as 3
character frame identifiers and values as lists of TD3v22F rame objects - since each frame identifier may occur
multiple times.

For example:

>>> tag = ID3v22Comment ([ID3v22TextFrame (' TT2’,0,u’ Track Title’)])
>>> tag.track_name

u’Track Title’

>>> tag [’ TT2']

[<audiotools._ 1d3_ .ID3v22TextFrame instance at 0x1004cl7a0>]

>>> tag[/TT2’] = [ID3v22TextFrame (' TT2’,0,u’New Track Title’)]

>>> tag.track_name

u’New Track Title’

Fields are mapped between ID3v2.2 frame identifiers, audiotools.MetaData and ID3v22F rame objects
as follows:

9.4. ID3v2.2 51

http://www.id3.org/id3v2-00

Python Audio Tools Documentation, Release 2.17

Identifier | MetaData Object

TT2 track_name ID3v22TextFrame
TRK track_number/track_total | ID3v22TextFrame
TPA album_number/album_total | ID3v22TextFrame
TAL album_name ID3v22TextFrame
TP1 artist_name ID3v22TextFrame
TP2 performer_name ID3v22TextFrame
TP3 conductor_name ID3v22TextFrame
TCM composer_name ID3v22TextFrame
TMT media ID3v22TextFrame
TRC ISRC ID3v22TextFrame
TCR copyright ID3v22TextFrame
TPB publisher ID3v22TextFrame
TYE year ID3v22TextFrame
TRD date ID3v22TextFrame
COM comment ID3v22ComFrame
PIC images () ID3v22PicFrame

class ID3v22Frame (frame_id, data)
This is the base class for the various ID3v2.2 frames. frame_id is a 3 character string and data is the frame’s
contents as a string.

ID3v22Frame.build()
Returns the frame’s contents as a string of binary data.

classmethod ID3v22Frame . parse (container)

Given

a

audiotools.Con.Container

object

with

data parsed from

audiotools.ID3v22Frame.FRAME, returns an ID3v22Frame or one of its subclasses, depending
on the frame identifier.

class ID3v22TextFrame (frame_id, encoding, string)
This is a container for textual data. frame_id is a 3 character string, string is a unicode string and
encoding is one of the following integers representing a text encoding:

0 | Latin-1
1 | UCS-2

ID3v22TextFrame.__int__ ()
Returns the first integer portion of the frame data as an int.

ID3v22TextFrame.total ()
Returns the integer portion of the frame data after the first slash as an int. For example:

>>> tag[’TRK'] =
>>> tag[’ TRK']
[<audiotools._ i1d3_ .ID3v22TextFrame instance at 0x1004c6830>]
>>> int (tag[’TRK"]1[0])

1

>>> tag[’TRK’][0] .total()

2

[ID3v22TextFrame (' TRK’ ,0,u’1/2")]

classmethod ID3v22TextFrame. from_unicode (frame_id, s)
A convenience method for building TD3v22TextFrame objects from a frame identifier and unicode string.
Note that if frame_id is "COM", this will build an ITD3v22ComF rame object instead.

class ID3v22ComFrame (encoding, language, short_description, content)

This frame is for holding a potentially large block of comment data. encoding is the same as in text frames:
0 | Latin-1
1 | UCS-2

52 Chapter 9. Meta Data Formats

http://en.wikipedia.org/wiki/Latin-1
http://en.wikipedia.org/wiki/UTF-16
http://en.wikipedia.org/wiki/Latin-1
http://en.wikipedia.org/wiki/UTF-16

Python Audio Tools Documentation, Release 2.17

language is a 3 character string, such as "eng" for English. short_description and content are
unicode strings.

classmethod ID3v22ComFrame . from_unicode (s)
A convenience method for building TD3v22ComF rame objects from a unicode string.

class ID3v22PicFrame (data, format, description, pic_type)
This is a subclass of audiotools. Image, in addition to being an ID3v2.2 frame. data is a string of binary
image data. format is a 3 character unicode string identifying the image type:

u"PNG" | PNG
u"JPG" | JPEG
u"BMP" | Bitmap
u"GIF" | GIF
u"TIF" | TIFF

description is aunicode string. pic_type is an integer representing one of the following:

0 Other

1 32x32 pixels ‘file icon’ (PNG only)
2 Other file icon

3 Cover (front)

4 Cover (back)

5 Leaflet page

6 Media (e.g. label side of CD)

7 Lead artist / Lead performer / Soloist
8 Artist / Performer

9 Conductor

10 | Band/ Orchestra

11 | Composer

12 | Lyricist / Text writer

13 | Recording Location

14 | During recording

15 | During performance

16 | Movie / Video screen capture
17 | A bright colored fish

18 | Illustration

19 | Band/ Artist logotype

20 | Publisher / Studio logotype

ID3v22PicFrame.type_string()
Returns the pic_type as a plain string.

classmethod ID3v22PicFrame.converted (image)
Given an audiotools.Image object, returns a new ID3v22P1icFrame object.

9.5 ID3v2.3

class ID3v23Comment (frames)
This is an ID3v2.3 tag, one of the three ID3v2 variants used by MP3 files. During initialization, it takes a list
of ID3v23Frame-compatible objects. It can then be manipulated like a regular Python dict with keys as 4
character frame identifiers and values as lists of ID3v23Frame objects - since each frame identifier may occur
multiple times.

For example:

9.5. ID3v2.3 53

http://www.id3.org/d3v2.3.0

Python Audio Tools Documentation, Release 2.17

>>> tag = ID3v23Comment ([ID3v23TextFrame (' TIT2’,0,u’ Track Title’)])
>>> tag.track_name

u’ Track Title’

>>> tag[’'TIT2"]

[<audiotools._ id3_ .ID3v23TextFrame instance at 0x1004c6680>]

>>> tag[’TIT2"] = [ID3v23TextFrame (' TIT2’,0,u’New Track Title’)]
>>> tag.track_name

u’New Track Title’

Fields are mapped between ID3v2.3 frame identifiers, audiotools.MetaData and ID3v23Frame objects

as follows:

Identifier | MetaData Object

TIT2 track_name ID3v23TextFrame
TRCK track_number/track_total | ID3v23TextFrame
TPOS album_number/album_total | ID3v23TextFrame
TALB album_name ID3v23TextFrame
TPE1 artist_name ID3v23TextFrame
TPE2 performer_name ID3v23TextFrame
TPE3 conductor_name ID3v23TextFrame
TCOM composer_name ID3v23TextFrame
TMED media ID3v23TextFrame
TSRC ISRC ID3v23TextFrame
TCOP copyright ID3v23TextFrame
TPUB publisher ID3v23TextFrame
TYER year ID3v23TextFrame
TRDA date ID3v23TextFrame
COMM comment ID3v23ComFrame
APIC images () ID3v23PicFrame

class ID3v23Frame (frame_id, data)
This is the base class for the various ID3v2.3 frames. frame_id is a 4 character string and data is the frame’s
contents as a string.

ID3v23Frame.build()
Returns the frame’s contents as a string of binary data.

classmethod ID3v23Frame.parse (container)
Given a audiotools.Con.Container object with data parsed from
audiotools.ID3v23Frame.FRAME, returns an ID3v23Frame or one of its subclasses, depending
on the frame identifier.

class ID3v23TextFrame (frame_id, encoding, string)
This is a container for textual data. frame_id is a 4 character string, string is a unicode string and
encoding is one of the following integers representing a text encoding:

0 | Latin-1
1 | UCS-2

ID3v23TextFrame.__int_ ()
Returns the first integer portion of the frame data as an int.

ID3v23TextFrame.total ()
Returns the integer portion of the frame data after the first slash as an int. For example:

>>> tag[’TRAK’] = [ID3v23TextFrame (/' TRAK’,0,u’3/4")]

>>> tag[’ TRAK']

[<audiotools._ i1d3_ .ID3v23TextFrame instance at 0x1004cl7a0>]
>>> int (tag[’ TRAK’][0])

54 Chapter 9. Meta Data Formats

http://en.wikipedia.org/wiki/Latin-1
http://en.wikipedia.org/wiki/UTF-16

Python Audio Tools Documentation, Release 2.17

3
>>> tag[’TRAK’] [0].total ()
4

classmethod ID3v23TextFrame. from unicode (frame_id, s)
A convenience method for building TD3v23TextFrame objects from a frame identifier and unicode string.
Note that if frame_id is "COMM", this will build an TD3v23ComFrame object instead.

class ID3v23ComFrame (encoding, language, short_description, content)
This frame is for holding a potentially large block of comment data. encoding is the same as in text frames:

0 | Latin-1
1 | UCS-2

language is a 3 character string, such as "eng" for english. short_description and content are
unicode strings.

classmethod ID3v23ComFrame . from unicode (s)
A convenience method for building TD3v23ComF rame objects from a unicode string.

class ID3v23PicFrame (data, mime_type, description, pic_type)
This is a subclass of audiotools. Image, in addition to being an ID3v2.3 frame. data is a string of binary
image data. mime_type is a string of the image’s MIME type, such as "image/ jpeg".

description is aunicode string. pic_type is an integer representing one of the following:

0 Other

1 32x32 pixels ‘“file icon’ (PNG only)
2 Other file icon

3 Cover (front)

4 Cover (back)

5 Leaflet page

6 Media (e.g. label side of CD)

7 Lead artist / Lead performer / Soloist
8 Artist / Performer

9 Conductor

10 | Band/ Orchestra

11 | Composer

12 | Lyricist/ Text writer

13 | Recording Location

14 | During recording

15 | During performance

16 | Movie / Video screen capture
17 | A bright colored fish

18 | Illustration

19 | Band/ Artist logotype

20 | Publisher / Studio logotype

classmethod ID3v23PicFrame.converted (image)
Given an audiotools. Image object, returns a new ID3v23PicFrame object.

9.6 ID3v2.4

class ID3v24Comment (frames)
This is an ID3v2.4 tag, one of the three ID3v2 variants used by MP3 files. During initialization, it takes a list
of ID3v24Frame-compatible objects. It can then be manipulated like a regular Python dict with keys as 4

9.6. 1D3v2.4 55

http://en.wikipedia.org/wiki/Latin-1
http://en.wikipedia.org/wiki/UTF-16
http://www.id3.org/id3v2.4.0-structure

Python Audio Tools Documentation, Release 2.17

character frame identifiers and values as lists of ID3v24F rame objects - since each frame identifier may occur
multiple times.

For example:

>>> import audiotools as a

>>> tag = ID3v24Comment ([ID3v24TextFrame (' TIT2’,0,u’ Track Title’)1])
>>> tag.track_name

u’ Track Title’

>>> tag[’'TIT2"]

[<audiotools. 1d3__ .ID3v24TextFrame instance at 0x1004cl7a0>]

>>> tag [’ TIT2’] = [ID3v24TextFrame (' TIT2’,0,’New Track Title’)]

>>> tag.track_name

u’New Track Title’

Fields are mapped between ID3v2.4 frame identifiers, audiotools.MetaData and ID3v24F rame objects

as follows:

Identifier | MetaData Object

TIT2 track_name ID3v24TextFrame
TRCK track_number/track_total | ID3v24TextFrame
TPOS album_number/album_total | ID3v24TextFrame
TALB album_name ID3v24TextFrame
TPE1 artist_name ID3v24TextFrame
TPE2 performer_name ID3v24TextFrame
TPE3 conductor_name ID3v24TextFrame
TCOM composer_name ID3v24TextFrame
TMED media ID3v24TextFrame
TSRC ISRC ID3v24TextFrame
TCOP copyright ID3v24TextFrame
TPUB publisher ID3v24TextFrame
TYER year ID3v24TextFrame
TRDA date ID3v24TextFrame
COMM comment ID3v24ComFrame
APIC images () ID3v24PicFrame

class ID3v24Frame (frame_id, data)

This is the base class for the various ID3v2.3 frames. frame_id is a 4 character string and dat a is the frame’s

contents as a string.

ID3v24Frame.build()
Returns the frame’s contents as a string of binary data.

classmethod ID3v24Frame . parse (container)

Given

a

audiotools.Con.Container

object

with

parsed
audiotools.ID3v24Frame.FRAME, returns an ID3v24Frame or one of its subclasses, depending
on the frame identifier.

class ID3v24TextFrame (frame_id, encoding, string)
This is a container for textual data. frame_id is a 4 character string, string is a unicode string and
encoding is one of the following integers representing a text encoding:

0 | Latin-1

1 | UTF-16

2 | UTF-16BE
3 | UTF-8

ID3v24TextFrame.__int__ ()
Returns the first integer portion of the frame data as an int.

56 Chapter 9. Meta Data Formats

http://en.wikipedia.org/wiki/Latin-1
http://en.wikipedia.org/wiki/UTF-16
http://en.wikipedia.org/wiki/UTF-16
http://en.wikipedia.org/wiki/UTF-8

Python Audio Tools Documentation, Release 2.17

ID3v24TextFrame.total ()
Returns the integer portion of the frame data after the first slash as an int. For example:

>>> tag[’TRAK’] = [ID3v24TextFrame (' TRAK',0,u’5/6")]

>>> tag[’ TRAK']

[<audiotools._ i1d3_ .ID3v24TextFrame instance at 0x1004cl7a0>]
>>> int (tag[’TRAK’]1[0])

5

>>> tag [’ TRAK’][0] .total ()

6

classmethod ID3v24TextFrame . from_unicode (frame_id, s)
A convenience method for building ID3v24TextFrame objects from a frame identifier and unicode string.
Note that if frame_id is "COMM", this will build an ID3v24ComF rame object instead.

class ID3v24ComFrame (encoding, language, short_description, content)
This frame is for holding a potentially large block of comment data. encoding is the same as in text frames:

0 | Latin-1

1 | UTF-16

2 | UTF-16BE
3 | UTF-8

language is a 3 character string, such as "eng" for english. short_description and content are
unicode strings.

classmethod ID3v24ComFrame. from_unicode (s)
A convenience method for building TD3v24ComF rame objects from a unicode string.

class ID3v24PicFrame (data, mime_type, description, pic_type)
This is a subclass of audiotools. Image, in addition to being an ID3v2.4 frame. data is a string of binary
image data. mime_type is a string of the image’s MIME type, such as "image/ jpeg".

description is aunicode string. pic_type is an integer representing one of the following:

Other

32x32 pixels ‘file icon’ (PNG only)
Other file icon

Cover (front)

Cover (back)

Leaflet page

Media (e.g. label side of CD)
Lead artist / Lead performer / Soloist
Artist / Performer

Conductor

10 | Band / Orchestra

11 | Composer

12 | Lyricist / Text writer

13 | Recording Location

14 | During recording

15 | During performance

16 | Movie / Video screen capture
17 | A bright colored fish

18 | Illustration

19 | Band/ Artist logotype

20 | Publisher / Studio logotype

0NN AW~ O

e

classmethod ID3v23PicFrame.converted (image)
Given an audiotools.Image object, returns a new ID3v24P1icFrame object.

9.6. 1D3v2.4 57

http://en.wikipedia.org/wiki/Latin-1
http://en.wikipedia.org/wiki/UTF-16
http://en.wikipedia.org/wiki/UTF-16
http://en.wikipedia.org/wiki/UTF-8

Python Audio Tools Documentation, Release 2.17

9.7 ID3 Comment Pair

Often, MP3 files are tagged with both an ID3v2 comment and an ID3v1 comment for maximum compatibility. This
class encapsulates both comments into a single class.

class ID3CommentPair (id3v2_comment, id3vl_comment)

1d3v2_comment is an ID3v22Comment, ID3v23Comment or ID3v24Comment. id3vl_comment
is an ID3v1Comment. When getting audiotools.MetaData attributes, the ID3v2 comment is used by
default. Set attributes are propagated to both. For example:

>>> tag = ID3CommentPair (ID3v23Comment ([ID3v23TextFrame (' TIT2’,0,u’Title 17)1),
.. ID3v1Comment ((u’ Title 27 ,u’",u" " ,u’"’",u"’,1)))

>>> tag.track_name
u’Title 17

>>> tag.track_name = u’New Track Title’
>>> unicode (tag.id3v2 [’ TIT2"]1[0])

u’New Track Title’

>>> tag.i1d3v1[0]

u’New Track Title’

ID3CommentPair.id3v2

The embedded ID3v22Comment, ID3v23Comment or ID3v24Comment

ID3CommentPair.id3vl

The embedded ID3v1Comment

9.8 M4A

class MAAMetaData (ilst_atoms)

This is the metadata format used by QuickTime-compatible formats such as M4A and Apple Lossless. Due
to its relative complexity, M4AMetaData‘s implementation is more low-level than others. During initial-
ization, it takes a list of ILST_Atom-compatible objects. It can then be manipulated like a regular Python
dict with keys as 4 character atom name strings and values as a list of ILST_Atom objects. It is also a
audiotools.MetaData subclass. Note that 11st atom objects are relatively opaque and easier to han-
dle via convenience builders.

As an example:

>>> tag = M4AMetaData (M4AMetaData.text_atom(chr (0xA9) + ’"nam’,u’Track Name’))

>>> tag.track_name

u’ Track Name’

>>> tag[chr (0xA9) + ’"nam’]

[ILST_Atom ('’ \xa9nam’, [__Qt_Atom__ ('data’,’\x00\x00\x00\x01\x00\x00\x00\x00Track Name’,0)])]
>>> tag[chr (0xA9) + ’'nam’] = M4AMetaData.text_atom(chr (0xA9) + ’'nam’,u’New Track Name’)

>>> tag.track_name

u’New Track Name’

Fields are mapped between M4AMetaData, audiotools.MetaData and iTunes as follows:

58

Chapter 9. Meta Data Formats

Python Audio Tools Documentation, Release 2.17

M4AMetaData | MetaData iTunes
"\xA9nam" track_name Name
"\xA9ART" artist_name Artist
"\xA9day" year Year

"trkn" track_number/track_total | Track Number
"disk" album_number/album_total | Album Number
"\xA%alb" album_name Album
"\xA9wrt" composer_name Composer
"\xA9cmt" comment Comment
"cprt" copyright

Note that several of the 4 character keys are prefixed by the non-ASCII byte 0x2A9.

M4AMetaData.to_atom (previous_meta)
This takes the previous M4A meta atom as a string and returns a new ___Qt_Atom___ object of our new meta
atom with any non-i1st atoms ported from the old atom to the new atom.

classmethod M42AMetaData.binary atom (key, value)
Takes a 4 character atom name key and binary string value. Returns a 1 element TLST_Atom list suitable for
adding to our internal dictionary.

classmethod M4AMetaData .text_atom (key, value)
Takes a 4 character atom name key and unicode value. Returns a 1 element TLST_ At om list suitable for adding
to our internal dictionary.

classmethod M4AMetaData.trkn_atom (track_number, track_total)
Takes track number and track total integers (the t rkn key is assumed). Returns a 1 element TLST_Atom list
suitable for adding to our internal dictionary.

classmethod M4AMetaData.disk_atom (disk_number, disk_total)
Takes album number and album total integers (the disk key is assumed). Returns a 1 element ILST_Atom
list suitable for adding to our internal dictionary.

classmethod M4AMetaData.covr_atom (image_data)
Takes a binary string of cover art data (the covr key is assumed). Returns a 1 element ILST_ At om list suitable
for adding to our internal dictionary.

class ILST_Atom (type, sub_atoms)
This is initialized with a 4 character atom type string and a list of __Qt_Atom__-compatible sub-atom
objects (typically a single data atom containing the metadata field’s value). It’s less error-prone to use
M4AMetaData‘s convenience classmethods rather than building TL.ST_At om objects by hand.

Its _ _unicode__ () method is particularly useful because it parses its sub-atoms and returns a human-
readable value depending on whether it contains textual data or not.

9.9 Vorbis Comment

class VorbisComment (vorbis_data[, vendor_string])

This is a VorbisComment tag used by FLAC, Ogg FLAC, Ogg Vorbis, Ogg Speex and other formats in the
Ogg family. During initialization vorbis_data is a dictionary whose keys are unicode strings and whose
values are lists of unicode strings - since each key in a Vorbis Comment may occur multiple times with dif-
ferent values. The optional vendor_string unicode string is typically handled by get_metadata ()
and set_metadata () methods, but it can also be accessed via the vendor_string attribute. Once
initialized, VorbisComment can be manipulated like a regular Python dict in addition to its standard
audiotools.MetaData methods.

For example:

9.9. Vorbis Comment 59

http://www.xiph.org/vorbis/doc/v-comment.html

Python Audio Tools Documentation, Release 2.17

>>> tag = VorbisComment ({u’TITLE’ :[u’Track Title’]1})

>>> tag.track_name

u’ Track Title’
>>> tag[u’ TITLE']
[u’New Title’]
>>> tag[u’ TITLE’]

= [u’New Title’]

>>> tag.track_name

u’New Title’

Fields are mapped between VorbisComment and audiotools.MetaData as follows:

VorbisComment
TITLE
TRACKNUMBER
TRACKTOTAL
DISCNUMBER
DISCTOTAL
ALBUM
ARTIST
PERFORMER
COMPOSER
CONDUCTOR
SOURCE MEDIUM
ISRC
CATALOG
COPYRIGHT
PUBLISHER
DATE
COMMENT

Metadata
track_name
track_number
track_total
album_number
album_total
album_name
artist_name
performer_name
composer_name
conductor_name
media

ISRC

catalog
copyright
publisher

year

comment

Note that if the same key is used multiple times, the metadata attribute only indicates the first one:

>>> tag = VorbisComment ({u’ TITLE’ : [u’Titlel’ ,u’Title2’1})

>>> tag.track_name

u’Titlel’

VorbisComment .build()

Returns this object’s complete Vorbis Comment data as a string.

60

Chapter 9. Meta Data Formats

CHAPTER
TEN

* genindex
* modindex

INDICES AND TABLES

61

Python Audio Tools Documentation, Release 2.17

62

Chapter 10. Indices and tables

a

audiotools,3

audiotools
audiotools
audiotools
audiotools

audiotools

.cdio, 37
.cue, 39
.pcm, 29
.player, 43
audiotools.
audiotools.
.toc, 41

replaygain, 35
resample, 33

PYTHON MODULE INDEX

63

Python Audio Tools Documentation, Release 2.17

64

Python Module Index

Symbols

__int__() (ID3v22TextFrame method), 52
__int__() (ID3v23TextFrame method), 54
__int__() (ID3v24TextFrame method), 56
__len__ () (audiotools.AlbumMetaDataFile method), 12

A

add_image() (audiotools.MetaData method), 11

add_replay_gain() (audiotools.AudioFile class method), 8

add_row() (audiotools.ProgressDisplay method), 26

AiffContainer (class in audiotools), 9

album_gain() (audiotools.replaygain.ReplayGain
method), 35

album_number() (audiotools.AudioFile method), 7

AlbumMetaData (class in audiotools), 11

AlbumMetaDataFile (class in audiotools), 11

AlbumMetaDataFile.album_name (in module
diotools), 12

AlbumMetaDataFile.artist_name (in module audiotools),
12

AlbumMetaDataFile.catalog (in module audiotools), 12

AlbumMetaDataFile.extra (in module audiotools), 12

AlbumMetaDataFile.year (in module audiotools), 12

ansi() (audiotools.Messenger method), 25

ansi_cleardown() (audiotools.Messenger method), 25

ansi_clearline() (audiotools.Messenger method), 25

ansi_err() (audiotools.Messenger method), 25

ansi_uplines() (audiotools.Messenger method), 25

AOBStream (class in audiotools), 21

ApeTag (built-in class), 47

ApeTagltem (built-in class), 48

applicable_replay_gain() (in module audiotools), 5

AUDIO_OUTPUT (in module audiotools.player), 43

AudioFile (class in audiotools), 5

AudioOutput (class in audiotools.player), 44

AudioOutput. NAME (in module audiotools.player), 44

audiotools (module), 3

audiotools.cdio (module), 37

audiotools.cue (module), 39

audiotools.pcm (module), 29

audiotools.player (module), 43

au-

INDEX

audiotools.replaygain (module), 35

audiotools.resample (module), 33

audiotools.toc (module), 41

available() (audiotools.player.AudioOutput
method), 45

AVAILABLE_TYPES (in module audiotools), 3

B

back_covers() (audiotools.MetaData method), 11
BIN (in module audiotools), 3

BINARIES (audiotools.AudioFile attribute), 5
binary() (ApeTagltem class method), 48
binary_atom() (M4AMetaData class method), 59
bits_per_sample() (audiotools.AudioFile method), 6
blank_row() (audiotools.Messenger method), 24
BufferedPCMReader (class in audiotools), 15
build() (ApeTag method), 48

build() (ApeTagltem method), 48

build() (FlacMetaData method), 49

build() (FlacPictureComment method), 50
build() ID3v22Frame method), 52

build() (ID3v23Frame method), 54

build() (ID3v24Frame method), 56

build() (VorbisComment method), 60
build_block() (FlacCueSheet method), 50
build_block() (FlacMetaDataBlock method), 50
build_block() (FlacPictureComment method), 50
build_block() (FlacVorbisComment method), 50
build_id3v1() (ID3v1Comment class method), 51
build_tag() ID3v1Comment method), 51

C

calculate_replay_gain() (in module audiotools), 5

can_add_replay_gain() (audiotools.AudioFile
method), 8

catalog() (audiotools.cue.Cuesheet method), 39

catalog() (audiotools.toc. TOCFile method), 41

cd_frames() (audiotools.AudioFile method), 6

CDDA (class in audiotools), 18

CDDA (class in audiotools.cdio), 37

CDPlayer (class in audiotools.player), 44

class

class

65

Python Audio Tools Documentation, Release 2.17

CDTrackLog (class in audiotools), 19

CDTrackReader (class in audiotools), 19

CDTrackReader.rip_log (in module audiotools), 19

channel() (audiotools.pcm.FloatFrameList method), 31

channel() (audiotools.pcm.FrameList method), 30

channel_mask() (audiotools.AudioFile method), 6

ChannelMask (class in audiotools), 17

channels() (audiotools.AudioFile method), 6

channels() (audiotools.ChannelMask method), 17

clear() (audiotools.ProgressDisplay method), 26

close() (audiotools.PCMConverter method), 15

close() (audiotools.PCMReader method), 14

close() (audiotools.player.AudioOutput method), 45

close() (audiotools.player.CDPlayer method), 44

close() (audiotools.player.Player method), 44

compatible() (audiotools.player.AudioOutput method),
44

COMPRESSION_DESCRIPTIONS
diotools.AudioFile attribute), 5

COMPRESSION_MODES (audiotools.AudioFile
tribute), 5

convert() (audiotools.AudioFile method), 7

converted() (audiotools.MetaData class method), 10

converted() (FlacCueSheet class method), 50

converted() (ID3v22PicFrame class method), 53

converted() (ID3v23PicFrame class method), 55, 57

covr_atom() (M4AMetaData class method), 59

CueException, 39

Cuesheet (class in audiotools.cue), 39

D

DEFAULT_COMPRESSION (audiotools.AudioFile at-
tribute), 5
defined() (audiotools.ChannelMask method), 17
delete_image() (audiotools.MetaData method), 11
delete_metadata() (audiotools.AudioFile method), 6
delete_row() (audiotools.ProgressDisplay method), 26
disk_atom() (M4AMetaData class method), 59
display_unicode (class in audiotools), 27
divider_row() (audiotools.Messenger method), 24
DVDATitle (class in audiotools), 19
DVDATitle.dvdaudio (in module audiotools), 19
DVDATitle.pts_length (in module audiotools), 20
DVDATitle.title (in module audiotools), 20
DVDATitle.titleset (in module audiotools), 19
DVDATitle.tracks (in module audiotools), 20
DVDATTrack (class in audiotools), 20
DVDATrack.dvdaudio (in module audiotools), 20
DVDATrack.first_pts (in module audiotools), 20
DVDATrack first_sector (in module audiotools), 20
DVDATrack.last_sector (in module audiotools), 20
DVDATrack.pts_length (in module audiotools), 20
DVDATrack title (in module audiotools), 20
DVDATrack. titleset (in module audiotools), 20

(au-

at-

DVDATrack.track (in module audiotools), 20
DVDAudio (class in audiotools), 19

E

error() (audiotools.Messenger method), 23
ExecProgressQueue (class in audiotools), 22
ExecQueue (class in audiotools), 21

ExecQueue? (class in audiotools), 21

execute() (audiotools.ExecProgressQueue method), 22
execute() (audiotools.ExecQueue method), 21
execute() (audiotools.ExecQueue2 method), 21
external() (ApeTagltem class method), 48

F

file() (audiotools.cue.Cuesheet class method), 39
file() (audiotools.toc. TOCFile class method), 41
filename() (audiotools.Messenger method), 24
filename_to_type() (in module audiotools), 4
final_message() (audiotools.ReplayGainProgressDisplay
method), 27
first_sector() (audiotools.CDDA method), 18
first_sector() (audiotools.cdio.CDDA method), 37
FlacCueSheet (built-in class), 50
FlacMetaData (built-in class), 49
FlacMetaData.cuesheet (built-in variable), 49
FlacMetaData.extra_blocks (built-in variable), 49
FlacMetaData.image_blocks (built-in variable), 49
FlacMetaData.streaminfo (built-in variable), 49
FlacMetaData.vorbis_comment (built-in variable), 49
FlacMetaDataBlock (built-in class), 49
FlacPictureComment (built-in class), 50
FlacVorbisComment (built-in class), 50
FloatFrameList (class in audiotools.pcm), 31
FloatFrameList.channels (in module audiotools.pcm), 31
FloatFrameList.frames (in module audiotools.pcm), 31
frame() (audiotools.pcm.FloatFrameList method), 31
frame() (audiotools.pcm.FrameList method), 30
frame_count() (audiotools.pcm.FrameList method), 31
FramelList (class in audiotools.pcm), 30
FrameList.bits_per_sample (in module audiotools.pcm),
30
FrameList.channels (in module audiotools.pcm), 30
FrameList.frames (in module audiotools.pcm), 30
framelist_converter() (audiotools.player. AudioOutput
method), 44
from_aiff() (audiotools.AiffContainer class method), 9
from_channels() (audiotools.ChannelMask class
method), 18
from_channels() (in module audiotools.pcm), 29
from_cuesheet() (audiotools.AlbumMetaDataFile class
method), 12
from_fields() (audiotools.ChannelMask class method), 18
from_float_channels() (in module audiotools.pcm), 30
from_float_frames() (in module audiotools.pcm), 29

66

Index

Python Audio Tools Documentation, Release 2.17

from_frames() (in module audiotools.pcm), 29
from_list() (in module audiotools.pcm), 29
from_pcm() (audiotools.AudioFile class method), 6

from_string() (audiotools.AlbumMetaDataFile class
method), 12

from_tracks() (audiotools.AlbumMetaDataFile class
method), 12

from_unicode() (ID3v22ComFrame class method), 53
from_unicode() (ID3v22TextFrame class method), 52
from_unicode() (ID3v23ComFrame class method), 55
from_unicode() (ID3v23TextFrame class method), 55
from_unicode() (ID3v24ComFrame class method), 57
from_unicode() (ID3v24TextFrame class method), 57
from_wave() (audiotools.WaveContainer class method), 9
front_covers() (audiotools.MetaData method), 11

G

get() (audiotools.AlbumMetaDataFile method), 12
get_cuesheet() (audiotools.AudioFile method), 8
get_metadata() (audiotools.AudioFile method), 6
get_track() (audiotools.AlbumMetaDataFile method), 12
group_tracks() (in module audiotools), 4

H

has_binaries() (audiotools.AudioFile class method), 8
has_foreign_aiff_chunks() (audiotools.AiffContainer
method), 9
has_foreign_riff_chunks()
method), 9
head() (audiotools.display_unicode method), 27

ID3CommentPair (built-in class), 58
ID3CommentPair.id3v1 (built-in variable), 58
ID3CommentPair.id3v2 (built-in variable), 58
ID3v1Comment (built-in class), 50
ID3v22ComFrame (built-in class), 52
ID3v22Comment (built-in class), 51
ID3v22Frame (built-in class), 52
ID3v22PicFrame (built-in class), 53
ID3v22TextFrame (built-in class), 52
ID3v23ComFrame (built-in class), 55
ID3v23Comment (built-in class), 53
ID3v23Frame (built-in class), 54
ID3v23PicFrame (built-in class), 55
ID3v23TextFrame (built-in class), 54
ID3v24ComFrame (built-in class), 57
ID3v24Comment (built-in class), 55
ID3v24Frame (built-in class), 56
ID3v24PicFrame (built-in class), 57
ID3v24TextFrame (built-in class), 56
ILST_Atom (built-in class), 59

Image (class in audiotools), 13
Image.color_count (in module audiotools), 13

(audiotools.WaveContainer

Image.color_depth (in module audiotools), 13
Image.data (in module audiotools), 13
Image.description (in module audiotools), 13
Image.height (in module audiotools), 13
Image.mime_type (in module audiotools), 13
Image.type (in module audiotools), 13
Image.width (in module audiotools), 13
images() (audiotools.MetaData method), 11
index() (audiotools.ChannelMask method), 17
indexes() (audiotools.cue.Cuesheet method), 39
indexes() (audiotools.toc. TOCFile method), 41
info() (audiotools.DVDATi tle method), 20
info() (audiotools.Messenger method), 23
info_rows() (audiotools.Messenger method), 24
init() (audiotools.player.AudioOutput method), 44
initial_message() (audiotools.ReplayGainProgressDisplay
method), 27
is_type() (audiotools.AudioFile class method), 6
ISRCs() (audiotools.cue.Cuesheet method), 39
ISRCs() (audiotools.toc. TOCFile method), 41

L

last_sector() (audiotools.CDDA method), 18
last_sector() (audiotools.cdio.CDDA method), 37
leaflet_pages() (audiotools.MetaData method), 11
length() (audiotools.CDDA method), 18
length() (audiotools.CDTrackReader method), 19
length_in_seconds() (audiotools.cdio.CDDA method), 37
LimitedPCMReader (class in audiotools), 16
lossless() (audiotools.AudioFile method), 6
lossless_replay_gain() (audiotools.AudioFile
method), 8

class

M

M4AMetaData (built-in class), 58

media_images() (audiotools.MetaData method), 11
merge() (audiotools.MetaData method), 11

Messenger (class in audiotools), 23

MetaData (class in audiotools), 9

metadata() (audiotools.AlbumMetaData method), 11
metadata() (audiotools.AlbumMetaDataFile method), 12
MetaData.album_name (in module audiotools), 10
MetaData.album_number (in module audiotools), 10
MetaData.album_total (in module audiotools), 10
MetaData.artist_name (in module audiotools), 10
MetaData.catalog (in module audiotools), 10
MetaData.comment (in module audiotools), 10
MetaData.composer_name (in module audiotools), 10
MetaData.conductor_name (in module audiotools), 10
MetaData.date (in module audiotools), 10
MetaData.ISRC (in module audiotools), 10
MetaData.media (in module audiotools), 10
MetaData.performer_name (in module audiotools), 10
MetaData.track_name (in module audiotools), 10

Index

67

Python Audio Tools Documentation, Release 2.17

MetaData.track_number (in module audiotools), 10
MetaData.track_total (in module audiotools), 10
MetaData.year (in module audiotools), 10
metadata_blocks() (FlacMetaData method), 49

N

NAME (audiotools.AudioFile attribute), 5
new() (audiotools.Image class method), 13
new_row() (audiotools.Messenger method), 24

O

offset() (audiotools.CDTrackReader method), 19
open() (audiotools.player.CDPlayer method), 44
open() (audiotools.player.Player method), 43
open() (in module audiotools), 4

open_directory() (in module audiotools), 4
open_{files() (in module audiotools), 4

os_error() (audiotools.Messenger method), 23
other_images() (audiotools.MetaData method), 11
output() (audiotools.Messenger method), 23
output_column() (audiotools.Messenger method), 24
output_rows() (audiotools.Messenger method), 24

P

packet_payloads() (audiotools.AOBStream method), 21

packets() (audiotools.AOBStream method), 21

parse() (ID3v22Frame class method), 52

parse() ID3v23Frame class method), 54

parse() (ID3v24Frame class method), 56

partial_info() (audiotools.Messenger method), 23

partial_output() (audiotools.Messenger method), 23

pause() (audiotools.player.CDPlayer method), 44

pause() (audiotools.player.Player method), 43

pcm_cmp() (in module audiotools), 4

pem_frame_cmp() (in module audiotools), 4

pem_lengths() (audiotools.cue.Cuesheet method), 39

pem_lengths() (audiotools.toc. TOCFile method), 41

pem_split() (in module audiotools), 5

PCMCat (class in audiotools), 16

PCMConverter (class in audiotools), 15

PCMConverter.bits_per_sample (in module audiotools),
15

PCMConverter.channel_mask (in module audiotools), 15

PCMConverter.channels (in module audiotools), 15

PCMConverter.sample_rate (in module audiotools), 15

PCMReader (class in audiotools), 14

PCMReader.bits_per_sample (in module audiotools), 14

PCMReader.channel_mask (in module audiotools), 14

PCMReader.channels (in module audiotools), 14

PCMReader.sample_rate (in module audiotools), 14

PCMReaderError (class in audiotools), 14

PCMReaderProgress (class in audiotools), 16

PCMReaderWindow (class in audiotools), 16

play() (audiotools.player.AudioOutput method), 45

play() (audiotools.player.CDPlayer method), 44

play() (audiotools.player.Player method), 43

Player (class in audiotools.player), 43

process() (audiotools.resample.Resampler method), 33
progress() (audiotools.player.CDPlayer method), 44
progress() (audiotools.player.Player method), 44
ProgressDisplay (class in audiotools), 26
ProgressRow (class in audiotools), 27

R

read() (ApeTag class method), 48

read() (audiotools. PCMConverter method), 15

read() (audiotools. PCMReader method), 14

read_cuesheet() (in module audiotools.cue), 39

read_id3v1_comment() (ID3vlComment class method),
51

read_metadata_file() (in module audiotools), 5

read_sector() (audiotools.cdio.CDDA method), 38

read_sectors() (audiotools.cdio.CDDA method), 38

read_sheet() (in module audiotools), 5

read_tocfile() (in module audiotools.toc), 41

refresh() (audiotools.ProgressDisplay method), 26

ReorderedPCMReader (class in audiotools), 15

replay_gain() (audiotools.AudioFile method), 8

ReplayGain (class in audiotools), 13

ReplayGain (class in audiotools.replaygain), 35

ReplayGain.album_gain (in module audiotools), 14

ReplayGain.album_peak (in module audiotools), 14

ReplayGain.track_gain (in module audiotools), 13

ReplayGain.track_peak (in module audiotools), 13

REPLAYGAIN_BINARIES (audiotools.AudioFile at-
tribute), 6

ReplayGainProgressDisplay (class in audiotools), 26

ReplayGainReader (class in audiotools.replaygain), 35

Resampler (class in audiotools.resample), 33

results (audiotools.ExecProgressQueue attribute), 22

run() (audiotools.ExecProgressQueue method), 22

run() (audiotools.ExecQueue method), 21

run() (audiotools.ExecQueue2 method), 21

S

sample_rate() (audiotools.AudioFile method), 6
seconds_length() (audiotools.AudioFile method), 6
sectors() (audiotools. AOBStream method), 21

seek() (audiotools.cdio.CDDA method), 38
set_cuesheet() (audiotools.AudioFile method), 8
set_metadata() (audiotools.AudioFile method), 6
set_read_callback() (in module audiotools.cdio), 38
set_replay_gain() (audiotools.player.Player method), 43
set_speed() (audiotools.cdio.CDDA method), 38
set_track() (audiotools.AlbumMetaDataFile method), 12
single_file_type() (audiotools.cue.Cuesheet method), 39
SingleProgressDisplay (class in audiotools), 26

split() (audiotools.display_unicode method), 28

68

Index

Python Audio Tools Documentation, Release 2.17

split() (audiotools.pcm.FloatFrameList method), 31
split() (audiotools.pcm.FrameList method), 30
stop() (audiotools.player.CDPlayer method), 44
stop() (audiotools.player.Player method), 43
stream() (audiotools.DVDATitle method), 20
string() (ApeTagltem class method), 48
stripped_pcm_cmp() (in module audiotools), 4
SUFFIX (audiotools.AudioFile attribute), 5
suffix() (audiotools.Image method), 13
supports_images() (audiotools.MetaData class method),
11

T

tail() (audiotools.display_unicode method), 27

terminal_size() (audiotools.Messenger method), 26

text_atom() (M4AMetaData class method), 59

thumbnail() (audiotools.Image method), 13

title_gain() (audiotools.replaygain.ReplayGain method),
35

to_aiff() (audiotools.AiffContainer method), 9

to_atom() (M4AMetaData method), 59

to_bytes() (audiotools.pcm.FrameList method), 30

to_float() (audiotools.pcm.FrameList method), 30

to_int() (audiotools.pcm.FloatFrameList method), 31

to_pcm() (audiotools.AudioFile method), 6

to_pcm() (audiotools.DVDATitle method), 20

to_pcm_progress() (in module audiotools), 5

to_string() (audiotools.AlbumMetaDataFile method), 12

to_wave() (audiotools.WaveContainer method), 9

TOCException, 41

TOCFile (class in audiotools.toc), 41

toggle_play_pause() (audiotools.player.CDPlayer
method), 44

toggle_play_pause() (audiotools.player.Player method),
43

total() (ID3v22TextFrame method), 52

total() (ID3v23TextFrame method), 54

total() (ID3v24TextFrame method), 56

total_frames() (audiotools.AudioFile method), 6

total_tracks() (audiotools.cdio.CDDA method), 37

track_metadata() (audiotools.AlbumMetaDataFile
method), 12

track_metadatas()
method), 12

track_name() (audiotools.AudioFile class method), 7

track_number() (audiotools.AudioFile method), 7

track_offsets() (audiotools.cdio.CDDA method), 37

track_type() (audiotools.cdio.CDDA method), 38

transfer_data() (in module audiotools), 4

transfer_framelist_data() (in module audiotools), 4

trkn_atom() (M4AMetaData class method), 59

TYPE_MAP (in module audiotools), 3

type_string() (audiotools.Image method), 13

type_string() (ID3v22PicFrame method), 53

(audiotools.AlbumMetaDataFile

U

undefined() (audiotools.ChannelMask method), 17

unicode() (audiotools.ProgressRow method), 27

update() (audiotools.ProgressRow method), 27

update() (audiotools.replaygain.Replaygain method), 35

update() (audiotools.ReplayGainProgressDisplay
method), 27

update() (audiotools.SingleProgressDisplay method), 26

update_row() (audiotools.ProgressDisplay method), 26

usage() (audiotools.Messenger method), 23

V

verify() (audiotools.AudioFile method), 7
VERSION (in module audiotools), 3
VorbisComment (built-in class), 59

W

warning() (audiotools.Messenger method), 23
WaveContainer (class in audiotools), 9

Index

69

	audiotools --- the Base Python Audio Tools Module
	AudioFile Objects
	MetaData Objects
	AlbumMetaData Objects
	AlbumMetaDataFile Objects
	Image Objects
	ReplayGain Objects
	PCMReader Objects
	ChannelMask Objects
	CDDA Objects
	DVDAudio Objects
	ExecQueue Objects
	ExecProgressQueue Objects
	Messenger Objects
	ProgressDisplay Objects

	audiotools.pcm --- the PCM FrameList Module
	FrameList Objects
	FloatFrameList Objects

	audiotools.resample --- the Resampler Module
	Resampler Objects

	audiotools.replaygain --- the ReplayGain Calculation Module
	ReplayGain Objects
	ReplayGainReader Objects

	audiotools.cdio --- the CD Input/Output Module
	CDDA Objects

	audiotools.cue --- the Cuesheet Parsing Module
	Cuesheet Objects

	audiotools.toc --- the TOC File Parsing Module
	TOCFile Objects

	audiotools.player --- the Audio Player Module
	Player Objects
	CDPlayer Objects
	AudioOutput Objects

	Meta Data Formats
	ApeTag
	FLAC
	ID3v1
	ID3v2.2
	ID3v2.3
	ID3v2.4
	ID3 Comment Pair
	M4A
	Vorbis Comment

	Indices and tables
	Python Module Index
	Index

