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Abstract

A low-cost real-time servo motor control sys-
tem can be easily constructed with RTLinux and
a standard PC. In this paper, I’ll show how to
make a simple and complete system, including
a web-based control interface.

1 Overview

RTLinux/Pro allows rapid development of ap-
plication code and drivers for control of real-
world devices. I’m going to show step-by-
step how to write all the software necessary
to view live images and control a servo-motor
driven dual-axis mounted camera via a web-
page. While there are important commercial ap-
plications for projects like this, anything from
security monitors to robotics and manufactur-
ing, I put this camera together so I could watch
my cat during the day while I was at the office.

My cat, Kepler, is an old guy and has been sick
for some time and I want to be able to check on
him several times during the day. Kepler usually
stays in the same room but I needed to be able to
move the camera around to find him in the room.
This camera and mount are the perfect solution.

2 Camera Hardware

2.1 Mount

The camera mount is made from scrap pieces of
Lexan platic, machine screws and a hose clamp.
Fig. 2 shows the mount in a close-up photo.
Each axis of the mount is directly driven by a
Hobico CS-61 servo motor so that servo mo-
tor rotation results in corresponding rotation of
the camera. Any type of altitude/azimuth mount
with servo motors would work in this example.
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Figure 1: Kepler, Worlds Greatest Cat

Figure 2: Camera Mount

2.2 Servo Motor Hardware

The servo motors are driven by a simple circuit
(Fig. 3) that provides 5v DC, ground and a sig-
nal line to each of the motors. There is a DB25
connector on the end that routes the first 5 data
lines of the parallel port connector to the 5 mo-
tor signal lines. Raising any of these parallel
port data lines raises the signal line on that servo
motor pin.

2.3 Camera

I used a QuickCam 3000 Pro USB camera for
the camera (Fig.4). It is well supported under
Linux, is inexpensive and is able to produce high
quality images and produce them quickly (very
useful for live video).
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Figure 3: Controller Board

Figure 4: Camera and Mount, with Altitude
Servo Motor Visible

3 How RTLinux Applications
Work

RTLinux is an operating system that runs Linux
as the lowest-priority task. RTLinux applica-
tions execute in the RTLinux environment rather
than the Linux environment. This gives real-
time applications priority over normal Linux
applications and even Linux itself. On stan-
dard PC’s, a 650MHz Pentium III for exam-
ple, RTLinux can deliver 5µs worst-case inter-
rupt latency and 30µs worst-case jitter for peri-
odic tasks. This means users still have a normal
Linux system with X-Windows, web servers,
databases and any other application available for
Linux but also get an environment where hard
real-time applications can run.

RTLinux applications are compiled as load-
able kernel modules that are loaded and run
after Linux has booted. My goal here is to
show how to build, compile and run RTLinux
drivers and applications. In order to run these
programs you’ll need to be running RTLinux.
You can find RTLinux on-line athttp://
www.fsmlabs.com/products/ . Configu-
ration of RTLinux is described in either in the
RTLinux/Free download or the RTLinux Profes-
sional distribution and won’t be covered here.

First, I’ll go through the drivers and applica-
tion software that load and run in the real-time
environment of RTLinux. This is where most
of the work of controlling the mount motors is
done.
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4 RTLinux Parallel Port
Driver

In order to drive the motors, through the par-
allel port connection, I needed to be able to
write to the parallel port easily from RTLinux
applications. There are parallel port drivers for
RTLinux of course, but it’s so easy to write one
from scratch, that I did.

Drivers in RTLinux advertise their services
to other RTLinux applications through files in
/dev , just as with a standard UNIX system.
These/dev files that are managed by RTLinux
drivers are not directly accessible from the
Linux environment. So, a Linux application that
opens/dev/lpt0 is communicating with the
Linux (non-realtime) parallel port driver and not
the RTLinux driver. Conversely, a RTLinux ap-
plication that opens/dev/lpt0 is communi-
cating with the RTLinux driver and not with the
Linux driver.

This driver provides a/dev/lpt0 file that
can be used through POSIXopen() , read() ,
write() , ioctl , andclose() calls from
RTLinux applications. It makes no distinction
between/dev/lpt0 and /dev/lpt1 . In-
stead, it will always write to the same device.

4.1 Driver Initialization

Fig.5 shows the initialization code for the paral-
lel port driver. Theinit module() function
is called when the module is loaded. The only
thing I do in it is callrtl register dev()
to register a handler for/dev/lpt0 , /dev/lpt1
and so on. Thecleanup module() function
is called when the driver module is removed and

int init module(void)
{

if ( rtl registerdev( "lpt" , &rtl par fops ) )
{

printk("Unable to install driver\n" );
return −EIO;

}

return 0;
}

void cleanupmodule(void)
{

rtl unregisterdev( "lpt" );
}

Figure 5: Parallel Port Driver Initialization Code

unregisters the/dev/lpt handlers.

4.2 Open and Close

Now, anytime a RTLinux application
opens /dev/lpt0 , the open() func-
tion that was registered with the call to
rtl register dev() will be called.
The same is the case forclose() calls
on /dev/lpt0 as well. This is the place
to do initialization/shutdown of devices or
perform any housekeeping necessary on each
open/close. Since the parallel port is a simple
device and I’m writing a simple driver, none
is necessary here. Fig.6 shows a listing of the
open/close code for the driver.

4.3 Read and Write

Most of the work in the driver is done with the
read() andwrite() calls listed in Fig.7.

4



static int rtl par open(struct rtl file *filp)
{

return 0;
}

static int rtl par release(struct rtl file *filp)
{

return 0;
}

Figure 6: Parallel Port Driver Open/Close Code

I assume the value PORT, 0x378, to be the
address of the data register of the parallel port.
This may vary but is the most common value
for PC hardware and makes the driver much
simpler. A more full-featured version would
have the port address as a configuration value
or might even probe for it.

I also maintain the valueout byte that
stores the last written value to the parallel port. I
use this value later when doingioctl() calls.

The read() operation is very simple and
just needs to read from the data port and re-
turns the value. The first few lines of the func-
tion check the input parameters to make sure
that enough space was provided to store a sin-
gle character. Theread() that this driver im-
plements only reads and returns to the caller a
single character even though the user may have
provided space for much more data in the argu-
mentbuf . A more full featured driver would
likely poll the device untilcount characters
were read or would just read until no more data
was available on the parallel port. Using the
semaphore and signal features in RTLinux it
would be easy to make write be more sophisti-
cated, but here we want to treat the parallel port

#define PORT 0x378

char out byte;

static ssize t rtl par read(struct rtl file *filp,
char *buf, size t count,
off t* ppos)

{
if ( count < sizeof(char) )

return −1;

buf[0] = inb( PORT );

return 0;
}

static ssize t rtl par write(struct rtl file *filp,
const char *buf,
size t count, off t* ppos)

{
int i;

for ( i = 0; i < count; i++ )
{

out byte = buf[i];
outb( out byte, PORT );

}

return 0;
}

Figure 7: Parallel Port Driver Read/Write Code
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as a collection of digital IO lines. In fact, my ap-
plication only wants to output data so I cheated
and leftread() as a placeholder for future up-
dates.

write() is not much more complex than
read() . It loops through each byte of data
to be written to the port, saves the output value
in out byte , then writes the value to the data
register of the parallel port.

4.4 Ioctl

So far I’ve written code that will allow RTLinux
applications for performopen() , read() ,
write() andclose() . What happens if we
want to have a couple of applications that each
need a few of the control lines? For example, in
a robot project that I worked on, 2 of the parallel
port data lines are used for a camera mount (as
in this article) but the other 6 data lines are used
for DC drive motors. This driver allows us to do
this very easily by creating set-bit and clear-bit
operations throughioctl() calls.

I added RTL PARSETBIT and
RTL PARCLEARBIT defines to in-
clude/rtl ioctl.h . The values of
these are unique to each driver so they do not
need to avoid conflicting with other drivers.

Fig. 8 lists the ioctl() code for our
parallel port driver. The ioctl() call
will either raise (RTL PARSETBIT or lower
RTL PARCLEARBIT the given line (argument
l ) on the parallel port.

static int rtl par ioctl(struct rtl file *filp,
unsigned int request,
unsigned long l)

{
switch ( request)
{
case RTL PAR SETBIT:

out byte |= 1<<l;
break;

case RTL PAR CLEARBIT:
out byte &= ˜(1<<l);
break;

default:
return −EINVAL ;

}

outb( out byte, PORT );

return 0;
}

Figure 8: Parallel Port Driver Ioctl Code
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include /opt/rtldk−1.1/rtlinuxpro/include/rtl.mk

all: rtl parallel.o

clean:
rm −f *.o

Figure 9: Parallel Port Driver Makefile

4.5 Compiling the Parallel Port
Driver

RTLinux applications must be compiled with
very specific options and it’s not easy to do by
hand. For this reason, RTLinux provides a tem-
plate Makefile that makes the job nearly trivial.

Fig. 9 shows the Makefile that will build the
parallel port driver. The inclusion ofrtl.mk
pulls in all the necessary pre-defined rules and
compiler flags necessary to correctly build a
RTLinux application. ThisMakefile assumes
you’ve installed RTLinux into/opt/rtldk-
1.1/rtlinuxpro , the default install location
for RTLinux/Pro 1.1. If you install RTLinux
(either the Open or Free version) you’ll need
to update theMakefile to represent where
RTLinux is installed.

Assuming the source file is named
rtl parallel.c the Makefile will build
your application with no problems.

5 Servo Motor Driver

Now that the parallel port driver is complete,
I can begin with the servo motor driver. The
parallel port driver didn’t need to communicate
with Linux applications (only other RTLinux

applications) but the servo motor driver will
need to.

The most common communication model be-
tween Linux and RTLinux tasks is the realtime
FIFO. Anyone who has used a normal FIFO
under Linux (as created withmkfifo ) is fa-
miliar with how this works. A process on one
end writes to a FIFO, which appears as a nor-
mal file, while another one reads from the other
end. With RTLinux, the reader might be a re-
altime process, while the writer is a userspace
program shuttling directives to the realtime code
through the FIFO, or vice versa. In either case,
the FIFO devices are normal character devices
(/dev/rtf* ), and both ends can interact with
the devices through normal POSIX calls, such as
open() , close() , read() andwrite() .

In this case, Linux tasks will need to be able
to send commands to the servo motor driver. I
only need user tasks to be able to write to the
driver but the servo motor will not need to send
messages back to Linux tasks. So I’ll use two
realtime FIFOs, one for each motor, to send a
position that the servo motor should move to.

Once I know where the motor should be, I
need to actually move it there. When I initial-
ize the driver, I create one thread (RTLinux task)
for each motor. The job of each thread will be
to toggle the data line on the parallel port that
signals a motor.

To control the Hobico CS-61 motors that I
used, I need to send the motor a signal every
20ms. If I want the motor to move to mini-
mum deflection, to the far left, I give it a high
on the control line for 1ms and then drop it low
for 19ms. For full deflection, to the far right po-
sition, I need to raise the signal line for 2ms,
then low for 18ms. This gives us about 180deg

7



of rotation.
Now that I know the general design of the

driver, lets look at the code.

5.1 Driver Initialization

In Fig.10 init module() is called first when
our program is loaded. The first thing I do is
open the realtime FIFOs that I will use to com-
municate with Linux tasks. I create a#define
for, and use, FIFO 16 and 17 corresponding to
the first and second servo motors. I picked these
specific FIFOs randomly - their numbers have
no special significance.

I then install handlers for each of
the FIFOs. The first argument to
rtf create handler() selects the FIFO
number the handler is installed for. The second
argument is a function to be called anytime
a Linux tasks does awrite() to the FIFO.
This allows the code to asynchronously read
from the Linux side without needing to poll the
FIFO.

I then open the parallel port device that I’ll be
using to control the motors. Thisopen() call
uses the parallel port driver I described in the
previous section.

I then must create the RTLinux tasks that will
do the work of turning the parallel port bits on
and off. I call pthread create() to cre-
ate each task. The argumentthread[i] is
where the thread id is stored by the call and
thread code is the function to begin exe-
cuting as the new task. The fourth argument,
i , is passed as an argument to the function
thread code and is used to know which mo-
tor to control. The second argument,NULL, tells

#define SERVO FIFO 16

pthreadt thread[2];
int fd[2], fd par;

int init module(void)
{

int i;
char file[256];

/* open the fifo’s */
for ( i = 0; i < 2; i++ )
{

sprintf( file, "/dev/rtf%d" ,
SERVO FIFO+i );

if ( (fd[i] = open(file, O RDONLY | O CREAT |
O NONBLOCK) ) < 0 )

{
rtl printf("Could not open %s\n" , file);
return −1;

}
}

/* create FIFO handlers */
for ( i = 0; i < 2; i++ )

rtf createhandler(SERVO FIFO+i, fifo handler);

/* open the parallel port device */
if ( (fd par = open("/dev/lpt0" ,

O NONBLOCK)) < 0 )
{

rtl printf("Could not open /dev/lpt0\n" );
return −1;

}

/* create the tasks */
for ( i = 0; i < 2 ; i++ )
{

if ( pthreadcreate( &thread[i], NULL ,
threadcode, (void *)i ) )

rtl printf("thread %d failed create\n" ,
i);

}

return 0;
}

Figure 10: Servo Driver Initialization
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void cleanupmodule(void)
{

int i;

for ( i = 0 ; i < NUM MOTORS ; i++ )
{

pthreadcancel( thread[i] );
close(fd[i]);

}

close(fd par);
}

Figure 11: Servo Driver Cleanup

pthread create() to use default thread at-
tributes for this task.

cleanup module() , Fig. 11 just does
some house-keeping to shut the system down.
Thepthread cancel() calls stop each task
and wait for it to finish. Theclose() calls
close the realtime FIFOs and the finalclose()
closes the parallel port.

5.2 FIFO Write Handler

Now, lets look at the code that handles a
write() from the Linux side to one of
the realtime FIFOs. In Fig.10 I registered
fifo handler() as the FIFO write handler.

Our handler is called with a single argument
that gives us the fifo number that was written
to. I use that toread() from the proper file
descriptor intomsg. If that was successful, I
convert the string inmsg into anint and store
it in position .

I then testposition to make sure that it’s
a sane value, between 0 and 180 degrees of de-

flection. If there is an error, I return -1. If there
is no error, I setpulse length to the time in
nanoseconds that I need to raise the output line
high.

I command the motor to minimum deflection
with a 1ms high signal and full (180deg) deflec-
tion with a 2ms high signal. So,

pulse length = 1ms +

{
1ms

180 deg
∗ position

}

I need to avoid doing an actual1ms
180 deg

since
it would lose precision as an integer operation.
Since floating point is extremely slow, I should
avoid it too. So, I just rely on algebra to save me
by doing a1ms∗position

180 deg
.

5.3 Pthreads

thread code() is where the motor actually
gets moved. This is the code that is timing
critical and requires the real-time features of
RTLinux. In keeping with RTLinux design prin-
ciples, this is also the simplest and smallest
piece of code so that it’s easy to understand and
analyze.

The code enters an endless loop termi-
nated only by thepthread cancel() call
in cleanup module() . Each iteration of the
loop goes through a complete motor command -
raising the data line and lowering it.

The first line of code in the loop uses
an ioctl() call to turn on the bit
num representing the motor controlled
by this task. I must hold the line high
for pulse length[num] nanosec-
onds that was set byfifo handler() .
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unsigned long pulse length[2];

int fifo handler(unsigned int fifo)
{

int position = −1, err;
char msg[16];
char *junk;

/* read “position” from 0-180 degrees */
while ( (err = read(fd[fifo−SERVO FIFO], msg,

sizeof(msg) )) != 0 )
position = simple strtoul(msg, &junk, 10);

/* stay within the range of the motor */
if ( (position < 0) | | (position > 180) )

return −1;

/* compute pulse width */
pulse length[fifo−SERVO FIFO] =

1000000 /* 1ms */ +
((1000000 * position)/180);

return 0;
}

Figure 12: Servo Driver FIFO Code

The timespec add ns() adds
pulse length[num] to the current time and
the clock nanosleep() call sleeps until
that time has elapsed.

Once I return from the
clock nanosleep() call, I’m done holding
the line high on the parallel port and now need
to lower it. This is timing critical, since each
degree of rotation is represented by,

1ms

180 deg
= 5.55̄µs

.

difference in the duration of the high signal.
Tested under load with a 650MHz Pentium III,
RTLinux/Pro gave a worst-case periodic jitter of
30µs which gives a position accuracy of about
5.4 deg. Linux, without RTLinux, caused delays
well over20ms under load when I tested. Linux
completely missed frames and would cause the
motor to either swing wildly (when holding the
line high for incorrect amounts of time) or go
completely limp (when missing the frame en-
tirely).

It’s possible to optimize periodic timer
RTLinux applications (such as this one)
down to 0µs latency with the RTLinux
TIMER ADVANCEfeature. I’ve left that out of
this example since5.4 deg accuracy is enough
for this project.

Last in the loop, I callioctl() to lower the
data line to the motor, compute how much time
is left in the 20ms frame then go to sleep. When
I return from the sleep, the loop continues and I
do this all over again.
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unsigned long frame length = 20000000;

void *threadcode(void *t)
{

struct timespec next;
int num = (int )t;

clock gettime( CLOCK REALTIME, &next );

for (;;)
{

/* turn on the pulse */
ioctl(fd par, RTL PAR SETBIT, num);

/* setup for the idle part of the duty cycle */
timespecadd ns( &next, pulse length[num] );
clock nanosleep( CLOCK REALTIME,

TIMER ABSTIME, &next, NULL );

/* turn off the pulse */
ioctl(fd par, RTL PAR CLEARBIT, num);

/* setup for the next pulse */
timespecadd ns( &next,

frame length − pulse length[num] );
clock nanosleep( CLOCK REALTIME,

TIMER ABSTIME, &next, NULL );
}

}

Figure 13: Servo Driver Pthreads

<HTML>
<HEAD><TITLE>RtlCam</TITLE>
</HEAD>

<FRAMESET COLS="*,60">

<FRAMESET ROWS="*,40">
<FRAME SRC="image.html" NAME="image">
<FRAME SRC="pan.html" NAME="pan">
</FRAMESET>

<FRAME SRC="tilt.html" NAME="tilt">

</FRAMESET>

</BODY>
</NOFRAME></FRAMESET>
</HTML>

Figure 14: index.html

6 WebPage

I need the webpage to display the image from
the camera and allow me to control rotation and
tilt of the camera. The easiest way to do this is
through 3 frames, one for each section.

Fig. 14shows the index webpage that I use to
pull all the frames together. This pulls in 3 dif-
ferent HTML files and arranges them properly.

6.1 Image

I use the programcamserv to display the im-
age from the camera. This program steams im-
ages from the camera to UNIX port 9192. This
allows any webpage to refer to that port and
get a streaming image from the camera without
needing to deal with the complexities of manag-
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<IMG SRC=hostname:9192>

Figure 15: image.html

ing the image. I don’t go through the details of
installingcamserv , V4Linux or the camera it-
self since they’re all documented very well else-
where.

Fig. 15 lists the HTML needed to refer to this
image oncecamserv is running. Just replace
“hostname” with the hostname of the computer
that is runningcamserv and the image will ap-
pear.

6.2 Camera Control

I’m able to rotate the camera to its full left and
then full right stop with:

echo 0 > /dev/rtf16
echo 180 > /dev/rtf16

Likewise, I can tilt it up and then down with:

echo 0 > /dev/rtf17
echo 180 > /dev/rtf17

The pan.html file, Fig. 16, controls pan
position of the camera. It calls a CGI script,
pan.sh , with an argument that gives it the po-
sition to move to. The script just writes this ar-
gument to/dev/rtf16 which actually moves
the camera. You’ll notice that I refer to positions
−90 deg through 90 deg instead of0 through
180 on the webpage. This seems to make more
sense for the end user even though I represent it
differently internally.

Camera Position, relative to center:
<a href="/cgi-bin/pan.sh?0">-90</a>
<a href="/cgi-bin/pan.sh?15">-75</a>
<a href="/cgi-bin/pan.sh?30">-60</a>
<a href="/cgi-bin/pan.sh?60">-30</a>
<a href="/cgi-bin/pan.sh?75">-15</a>
<a href="/cgi-bin/pan.sh?90">center</a>
<a href="/cgi-bin/pan.sh?105">+15</a>
<a href="/cgi-bin/pan.sh?120">+30</a>
<a href="/cgi-bin/pan.sh?135">+45</a>
<a href="/cgi-bin/pan.sh?150">+60</a>
<a href="/cgi-bin/pan.sh?165">+75</a>
<a href="/cgi-bin/pan.sh?180">+90</a>

Figure 16: pan.html

I do something very similar with tilting the
camera, Fig.17.

7 Further Application

This simple project shows how most RTLinux
projects can be designed and completed. There
is always a small, timing critical, realtime piece
of code and a number of user-level applications
tied together. The goal is always to keep the re-
altime portion small and simple to allow it to
execute in the least amount of time and with the
greatest determinism.

Writing drivers and applications is simple and
easy. It can be done through standard POSIX
calls and concepts. Even communication be-
tween Linux and RTLinux tasks, to for coopera-
tive applications, can be done with POSIX calls.
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Tilt:
<a href="/cgi-bin/tilt.sh?180">+90</a><br>
<a href="/cgi-bin/tilt.sh?165">+75</a><br>
<a href="/cgi-bin/tilt.sh?150">+60</a><br>
<a href="/cgi-bin/tilt.sh?135">+45</a><br>
<a href="/cgi-bin/tilt.sh?120">+30</a><br>
<a href="/cgi-bin/tilt.sh?105">+15</a><br>
<a href="/cgi-bin/tilt.sh?90">center</a><br>
<a href="/cgi-bin/tilt.sh?75">-15</a><br>
<a href="/cgi-bin/tilt.sh?60">-30</a><br>
<a href="/cgi-bin/tilt.sh?45">-45</a><br>
<a href="/cgi-bin/tilt.sh?30">-60</a><br>
<a href="/cgi-bin/tilt.sh?15">-75</a><br>
<a href="/cgi-bin/tilt.sh?0">-90</a><br>

Figure 17: tilt.html

Figure 18: Screen Shot of the Webpage
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