
v0.8

User's manual

jDiffChaser v0.8 User's manual – LAYAT Jérôme - http://sourceforge.net/projects/jdiffchaser/ 1

http://sourceforge.net/projects/jdiffchaser/

1 Table of contents

Table of Contents
1Table of contents...2
2Introduction..3

2.1What jDiffChaser is ...3
2.2Screenshots...3
2.3Sounds familiar?...5
2.4What jDiffChaser is not...5
2.5Why this tool?...6

2.5.1As a regression support for GUI testing..6
2.5.2A “hacked” usage: as a feedback tool...6

2.6The requirements..6
2.7History..6

3Sequential or parallel playing mode?...7
3.1Sequential playing mode...8
3.2Parallel playing mode...9

4Quick start..10
4.1The sketchbook sample...10

4.1.1Play the distribution sample scenarios..10
4.1.2The results: SketchBSample have regressed !..12
4.1.3Record and add a comparison scenario...13
4.1.4The configuration file..16

5How it works..17
5.1How scenario recording works...17
5.2How screen capture works..18
5.3How scenario playing works...18

6Using jDiffChaser...19
6.1Configuration..19

6.1.1The trick in your application...19
6.1.2The file tree...19
6.1.3The classpath...20
6.1.4The tests session file...20

6.2More on recording..21
7Tips and Tricks...22

7.1Best practices..22
7.2MacOS tricks..22

8Known limitations (v0.8)..22
9Improvements backlog...23
10Changelog...23

10.1Version 0.8..23

jDiffChaser v0.8 User's manual – LAYAT Jérôme - http://sourceforge.net/projects/jdiffchaser/ 2

http://sourceforge.net/projects/jdiffchaser/

2 Introduction

2.1 What jDiffChaser is
jDiffChaser is a GUI comparison tool that automates difference detection

between same screens of different versions. You can easily record scenarios
(optionally define zones of the screens to ignore during comparisons) and play suites
of them on two different versions of the same Java Swing application: differences are
then listed in a web page report.

You can execute scenarios using two modes:

● sequential mode: you have only one test-host, each scenario is executed first
upon the old version of your software then it is executed upon your latest
software version.

● parallel mode: you have two test-hosts, each scenario is executed upon both
versions (old and latest) of your software at the same time. This is useful
when your application uses real time data.

2.2 Screenshots

A simple running comparison session example (the Quick Start one):

jDiffChaser v0.8 User's manual – LAYAT Jérôme - http://sourceforge.net/projects/jdiffchaser/ 3

http://sourceforge.net/projects/jdiffchaser/

A more complicated result (taken from a collaborative air traffic control application):

jDiffChaser v0.8 User's manual – LAYAT Jérôme - http://sourceforge.net/projects/jdiffchaser/ 4

http://sourceforge.net/projects/jdiffchaser/

2.3 Sounds familiar?
Let's have a look at two scenarios which jDiffChaser could have helped developers to
avoid:

Scenario 1:

User: “Hi dev team, just a question: why do many of the buttons labels of the new
release do not display entirely, it has some points at the end of the label?”

Dev team: “Strange, we did some font size changes but have tested all pages of the
application in order to visually check that buttons sizes were correctly adapted. At
least we thought to have... You say you have this problem on all pages? It seems to
be impossible thanks to our tests...”

User: “Actually no, only on the hidden Advance configuration page you can access
only in expert mode”

Dev team: “Damned, you're right. We probably forgot to look at this page, that's our
fault ... There is definitively too many panels in this application to test all of them
before each release :(.”

Scenario 2:

User: “Hi dev team, it seems the green Validate button of the new version validation
page has a darker background than in previous versions. It makes the text less
visible on it”

Dev team: “Ha ha... no way: no development has been done concerning this button
for latest release”

User: “Humm... perhaps. But have a look with me, don't you see it is difficult to
read the label?”

[One day later...]
Dev team: “Hey! User!... You were right... actually there was a tricky contextual
bug in our button states that made the validate button have the disabled mode color
even if its was enabled. Sorry about that.”

2.4 What jDiffChaser is not
jDiffChaser is not a testing tool as it is not able to decide what is correct or

not. There's no assertion handling in it. This software can “just” help you finding
some regression points your eye may have not seen. But in any case you can't only
rely on its results to be sure there's nothing bad in your new release GUI. You still
need to check the results every day, but one thing is sure: jDiffChaser reports
differences with such a highlighting that it speeds a lot this tedious task of visual
checking.

jDiffChaser v0.8 User's manual – LAYAT Jérôme - http://sourceforge.net/projects/jdiffchaser/ 5

http://sourceforge.net/projects/jdiffchaser/

2.5 Why this tool?

2.5.1 As a regression support for GUI testing
Many of really good GUI testing tool already exist but many of them can't

“see” the application rendering. For example you can test that a button text is
“Confirm” but you can't test that it is entirely visible. Have you ever had this
“Confi...” label (with the “...” at the end of it) when your JButton is too small to
embed this text value? Have you ever seen the JScrollPane Horizontal scrollbar
appearing because the contained panel was bigger than expected although you
though not?

jDiffChaser also can't detect that something is correctly displayed within a
new application, but as long as you have validated a version with end-users, it can
check that the new version is visually correct, comparing screens between both
releases using the validated one as the reference. That's why jDiffChaser's preferred
action field is regression detection when traditional GUI testing tools are used to test
the new features.

2.5.2 A “hacked” usage: as a feedback tool
Some development teammates sometimes have some difficulties

communicating together. Thus some new features implemented by some of the
developers sometimes remain unknown by others. It appeared that jDiffChaser has
filled this communication gap into some teams, highlighting the new features. Some
developers checking the report that was published onto a web server of the company
intranet became aware of those changes. I know that this shouldn't occur in a
development team, but that's a fact, this situation exists in many companies.
jDiffChaser wasn't initially created for this task, but anyway, if it helps...

2.6 The requirements
jDiffChaser can only execute rich clients Java (TM) Swing applications that you can

modify code. That's because you will need to add some little pieces of code dedicated to
jDiffChaser in the application you want to compare screens. That's only about 4 lines,
nothing more, but they are necessary until we will find a better solution in one of the next
jDiffChaser versions. You will need at least the 1.4.2 Java (TM) version (and +) using
Windows operating system and 1.5+ with other platforms such as OS X and Linux.

If you want to compile jDiffChaser and run its sample tests, you will also need
Apache Ant.

2.7 History
jDiffChaser has been created by our development team working on a collaborative

environmental data software for an air traffic control company. The software (in production
since 2005) displays a lot of information grouped on many panels viewed by controllers who
can have many roles. Such a software emphasizes the importance of chosen fonts, colors and
components visual behaviors because each of those graphical information has a business
meaning and can be contextual, depending on roles. That's why it is as much important to
test the content as to test the visual aspect of what is displayed, in order to avoid what we
used to call “visual regression”. We, responsible for this application, decided to create a tool

jDiffChaser v0.8 User's manual – LAYAT Jérôme - http://sourceforge.net/projects/jdiffchaser/ 6

http://sourceforge.net/projects/jdiffchaser/

to help doing this checking because we didn't find any existing package to do so as
traditional GUI testing tool were not dedicated to such a task.

It was clearly established from the beginning of its development, that the purpose of
this tool was a supplementary way to find unwanted differences between versions in
addition of many tests processes that were already used, mostly traditional human ones. Our
team never wanted to exclusively rely on this tool, “real eye” tests still had to be done for
critical reasons. The keywords were “early detection”: the goal was to detect and fix quickly
any regression. The tool had to be easy to use to record new scenarios and had to be able to
be automated in order to play many screens tests.

Our team now uses this tool since spring 2006. Every new release of our
environmental data software becomes the new jDiffChaser reference after the traditional
human (customer) validation occurred. Then, every night, our jDiffChaser scenarios are
played upon the current development version to verify that no regression has emerged.

During winter 2006/07, we decided to create a more “generic” packaged version of
our tool in order to publish it as an Open Source Software.

3 Sequential or parallel playing mode?
The way you will use jDiffChaser depends on how your application works. Let's suppose

you have a standalone application that doesn't depend on peer's application nor real time data: you
will work in a sequential playing mode. Let's detail how your jDiffChaser system will operate.

jDiffChaser v0.8 User's manual – LAYAT Jérôme - http://sourceforge.net/projects/jdiffchaser/ 7

http://sourceforge.net/projects/jdiffchaser/

3.1 Sequential playing mode

Now that we have seen how jDiffChaser operates with a “classic” standalone
application, let us detail how jDiffChaser compares locally two screenshots taken from two
distant computers screens at a given time: that was the case we had to deal with our
collaborative environmental data software.

jDiffChaser v0.8 User's manual – LAYAT Jérôme - http://sourceforge.net/projects/jdiffchaser/ 8

http://sourceforge.net/projects/jdiffchaser/

3.2 Parallel playing mode

jDiffChaser v0.8 User's manual – LAYAT Jérôme - http://sourceforge.net/projects/jdiffchaser/ 9

http://sourceforge.net/projects/jdiffchaser/

4 Quick start

4.1 The sketchbook sample
When you download the jDiffChaser package, we provide you the sketchbook

sample. Thus you can play with a simple application and discover how a scenarios playing is
done and how you can record some new scenarios. There are two virtual versions of this
application:

● org.jdiffchaser.samples.sketchbook.version1.SketchBSample has the role of
validated release, it will be our reference for visual tests

● org.jdiffchaser.samples.sketchbook.version2.SketchBSample has the role of
what could be the current development version

Of course in real life you would have probably two different set of jar files
corresponding to both versions. We admit our quick start example is very simple ;)

The distribution package includes the following ant scripts:

● run-recorder-sketchbook-sample : starts a recording session using the version1
of SketchBSample.

● run-localplayer-sketchbook-sample : let you choose a scenario and play it
locally (to test the scenario events) using the version1 of SketchBSample.

● run-guitests-sketchbook-sample : plays the whole set of test-suites defined for
SketchBSample. As windows handling and rendering depends on operating systems,
this script choose and runs scenarios that were recorded running the SketchBSample
on either a Microsoft Windows or MacOS X system.

When writing this documentation, no SketchBSample scripts have been recorded at all on a
Linux system, but have a look inside the distribution package, today they may exist.

4.1.1 Play the distribution sample scenarios
In this section we will have a look at how jDiffChaser....chases.

In a console, when at the root of the jDiffChaser, type:

ant (just in case you've not already build the project) then,

ant run-localplayer-sketchbook-sample

jDiffChaser v0.8 User's manual – LAYAT Jérôme - http://sourceforge.net/projects/jdiffchaser/ 10

http://sourceforge.net/projects/jdiffchaser/

This previous dialog appears, asking you to choose the scenario to execute
and validate. No comparison will be done during this execution, this is just a step you
can do to validate the actions your scenario will trigger.

Let's choose the drawScenarioLines.sc file
and don't touch your keyboard nor mouse
anymore during the execution, just observe.
jDiffChaser uses the java Robot class that
commands your pointer and keyboard actions.
Unfortunately you still can
use your mouse and keyboard
when a Robot is executing.
This can result in a badly
altered scenario. So once a
scenario is running on a
computer, don't touch your
keyboard nor your mouse
anymore ;)

Once the scenario is finished, this dialog box tells you can check the
resulting scenario screenshot in a given directory. The screenshot represents what
will be compared during a comparison session.

Let's say we are ok with how this scenario triggers actions. Now we are going
to execute the whole set of test-suite the jDiffChaser team has prepared for you.

Run the following command and once again, just observe, this can take some time as
it uses real actions time and delays:

ant run-guitests-sketchbook-sample

Once the whole comparison process is finished, it's time to detail what you have
seen.

First, note that the tasks flow followed by jDiffChaser in this example is the
one described in the 3.1 section of this documentation, the sequential one. First, you
have probably noticed that the scenarios aimed at comparing the menu content, the
action of the New menu entry, the drawing of lines and finally the drawing of single
points. One thing that you may have observed during screenshots is that some parts
of the screenshots were filled
with a strange gray pattern as
the following image illustrates.

Zone that will be ignored

during comparison

jDiffChaser v0.8 User's manual – LAYAT Jérôme - http://sourceforge.net/projects/jdiffchaser/ 11

http://sourceforge.net/projects/jdiffchaser/

Actually, during some comparisons, we want to focus on some part of the
screen, no matter what happened to other parts of it. That's why it is possible, when
recording a scenario, to ignore some zones during a comparison. We will see later
how to do this, but let me give an illustration of that requirement.

For example, concerning the screenshot you saw on the previous page, it's a
screenshot done during the scenario that tests the “single point drawing” feature. We
didn't want to verify if the window title was ok nor if the file menu label was right...
We just wanted to test that the result of our click operations was similar on both
drawing panels, old and new ones. So we ask to just compare that part of the screen.

4.1.2 The results: SketchBSample have regressed !
Now that you've executed all desired comparison tests on both versions of

SketchBSample, it's time to have a look at the results. When all tests suite have been
executed, the jDiffChaser controller creates a simple html report. The
SketchBSample can be found in the jDiffChaser\samplestests\sketchbook-
sample\failed directory. Open the index.html file and you will see something like
this:

 Test

Scenario file
(scenario name)

v 1.0

v 2.0

Diffs

jDiffChaser v0.8 User's manual – LAYAT Jérôme - http://sourceforge.net/projects/jdiffchaser/ 12

http://sourceforge.net/projects/jdiffchaser/

We have just concluded that the SketchBSample application had regressed:
that's true if we consider that the single point drawing feature seems to have been
broken. But if we look more precisely at the differences found by jDiffChaser during
the drawScenarioLines.sc scenario, we realize that the new version draws the lines
with anti-aliasing whereas the previous doesn't. This is clearly not a regression but an
improvement. The presence of such a result typically illustrates what we called in the
2.5.2 section “the feedback tool”: we keep a visual trace of what have changed or
evolved.

Some will then decide to remove this scenario from the list (in order to
remove the difference from the result) whereas others will decide to keep this
scenario to have a way to present the differences between versions when requested
(by the customer for example) or to make the whole team know the improvements
between two versions.

4.1.3 Record and add a comparison scenario
Now that you know how jDiffChaser plays scenarios, you probably want to

know how to record an additional scenario and add it to an existing test. Let's
suppose you want to add a comparison of screens including both lines and points (ok,
you're right, that's not very complicated but the SketchBSample application is very
basic, so...). Note that if you're using Os X, see the 7.2 section before doing this
tutorial.

Run the following ant task:
ant run-recorder-sketchbook-sample

This results in displaying a SketchBSample frame as well as the scenario
recorder frame we will call the remote control. The remote control is an “always on
top” frame totally self-supported (have its own JVM) for reasons I will explain later,
not in the Quick Start section. Just have in mind that the remote control won't
interfere with how your application is working.

First, type a scenario file name in the dedicated textfield. Let's choose the
following name: drawScenarioPointsAndLines (this will create, at the end of the
recording, a drawScenarioPointsAndLines.sc file). Once you feel ready to record,
press the record button (the red one) and start to draw points and lines over the
drawing panel. At any time, you can move the remote control during the scenario

jDiffChaser v0.8 User's manual – LAYAT Jérôme - http://sourceforge.net/projects/jdiffchaser/ 13

http://sourceforge.net/projects/jdiffchaser/

recording by dragging its frame (start dragging the frame on any part of it), any
action within the remote control is, of course, not recorded. You may have noticed
that the timer had started when you had pushed the recording button. You probably
have guessed this gives you the elapsed time since the scenario has started.

Once you have finished drawing points, curves and lines, push the application
capture button (with a camera icon over an application window). The second camera
button (with a screen behind the camera) is for fullscreen screenshots, we won't use it
now but keep in mind that it is useful for multi-windowed applications and
applications using the MacOS finder menu bar. The remote control hides itself after
the delay given in the dedicated textfield (right side of capture buttons, this allows to
record pop-up menu display on OS such as MacOS: launch the delayed capture and
do the action), then the screenshot dialog appears, waiting for your actions... Why
actions? This is the step where you can decide to ignore zones to compare. In our
example, we will hide the whole title and menus area as we just want to validate that
points and lines are correctly rendered when drawn together on the drawing panel. To
do this, click at the upper left corner of the screenshot and drag your mouse until the
upper right corner of the drawing area. A dialog box asking you to confirm the
location of a “Ignored Zone Area” appears: click Ok when you think your area is
correct.

jDiffChaser v0.8 User's manual – LAYAT Jérôme - http://sourceforge.net/projects/jdiffchaser/ 14

http://sourceforge.net/projects/jdiffchaser/

Then your area is filled with the “Ignored Pattern”. Of course, you could add
more areas to ignore but we will stop here for our example. You can now click on the
OK button of the screenshot dialog, this closes the dialog. If you were not sure of
doing a screenshot at this time of the scenario, you would have clicked on cancel.
The scenario would have continued and you could have triggered the screenshot later
in it. Anyway, let's go back to our example.

After having closed the screenshot dialog, the remote control timer continues
(it had been stopped during the screenshot settings step) and it's time to clean our
area, just in case another drawing test is done after this one. Go to the
SketchBSample menu bar, click on the file menu and click on new. This results in
erasing the drawing area content. Now you can stop the scenario recording by
pressing the stop button (a gray square button that appeared at the record button
location when the recording started), the timer also stops. Recording is done.

Now you can find the resulting file in the directory
jDiffChaser\scenarios\sketchbook-sample (directory specified in the ant target , we'll
see later how to write such a target).

Move this file into the

jDiffChaser\samplestests\sketchbook-sample\scenarios-win\drawing (adapt if osx)

directory and launch the test-suites ant task another time:
ant run-guitests-sketchbook-sample

Once the test-suites have been executed, you'll see at the end of the report the new
difference highlighted (containing points and anti-aliasing differences)

jDiffChaser v0.8 User's manual – LAYAT Jérôme - http://sourceforge.net/projects/jdiffchaser/ 15

http://sourceforge.net/projects/jdiffchaser/

4.1.4 The configuration file
If you look at the tests-sketchbook-sample-win.xml configuration file in the

jDiffChaser\samplestests\sketchbook-sample you will see:

<?xml version="1.0" encoding="UTF-8"?>
<test-configuration>

<report-title>Sketch Book Sample</report-title>
<first-host>

<ip>localhost</ip>
<port>3511</port>

</first-host>
<second-host>

<ip>localhost</ip>
<port>3512</port>

</second-host>
<scenarii-base-directory>samplestests/sketchbook-sample/scenarios-

win/</scenarii-base-directory>
<failed-base-directory>samplestests/sketchbook-sample/failed/</failed-

base-directory>

<test-suite>
<gui-test>

<scenarii-directory>menus</scenarii-directory>
</gui-test>
<gui-test>

<scenarii-directory>drawing</scenarii-directory>
</gui-test>

</test-suite>

</test-configuration>

Here are the tags descriptions:

● <report-title> : as you guess, it's the title appearing at the top of report

● <first-host> and <second-host> : describe the two hosts that run both
instances of the application. In our example, it is the same host. We just cared
about choosing different ports because we were running all versions on the
same host

● <scenarii-base-directory> : this is the root directory of all tests. Each test will
be a subdirectory of this one

● <failed-base-directory> : this is the root directory of all failed comparisons.
Each failed comparison will be a subdirectory of this one. This directory also
contains the report file

● <test-suite> : contains all tests to play among the test directories found under
the <scenarii-base-directory>. The application is restarted after each test-
suite, except for the last one

● <gui-test> : represent a test; a set of comparisons found in a subdirectory of
the <scenarii-base-directory>

● <scenarii-directory> : this is the name of the <scenarii-base-directory>
subdirectory containing scenarios to play. Scenarios are played according to
the Operating System sorting rules (most of the time alphabetically)

jDiffChaser v0.8 User's manual – LAYAT Jérôme - http://sourceforge.net/projects/jdiffchaser/ 16

http://sourceforge.net/projects/jdiffchaser/

Those tags and options are not the only ones that exist in a jDiffChaser
configuration file. Those are the basic ones and others are detailed later, not in the
Quick Start section.

I invite you to observe the source code of the ant tasks you've used in this
section in order to understand how to launch jDiffChaser tasks. Now I'm going to
explain jDiffChaser principles in order to better understand the system.

5 How it works

5.1 How scenario recording works
As you will see during the next parts of this documentation, jDiffChaser uses a lot of

Java JMX Remote API features for various aspects of the system. One of those aspect is the
way the Remote Control frame controls the application to record events from. Basically,
here is how the recorder operates:

But why using JMX and having a true standalone Remote Control frame? That
solution was chosen in order to be able to capture screens with modal dialogs. This remote
control has not always been using JMX: in the early versions of jDiffChaser, this frame was
running within the same JVM as the recorder, thus the application. All was working well
until the day we had to deal with scenarios including modal dialogs in them. So we had to
find a way to less interfere with the tested interface; JMX Remote API in the Remote
Control was a possible solution.

Consequently, when launching a recording session, you have to launch two Java
processes, one for the Application[+Recorder] and one for the Remote Control. This is
easily done using, for example, Apache Ant software. Have a look at the jDiffChaser
build.xml file, the run-recorder-sketchbook-sample task is the concerned one.

Concerning the Application[+Recorder] couple, the
org.jdiffchaser.testing.DefaultRecorder class takes three application arguments:

● the main class of application to test (for the sample it was:
org.jdiffchaser.samples.sketchbook.version1.SketchBSample)

● the directory where to store taken screenshot

● the JMX port the Remote Control will communicate with

jDiffChaser v0.8 User's manual – LAYAT Jérôme - http://sourceforge.net/projects/jdiffchaser/ 17

http://sourceforge.net/projects/jdiffchaser/

If you need to pass specific arguments to your application, you have to create your
own Recorder. See the DefaultRecorder class code to see how to implement it, this is not a
difficult to do so.

You also have to pass one JVM arguments:

● -Djava.library.path indicates where to find some native library needed to make the
Remote Control frame always on top for JVM before version 1.5.

5.2 How screen capture works
Using Java Robot class. I know you are wondering “why using Robot to take

screenshots when it's so popular how to capture a frame rendering of a Java standalone
application: just render it in a buffered image?”. You are right, for most cases, it is sufficient.
But how can you capture the screen state when you have many dialogs rendered (I'm not
speaking about internal frames, but real independent dialogs)? The better way to do this
using Java is the Robot class. Keep in mind we need to capture what we see, not what we
should see. So having a Robot class desktop screenshot does the trick.

5.3 How scenario playing works
Now that you know all about the way recording works it's time to deeply go into how

playing scenarios works. No chance you haven't guess JMX Remote API is also implied into
this task. A brief graphic will give you all wanted information:

 This allows us to play scenarios on distant computers as well as on localhost.

jDiffChaser v0.8 User's manual – LAYAT Jérôme - http://sourceforge.net/projects/jdiffchaser/ 18

http://sourceforge.net/projects/jdiffchaser/

6 Using jDiffChaser

6.1 Configuration

6.1.1 The trick in your application
First you need to create a sort of back-door to the main frame of your

application. In a few words, you need one static method in the main class you will
compare screens from:

public static JFrame getFrame()

Another method you can add (it will be used if present, it's optional) is a
method indicating what is the running version:

public static String getVersion()

Once you have the getFrame() static method in your application, you can
record and play scenarios with it.

6.1.2 The file tree
A typical files tree of jDiffChaser testing is the following you have in the

jDiffChaser\samplestests\sketchbook-sample directory:
● thejDiffChaserTestSessionFile.xml

● failed (directory that will contain all differences found)
● scenarios

○ setup800x600

■ scenarioSetup1.sc

○ setup1280x1024

■ scenarioSetup2.sc

■ scenarioSetup3.sc

○ tearDown800x600

■ tearDown1.sc

○ tearDown1280x1024

○ groupOfScenario1

■ scenarioA.sc

■ scenarioB.sc

○ groupOfScenario2

■ scenarioC.sc

■ scenarioD.sc

○ groupOfScenario3

■ scenarioE.sc

Note that the failed directory will contain directories created by jDiffChaser

jDiffChaser v0.8 User's manual – LAYAT Jérôme - http://sourceforge.net/projects/jdiffchaser/ 19

http://sourceforge.net/projects/jdiffchaser/

for each scenario that will find some differences. It will also contain the index.html
file of the report.

6.1.3 The classpath
When recording or playing scenarios using jDiffChaser, you need a classpath

containing your application classpath as well as the jDiffChaser one.

6.1.4 The tests session file
We already have explored the tests-sketchbook-sample-win.xml in our Quick

Start section. Now let's dig into a more complicated configuration file based on a
parallel mode testing environment.

<test-configuration>
<report-title>Tower Controller Positions</report-title>
<first-host>

<ip>xxx.xxx.xxx.xx1</ip>
<port>1202</port>
<arg name="jndiconf">-conf /conf/twr1/</arg>

</first-host>
<second-host>

<ip>xxx.xxx.xxx.xx2</ip>
<port>1202</port>
<arg name="jndiconf">-conf /conf/twr2/</arg>

</second-host>

<scenarii-base-directory>testsdata/scenarios/</scenarii-base-directory>
<failed-base-directory>testsdata/failed/</failed-base-directory>

<!-- first the clients tests with 1280x1024 resolution-->
<test-suite parallel-mode="true">
 <setup-scenarii-directory>setup1280x1024</setup-scenarii-directory>
 <teardown-scenarii-directory>tearDown1280x1024</teardown-scenarii-directory>

<gui-test>
<scenarii-directory>groupOfScenario1</scenarii-directory>
<arg name="jndiconf">position1</arg>

 <arg name="width">-w 1280</arg>
 <arg name="height">-h 1024</arg>

</gui-test>

<gui-test>
<scenarii-directory>groupOfScenario2</scenarii-directory>
<arg name="jndiconf">position2</arg>

 <arg name="width">-w 1280</arg>
 <arg name="height">-h 1024</arg>

</gui-test>
</test-suite>

 <!-- then another client test with 800x600 resolution-->
<test-suite parallel-mode="true">
 <setup-scenarii-directory>setup800x600</setup-scenarii-directory>
 <teardown-scenarii-directory>tearDown800x600</teardown-scenarii-directory>

<gui-test>
<scenarii-directory>groupOfScenario3</scenarii-directory>
<arg name="jndiconf">position3</arg>

 <arg name="width">-w 800</arg>
 <arg name="height">-h 600</arg>

</gui-test>
 </test-suite>
</test-configuration>

First, note that all paths are described using the '/' character as separator, even for

jDiffChaser v0.8 User's manual – LAYAT Jérôme - http://sourceforge.net/projects/jdiffchaser/ 20

http://sourceforge.net/projects/jdiffchaser/

Windows system tests.

We find some keywords we didn't encounter in our Quick Start example:

● The <test-suite parallel-mode="true"> means that scenarios found in the
dedicated directories of this test suite will be sent and executed at the same
time on both test hosts

● In <first-host> and <second-host> tags, <arg name="jndiconf">-conf
/conf/twr1/</arg> : The tested application takes an application argument
we give “jndiconf” as a key in our configuration file. Part of its content is
“-conf /conf/twr1/”. The second part of its content is given in each <gui-
test> tag as, for example, <arg name="jndiconf">position1</arg>. That
means that, when gui tests of groupOfScenario1 are launched, the application
is given the following parameter: -conf /conf/twr1/position1.

● Other arguments are not split, consequently you only find them in the <gui-
test> tag. For example, the <arg name="width">-w 800</arg> argument.

● The <setup-scenarii-directory> allows users to give a set of scenarios to
play before all scenarios found in the test suite

● The <teardown-scenarii-directory> allows users to give a set of scenarios to
play after all scenarios found in the test suite

6.2 More on recording
We've seen most of the recording aspects in the Quick Start section. But there's one

more feature I must explain, the check box with following label: “Next actions must be
played on not both tested hosts” you can find on the Remote Control.

When checked (default value), this option makes the scenario send following actions
to both hosts. That means, if a mouse move is done on host A, the same move is done on
host B. While when it is unchecked, the next actions are only sent to host A, leaving host B
in its current state, until you check back this option.

When is such an option useful? It must be used only in parallel mode. We use this,
for example, in the following case. You have a text field with a ok button beside. When the
button is pressed, the value is sent to all hosts, all hosts have edit access on it. When playing
the scenario, we want to test that once the data is sent, all hosts have the same value in this
text field, nothing more. We do this by recording actions in “both hosts mode” until we
reach the button, then we uncheck the option to enter “single host mode”, we change the text
field value and send it with ok. Then we come back to the “both hosts mode” by checking
back the option and we take the screenshot, and so on...

Note that such a scenario, when played locally (to test the scenario validity), will
play all actions.

jDiffChaser v0.8 User's manual – LAYAT Jérôme - http://sourceforge.net/projects/jdiffchaser/ 21

http://sourceforge.net/projects/jdiffchaser/

7 Tips and Tricks

7.1 Best practices
1. Record really short sessions: it's easier to replace a short recorded session by another.

Split a functional set of actions into many little scenarios with file name numbered.
They will be played according to the alphabetical order. Keep an eye on the timer
when recording a session.

2. Always test your scenario locally (use the local player) before deploying it and using
it during night tests sessions.

3. Clean your environment with recorded actions, if needed:

■ at the end of the scenario (you can still record some actions after having
taken the screenshot)

■ at the end of the gui-test, in a little dedicated scenario

7.2 MacOS tricks
MacOS Look & Feel is “a bit” ;) different from the Windows one, so jDiffChaser

usage is consequently modified a little bit. The main difference that impacts its usage is the
frame focus handling. Let's detail some major points you need to know before using
jDiffChaser on OSX:

● When switching between the Remote Control frame and the application frame, you
have to click on the frame border to gain focus before performing any action on the
corresponding interface

● You won't be able to pull down a menu and click on a capture button to test menu
entries: as soon as you have clicked on the button, the application frame loses its
focus and the menu is closed (hiding the entries you wanted to capture). The way to
do menu screenshots using OS X is to define a capture delay in the dedicated
textfield (on the remote control frame), click on a capture button (either the
fullscreen or application one), then open the menu you want to capture and wait the
screenshot to be done (look at the textfield to see the remaining time before the
capture)

8 Known limitations (v0.8)
Sometimes you have to wait n seconds before taking a screenshot (when recording a

scenario) to be sure to have a correct complete and valid screenshot. We experienced
strange Swing Rendering Thread behaviors without this delay for few test cases. We are
working on finding a quicker/better solution.

About fullscreen screenshots you can take with this version: beware that such tests
depend on your screen resolution (when choosing the parts you don't want to compare, those
zones will change with the resolution set on the tested host). That's why we don't provide a
window move test scenario in our sample test (empty directory). Just record your own and
test it ;)

jDiffChaser v0.8 User's manual – LAYAT Jérôme - http://sourceforge.net/projects/jdiffchaser/ 22

http://sourceforge.net/projects/jdiffchaser/

9 Improvements backlog
● Blinking is hard to visually compare, we are thinking about a way to “view it”...

● Find a way to record user actions without having to code a public access to the main frame
of the application

● Regression can sometimes only imply to keep some colors or text or... We should add some
regression assertions in jDiffChaser: e.g. “This button should have a red dominant color”,
“This button is blinking between green and black every 1 sec.” and so on... But we need to
be very careful about having a limited scope dedicated to regression assertions, not
extending to functional assertions. This may be another project ?

● Record a scenario using a storyboard provided by the interface design team

● Choose to define zones to compare instead of defining zones to ignore (when taking
fullscreen screenshots)

10 Changelog

10.1 Version 0.8
● Full screen capture (allows multiple window applications to be tested, window

moves to be tested,...)

● Delay before screenshot (if needed, 0 sec. delay is the default one)

● No need of bsh anymore to build jDiffChaser using ant

● Fix of a focus bug when having the end-of-recording dialog displaying

● Some waiting dialogs added in order to give some better UI feedback to the user.

● Frames and dialogs moves are handled

● Native libraries are only used when using java < 1.5 on Windows in order to have
always on top dialogs (Remote Control frame and waiting dialogs). Consequently,
OS X and probably other java-enabled platforms are now supported through java
1.5+ (Note that we need feedback from Linux users as we still didn't do some tests
with it)

● Report details: when clicking on an image, now allows to browse the three images of
the scenario (first one, second one and diffs one) with previous/next buttons

● Needs jdk 1.5+ to build a jar file that you can use either on hosts running Windows
with 1.4.2 java or any OS with 1.5+ java

● Fixes an OSX application restart bug that occurred when playing gui scenarios
suites

● Remote Control frame can be translucent: useful when recording full screen
applications scenarios

jDiffChaser v0.8 User's manual – LAYAT Jérôme - http://sourceforge.net/projects/jdiffchaser/ 23

http://sourceforge.net/projects/jdiffchaser/

	1Table of contents
	2Introduction
	2.1What jDiffChaser is
	2.2Screenshots
	2.3Sounds familiar?
	2.4What jDiffChaser is not
	2.5Why this tool?
	2.5.1As a regression support for GUI testing
	2.5.2A “hacked” usage: as a feedback tool

	2.6The requirements
	2.7History

	3Sequential or parallel playing mode?
	3.1Sequential playing mode
	3.2Parallel playing mode

	4Quick start
	4.1The sketchbook sample
	4.1.1Play the distribution sample scenarios
	4.1.2The results: SketchBSample have regressed !
	4.1.3Record and add a comparison scenario
	4.1.4The configuration file

	5How it works
	5.1How scenario recording works
	5.2How screen capture works
	5.3How scenario playing works

	6Using jDiffChaser
	6.1Configuration
	6.1.1The trick in your application
	6.1.2The file tree
	6.1.3The classpath
	6.1.4The tests session file

	6.2More on recording

	7Tips and Tricks
	7.1Best practices
	7.2MacOS tricks

	8Known limitations (v0.8)
	9Improvements backlog
	10Changelog
	10.1Version 0.8

