FTP

an overview

B. P. Blackshaw

Enterprise Distributed Technologies
London, UK

NP

> w

©ooN O

Table of Contents

Introduction.............ccuee...
Active and passive modes
1. Passivemode................
2. Activemode.................
FTP Commands...............
Sample scenarios..............
Examplel....cccccovvvveinnnnne
Example 2.
Datatypes......ccccceeveerieeenne
Session commands...........
Filecommands.................
Directory commands........
References........cccoceeeeveenne

1. Introduction

FTP (File Transfer Protocol) is awell established Internet protocol designed to transfer
files (and information about files) across networks using TCP (Transmission Control
Protocaol).

FTP isdefined in the Request For Comments 959 document (RFC 959), which can be
obtained from the Internet Engineering Task Force (www.ietf.org).

FTP requires aclient program (FTP client) and a server program (FTP server). The client
can fetch files and file detail s from the server, and also upload files to the server. The
server is generally password protected.

FTP commands are initiated by the client, which opens a TCP connection called the
control connection to the server. This control connection is used for the entire duration of
a session between the client and server. A session typically begins when the client logs
in, and ends when the quit command is sent to the server. The control connection is used
exclusively for sending FTP commands and reading server replies - it is never used to
transfer files.

Transient TCP connections called data connections are set up whenever data (normally a
file's contents) is to be transferred. For example, the client issues acommand to retrieve a
file from the server viathe control channel. A data connection is then established, and the
file's contents transferred to the client acrossit. Once the transfer is compl ete, the data
connection is closed. Meanwhile, the control connection is maintained.

2. Active and passive modes

Data connections may be set up in two different ways, active and passive. Note that
active and passive refer to the operation of the FTP server, not the client.

1. Passive mode

In passive mode, the client sends a PASV command to the server. Thistells the server to
listen for a connection attempt from the client, hence the server is passively waiting. The
server repliesto PASV with the host and port address that the server islistening on. The

client deciphers this reply and when a data connection is required, attemptsto initiate the
connection to the server at this address.

2. Active mode

In active mode, the server actively connects to the client. To set up active mode, the
client sends a PORT command to the server, specify the address and port number the

client islistening on. When a data connection is required, the server initiates a connection
to the client at this address.

Generaly the server is responsible for closing data connections.

1) FTP Commands

FTP commands sent across the control connection consist of simple text strings (and
follow the Telnet protocol - see RFC 854). For example, to retrieve afile, the client sends
"RETR filename" on the control connection to the FTP server. To transfer afile, the
client sends "STOR filename".

The FTP server acknowledges each command with an FTP reply, which consists of a
three digit number followed by human-readable text. Thefirst digit indicatesif the
response is good, bad, or incomplete. If an error occurred, the second digit may be used
to indicate what type of error occurred. Similarly, the third digit can indicate more details
of the error.

Thefirst digit is the most important, and the five possible values are described below:

lyz | Positive Preliminary reply. The request action has been initiated,
but another reply isto be expected before the client issues another
command

2yz | Positive Completion reply. The requested action has successfully
completed, and the client may issue another command

3yz | Positive Intermediate reply. The command has been accepted, but more
information is required. The client should send another command in reply.

4yz | Transient Negative reply. The command failed, but it can be retried

5yz | Permanent Negative Completion reply. The command failed, and should
not be repeated.

2) Sample scenarios

Example 1

For example, to change directory the client sends:
CWD di r nane

The server responds with:

250 CWD conmmand successf ul

Asthereply beginswith a‘2’, we know the command sequence is completed.

However if we attempt to change directory to one that does not exist:
CWD nonexi stentdir
The server responds with:
550 nonexi stentdir: The systemcannot find the file specified.

Asthereply beginswith a‘5" we know that the command failed, and that it will fall
again if repeated (unless the missing directory is created on the server).

Example 2

To transfer atext file, weissue a‘RETR’ command to the server. However to transfer
the file we require a data connection to be set up. This can be done using active or
passive mode.

As discussed previoudly, in active mode, the client sends a‘PORT’ command, indicating
what address and port number the server should connect to:

PORT 192, 168, 10, 1, 4, 93

Thefirst four digits are the IP address, and the last two encode the port number (in two 8-
bit fields, the first being the high order bits of the 16-bit port number).

The server responds with:

200 PORT command successf ul
Thisindicates that the data connection has been established.
Next, the ‘RETR’ command is issued:

RETR abc. t xt
The server responds with:

150 Opening ASCII node data connection for abc.txt (70776 bytes).
Thereply beginswitha‘1’, so we know that the command was successful, but the server
will be sending another reply — the client cannot issue another command until thisis

received.

Eventually, the server sends:

226 Transfer conplete.

The command sequence is complete, the file has been transferred, and the client can issue
another command.

See RFC 959 for details about the second digit, and more extensive examples.
Note that most standard command-line FTP clients support debug mode, which displays

the FTP commands that are being sent to the server, and the reply strings that are
received back. Typing “debug” at the prompt will usualy put the client into debug mode.

3) Data types

The two most common data types in usage are ASCII and binary.
ASCII isthe default data type, and is intended for the transfer of text files. A line of text

isfollowed by <CRLF>. Note that different operating systems use different end of line
terminators.

Binary type (known as IMAGE in FTP) is used to transfer binary files. A byte-by-byte

copy is made of the source file. Graphical images, video and executable files are all
binary files. If they are transferred as ASCI|I, they will be corrupted.

4) Session commands

To begin an FTP session, the USER command is sent to the server:
USER j avaftp
The server responds with:
331 Password required for javaftp.
The client must respond with the password:
PASS nypassword
The server responds with:
230 User javaftp | ogged in.

The session is now established, and the user can begin issuing various file and directory-
related commands.

To end the session, the client sends:

QUT

The server responds with:

221
The session is now closed, and any further attempt to send commands to the server will

fail.

5) File commands

FTP supports numerous file-related commands.

Files can be deleted (DELE) and renamed (RNFR,RNTO) as well as stored (STOR) and
retrieved (RETR). When afileis stored, it can be written over or appended to (APPE).

See the Sampl e scenarios examples for more details.

6) Directory commands

FTP supports avariety of directory-related commands.
Directories can be created (MKD), removed (RMD), or changed into (CWD, CDUP).
Two types of directory listings can be made with FTP.

The LIST method obtains alist of files (and possibly directories). If adirectory is
specified, the server returns alist of filesin the directory, together with system specific
information about the files. The file information sent will vary depending on the server
system. The data type should be set to ASCI|I for thisfile namelist. If no directory is
specified, details of the current working directory listing are sent.

The NAME LIST (NLST) method issimilar to LIST, but only file names are returned.
No other information about the filesis sent. Again, the data type should be set to ASCI|.

7) References

RFC 959. File Transfer Protocol. J.Postel. J Reynolds. 1985.
http://www.ietf.org/rfc/rfc0959.txt

