Welcome
db4o is the native Java and .NET object database for embedded applications.
This documentation and tutorial is intended to get you started with db4o and to be a reliable

companion while you develop with db4o. Before you start, please make sure that you have downloaded
the latest db4o distribution from the db4objects website.

The db4o Java distribution comes as one zip file, db40-4.0-java.zip. When you unzip this file, you get

the following directory structure:

-1 = idbdebjects
-2 db4o-4.0
- = doc
-1 api
=] index. himnl Javadoc API documentation
- [= tutorial
FE dbdo-4.0-tutorial pdf PDF tutorial for best searching
index, himl Interactive HTML tutorial
-l-= lib
=| db4o-4.0-javal. 1.jar db4o engine for JDK 1.1.x
= db4o-4.0-javal.4.jar db4o engine for 10K 1.2.x to 5.0
—|-[= 8rc
=== com
2= db4o
== tools
[J] Defragment.java Defragment source code
[J] Logger.java
m Statistics.java
== wrap
|J| ObjectSetCollection.java wrapper for Objectset to java.util List
[#7] db4o-4.0-src.zip complete dbdo engine sources
(1] db4o-4.0-test.zip complete dbdo regression test sources
5 GPL.txt GMLU General Public License

This tutorial comes in multiple versions. Make sure that you use the right one for the right purpose.

db4o-4.0/doc/tutorial/index.html

http://www.db4o.com

This is the interactive HTML tutorial. Examples can be run "live" against a db4o database from within
the browser. In order to use the interactive functionality a Java JRE 1.3 or above needs to be installed

and integrated into the browser. Java security settings have to allow applets to be run.

db40-4.0/doc/tutorial/db40-4.0-tutorial.pdf
The PDF version of the tutorial allows best fulltext search capabilities.

Java and .NET

db4o is available for Java and for .NET. This tutorial was written for Java . The structure of the .NET
distribution is slightly different, so please use the tutorial for the version that you plan to experiment
with first.

1. First Glance
Before diving straight into the first source code samples let's get you familiar with some basics.

1.1. The db4o engine...
The db4o object database engine consists of one single jar file. This is all that you need to program
against. The versions supplied with the distribution can be found in /db40-4.0/lib/.]

db4o-4.0-javal.l.jar
will run with most Java JDKs that supply JDK 1.1.x functionality such as reflection and Exception
handling. That includes many IBM]9 configurations, Symbian and Savaje.

db4o-4.0-javal.4.jar
is built for all Java JDKs between 1.2 and 5.0.

1.2. Installation
If you add one of the above db4o-*.jar files to your CLASSPATH db4o is installed. In case you work
with an integrated development environment like Eclipse (We really recommend Eclipse, it's free.) you

would copy the db4o-*.jar to a /lib/ folder under your project and add db4o to your project as a
library.

Here is how to add the db4o to an Eclipse project
- create a folder named "lib" under your project directory, if it doesn't exist yet
- copy db4o-*.jar to this folder

- Right-click on your project in the Package Explorer and choose "refresh"

Right-click on your project in the Package Explorer again and choose "properties"

select "Java Build Path" in the treeview on the left

select the "Libraries" tabpage.
click "Add Jar"

PDF by iText, generated by Doctor, courtesy of db4objects

http://www.eclipse.org

- the "lib" folder should appear below your project
- choose db4o-*.jar in this folder
- hit OK twice

1.3. API

The API documentation for db4o is supplied as JavaDocs in

db4o0-4.0/doc/api/index.html. While you read through this tutorial it may be helpful to look into the API
documentation occasionaly. For the start, the packages com.db4o and com.db4o.query are all that you

need to worry about.

Let's take a first brief look at one of the most important interfaces:

com db4o. Obj ect Cont ai ner

This will be your view of a db4o database:

- An ObjectContainer can either be a database in single-user mode or a client to a db4o server.

- Every ObjectContainer owns one transaction. All work is transactional. When you open an
ObjectContainer, you are in a transaction, when you commit() or rollback(), the next transaction is
started immediately.

- Every ObjectContainer maintains it's own references to stored and instantiated objects. In doing so, it

manages object identities.

In case you wonder why you only see very few methods in an ObjectContainer, here is why: The db4o
interface is supplied in two steps in two packages, com.db4o and com.db4o.ext for the following
reasons:

- It's easier to get started, because the important methods are emphasized.

- It will be easier for other products to copy the basic db4o interface.

- We hint how a very-light-version of db4o should look like.

Every com.db4o.0bjectContainer object also always is a com.db4o.ext.ExtObjectContainer. You can

cast to ExtObjectContainer or you can call the #ext() method if you want to use advanced features.

2. First Steps

Let us get started as simple as possible. We are going to learn how to store, retrieve, update and
delete instances of a single class that only contains primitive and String members. In our example this
will be a Formula One (F1) pilot whose attributes are his name and the F1 points he has already gained

this season.

PDF by iText, generated by Doctor, courtesy of db4objects

First we create a native class such as:

package com db4o.f 1. chapterl

public class Pilot {
private String narne;
private int points;
public Pilot(String name,int points) {

t hi s. nanme=nane;

t hi s. poi nt s=poi nts;

public int getPoints() {

return points;

public void addPoi nts(int points) ({

t hi s. poi nt s+=poi nt s;

public String get Name() {

return nane;

public String toString() {

return name+"/" +points;

Note that this class does not contain any db4o related code.

2.1. Storing objects

To store an object, we simply open a db4o ObjectContainer and call set(), passing the object as a

parameter.

PDF by iText, generated by Doctor, courtesy of db4objects

Pilot pilotl=new Pilot("Mchael Schumacher", 100);
db. set(pilotl);
Systemout.println("Stored "+pilotl);

We'll need a second pilot, too.

Pi |l ot pilot2=new Pilot("Rubens Barrichello", 99);
db. set (pilot2);
Systemout.println("Stored "+pilot?2);

Closing the ObjectContainer will release all resources associated with it.

2.2. Retrieving objects

To query the database for our pilot, we shall use Query by Example (QBE) for now. This means we will
create a prototypical object for db4o to use as an example. db4o will retrieve all objects of the given
type that contain the same (non-default) field values as the candidate. The result will be handed as an

ObjectSet instance. We will use a convenience method 'listResult' to display a result's content and
reset it for further use:

public static void |istResult{

PDF by iText, generated by Doctor, courtesy of db4objects

Systemout.println(result.size());
whil e(result. hasNext()) {

Systemout.println(result.next());

To retrieve all pilots from our database, we provide an 'empty' prototype:

Pil ot proto=new Pilot(null,0);
bj ect Set resul t =db. get (proto);
Uil.listResult(result);

Note that our results are not constrained to have 0 points, as 0 is the default value for int fields.

To query for a pilot by name:

Pil ot proto=new Pil ot ("M chael Schumacher", 0);
bj ect Set resul t =db. get (proto);
Util.listResult(result);

PDF by iText, generated by Doctor, courtesy of db4objects

Let's retrieve a pilot by exact points:

Pi | ot proto=new Pilot(null, 100);
bj ect Set resul t =db. get (proto);
Uil.listResult(result);

Of course there's much more to db4o queries. We'll come to that in a moment.

2.3. Updating objects

To update an object already stored in db4o, just call set() again after modifying it.

bj ect Set resul t =db. get (new Pi |l ot ("M chael Schumacher", 0));
Pilot found=(Pilot)result.next();

found. addPoi nt s(11);

db. set (found);

System out. println("Added 11 points for "+found);
retrieveAll Pilots(db);

PDF by iText, generated by Doctor, courtesy of db4objects

Note that it is necessary that db4o already 'knows' this pilot, else it will store it as a new object.
'Knowing' an object basically means having it set or retrieved during the current db4o session. We'll
explain this later in more detail.

To make sure you've updated the pilot, please return to any of the retrieval examples above and run
them again.

2.4. Deleting objects

Objects are removed from the database using the delete() method.

bj ect Set resul t =db. get (new Pi |l ot ("M chael Schumacher", 0));
Pilot found=(Pilot)result.next();

db. del et e(f ound) ;

Systemout. println("Del eted "+found);

retrieveAl |l Pilots(db);

Let's delete the other one, too.

bj ect Set resul t =db. get (new Pi | ot ("Rubens Barrichello",0));
Pilot found=(Pilot)result.next();

db. del et e(f ound) ;

Systemout. println("Del eted "+found);

retrieveAll Pilots(db);

PDF by iText, generated by Doctor, courtesy of db4objects

Please check the deletion with the retrieval examples above.

Again, the object to be deleted has to be known to db4o. It is not sufficient to provide a prototype

object with the same field values.

2.5. Conclusion

That was easy, wasn't it? We have stored, retrieved, updated and deleted objects with a few lines of
code. But what about complex queries? Let's have a look at the restrictions of QBE and alternative

approaches in the next chapter.

2.6. Full source

package com db4o. f 1. chapter1;

import java.io.File;

i mport com db4o. Db4o;

i mport com db4o. Qbj ect Cont ai ner;
i mport com db4o. Obj ect Set ;

i mport com dbdo.f1.Util;

public class FirstStepsExanple {
public static void main(String[] args) {
new File(Util.YAPFI LENAVE) . del ete();
Obj ect Cont ai ner db=Db4o. openFil e(Uil . YAPFI LENAVE) ;
try {
storeFirstPil ot (db);
st or eSecondPi | ot (db) ;
retrieveAll Pilots(db);
retri evePi | ot ByNarme(db);

PDF by iText, generated by Doctor, courtesy of db4objects

retrievePil| ot ByExact Poi nt s(db) ;
updat ePi | ot (db);
del et eFi r st Pi | ot ByNane(db) ;
del et eSecondPi | ot ByNane(db) ;
}
finally {
db. cl ose();

public static void storeFirstPil ot (CObjectContainer db) ({
Pilot pilotl=new Pilot ("M chael Schumacher", 100);
db.set(pilotl);
Systemout.println("Stored "+pilotl);

public static void storeSecondPil ot (Obj ect Cont ai ner db) {
Pil ot pilot2=new Pil ot ("Rubens Barrichello", 99);
db. set (pil ot 2);
Systemout.println("Stored "+pilot?2);

public static void retrieveAllPil ots(ObjectContainer db) {
Pil ot proto=new Pilot(null,0);
nj ect Set resul t =db. get (proto);
Uil.listResult(result);

public static void retrievePil ot ByNane(Obj ect Cont ai ner db) {
Pil ot proto=new Pilot("M chael Schumacher", 0);
nj ect Set resul t =db. get (proto);
Uil.listResult(result);

public static void retrievePil ot ByExact Poi nt s(Obj ect Cont ai ner db)
Pil ot proto=new Pilot(null,100);

nj ect Set resul t =db. get (proto);
Uil.listResult(result);

PDF by iText, generated by Doctor, courtesy of db4objects

3. Query API

publ

publ

publ

points, for example.

ic static void updatePil ot ((ObjectContainer db) ({

nj ect Set resul t =db. get (new Pi |l ot ("M chael Schumacher", 0));
Pilot found=(Pilot)result.next();

f ound. addPoi nt s(11) ;

db. set (f ound) ;

System out. println("Added 11 points for "+found);
retrieveAl |l Pilots(db);

ic static void del eteFirstPil ot ByName(Cbj ect Cont ai ner db) {
nj ect Set resul t =db. get (new Pi |l ot ("M chael Schumacher", 0));
Pilot found=(Pilot)result.next();

db. del et e(f ound) ;

System out. println("Del eted "+f ound);

retrieveAl |l Pilots(db);

ic static void del et eSecondPi | ot ByNane(Obj ect Cont ai ner db) {
nj ect Set resul t =db. get (new Pi | ot ("Rubens Barrichello",0));
Pilot found=(Pilot)result.next();

db. del et e(f ound) ;

System out. println("Del eted "+f ound);

retrieveAl |l Pilots(db);

We have already seen how to retrieve objects from db4o via QBE. While this approach is easy and

intuitive, there are situations where it is not sufficient.

- There are queries that simply cannot be expressed with QBE: Retrieve all pilots with more than 100

- Creating a prototype object may have unwanted side effects.
- We may want to query for field default values.

db4o provides a dedicated query API that can be used in those cases.

We need some pilots in our database again to explore it.

PDF by iText, generated by Doctor, courtesy of db4objects

Pilot pilotl=new Pilot("Mchael Schumacher", 100);
db. set(pilotl);
Systemout.println("Stored "+pilotl);

Pi |l ot pilot2=new Pilot("Rubens Barrichello", 99);
db. set (pilot2);
Systemout.println("Stored "+pilot?2);

3.1. Simple queries

First, let's see how our familiar QBE queries are expressed within the query APIL. This is done by
retrieving a 'fresh' Query object from the ObjectContainer and adding Constraint instances to it. To find
all Pilot instances, we constrain the query with the Pilot class object.

Query query=db. query();
qguery.constrain(Pilot.class);

bj ect Set resul t =query. execut e();
Uil.listResult(result);

PDF by iText, generated by Doctor, courtesy of db4objects

To retrieve a pilot by name, we have to further constrain the candidate pilots by descending to their
name field and constraining this with the respective candidate String.

Query query=db. query();
guery.constrain(Pilot.class);
query. descend("nane").constrai n("M chael Schumacher");

bj ect Set resul t =query. execut e();
Uil.listResult(result);

Note that the class constraint is not required: If we left it out, we would query for all objects that
contain a 'name' member with the given value. In most cases this will not be the desired behavior,

though.

Finding a pilot by exact points is analogous, we just have to cross the Java primitive/object divide.

Query query=db. query();

query.constrai n(Pilot.cl ass);

query. descend("poi nts").constrai n(new I nteger(100));
bj ect Set resul t =query. execut e();
Uil.listResult(result);

PDF by iText, generated by Doctor, courtesy of db4objects

3.2. Advanced queries

Now there are occasions when we don't want to query for exact field values, but rather for value
ranges, objects not containing given member values, etc. This functionality is provided by the
Constraint API.

First, let's negate a query to find all pilots who are not Michael Schumacher:

Query query=db. query();
guery.constrain(Pilot.class);

query. descend("nane").constrai n("M chael Schumacher").not();

bj ect Set resul t =query. execut e();
Uil.listResult(result);

Where there is negation, the other boolean operators can't be too far.

Query query=db. query();

qguery.constrain(Pilot.class);

Constrai nt constr=query.descend("nane")
.constrain("M chael Schumacher");

query. descend(" poi nts")

.constrain(new I nteger(99)).and(constr);

PDF by iText, generated by Doctor, courtesy of db4objects

bj ect Set resul t =query. execut e();
Util.listResult(result);

Query query=db. query();

qguery.constrain(Pilot.class);

Constrai nt constr=query.descend("nane")
.constrain("M chael Schumacher");

query. descend(" poi nts")

.constrain(new I nteger(99)).or(constr);

bj ect Set resul t =query. execut e();
Uil.listResult(result);

We can also constrain to a comparison with a given value.

Query query=db. query();
qguery.constrain(Pilot.class);
query. descend(" poi nts")

.constrain(new I nteger(99)).greater();
bj ect Set resul t =query. execut e();
Uil.listResult(result);

PDF by iText, generated by Doctor, courtesy of db4objects

The query API also allows to query for field default values.

Pi | ot sonebody=new Pi | ot (" Sonebody el se", 0);

db. set (sonebody) ;

Query query=db. query();
qguery.constrain(Pilot.class);

query. descend("poi nts").constrai n(new I nteger(0));
bj ect Set resul t =query. execut e();
Uil.listResult(result);

db. del et e(sonebody) ;

It is also possible to have db4o sort the results.

Query query=db. query();
guery.constrain(Pilot.class);

query. descend(" nane"). order Ascendi ng() ;
bj ect Set resul t =query. execut e() ;
Uil.listResult(result);

query. descend("nane") . or der Descendi ng() ;
resul t =query. execut e();
Uil.listResult(result);

PDF by iText, generated by Doctor, courtesy of db4objects

All these techniques can be combined arbitrarily, of course. Please try it out.

To prepare for the next chapter, let's clear the database.

bj ect Set resul t =db. get (new Pilot(null,0));
whi |l e(resul t.hasNext()) {
db. del ete(result.next());

}

3.3. Conclusion
Now we know how to build arbitrarily complex queries. But our domain model is not complex at all,
consisting of one class only. Let's have a look at the way db4o handles object associations in the next

chapter.

3.4. Full source

package com db4o. f 1. chapterl;

i mport com db4o. Db4o;

PDF by iText, generated by Doctor, courtesy of db4objects

i mport
i mport
i mport
i mport
i mport

com db4o. Obj ect Cont ai ner;
com db4o. Obj ect Set ;
comdb4o.f1. Uil;

com db4o. query. Constraint;

com db4o. query. Query;

public class QueryExanpl e {

public static void main(String[] args) {
nj ect Cont ai ner db=Db4o. openFil e(Util. YAPFI LENAME) ;

try {
storeFirstPil ot (db);

st oreSecondPi | ot (db) ;
retrieveAl |l Pilots(db);
retrievePil ot ByNanme(db) ;
retrievePil ot ByExact Poi nt s(db) ;
retri eveByNegati on(db);
retri eveByConj uncti on(db);
retrieveByDi sjunction(db);
retri eveByConpari son(db);
retri eveByDef aul t Fi el dVal ue(db);
retrieveSorted(db);
cl ear Dat abase(db) ;

}

finally {
db. cl ose();

public static void storeFirstPil ot (QbjectContainer db) ({
Pilot pilotl=new Pilot("M chael Schumacher", 100);

db.set(pilotl);
Systemout.println("Stored "+pilotl);

public static void storeSecondPil ot (Obj ect Cont ai ner db) {

Pil ot pilot2=new Pil ot ("Rubens Barrichello", 99);

db. set (pilot2);
Systemout.println("Stored "+pilot?2);

PDF by iText, generated by Doctor, courtesy of db4objects

public static void retrieveAllPil ots(ObjectContainer db) {
Query query=db. query();
guery.constrai n(Pilot.cl ass);
nj ect Set resul t =query. execute();

Uil.listResult(result);

public static void retrievePil ot ByNane(Obj ect Cont ai ner db) {
Query query=db. query();
guery.constrai n(Pilot.cl ass);
guery. descend("nane"). constrai n("M chael Schumacher");
nj ect Set resul t =query. execute();

Uil.listResult(result);

public static void retrievePil ot ByExact Poi nt s(
oj ect Cont ai ner db) {
Query query=db. query();
guery.constrai n(Pilot.cl ass);
guery. descend("poi nts").constrai n(new I nteger(100));
nj ect Set resul t =query. execute();

Uil.listResult(result);

public static void retrieveByNegati on(Cbj ect Contai ner db) ({
Query query=db. query();
guery.constrai n(Pilot.cl ass);
guery. descend("nane"). constrai n("M chael Schumacher").not ();
nj ect Set resul t =query. execute();

Uil.listResult(result);

public static void retrieveByConjunction(ObjectContai ner db) {

Query query=db. query();

guery.constrai n(Pilot.cl ass);

Constrai nt constr=query. descend("nane"
.constrain("M chael Schumacher");

qguery. descend(" poi nts")
.constrain(new I nteger(99)).and(constr);

nj ect Set resul t =query. execute();

Uil.listResult(result);

PDF by iText, generated by Doctor, courtesy of db4objects

public static void retrieveByD sjunction(ObjectContai ner db) {

Query query=db. query();

guery.constrai n(Pilot.cl ass);

Constrai nt constr=query. descend("nane"
.constrain("M chael Schumacher");

qguery. descend(" poi nts")
.constrain(new I nteger(99)).or(constr);

nj ect Set resul t =query. execute();

Uil.listResult(result);

public static void retrieveByConpari son(Cbject Contai ner db) ({
Query query=db. query();
guery.constrai n(Pilot.cl ass);
qguery. descend(" poi nts")
.constrain(new I nteger(99)).greater();
nj ect Set resul t =query. execute();

Uil.listResult(result);

public static void retrieveByDefaultFiel dval ue(
oj ect Cont ai ner db) {
Pi | ot sonebody=new Pi | ot (" Sonebody el se", 0);
db. set (sonebody) ;
Query query=db. query();
guery.constrai n(Pilot.cl ass);
guery. descend("poi nts").constrai n(new Integer(0));
nj ect Set resul t =query. execute();
Uil.listResult(result);
db. del et e(sonebody) ;

public static void retrieveSorted(Object Contai ner db) {
Query query=db. query();
guery.constrai n(Pilot.cl ass);
guery. descend("nane") . order Ascendi ng() ;
nj ect Set resul t =query. execute();
Uil.listResult(result);

guery. descend("nane"). or der Descendi ng() ;

PDF by iText, generated by Doctor, courtesy of db4objects

resul t =query. execut e();

Uil.listResult(result);

public static void cl ear Dat abase(Obj ect Cont ai ner db) {
nj ect Set resul t =db. get (new Pilot(null,0));
whil e(result. hasNext()) {
db. del ete(result. next());

4. Structured objects

It's time to extend our business domain with another class and see how db4o handles object

interrelations. Let's give our pilot a vehicle.

package com db4o.f 1. chapter?2;
public class Car {
private String nodel;
private Pilot pilot;
public Car(String nodel) {

t hi s. npdel =npdel ;

this.pilot=null;

public Pilot getPilot() {

return pilot;

public void setPilot(Pilot pilot) {
this.pilot = pilot;

public String getMdel () {

PDF by iText, generated by Doctor, courtesy of db4objects

return nodel ;

public String toString() {

return rrndel +"["+pi | ot +|l] ||;

4.1. Storing structured objects

To store a car with its pilot, we just call set() on our top level object, the car. The pilot will be stored

implicitly.

Car carl=new Car("Ferrari");

Pilot pilotl=new Pilot ("M chael Schumacher", 100);
carl.setPilot(pilotl);

db. set(carl);

Of course, we need some competition here. This time we explicitly store the pilot before entering the

car - this makes no difference.

Pil ot pilot2=new Pil ot ("Rubens Barrichello", 99);
db. set (pil ot 2);

Car car2=new Car ("BMV);

car2.setPil ot (pilot?2);

db. set (car 2);

4.2. Retrieving structured objects

4.2.1. QBE

PDF by iText, generated by Doctor, courtesy of db4objects

To retrieve all cars, we simply provide a 'blank' prototype.

Car proto=new Car(null);
bj ect Set resul t =db. get (proto);
Uil.listResult(result);

We can also query for all pilots, of course.

Pil ot proto=new Pilot(null,0);
bj ect Set resul t =db. get (proto);
Uil.listResult(result);

Now let's initialize our prototype to specify all cars driven by Rubens Barrichello.

Pi |l ot pil otproto=new Pil ot ("Rubens Barrichello", 0);
Car carproto=new Car(null);

carproto.setPilot(pilotproto);

PDF by iText, generated by Doctor, courtesy of db4objects

bj ect Set resul t =db. get (car prot o) ;
Util.listResult(result);

What about retrieving a pilot by car? We simply don't need that - if we already know the car, we can

simply ask it for its pilot directly.

4.2.2. Query API

To query for a car given its pilot's name we have to descend one level deeper in our query.

Query query=db. query();

guery. constrain(Car.cl ass);

query. descend("pilot").descend("nane")
.constrai n("Rubens Barrichello");

bj ect Set resul t =query. execut e();
Util.listResult(result);

We can also constrain the pilot field with a prototype to achieve the same result.

Query query=db. query();
guery. constrain(Car.cl ass);

PDF by iText, generated by Doctor, courtesy of db4objects

Pil ot proto=new Pil ot ("Rubens Barrichello", 0);

query. descend("pilot").constrai n(proto);

bj ect Set resul t =query. execut e();
Util.listResult(result);

4.3. Updating structured objects

To update structured objects in db4o, we simply call set() on them again.

bj ect Set resul t =db. get (new Car("Ferrari"));
Car found=(Car)result.next();

found. set Pi |l ot (new Pil ot (" Sonebody el se",0));
db. set (found) ;

resul t =db. get (new Car ("Ferrari"));
Util.listResult(result);

Let's modify the pilot, too.

bj ect Set resul t =db. get (new Car("Ferrari"));
Car found=(Car)result.next();
found. getPil ot ().addPoi nts(1);

PDF by iText, generated by Doctor, courtesy of db4objects

db. set (found);
resul t =db. get (new Car ("Ferrari"));
Util.listResult(result);

Nice and easy, isn't it? But wait, there's something evil lurking right behind the corner. Let's see what
happens if we split this task in two separate db4o sessions: In the first we modify our pilot and update
his car, in the second we query for the car again.

bj ect Set resul t =db. get (new Car("Ferrari"));
Car found=(Car)result.next();

found. getPil ot ().addPoi nts(1);

db. set (found) ;

bj ect Set resul t =db. get (new Car("Ferrari"));
Util.listResult(result);

Looks like we're in trouble. What's happening here and what can we do to fix it?

PDF by iText, generated by Doctor, courtesy of db4objects

4.3.1. Update depth

Imagine a complex object with many members that have many members themselves. When updating
this object, db4o would have to update all its children, grandchildren, etc. This poses a severe

performance penalty and will not be necessary in most cases - sometimes, however, it will.

To be able to handle this dilemma as flexible as possible, db4o introduces the concept of update depth
to control how deep an object's member tree will be traversed on update. The default update depth for
all objects is 1, meaning that only primitive and String members will be updated, but changes in object

members will not be reflected.

db4o provides means to control update depth with very fine granularity. For our current problem we'll
advise db4o to update the full graph for Car objects by setting cascadeOnUpdate() for this class

accordingly.

Db4o. confi gure().objectd ass("com db4o. f1. chapter2. Car")
. cascadeOnUpdat e(true);

bj ect Set resul t =db. get (new Car("Ferrari"));
Car found=(Car)result.next();

found. getPil ot ().addPoi nts(1);

db. set (found);

bj ect Set resul t =db. get (new Car("Ferrari"));
Uil.listResult(result);

PDF by iText, generated by Doctor, courtesy of db4objects

This looks much better.

Note that container configuration must be set before the container is opened.

We'll cover update depth as well as other issues with complex object graphs and the respective db4o
configuration options in more detail in a later chapter.

4.4. Deleting structured objects

As we have already seen, we call delete() on objects to get rid of them.

bj ect Set resul t =db. get (new Car("Ferrari"));
Car found=(Car)result.next();

db. del et e(f ound) ;

resul t =db. get (new Car(null));
Uil.listResult(result);

Fine, the car is gone. What about the pilots?

Pil ot proto=new Pilot(null,0);
bj ect Set resul t =db. get (proto);
Util.listResult(result);

PDF by iText, generated by Doctor, courtesy of db4objects

Ok, this is no real surprise - we don't expect a pilot to vanish when his car is disposed of in real life,
too. But what if we want an object's children to be thrown away on deletion, too?

4.4.1. Recursive deletion
You may already suspect that the problem of recursive deletion (and perhaps its solution, too) is quite

similar to our little update problem, and you're right. Let's configure db4o to delete a car's pilot, too,
when the car is deleted.

Db4o. confi gure().objectd ass("com db4o. f 1. chapter2. Car")

. cascadeOnDel et e(true);

Obj ect Set resul t =db. get (new Car ("BMN)) ;
Car found=(Car)result.next();

db. del et e(f ound) ;

resul t =db. get (new Car(null));
Uil.listResult(result);

Again: Note that all configuration must take place before the ObjectContainer is opened.

PDF by iText, generated by Doctor, courtesy of db4objects

Let's have a look at our pilots again.

Pil ot proto=new Pilot(null,0);
bj ect Set resul t =db. get (proto);
Uil.listResult(result);

4.4.2. Recursive deletion revisited

But wait - what happens if the children of a removed object are still referenced by other objects?

bj ect Set resul t =db. get (new Pi |l ot ("M chael Schumacher", 0));
Pilot pilot=(Pilot)result.next();

Car carl=new Car("Ferrari");

Car car2=new Car ("BWV);

carl.setPilot(pilot);

car2.setPilot(pilot);

db. set (carl);

db. set (car2);

db. del et e(car 2);

resul t =db. get (new Car(null));
Uil.listResult(result);

PDF by iText, generated by Doctor, courtesy of db4objects

Pil ot proto=new Pilot(null,0);
bj ect Set resul t =db. get (proto);
Uil.listResult(result);

Houston, we have a problem - and there's no simple solution at hand. Currently db4o does not check
whether objects to be deleted are referenced anywhere else, so please be very careful when activating

this feature.

Let's clear our database for the next chapter.

Obj ect Set cars=db. get (new Car(null));
whi | e(cars. hasNext ()) {

db. del ete(cars. next ());

}
bj ect Set pi |l ot s=db. get (new Pilot(null,0));
whi l e(pil ots. hasNext()) {

db. del ete(pilots. next());

4.5. Conclusion

So much for object associations: We can hook into a root object and climb down its reference graph to
specify queries. But what about multi-valued objects like arrays and collections? We will cover this in

the next chapter.

4.6. Full source

PDF by iText, generated by Doctor, courtesy of db4objects

package com db4o.f 1. chapter2;

i mport java.io.File;

i mport com db4o. Db4o;

i mport com db4o. Obj ect Cont ai ner
i mport com db4o. Obj ect Set ;

i mport com db4o.f1. Uil;

i mport com db4o. query. Query;

public class StructuredExanpl e {
private final static String FILENAME="f 1. yap";

public static void main(String[] args) {
new Fi |l e(FI LENAME) . del et e() ;
nj ect Cont ai ner db=Db4o. openFi | e(FI LENAME)
try {
storeFirstCar(db);
st or eSecondCar (db) ;
retrieveAl | Car sQBE(db);
retrieveAll Pil ot sQBE(db);
retri eveCar ByPi | ot QBE(db) ;
retri eveCar ByPi | ot NaneQuery(db);
retrieveCarByPi | ot Prot oQuery(db);
updat eCar (db) ;
updat ePi | ot Si ngl eSessi on(db) ;
updat ePi | ot Separ at eSessi onsPart 1(db) ;
db. cl ose();
db=Db4o. openFi | e(FI LENAME)
updat ePi | ot Separ at eSessi onsPart 2(db) ;
db. cl ose();
updat ePi | ot Separ at eSessi onsl nprovedPart 1();
db=Db4o. openFi | e(FI LENAME)
updat ePi | ot Separ at eSessi onsl npr ovedPart 2(db) ;
db. cl ose();
db=Db4o. openFi | e(FI LENAME)
updat ePi | ot Separ at eSessi onsl npr ovedPart 3(db) ;

PDF by iText, generated by Doctor, courtesy of db4objects

del et eFl at (db) ;
db. cl ose();
del et eDeepPart 1();
db=Db4o. openFi | e(FI LENAME) ;
del et eDeepPart 2(db) ;
del et eDeepRevi si t ed(db);
}
finally {
db. cl ose();

public static void storeFirstCar(ObjectContainer db) {
Car carl=new Car("Ferrari");
Pilot pilotl=new Pilot ("M chael Schumacher", 100);
carl.setPilot(pilotl);
db. set(carl);

public static void storeSecondCar (Obj ect Cont ai ner db) {
Pil ot pilot2=new Pil ot ("Rubens Barrichello", 99);
db. set (pil ot 2);
Car car2=new Car ("BMV);
car2.setPil ot (pilot?2);
db. set (car 2);

public static void retrieveAl |l Car sQBE(Obj ect Cont ai ner db) {
Car proto=new Car(null);
nj ect Set resul t =db. get (proto);
Uil.listResult(result);

public static void retrieveAll Pil ot sQBE((hj ect Cont ai ner db) {
Pil ot proto=new Pilot(null,0);
nj ect Set resul t =db. get (proto);
Uil.listResult(result);

public static void retrieveCarByPil ot QBE(
oj ect Cont ai ner db) {

PDF by iText, generated by Doctor, courtesy of db4objects

Pil ot pil otproto=new Pil ot ("Rubens Barrichello",0);
Car carproto=new Car(null);
carproto. setPil ot (pilotproto);

nj ect Set resul t =db. get (car proto);
Uil.listResult(result);

public static void retrieveCarByPil ot NameQuer y(
oj ect Cont ai ner db) {
Query query=db. query();
guery. constrain(Car.cl ass);
guery. descend("pilot").descend(" name"
.constrain("Rubens Barrichello");
nj ect Set resul t =query. execute();

Uil.listResult(result);

public static void retrieveCarByPil ot Prot oQuery(
oj ect Cont ai ner db) {
Query query=db. query();
guery. constrai n(Car.cl ass);
Pil ot proto=new Pil ot ("Rubens Barrichello", 0);
guery. descend("pilot").constrain(proto);
nj ect Set resul t =query. execute();

Uil.listResult(result);

public static void updateCar(Object Contai ner db) {
nj ect Set resul t =db. get (new Car ("Ferrari"));
Car found=(Car)result.next();
found. set Pi | ot (new Pi | ot (" Sorrebody el se", 0));
db. set (f ound) ;
resul t =db. get (new Car (" Ferrari"));
Uil.listResult(result);

public static void updatePil ot Si ngl eSessi on(
oj ect Cont ai ner db) {
nj ect Set resul t =db. get (new Car ("Ferrari"));
Car found=(Car)result.next();
found. get Pi |l ot ().addPoi nts(1);

PDF by iText, generated by Doctor, courtesy of db4objects

db. set (f ound) ;
resul t =db. get (new Car ("Ferrari"));
Uil.listResult(result);

public static void updatePil ot Separ at eSessi onsPart 1(
oj ect Cont ai ner db) {
bj ect Set resul t =db. get (new Car ("Ferrari"));
Car found=(Car)result.next();
found. get Pi | ot ().addPoi nts(1);
db. set (f ound) ;

public static void updatePil ot Separ at eSessi onsPart 2(
oj ect Cont ai ner db) {
nj ect Set resul t =db. get (new Car ("Ferrari"));
Uil.listResult(result);

public static void updatePil ot Separ at eSessi onsl nprovedPart 1() {
Db4o. configure().objectd ass("com db4o.f1.chapter?2. Car")
. cascadeOnUpdat e(true);

public static void updatePil ot Separ at eSessi onsl npr ovedPart 2(
oj ect Cont ai ner db) {
nj ect Set resul t =db. get (new Car ("Ferrari"));
Car found=(Car)result.next();
found. get Pi | ot ().addPoi nts(1);
db. set (f ound) ;

public static void updatePil ot Separ at eSessi onsl npr ovedPart 3(
nj ect Cont ai ner db) {
nj ect Set resul t =db. get (new Car ("Ferrari"));
Uil.listResult(result);

public static void del et eFl at (Obj ect Cont ai ner db) {
nj ect Set resul t =db. get (new Car ("Ferrari"));
Car found=(Car)result.next();

PDF by iText, generated by Doctor, courtesy of db4objects

db. del et e(f ound) ;
resul t =db. get (new Car(null));
Uil.listResult(result);

public static void del eteDeepPart1() ({
Db4o. configure().objectd ass("com db4o.f1.chapter?2. Car")
. cascadeOnDel et e(true);

public static void del et eDeepPart 2(Obj ect Cont ai ner db) {
nj ect Set resul t =db. get (new Car ("BMV)) ;
Car found=(Car)result.next();
db. del et e(f ound) ;
resul t =db. get (new Car(null));
Uil.listResult(result);

public static void del et eDeepRevi sited(Obj ect Cont ai ner db) {
nj ect Set resul t =db. get (new Pi |l ot ("M chael Schumacher", 0));
Pilot pilot=(Pilot)result.next();
Car carl=new Car("Ferrari");
Car car2=new Car ("BMV);
carl.setPilot(pilot);
car2.setPilot(pilot);
db. set(carl);
db. set (car 2);
db. del et e(car 2) ;
resul t =db. get (new Car(null));
Uil.listResult(result);

public static void del eteAl |l (Object Contai ner db) {
nj ect Set car s=db. get (new Car (null));
whi | e(cars. hasNext ()) {
db. del ete(cars. next());
}
Obj ect Set pi |l ot s=db. get(new Pilot(null,0));
whi l e(pilots. hasNext()) {
db. del ete(pilots. next());

PDF by iText, generated by Doctor, courtesy of db4objects

5. Collections and Arrays

We will slowly move towards real-time data processing now by installing sensors to our car and

collecting their output.

package com db4o.f 1. chapter3;

i mport java.util.?*;

public class Sensor Readout {
private doubl e[] val ues;
private Date tine;

private Car car;

publ i c Sensor Readout (doubl e[] val ues, Date tine, Car car) {
t hi s. val ues=val ues;
this.time=tinme;

this.car=car;

public Car getCar() {

return car;

public Date getTinme() {

return tine;

public int getNunmVal ues() ({

return val ues. | ength;

publ i c doubl e getVal ue(int idx) {

return val ues[idx];

PDF by iText, generated by Doctor, courtesy of db4objects

public String toString() {
StringBuffer str=new StringBuffer();
str.append(car.toString())
.append(" : ")
.append(tine.getTine())
.append(" : ");
for(int idx=0;idx<values.!|ength;idx++) {
i f(idx>0) {
str.append(',"');
}

str.append(val ues[idx]);

}

return str.toString();

A car may produce its current sensor readout when requested and keep a list of readouts collected

during a race.

package com db4o.f 1. chapter3;

i mport java.util.*;

public class Car {
private String nodel;
private Pilot pilot;

private List history;

public Car(String nodel) {
t hi s(model , new Arraylist());

public Car(String nodel,List history) {
t hi s. nodel =nodel ;

this.pilot=null;

PDF by iText, generated by Doctor, courtesy of db4objects

t hi s. hi st ory=hi story;

public Pilot getPilot() {

return pilot;

public void setPilot(Pilot pilot) {
this.pilot=pilot;

public String getMdel () {

return nodel ;

public SensorReadout[] getHi story() {
return (SensorReadout[])hi story.toArray(

new Sensor Readout [hi story.size()]);

public void snapshot () {
hi st ory. add(new Sensor Readout (pol | (), new Date(),this));

protected double[] poll() {
int factor=history.size()+1;

return new doubl e[]{0. 1d*factor, 0. 2d*fact or, 0. 3d*factor};

public String toString() {

return nodel +"["+pil ot +"]/"+hi story. size();

We will constrain ourselves to rather static data at the moment and add flexibility during the next
chapters.

5.1. Storing

PDF by iText, generated by Doctor, courtesy of db4objects

This should be familiar by now.

Car carl=new Car("Ferrari");

Pilot pilotl=new Pilot("Mchael Schumacher", 100);
carl.setPilot(pilotl);

db. set (carl);

The second car will take two snapshots immediately at startup.

Pi |l ot pilot2=new Pilot("Rubens Barrichello", 99);
Car car2=new Car ("BWV);

car2.setPilot(pilot2);

car 2. snapshot () ;

car 2. snapshot () ;

db. set (car2);

5.2. Retrieving

5.2.1. QBE

First let us verify that we indeed have taken snapshots.

Sensor Readout prot o=new Sensor Readout (nul |, nul |, null);
bj ect Set resul t =db. get (proto);
Uil.listResult(result);

PDF by iText, generated by Doctor, courtesy of db4objects

As a prototype for an array, we provide an array of the same type, containing only the values we
expect the result to contain.

Sensor Readout prot o=new Sensor Readout (
new doubl e[]1{0.3,0.1},null,null);

bj ect Set resul t =db. get (proto);

Uil.listResult(result);

Note that the actual position of the given elements in the prototype array is irrelevant.

To retrieve a car by its stored sensor readouts, we install a history containing the sought-after values.

Sensor Readout pr ot or eadout =new Sensor Readout (
new doubl e[]1{0.6,0.2},null,null);

Li st protohi story=new ArraylList();

pr ot ohi st ory. add(pr ot or eadout) ;

Car protocar=new Car (null, protohistory);

bj ect Set resul t =db. get (protocar);
Uil.listResult(result);

PDF by iText, generated by Doctor, courtesy of db4objects

We can also query for the collections themselves, since they are first class objects.

bj ect Set resul t =db. get (new ArrayList());
Uil.listResult(result);

This doesn't work with arrays, though.

Obj ect Set resul t =db. get (new doubl e[]{0. 6, 0. 4});
Util.listResult(result);

5.2.2. Query API

Handling of arrays and collections is analogous to the previous example.

Query query=db. query();

PDF by iText, generated by Doctor, courtesy of db4objects

guery. constrai n(Sensor Readout . cl ass) ;
Query val uequery=query. descend("val ues");
val uequery. constrai n(new Doubl e(0. 3));

val uequery. constrai n(new Doubl e(0.1));

bj ect Set resul t =query. execut e() ;
Uil.listResult(result);

Query query=db. query();

guery. constrain(Car.cl ass);

Query historyquery=query. descend("history");

hi st oryquery. constrai n(Sensor Readout . cl ass) ;
Query val uequer y=hi st oryquery. descend("val ues");
val uequery. constrai n(new Doubl e(0. 3));

val uequery. constrai n(new Doubl e(0.1));

bj ect Set resul t =query. execut e();
Util.listResult(result);

5.3. Updating and deleting

This should be familiar, we just have to remember to take care of the update depth .

PDF by iText, generated by Doctor, courtesy of db4objects

Db4o. confi gure().objectd ass(Car. cl ass)
. cascadeOnUpdat e(true);

Obj ect Set resul t =db. get (new Car ("BMN , nul I));
Car car=(Car)result.next();

car. snapshot () ;
db. set (car);
retri eveAl | Sensor Readout s(db) ;

There's nothing special about deleting arrays and collections, too.

Deleting an object from a collection is an update, too, of course.

Query query=db. query();
guery. constrain(Car.cl ass);
bj ect Set resul t =query. descend("hi story"). execute();
Li st coll=(List)result.next();
coll.remve(0);
db. set (col I');
Car proto=new Car(null,null);
resul t =db. get (prot o) ;
whi l e(result. hasNext()) {
Car car=(Car)result.next();

PDF by iText, generated by Doctor, courtesy of db4objects

for (int idx=0;idx<car.getH story().length;idx++) {

Systemout.println(car.getH story()[idx]);

(This example also shows that with db4o it is quite easy to access object internals we were never

meant to see. Please keep this always in mind and be careful.)

We will delete all cars from the database again to prepare for the next chapter.

Db4o. confi gure().objectd ass(Car. cl ass)

. cascadeOnDel et e(true);

Obj ect Set resul t =db. get (new Car(null,null));
whi l e(result. hasNext()) {
db. del ete(result.next());
}
bj ect Set readout s=db. get (
new Sensor Readout (nul |, null,null));
whi | e(readout s. hasNext ()) {

db. del et e(readout s. next ());

PDF by iText, generated by Doctor, courtesy of db4objects

5.4. db4o custom collections

db4o also provides customized collection implementations, tweaked for use with db4o. We will get to
that in a later chapter when we have finished our first walkthrough.

5.5. Conclusion

Ok, collections are just objects. But why did we have to specify the concrete ArrayList type all the way?
Was that necessary? How does db4o handle inheritance?

5.6. Full source

package com db4o.f 1. chapter3;

i mport java.io.?*;

i mport java.util.?*;

i mport com db4o. *;

i mport com db4o.f1.*;

i mport com db4o. query. *;

public class Coll ectionsExanple {
private final static String FILENAVE="f 1. yap"

public static void main(String[] args) {
new Fi |l e(FI LENAME) . del et e() ;
nj ect Cont ai ner db=Db4o. openFi | e(FI LENAME) ;
try {
storeFirstCar(db);
st or eSecondCar (db) ;
retri eveAl | Sensor Readout s(db) ;
retri eveSensor Readout QBE(db) ;
retri eveCar QBE(db);
retrieveCol |l ecti ons(db);
retrieveArrays(db);
retri eveSensor Readout Query(db);
retrieveCar Query(db);
db. cl ose();
updat eCar Part 1() ;

PDF by iText, generated by Doctor, courtesy of db4objects

publ

publ

publ

publ

db=Db4o. openFi | e(FI LENAME) ;
updat eCar Part 2(db) ;
updat eCol | ecti on(db);
db. cl ose();
del eteAl |l Part 1();
db=Db4o. openFi | e(FI LENAME) ;
del et eAl | Part 2(db);
retrieveAl | Sensor Readout s(db) ;
}
finally {
db. cl ose();

ic static void storeFirstCar(ObjectContainer db) {
Car carl=new Car("Ferrari");

Pilot pilotl=new Pilot ("M chael Schumacher", 100);
carl.setPilot(pilotl);

db. set(carl);

ic static void storeSecondCar (Cbj ect Contai ner db) ({
Pil ot pilot2=new Pil ot ("Rubens Barrichello", 99);
Car car2=new Car ("BMV);

car2.setPil ot (pilot?2);

car 2. snapshot () ;

car 2. snapshot () ;

db. set (car 2);

ic static void retrieveAll Sensor Readout s(

nj ect Cont ai ner db) {
Sensor Readout prot o=new Sensor Readout (nul |, null, null);
nj ect Set resul t =db. get (proto);
Uil.listResult(result);

ic static void retri eveSensor Readout QBE(
oj ect Cont ai ner db) {
Sensor Readout prot o=new Sensor Readout (

new doubl e[]1{0.3,0.1},null,null);

PDF by iText, generated by Doctor, courtesy of db4objects

nj ect Set resul t =db. get (proto);
Uil.listResult(result);

public static void retrieveCar QBE(Obj ect Cont ai ner db) {
Sensor Readout pr ot or eadout =new Sensor Readout (
new doubl e[]1{0.6,0.2},null,null);
Li st protohi story=new Arraylist();
pr ot ohi st ory. add(pr ot or eadout) ;
Car protocar=new Car(null, protohistory);
nj ect Set resul t =db. get (protocar);
Uil.listResult(result);

public static void retrieveCollections(ObjectContai ner db) {
nj ect Set resul t =db. get (new ArrayList());
Uil.listResult(result);

public static void retrieveArrays(Object Contai ner db) {
nj ect Set resul t =db. get (new doubl e[]{0.6,0.4});
Uil.listResult(result);

public static void retrieveSensor Readout Query(
oj ect Cont ai ner db) {

Query query=db. query();
guery. constrai n(Sensor Readout . cl ass) ;
Query val uequery=query. descend("val ues");
val uequery. constrai n(new Doubl e(0. 3));
val uequery. constrai n(new Doubl e(0.1));
nj ect Set resul t =query. execute();

Uil.listResult(result);

public static void retrieveCarQuery(Obj ect Cont ai ner db) {
Query query=db. query();
guery. constrai n(Car.cl ass);
Query historyquery=query. descend("hi story");
hi st oryquery. constrai n(Sensor Readout . cl ass) ;

Query val uequer y=hi st oryquery. descend("val ues");

PDF by iText, generated by Doctor, courtesy of db4objects

val uequery. constrai n(new Doubl e(0. 3));
val uequery. constrai n(new Doubl e(0.1));
nj ect Set resul t =query. execute();

Uil.listResult(result);

public static void updateCarPart1() {
Db4o. configure(). obj ectd ass(Car. cl ass)
. cascadeOnUpdat e(true);

public static void updateCarPart2(Obj ect Cont ai ner db) {
nj ect Set resul t =db. get (new Car ("BMW, nul |));
Car car=(Car)result.next();
car. snapshot () ;
db. set (car);

retri eveAl | Sensor Readout s(db) ;

public static void updateCollection(ObjectContainer db) {
Query query=db. query();
guery. constrai n(Car.cl ass);
nj ect Set resul t =query. descend("hi story").execute();
List coll=(List)result.next();
coll.renove(0);
db. set(col |)
Car proto=new Car(null,null);
resul t =db. get (prot o) ;
whil e(result. hasNext()) {
Car car=(Car)result.next();
for (int idx=0;idx<car.getH story().length;idx++) {
Systemout.println(car.getH story()[idx]);

public static void deleteAllPart1() {
Db4o. configure(). obj ectd ass(Car. cl ass)
. cascadeOnDel et e(true);

PDF by iText, generated by Doctor, courtesy of db4objects

public static void del eteAll Part2(Obj ect Cont ai ner db) {
nj ect Set resul t =db. get (new Car(null,null));
whil e(result. hasNext()) {
db. del ete(result. next());
}
bj ect Set readout s=db. get (
new Sensor Readout (nul I, null, null));
whi | e(readout s. hasNext ()) {

db. del et e(r eadout s. next ());

6. Inheritance

So far we have always been working with the concrete (i.e. most specific type of an object. What about

subclassing and interfaces?

To explore this, we will differentiate between different kinds of sensors.

package com db4o. f 1. chapt er 4;

i mport java.util.*;

public class Sensor Readout {
private Date tine;
private Car car;

private String description;

prot ect ed Sensor Readout (Date tine, Car car, String description) {
this.time=tine;
t hi s. car =car;

thi s. descri ption=descri pti on;

public Car getCar() {

return car;

PDF by iText, generated by Doctor, courtesy of db4objects

public Date getTinme() {

return tine;

public String getDescription() {

return description;

}
public String toString() {

return car+" : "+time+" : "+description;

package com db4o. f 1. chapt er 4;

i mport java.util.*;

public class TenperatureSensor Readout extends SensorReadout {

private doubl e tenperature;

publ i c Tenper at ur eSensor Readout (
Date tine, Car car,
String description,double tenperature) ({
super (time, car, description);

t hi s. t emper at ur e=t enper at ur e;

public doubl e get Temperature() {

return tenperature;

public String toString() {

return super.toString()+" tenp : "+temnperature;

PDF by iText, generated by Doctor, courtesy of db4objects

package com db4o. f 1. chapt er 4;

i mport java.util.*;

public class PressureSensor Readout extends SensorReadout {

private doubl e pressure;

publ i c PressureSensor Readout (

Date tine, Car car,

String description, double pressure) {

super (time, car, description);

t hi s. pressure=pressure;

public doubl e getPressure() {

return pressure,

public String toString() {

return super.toString()+" pressure

Our car's snapshot mechanism is changed accordingly.

package com db4o. f 1. chapt er4;

i mport java.util.?*;

public class Car {
private String nodel;
private Pilot pilot;

private List history;

"+pressure;

PDF by iText, generated by Doctor, courtesy of db4objects

public Car(String nodel) {
t hi s. nodel =nodel ;
this.pilot=null;

t hi s. hi story=new ArraylList();

public Pilot getPilot() {

return pilot;

public void setPilot(Pilot pilot) {
this.pilot=pilot;

public String getMdel () {

return nodel ;

public SensorReadout[] getHi story() {
return (Sensor Readout[])hi story.toArray(new

Sensor Readout [hi story. size()]);

}

public void snapshot () {
hi st ory. add(new Tenper at ur eSensor Readout (
new Date(),this,"oil",poll Q| Tenperature()));
hi st ory. add(new Tenper at ur eSensor Readout (
new Date(),this,"water", pol | Wat er Tenperature()));
hi st ory. add(new PressureSensor Readout (

new Date(),this,"oil",poll Gl Pressure()));

prot ected double poll G| Tenperature() {

return 0.1*hi story.size();

prot ect ed doubl e pol | Wat er Tenperature() {

return 0.2*history.size();

prot ected double poll G| Pressure() {

PDF by iText, generated by Doctor, courtesy of db4objects

return 0.3*history.size();

public String toString() {

return nodel +"["+pil ot +"]/"+hi story. si ze();

6.1. Storing

Our setup code has not changed at all, just the internal workings of a snapshot.

Car carl=new Car("Ferrari");

Pilot pilotl=new Pilot ("M chael Schumacher", 100);
carl.setPilot(pilotl);

db. set(carl);

Pil ot pilot2=new Pil ot ("Rubens Barrichello", 99);
Car car2=new Car ("BWV);

car2.setPil ot (pilot?2);

car 2. snapshot () ;

car 2. snapshot () ;

db. set (car 2);

6.2. Retrieving
db4o will provide us with all objects of the given type. To collect all instances of a given class, no

matter whether they are subclass members or direct instances, we just provide a corresponding

prototype.

PDF by iText, generated by Doctor, courtesy of db4objects

Sensor Readout prot o=

new Tenper at ur eSensor Readout (nul |, nul |, nul |, 0.0);
bj ect Set resul t =db. get (proto);
Uil.listResult(result);

Sensor Readout prot o=new Sensor Readout (nul |, nul |, null);
bj ect Set resul t =db. get (proto);
Util.listResult(result);

PDF by iText, generated by Doctor, courtesy of db4objects

This is one more situation where QBE might not be applicable: What if the given type is an interface or
an abstract class? Well, there's a little DWIM trick to the rescue: Class objects receive special handling
with QBE.

bj ect Set resul t =db. get (Sensor Readout . cl ass) ;
Uil.listResult(result);

And of course there's our query API to the rescue.

Query query=db. query();

guery. constrai n(Sensor Readout . cl ass) ;
bj ect Set resul t =query. execut e();
Uil.listResult(result);

PDF by iText, generated by Doctor, courtesy of db4objects

This procedure applies to all first class objects. We can simply query for all objects present in the
database, for example.

bj ect Set resul t =db. get (new Obj ect());
Util.listResult(result);

PDF by iText, generated by Doctor, courtesy of db4objects

6.3. Updating and deleting
is just the same for all objects, no matter where they are situated in the inheritance tree.

Just like we retrieved all objects from the database above, we can delete all stored objects to prepare

for the next chapter.

bj ect Set resul t =db. get (new Obj ect());
whi |l e(resul t.hasNext()) {
db. del ete(result.next());

6.4. Conclusion

PDF by iText, generated by Doctor, courtesy of db4objects

Now we have covered all basic OO features and the way they are handled by db4o. We will complete
the first part of our db4o walkthrough in the next chapter by looking at deep object graphs, including

recursive structures.

6.5. Full source

package com db4o. f 1. chapt er4;

i mport java.io.?*;

i mport com db4o. *;

i mport com db4o.f1.*;

i mport com db4o. query. *;

public class InheritanceExanple {

private final static String FILENAME="f 1. yap";

public static void main(String[] args) {

new Fi |l e(FI LENAME) . del et e() ;

nj ect Cont ai ner db=Db4o. openFi | e(FI LENAME) ;

try {
storeFirstCar(db);
st or eSecondCar (db) ;
retri eveTenper at ur eReadout sQBE(db) ;
retrieveAl | Sensor Readout sQBE(db) ;
retrieveAl | Sensor Readout sSQBEAI t er nati ve(db);
retrieveAl | Sensor Readout sQuery(db);
retrieveAl |l Qbj ect s(db);
del et eAl' | Obj ect s(db);

}

finally {
db. cl ose();

public static void storeFirstCar(ObjectContainer db) {
Car carl=new Car("Ferrari");

Pilot pilotl=new Pilot("M chael Schumacher", 100);

PDF by iText, generated by Doctor, courtesy of db4objects

carl.setPilot(pilotl);
db. set(carl);

public static void storeSecondCar (Obj ect Cont ai ner db) {
Pil ot pilot2=new Pil ot ("Rubens Barrichello", 99);
Car car2=new Car ("BMN);
car2.setPil ot (pilot?2);
car 2. snapshot () ;
car 2. snapshot () ;

db. set (car2);

public static void retrieveAl |l Sensor Readout s QBE(
oj ect Cont ai ner db) {
Sensor Readout prot o=new Sensor Readout (nul |, nul |, nul |')
nj ect Set resul t =db. get (proto);
Uil.listResult(result);

public static void retrieveTenperat ur eReadout s QBE(
oj ect Cont ai ner db) {
Sensor Readout proto=
new Tenper at ur eSensor Readout (nul |, nul |, nul I, 0. 0);
nj ect Set resul t =db. get (proto);
Uil.listResult(result);

public static void retrieveAl |l Sensor Readout SQBEAI t er nati ve(
oj ect Cont ai ner db) {
nj ect Set resul t =db. get (Sensor Readout . cl ass) ;

Uil.listResult(result);

public static void retrieveAl |l Sensor Readout sQuer y(
oj ect Cont ai ner db) {
Query query=db. query();
guery. const rai n(Sensor Readout . cl ass) ;
nj ect Set resul t =query. execute();

Uil.listResult(result);

PDF by iText, generated by Doctor, courtesy of db4objects

public static void retrieveAl |l Objects(CbjectContainer db) {
nj ect Set resul t =db. get (new Obj ect ());
Uil.listResult(result);

public static void del et eAl | Obj ect s(Obj ect Cont ai ner db) {
nj ect Set resul t =db. get (new Obj ect ());
whil e(result. hasNext()) {
db. del ete(result. next());

7. Deep graphs

We have already seen how db4o handles object associations, but our running example is still quite flat
and simple, compared to real-world domain models. In particular we haven't seen how db4o behaves
in the presence of recursive structures. We will emulate such a structure by replacing our history list

with a linked list implicitely provided by the SensorReadout class.

package com db4o. f 1. chapterb5;

i mport java.util.*;

public class Sensor Readout {
private Date tine;
private Car car;
private String description;

private Sensor Readout next;

prot ect ed Sensor Readout (Date tine, Car car, String description) {
this.time=tine;
t hi s. car =car;
thi s. descri pti on=descri pti on;

t hi s. next=nul | ;

PDF by iText, generated by Doctor, courtesy of db4objects

public Car getCar() {

return car;

public Date getTinme() {

return tine;

public String getDescription() {

return description;

publ i c Sensor Readout getNext () {

return next;

public void append(Sensor Readout readout) ({
i f(next==null) {

next =r eadout ;

}
el se {

next . append(readout);
}

public int countEl ements() {

return (next==null ? 1 : next.countEl ements()+1);

public String toString() {

return car+" : "+time+" : "+description;

Our car only maintains an association to a 'head' sensor readout now.

package com db4o. f 1. chapter5;

PDF by iText, generated by Doctor, courtesy of db4objects

i mport java.util.*;

public class Car {
private String nodel;
private Pilot pilot;

private Sensor Readout history;

public Car(String nodel) {
t hi s. nodel =nodel ;
this.pilot=null;

t hi s. history=null;

public Pilot getPilot() {

return pilot;

public void setPilot(Pilot pilot) {
this.pilot=pilot;

public String getMdel () {

return nodel ;

publ i c Sensor Readout getHi story() ({

return history;

public void snapshot () {
appendToH st ory(new Tenper at ur eSensor Readout (
new Date(),this,"oil",poll Q| Tenperature()));
appendToH st ory(new Tenper at ur eSensor Readout (
new Date(),this,"water", pol | Wat er Tenperature()));
appendToH st ory(new PressureSensor Readout (

new Date(),this,"oil",poll Gl Pressure()));

prot ected double poll G| Tenperature() {

return 0.1*count Hi storyEl enent s();

PDF by iText, generated by Doctor, courtesy of db4objects

prot ect ed doubl e pol | Wat er Tenperature() {

return 0.2*count Hi storyEl enent s();

prot ected double poll G| Pressure() {

return 0. 3*count Hi storyEl enents();

public String toString() {

return nodel +"["+pil ot +"] /" +count Hi st oryEl ement s() ;

private int countHi storyEl ements() {

return (history==null ? 0 : history.countEl enents());

private void appendToHi st or y(Sensor Readout
i f(history==null) {
hi st ory=r eadout ;
}
el se {

hi st ory. append(readout);

7.1. Storing and updating

No surprises here.

Pil ot pilot=new Pilot("Rubens Barrichello", 99);
Car car=new Car ("BMN);

car.setPilot(pilot);

db. set (car);

readout) {

PDF by iText, generated by Doctor, courtesy of db4objects

Now we would like to build a sensor readout chain. We already know about the update depth trap, so

we configure this first.

Db4o. confi gure().objectd ass(Car.cl ass).cascadeOnUpdat e(true);

Let's collect a few sensor readouts.

Obj ect Set resul t =db. get (new Car(null));
Car car=(Car)result.next();
for(int i=0;i<5;i++) {

car. snapshot () ;

}
db. set (car);

7.2. Retrieving

Now that we have a sufficiently deep structure, we'll retrieve it from the database and traverse it.

First let's verify that we indeed have taken lots of snapshots.

bj ect Set resul t =db. get (Sensor Readout . cl ass) ;
whi l e(result. hasNext()) {

Systemout.println(result.next());

PDF by iText, generated by Doctor, courtesy of db4objects

All these readouts belong to one linked list, so we should be able to access them all by just traversing

our list structure.

Obj ect Set resul t =db. get (new Car (nul l));
Car car=(Car)result.next();

Sensor Readout readout =car. get Hi story();
whi | e(readout! =nul ') {

PDF by iText, generated by Doctor, courtesy of db4objects

System out. println(readout);

r eadout =r eadout . get Next () ;

Ouch! What's happening here?

7.2.1. Activation depth

Deja vu - this is just the other side of the update depth issue.

db4o cannot track when you are traversing references from objects retrieved from the database. So it
would always have to return 'complete' object graphs on retrieval - in the worst case this would boil
down to pulling the whole database content into memory for a single query.

This is absolutely undesirable in most situations, so db4o provides a mechanism to give the client fine-
grained control over how much he wants to pull out of the database when asking for an object. This

mechanism is calledactivation depthand works quite similar to our familiar update depth.

The default activation depth for any object is 5, so our example above runs into nulls after traversing 5

references.

We can dynamically ask objects to activate their member references. This allows us to retrieve each
single sensor readout in the list from the database just as needed.

PDF by iText, generated by Doctor, courtesy of db4objects

Obj ect Set resul t =db. get (new Car(null));
Car car=(Car)result.next();
Sensor Readout readout =car. get Hi story();
whi | e(readout! =nul ') {

db. acti vat e(readout, 1);

System out. println(readout);

r eadout =r eadout . get Next () ;

PDF by iText, generated by Doctor, courtesy of db4objects

Note that 'cut' references may also influence the behavior of your objects: In this case the length of
the list is calculated dynamically, and therefor constrained by activation depth.

Instead of dynamically activating subgraph elements, you can configure activation depth statically, too.
We can tell our SensorReadout class objects to cascade activation automatically, for example.

Db4o. confi gure() . obj ect d ass(Tenper at ur eSensor Readout . cl ass)

.cascadeOnActi vate(true);

Obj ect Set resul t =db. get (new Car (nul l));
Car car=(Car)result.next();
Sensor Readout readout =car. get Hi story();
whi | e(readout! =nul ') {

System out. println(readout);

r eadout =r eadout . get Next () ;

PDF by iText, generated by Doctor, courtesy of db4objects

You have to be very careful, though. Activation issues are tricky. Db4o provides a wide range of
configuration features to control activation depth at a very fine-grained level. You'll find those triggers
in com.db4o.config.Configuration and the associated ObjectClass and ObjectField classes.

Don't forget to clean up the database.

bj ect Set resul t =db. get (new Obj ect());
whi |l e(resul t.hasNext()) {
db. del ete(result.next());

PDF by iText, generated by Doctor, courtesy of db4objects

OUTPUT:

7.3. Conclusion

That's it, folks. No, of course it isn't. There's much more to db4o we haven't covered yet: schema

evolution, custom persistence for your classes, writing your own query objects, etc.

This tutorial is work in progress. We will successively add chapters and incorporate feedback from the
community into the existing chapters.

We hope that this tutorial has helped to get you started with db4o. How should you continue now?
-(Interactive version only)While this tutorial is basically sequential in nature, try to switch back and
forth between the chapters and execute the sample snippets in arbitrary order. You will be working
with the same database throughout; sometimes you may just get stuck or even induce exceptions, but

you can always reset the database via the console window.

- The examples we've worked through are included in your db4o distribution in full source code. Feel

free to experiment with it.

- I you're stuck, see if the FAQ can solve your problem, browse the information on our web site, check

if your problem is submitted to Bugzilla yet or join our newsgroup at news.dbv4odev.com .

7.4. Full source

package com db4o. f 1. chapterb5;
i mport java.io.?*;

i mport com db4o. *;

public cl ass DeepExanpl e {

private final static String FILENAMVE="f 1. yap";

public static void main(String[] args) {
new Fi |l e(FI LENAME) . del et e() ;

PDF by iText, generated by Doctor, courtesy of db4objects

http://www.db40.com/

nj ect Cont ai ner db=Db4o. openFi | e(FI LENAME) ;
try {
storeCar (db);
db. cl ose();
set CascadeOnUpdat e() ;
db=Db4o. openFi | e(FI LENAME) ;
t akeManySnapshot s(db) ;
db. cl ose();
db=Db4o. openFi | e(FI LENAME) ;
retrieveAl | Snapshot s(db);
db. cl ose();
db=Db4o. openFi | e(FI LENAME) ;
retri eveSnapshot sSequenti al | y(db);
retri eveSnapshot sSequenti al | yl nproved(db);
db. cl ose();
set Acti vati onDept h() ;
db=Db4o. openFi | e(FI LENAME) ;
retri eveSnapshot sSequenti al | y(db);
del et eAl' | Obj ect s(db);
}
finally {
db. cl ose();

public static void storeCar(ObjectContainer db) {
Pil ot pilot=new Pilot("Rubens Barrichello", 99);
Car car=new Car ("BMN\);
car.setPilot(pilot);
db. set (car);

public static void set CascadeOnUpdate() {
Db4o. configure(). objectC ass(Car.cl ass).cascadeOnUpdat e(true); }

public static void takeManySnapshot s(Obj ect Cont ai ner db) {
nj ect Set resul t =db. get (new Car(null));
Car car=(Car)result.next();
for(int i=0;i<5;i++) {

car. snapshot () ;

PDF by iText, generated by Doctor, courtesy of db4objects

db. set (car);

public static void retrieveAl |l Shapshot s(Cbj ect Cont ai ner db) {
nj ect Set resul t =db. get (Sensor Readout . cl ass) ;
whil e(result. hasNext()) {

Systemout.println(result.next());

public static void retrieveSnapshot sSequenti al | y(
oj ect Cont ai ner db) {
nj ect Set resul t =db. get (new Car(null));
Car car=(Car)result.next();
Sensor Readout readout =car.get H story();
whi | e(readout!=null) {
System out . printl n(readout);

r eadout =r eadout . get Next () ;

public static void retrieveSnapshot sSequenti al |yl nproved(

oj ect Cont ai ner db) {

nj ect Set resul t =db. get (new Car(null));

Car car=(Car)result.next();

Sensor Readout readout =car.get H story();

whi | e(readout!=null) {
db. acti vat e(readout, 1);
System out . printl n(readout);

r eadout =r eadout . get Next () ;

public static void setActivationDepth() {
Db4o. configure(). obj ect d ass(Tenper at ur eSensor Readout . cl ass)

. cascadeOnActi vate(true);

public static void del et eAl | Obj ect s(Obj ect Cont ai ner db) {
nj ect Set resul t =db. get (new Obj ect ());
whil e(result. hasNext()) {

PDF by iText, generated by Doctor, courtesy of db4objects

db. del ete(result. next());

8. License

db4objects Inc. supplies the object database engine db4o under a dual licensing regime:

8.1. General Public License (GPL)

db4o is free to be used:

- for development,

- in-house as long as no deployment to third parties takes place,

- together with works that are placed under the GPL themselves.

You should have received a copy of the GPL in the file GPL.txt together with the db4o distribution.

8.2. Commercial License

For incorporation into own commercial products and for use together with redistributed software that is

not placed under the GPL, db4o is also available under a commercial license.

Visit the purchasing area on the db4o website or contact db4o sales for licensing terms and pricing.

9. Contacting db4objects Inc.

db4objects Inc.

1900 South Norfolk Street
Suite 350

San Mateo, CA, 94403
USA

Phone
+1 (650) 577-2340

Fax
+1 (650) 577-2341

PDF by iText, generated by Doctor, courtesy of db4objects

http://www.db4o.com
http://www.db4o.com
mailto:sales@db4o.com

General Enquiries
info@db4o.com

Sales
sales@db4o.com
or

fill out our sales contact form on the db4o website

Careers

career@db4o.com

Partnering
partner@db4o.com

Support
support@db4o.com
or post to our newsgroup

news://news.db4odev.com/db4o.users

PDF by iText, generated by Doctor, courtesy of db4objects

mailto:info@db4o.com
mailto:sales@db4o.com
http://www.db4o.com
mailto:career@db4o.com
mailto:partner@db4o.com
mailto:support@db4o.com
news://news.db4odev.com/db4o.users

	Welcome
	1. First Glance
	1.1. The db4o engine...
	1.2. Installation
	1.3. API

	2. First Steps
	2.1. Storing objects
	2.2. Retrieving objects
	2.3. Updating objects
	2.4. Deleting objects
	2.5. Conclusion
	2.6. Full source

	3. Query API
	3.1. Simple queries
	3.2. Advanced queries
	3.3. Conclusion
	3.4. Full source

	4. Structured objects
	4.1. Storing structured objects
	4.2. Retrieving structured objects
	4.2.1. QBE
	4.2.2. Query API

	4.3. Updating structured objects
	4.3.1. Update depth

	4.4. Deleting structured objects
	4.4.1. Recursive deletion
	4.4.2. Recursive deletion revisited

	4.5. Conclusion
	4.6. Full source

	5. Collections and Arrays
	5.1. Storing
	5.2. Retrieving
	5.2.1. QBE
	5.2.2. Query API

	5.3. Updating and deleting
	5.4. db4o custom collections
	5.5. Conclusion
	5.6. Full source

	6. Inheritance
	6.1. Storing
	6.2. Retrieving
	6.3. Updating and deleting
	6.4. Conclusion
	6.5. Full source

	7. Deep graphs
	7.1. Storing and updating
	7.2. Retrieving
	7.2.1. Activation depth

	7.3. Conclusion
	7.4. Full source

	8. License
	8.1. General Public License (GPL)
	8.2. Commercial License

	9. Contacting db4objects Inc.

