
Jumbo: A Staged Java Compiler

Lars R. Clausen

March 21, 2003
Version 0.8.0

Abstract
Jumbo is a Java compiler that supports staging operations. It can

function as a normal Java compiler (except inner classes). It can also per-
form code creation and manipulation through the addition of extra syntax
$<...>$ for quotation and `Expr(...) for antiquotation. The compiler
is designed to allow the creation and transmittal of code fragments to be
combined later.

1 Synopsis

jumbo [options] source�le. . .
stagedjumbo source�le. . .
unquotejumbo source�le

2 Description

Jumbo is a Java compiler that supports staged compilation.
jumbo is a Java compiler that allows staging constructs in the code. See

some important limitations in BUGS below.
stagedjumbo is a wrapper around another Java compiler (by default javac(1))

that allows the use of constructs not implemented by the Jumbo compiler itself
to be used outside of quoted code.

unquotejumbo is a �lter that transform quotes into regular Java code,
which can then be compiled or passed through other programs.

3 Options

-s Output Java source with quotation syntax removed.

-l Output Java source of the lifted source (for debugging).

-d dir Directory where class �les will be stored.

jumbo (1) 1 Version: 0.8.0, March 21, 2003

4 STAGING

-sourcepath dir] Directory to look for source �les in.

-v Output the current version and exit.

-h Output usage.

The input �les must be Java source �les. All �les that need to be (re)compiled
must be speci�ed on the command line, Jumbo will not perform any depen-
dency analysis. If - is the only �le listed, Jumbo will read source from stdin.

4 Staging

Staging is performed by the manipulation of values of type Code, representing
fragments of code. Code fragments can be created and combined using the
syntax described here. They can be passed around as any other value. This
section describes the syntax of staging, see the Examples section for examples
of the usage.

To create a code fragment, enclose Java source in $<...>$. This quotation

syntax is transformed by Jumbo into regular Java code that will create and
initialize a value of type Code that corresponds to the enclosed source.

To combine code fragments, use the backquote (`) to indicate antiquotation.
The backquote must be followed by a syntactic category and a Java expression in
parentheses. The Java expression must evaluate to a value that �ts the syntactic
category,

The presently available syntactic categories are:
Category Expression value expected (Type)
Expr Expressions (Code)
Stmt Statements (Code)
Name Identi�ers (String)
Type Types (Code)
Case List of case branches (MonoList containing Code values)
Method Method declaration (Code)
Field Field declaration (Code)
Body List of class members (MonoList containing Code values)
Char Character constant (char)
Int Integer constant (int)
Float Float constant (�oat)
Long Long constant (long)
Double Double constant (double)
Bool Boolean constant (boolean)
String String constant (String)

Omitting the syntactic category is equivalent to using Name. When the syn-
tactic category is omitted and the expression is a simple identi�er, the paren-
theses can be omitted. Thus, $<foo.`x.>$ is the same as $<foo.`Name(x)>$.
Note that the variable in this case must be of type String, not type Code.

jumbo (1) 2 Version: 0.8.0, March 21, 2003

7 EXAMPLES

There is currently no way to create a Code value of the Field type. This is a
limitation in the parser. The Body type can only be made as a list of Methods
types.

Code values can be translated into class �les only if they contain a class
de�nition, as that is the smallest unit of binary. To generate all class �les in a
Code value, invoke the void generate() method on the Code object. To gen-
erate all class �les and load one of the classes, invoke the Object load(String

classname) method on the Code value. Only the class whose name is passed
to load() is loaded, and it must have a zero-argument constructor.

Hygienic variables (with guaranteed unique names within the scope) can be
created with new Name(<string>). Name is a subclass of Code representing
a variable. Note that creating a Name object does not create the variable
de�nition for that name. For example:

Name i = new Name("i");

Code c = $<for (int `i = 0; `i < max; `i++) { ... }>$;

5 Notes

The preprocesser part of stagedjumbo currently performs some shu�ing of
the source �les to satisfy javac(1)'s requirements for �le naming. When com-
piling Foo.java, the original source is temporarily moved to Foo.java-orig,
and the version with the quotation syntax transformed into Java syntax is
placed in its stead. After compilation, the original source �le is moved back.
If there were any errors in compilation, the transformed version is retained as
Foo.java-dequoted.

Do not attempt to break the compilation process of stagedjumbo, in par-
ticular the last part. It may leave the transformed version in place of the original
source, and if you run stagedjumbo again, your original source will be lost.

6 Return value

Jumbo programs return 0 on success. jumbo returns 1 if the compilation
fails. stagedjumbo returns 1 if the unquoting prepass fails, and 2 if the call to
another compiler fails. unquotejumbo returns 1 if the parsing fails.

7 Examples

Staged version of Hello, world:

import uiuc.Jumbo.Util.*;

import uiuc.Jumbo.Jaemus.*;

import uiuc.Jumbo.Compiler.*;

jumbo (1) 3 Version: 0.8.0, March 21, 2003

7 EXAMPLES

public class HelloStaged {

public static void main(String[] argv) {

Code c = $<public class Hello {

public static void main(String[] argv) {

System.out.println("Hello, world");

}

}>$;

c.generate();

}

}

$ jumbo HelloStaged.java

...

$ java HelloStaged

$ ls

HelloStaged.java HelloStaged.class Hello.class

$ java Hello

Hello, world

Staged version of Hello, world that incorporates the �rst argument as a static
string:

import uiuc.Jumbo.Util.*;

import uiuc.Jumbo.Jaemus.*;

import uiuc.Jumbo.Compiler.*;

public class HelloStaged {

public static void main(String[] argv) {

Code c = $<public class Hello {

public static void main(String[] argv) {

System.out.println("Hello, "+`String(argv[0]));

}

}>$;

c.generate();

}

}

$ jumbo HelloStaged.java

...

$ java HelloStaged Jim

$ ls

HelloStaged.java HelloStaged.class Hello.class

$ java Hello

Hello, Jim

In this example, we staged the evaluation of a dot product. When executing
DotStaged, we give the �rst vector, which is encoded in an expression in the
Dot class. When executing Dot, we give the second vector, and the dot product
of the two vectors is returned. Note how a String value is used to pass the name

jumbo (1) 4 Version: 0.8.0, March 21, 2003

8 FILES

of a variable, and how an expression is built iteratively by embedding the old
expression in a quoted expression.

import uiuc.Jumbo.Util.*;

import uiuc.Jumbo.Jaemus.*;

import uiuc.Jumbo.Compiler.*;

public class DotStaged {

public static Code makeDot(double[] V1, String V2) {

Code c = $<0.0>$;

for (int i = 0; i < V1.length; i++) {

c = $<`Expr(c) + `V2[`Int(i)] * `Double(V1[i])>$;

}

return c;

}

public static void main(String[] argv) {

double[] v = new double[argv.length];

for (int i = 0; i < v.length; i++)

v[i] = Double.parseDouble(argv[i]);

Code c =

$<public class Dot {

public static void main(String[] argv) {

if (argv.length != `Int(v.length))

throw new Error("Wrong length vector");

double[] w = new double[argv.length];

for (int i = 0; i < w.length; i++)

w[i] = Double.parseDouble(argv[i]);

System.out.println(`Expr(makeDot(v, "w")));

}

}>$;

c.generate();

}

}

$ jumbo DotStaged.java

...

$ java DotStaged 4.0 2.0 3.2 3.0

$ ls

DotStaged.java DotStaged.class Dot.class

$ java Dot 1.0 2.0 0.0 1.0

11.0

8 Files

javac(1) Jumbo requires javac(1) compiler (or an equivalent) for the use of
inner classes or any other unimplemented feature. This is only necessary
to run stagedjumbo.

jumbo (1) 5 Version: 0.8.0, March 21, 2003

12 AUTHORS

9 Environment

JAVAC Sets the compiler used by stagedjumbo internally. Defaults to javac(1).

CLASSPATH Must include the directory containing the compiler classes.

10 See also

javac(1)

11 Bugs

Jumbo doesn't support some aspects of inner classes yet, including multiple
levels of nesting and access to private outer members. By using stagedjumbo,
the non-quoted code is compiled with a normal Java compiler ($JAVAC or
javac(1) by default). This allows missing features or bugs in Jumbo to be
avoided for the unquoted parts.

Jumbo may create class �les that will be rejected by the veri�er in the JVM,
but only for invalid input. It currently doesn't check for variable initialization
and loss of precision.

Jumbo does not do any dependency checking of the source �les. If a change
in one source �le requires another to be recompiled, the user needs to specify
the other source �le on the command line.

The error messages from Jumbo are simply exceptions not caught. They
rarely include line numbers, and can be quite cryptic at times.

Some areas of Jumbo have not been extensively tested. Caveat hackor.

12 Authors

Lars R. Clausen lrclause+jumbo@cs.uiuc.edu

Ava A. Jarvis ajar@katanalynx.dyndns.org
Sam N. Kamin kamin@cs.uiuc.edu

jumbo (1) 6 Version: 0.8.0, March 21, 2003

