GnuCOBOL Programmer’s Guide

For Version 3.0 rcl [01Jan2018]

Gary L. Cutler (cutlergl@gmail.com).
For updates Vincent B. Coen (vbcoen@gmail.com).

mailto:cutlergl@gmail.com
mailto:vbcoen@gmail.com

This manual documents GnuCOBOL 3.0 rcl, 01Jan2018 build.

Document Copyright 2009-2014 Gary L. Cutler, FSF (Free Software Foundation).
Updates: Copyright 2014-2018 Vincent B. Coen, Gary L. Cutler & FSF.

The authors and copyright holders of the Cobol programming language itself
used herein:

FLOW-MATIC (trademark for Sperry Rand Corporation) Programming for
the Univac(R) I & II. Data Automation Systems copyrighted 1958, 1959,
by Sperry Rand Corporation; IBM commercial translator form F28-8013,
copyrighted 1959 by IBM; FACT DSI27A5260-2760, copyrighted 1960 by
Minneapolis-Honeywell, have specifically authorised the use of this material in
whole or in part of the COBOL specifications. Such authorisation extends to
the reproduction & use of COBOL specifications in programming manuals or
similar publications.

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License [FDL], Version 1.3 or any
later version published by the Free Software Foundation; with Invariant Section
"Introduction”, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide

Table of Contents

Amendment Changes for Programmers Guide.... 1
1. Introduction............................. ... 3
1.1. Additional Reference Sources...............coiiiiiiiiii ... 3
1.2. Introducing COBOL e 3
1.2.1. Why YOU Should Learn COBOL........................... 4
1.2.2. Programmer Productivityo i 6
1.3. So What is GnuCOBOL?o 7
2. Cobol Fundamentals............................. 9
2.1. The Cobol Language - The Basics.......... ...t 9
2.1.1. Language Reserved Words............o, 9
2.1.2. User-Defined Words ... 9
2.1.3. Case Insensitivityo 10
2.1.4. Readability of Programs............ ..., 10
2.1.5. Divisions Organize Programs, 13
2.1.6. Copybookso 13
2.1.7. Structured Data. 14

2. 1.8, FHleS et 14
2.1.9. Table Handling. ... 18
2.1.10. Sorting and Merging Data.................ooiiiiiiii.. 19
2.1.11. String Manipulation Features............................. 19
2.1.12. Screen Formatting Features, 22
2.1.12.1. A Sample Screen ... 23
2.1.12.2. Color Palette and Video Attributes.................. 23
2.1.13. Report Writer Features.............o, 26
2.1.14. Data Initialization o i 27
2.1.15. Syntax Diagram Conventions.......................ooo... 27
2.1.16. Format of Program Source Lines 29
2.1.17. Program Structureo.ovuuiiiiiiieiiennneann.. 33
2.1.18. Commentsouuutiii e 35
2.1.19. Literals . . ooeee e 36
2.1.19.1. Numeric Literalso oo it 37
2.1.19.2. Alphanumeric Literals............................... 37
2.1.19.3. Figurative Constantsccvviiiiiine.n.. 39
2.1.20. Punctuationo i 40
2.1.21. Interfacing to Other Environments 40
2.2. The Cobol Language - Advanced Techniques.................... 42
2.2.1. Table References ..., 42
2.2.2. Qualification of Data Names............................... 43
2.2.3. Reference Modifiers ... 44

15 February 2018

Contents

ii GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide
2.2.4. Arithmetic Expressions..................... ... 46
2.2.5. Conditional EXpressions.............ooiiiiiiiiiiiiin . 49
2.2.5.1. Condition Names. ...t 49
2.2.5.2. Class Conditionsc.ovveiiiiiiiiiiiiiieeeennnnns 50
2.2.5.3. Sign Conditionsccoviiiiiiiiiii i 52
2.2.5.4. Switch-Status Conditions..................cooiii. ... 53
2.2.5.5. Relation Conditionscciiiiiiii .. 54
2.2.5.6. Combined Conditions............ it ... 56
2.2.5.7. Negated Conditions............cooiiiiiiiiiiiiiiiinn. 57
2.2.6. Use of Periods.ooii e 58
2.2.7. Use of VERB/END-VERB Constructs..................... 60
2.2.8. Concurrent Accessto Files 62
2.2.8.1. File Sharingoiii 62
2.2.8.2. Record Locking. ..o 64
3. CDF - Compiler Directing Facility 67
3.1. >>CALL-CONVENTION ... 68
3.2, COPY 69
3.3. REPLACE 71
3.4. >>DEFINE 74
3.0 O IF 75
3.6, D> T o 78
3.7 . 5>>SOURCE . ..o 79
3.8 > T URN .. 80
3.0, > D 81
3.10. >>DISPLAY .o 82
311 >>PAGE . 83
3.12. >>SLISTING . ..o 84
3.13. >>LEAP-SECONDS 85
3.4, F DITeCEIVES . o o oo 86
4. IDENTIFICATION DIVISION................ 87
5. ENVIRONMENT DIVISION.................. 91
5.1. CONFIGURATION SECTIONttt 92
5.1.1. SOURCE-COMPUTER ... 93
5.1.2. OBJECT-COMPUTER ... 94
5.1.3. SPECIAL-NAMES 96
5.1.3.1. Alphabet-Name-Clause............ ...t 101
5.1.3.2. Class-Definition-Clause ..., 103
5.1.3.3. Switch-Definition-Clause 104
5.1.3.4. Symbolic-Characters-Clause 105
5.1.4. REPOSITORYo 106
5.2. INPUT-OUTPUT SECTION ... 108
5.2.1. SELECT 109
5.2.1.1. ORGANIZATION SEQUENTIAL 114
Contents 15 February 2018

GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide

5.2.1.2. ORGANIZATION LINE SEQUENTIAL.............
5.2.1.3. ORGANIZATION RELATIVE
5.2.1.4. ORGANIZATION INDEXED ..ot
5.2.2. SAME RECORD AREAo
0.23. MULTIPLE FILE

6. DATA DIVISION 125

6.1. Data Definition Principles. ...,
6.2. FILE SECTION e
6.2.1. File/Sort-Description.coooiiiiiiiiiiiiiian ..
6.2.2. FILE-SECTION-Data-Itemcccoo.....
6.3. WORKING-STORAGE SECTION ...,
6.4. LOCAL-STORAGE SECTIONt
6.5. LINKAGE SECTION
6.6. REPORT SECTIONo e
6.6.1. Report Group Definitions L.
6.6.2. REPORT SECTION Data Items
6.7. SCREEN SECTION
6.8. Special Data Items............ i
6.8.1. 01-Level ConstantS..........c.ouviiiiiiiiiinnneennnnnn.
6.8.2. 66-Level Data Items. ...,
6.8.3. 77-Level Data Items. ...,
6.8.4. 78-Level Data Items..........ccooiiiii ...
6.8.5. 88-Level Data Items........ ..o,
6.9. Data Description Clausesoviiiiiiiiiireeeeennnnn.
6.9.1. ANY LENGTH s
6.9.2. AUT O ...
6.9.3. AUTO-SKIP e
6.9.4. AUTOTERMINATE,
6.9.5. BACKGROUND-COLOR ...t
6.9.6. BASED ... i
6.9.7. BEEP ...
6.9.8. BELL
6.9.9. BLANK
6.9.10. BLANK WHEN ZEROo o
6.9.11. BLINK ...
6.9.12. COLUMN e
6.9.13. CONSTANT
6.9.14. EMPTY-CHECK ...
6.9.15. ERASE ... o
6.9.16. EXTERNAL
6.9.17. FALSE ... o
6.9.18. FOREGROUND-COLOR ...
6.9.19. FROM . ..o
6.9.20. FULL. ..o e e
6.9.21. GLOBAL
6.9.22. GROUP INDICATEo

15 February 2018

iii

Contents

iv GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide
6.9.23. HIGHLIGHT 184
6.9.24. JUSTIFIEDo e 185
6.9.25. LEFTLINE ... e 187
6.9.26. LENGTH-CHECK 188
6.9.27. LINE ... 189
6.9.28. LOWLIGHT e 191
6.9.29. NEXT GROUP ...t 192
6.9.30. NO-ECHO e 193
6.9.31. OCCURS .. .o e 194
6.9.32. OVERLINE e 197
6.9.33. PICTURE ... 198
6.9.34. PRESENT WHEN 206
6.9.35. PROMPT ... 207
6.9.36. PROTECTED ... 208
6.9.37. REDEFINES e 209
6.9.38. RENAMESo 210
6.9.39. REQUIRED ... 211
6.9.40. REVERSE-VIDEO 212
6.9.41. SECUREo 213
6.9.42. SIGN IS ... 214
6.9.43. SOURCEt 215
6.9.44. SUM OF e 216
6.9.45. SYNCRONIZED 218
6.9.46. TO ..o 220
6.9.47. TYPE .. 221
6.9.48. UNDERLINE. e 222
6.9.49. USAGE 223
6.9.50. USINGo 233
6.9.51. VALUE o 234

7. PROCEDURE DIVISION.................... 237

7.1. PROCEDURE DIVISION USING. ...t 238
7.2. PROCEDURE DIVISION CHAINING ..., 240
7.3. PROCEDURE DIVISION RETURNING...................... 242
7.4. PROCEDURE DIVISION Sections and Paragraphs............ 243
7.5. DECLARATIVES ... o e 244
7.6. Common Clauses on Executable Statements................... 246
7.6.1. ATEND + NOT AT END i 246
7.6.2. CORRESPONDINGt 248
7.6.3. INVALID KEY + NOT INVALID KEY 250
7.6.4. ON EXCEPTION + NOT ON EXCEPTION............. 250
7.6.5. ON OVERFLOW + NOT ON OVERFLOW 251
7.6.6. ON SIZE ERROR + NOT ON SIZE ERROR 251
7.6.7. ROUNDED e 252
7.7. Special Registers. ... 255
7.8. GnuCOBOL Statements, 258
7.8.1. ACCEP T .. 258
Contents 15 February 2018

GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide

7.8.1.1. ACCEPT FROM CONSOLE........................ 258
7.8.1.2. ACCEPT FROM COMMAND-LINE 259
7.8.1.3. ACCEPT FROM ENVIRONMENT 261
7.8.1.4. ACCEPT screen-data-itemccoounn.. 262
7.8.1.5. ACCEPT FROM DATE/TIME 267
7.8.1.6. ACCEPT FROM Screen-Info........................ 268
7.8.1.7. ACCEPT FROM Runtime-Info...................... 269
7.8.1.8. ACCEPT OMITTED ... 270
7.8.1.9. ACCEPT FROM EXCEPTION-STATUS............ 271
T7.8.2. ADD .. 272
7.8.2.1. ADD TO. ..o 272
7.8.2.2. ADD GIVING 274
7.8.2.3. ADD CORRESPONDING ... 276
7.8.3. ALLOCATE 278
7.8.4. ALTERo e 280
T.8.5. CALL o 281
7.8.6. CANCEL, 285
7.8.7. CLOSE . ..o 286
7.8.8. COMMIT 287
7.8.9. COMPUTE e 288
7.8.10. CONTINUE . ..ot i 290
7.8.11. DELETE 291
7.8.12. DISPLAY ... 292
7.8.12.1. DISPLAY UPON device.......ccovvivieeiii .. 292
7.8.12.2. DISPLAY UPON COMMAND-LINE 294
7.8.12.3. DISPLAY UPON ENVIRONMENT-NAME 295
7.8.12.4. DISPLAY screen-data-item......................... 296
7.8.13. DIVIDE 298
7.8.13.1. DIVIDE INTO i 298
7.8.13.2. DIVIDE INTO GIVINGcoiiiiii .. 300
7.8.13.3. DIVIDE BY GIVING 302
7.8.14. ENTRY ..ot 304
7.8.15. EVALUATE 305
7.8.16. EXIT ... 309
7.8.17. FREE ... o 312
7.818. GENERATE i 313
7.8.19. GOBACK ... 315
7.820. GO TO ..t 316
7.8.20.1. Simple GO TO ...t e 316
7.8.20.2. GO TO DEPENDING ON 317
.8 2L, T o 319
7.8.22. INITIALIZE 321
7.8.23. INITIATE 326
7.8.24. INSPECT ... o 327
7.8.25. MERGE 333
7.8.26. MOVE . .. 336
7.8.26.1. Simple MOVE 336
7.8.26.2. MOVE CORRESPONDING.............coooiiiin. 337

15 February 2018

Contents

vi GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide

7.8.27. MULTIPLY i 338
7.8.27.1. MULTIPLY BY ..o 338
7.8.27.2. MULTIPLY GIVING. ... 340

7.8.28. OPEN ...\ 342

7.8.29. PERFORM e 344
7.8.29.1. Procedural PERFORM............................. 344
7.8.29.2. Inline PERFORM 346
7.8.29.3. VARYING 347

7.8.30. READ o 350
7.8.30.1. Sequential READ i 350
7.8.30.2. Random READ 352

7.8.31. READY TRACE 355

7.8.32. RELEASE 356

7.8.33. RESET TRACE 357

7.8.34. RETURNo e 358

7.8.35. REWRITE 359

7.8.36. ROLLBACK . ..o 361

7.8.37. SEARCH 362

7.8.38. SEARCH ALL ... 364

7.8.39. SET .. 367
7.8.39.1. SET ENVIRONMENT 367
7.8.39.2. SET Program-Pointer............. 368
7.8.39.3. SET ADDRESS 369
7.8.39.4. SET Index ... 370
7.8.39.5. SET UP/DOWNt 371
7.8.39.6. SET Condition Namec.ooiiiiiinen... 372
7.8.39.7. SET Switch ... 373
7.8.39.8. SET ATTRIBUTE, 374
7.8.39.9. SET LAST EXCEPTION, 375

7.8.40. SORT ... 376
7.8.40.1. File-Based SORT i 376
7.8.40.2. Table SORTo 380

7.8.41. START ... 382

T7.8.42. STOP .. 384

7.8.43. STRING 386

7.844. SUBTRACT 388
7.8.44.1. SUBTRACT FROM 388
7.8.44.2. SUBTRACT GIVING 390
7.8.44.3. SUBTRACT CORRESPONDING.................. 392

7.8.45. SUPPRESS 394

7.8.46. TERMINATE 395

7.8.47. TRANSFORM. ... 396

7.8.48. UNLOCK 397

7.8.49. UNSTRING 398

7.850. WRITE. ... 402

Contents 15 February 2018

GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide vii

8 FUNCTIONS 405
8.1. Intrinsic Functions oo 405
. 1.1, ABS . 406
8.1.2. ACOS ... e 407
8.1.3. ANNUIT Y ..ot 408
8.1 4. ASIN .. 409
8.1.5. AT AN .. 410
81.6. BYTE-LENGTH....... ... 411
8.1.7. CHAR 412
8.1.8. COMBINED-DATETIME...... ... 413
8.1.9. CONCATENATEo 414
8.1.10. COS ..o 415
8.1.11. CURRENCY-SYMBOLo 416
8.1.12. CURRENT-DATE 417
8.1.13. DATE-OF-INTEGER 418
8.1.14. DATE-TO-YYYYMMDD ...t 419
8.1.15. DAY-OF-INTEGER ... 420
8.1.16. DAY-TO-YYYYDDD ... 421
B L. AT, B 422
8.1.18. EXCEPTION-FILE. ... 423
8.1.19. EXCEPTION-LOCATION ... 424
8.1.20. EXCEPTION-STATEMENTo i 425
8.1.21. EXCEPTION-STATUS ... 426
8.1.22. EX P . 428
8.1.23. EXPI0 ..ot 429
8.1.24. FACTORIAL 430
8.1.25. FORMATTED-CURRENT-DATE 431
8.1.26. FORMATTED-DATE............ 432
8.1.27. FORMATTED-DATETIME.o ... 433
8.1.28. FORMATTED-TIME ... 434
8.1.29. FRACTION-PART 435
8.1.30. HIGHEST-ALGEBRAIC. 436
8.1.31. INTEGERo 437
8.1.32. INTEGER-OF-DATE 438
8.1.33. INTEGER-OF-DAY 439
8.1.34. INTEGER-OF-FORMATTED-DATE 440
8.1.35. INTEGER-PART o 441
8.1.36. LENGTH 442
8.1.37. LENGTH-AN 443
8.1.38. LOCALE-COMPARE. 444
8.1.39. LOCALE-DATE 445
8.1.40. LOCALE-TIMEo 446
8.1.41. LOCALE-TIME-FROM-SECONDS 447
8.1.42. LOG . .. 448
8.1.43. LOGIO ..ottt 449
8.1.44. LOWER-CASE 450
8.1.45. LOWEST-ALGEBRAIC ... 451

15 February 2018 Contents

viii GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide
B.1.46. MA X o 452
8.1.47. MEAN . .. 453
8.1.48. MEDIAN ... 454
8.1.49. MIDRANGE. 455
8.1.50. MIN ... 456
8.1.51. MOD ..o 457
8.1.52. MODULE-CALLER-IDo 458
8.1.53. MODULE-DATEo 459
8.1.54. MODULE-FORMATTED-DATE........................ 460
8.1.55. MODULE-ID e 461
8.1.56. MODULE-PATH i, 462
8.1.57. MODULE-SOURCE ... 463
8.1.58. MODULE-TIME. 0o i 464
8.1.59. MONETARY-DECIMAL-POINT, 465
8.1.60. MONETARY-THOUSANDS-SEPARATOR 466
8.1.61. NUMERIC-DECIMAL-POINTooiiiia.. 467
8.1.62. NUMERIC-THOUSANDS-SEPARATOR................ 468
8.1.63. NUMVAL. ... 469
8.1.64. NUMVAL-C ... 470
8.1.64B. NUMVAL-C 472
8.1.65. NUMVAL-F ... 474
8.1.66. ORD ... 475
8.1.67. ORD-MAX .. 476
8.1.68. ORD-MIN e 477
8.1.69. PlL.... o 478
8.1.70. PRESENT-VALUE o 479
8.1.71. RANDOM e 480
8.1.72. RANGE 482
8.1.73. REM ... 483
8.1.74. REVERSE 484
8.1.75. SECONDS-FROM-FORMATTED-TIME................ 485
8.1.76. SECONDS-PAST-MIDNIGHTt 486
8.1.77. SIGN .. 487
8178, SIN . 488
8.1.79. SQRT . 489
8.1.80. STANDARD-DEVIATIONo 490
8.1.81. STORED-CHAR-LENGTH 491
8.1.82. SUBSTITUTEo 492
8.1.83. SUBSTITUTE-CASE ... 493
8. 1.84. SUM ... 494
B .85, TAN 495
8.1.86. TEST-DATE-YYYYMMDD ...t 496
8.1.87. TEST-DAY-YYYYDDD ... i 497
8.1.88. TEST-FORMATTED-DATETIME...................... 498
8.1.89. TEST-NUMVALot 499
8.1.90. TEST-NUMVAL-C ... i 500
8.1.91. TEST-NUMVAL-F... ... i 501
8.1.92. TRIM 502

Contents 15 February 2018

GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide

8.1.93. UPPER-CASE.... ... e 503
8.1.94. VARIANCE e 504
8.1.95. WHEN-COMPILED, 505
8.1.96. YEAR-TO-YYYY ... 506
8.1.97. BOOLEAN-OF-INTEGER................cooiiiiii. .. 507
8.1.98. CHAR-NATIONAL ... i, 508
8.1.99. DISPLAY-OF 509
8.1.100. EXCEPTION-FILE-N 510
8.1.101. EXCEPTION-LOCATION-N ..ot 511
8.1.102. INTEGER-OF-BOOLEAN. ..., 512
8.1.103. NATIONAL-OF 513
8.1.104. STANDARD-COMPARE 514
8.2. Built-In System Subroutines 516
8.2.1. CSCALLEDBY ... i 518
8.2.2. CSCHDIRot e 519
8.2.3. CSCOPY ..ot 520
8.2.4. CSDELETE. 521
8.2.5. CSFILEINFOo e 522
8.2.6. CSGETPID 523
8.2.7. CSJUSTIFY .ttt e e 524
8.2.8. CSMAKEDIR. ... 525
8.2.9. CSNARGot 526
8.2.10. CSPARAMSIZEo 527
8.2.11. CSPRINTABLE ... e 528
8.2.12. CESLEEP\t 529
8.2.13. CSTOLOWERot 530
8.2.14. CSTOUPPER ...t 531
8.2.15. CBL_AND ... 532
8.2.16. CBL_.CHANGE_DIR ... 533
8.2.17. CBL_.CHECK_FILE_EXIST......... ..., 534
8.2.18. CBL_.CLOSE_FILE 535
8.2.19. CBL_.COPY_FILE 536
8.2.20. CBL.CREATE . DIRo 537
8.2.21. CBL.CREATE_FILE i 538
8.2.22. CBL.LDELETE_DIRo 539
8.2.23. CBL_DELETE_FILE o i, 540
8.2.24. CBL_EQo 541
8.2.25. CBL_LERROR_PROC 542
8.2.26. CBL_EXIT_PROC. 544
8.2.27. CBL.FLUSH_FILE o 546
8.2.28. CBL_.GC_FORK 547
8.2.29. CBL_.GC_GETOPT 549
8.2.30. CBL_.GC_HOSTEDo i 552
8.2.31. CBL_.GC_NANOSLEEP ... 555
8.2.32. CBL_.GC_PRINTABLE 556
8.2.33. CBL.GC_WAITPID 557
8.2.34. CBL_.GET_CSR_POS...... ... 558
8.2.35. CBL_.GET_CURRENT_.DIRciiiiit, 559

15 February

2018

ix

Contents

X GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide
8.2.36. CBL_.GET_SCR._SIZEo 560
8.2.37. CBLLIMP ... 561
8.2.38. CBL_NIMPo i 562
8.2.39. CBLNORo 563
8.2.40. CBL_NOT ... e 564
8.2.42. CBL_.OPEN_FILE i, 565
8.2.43. CBL_OR ...t 566
8.2.44. CBL.LREAD _FILE 567
8.2.45. CBL_LREAD_KBD_CHAR......... ..., 568
8.2.46. CBL_LRENAME _FILE...... 569
8.2.47. CBL_.SET_CSR_POS 570
8.2.48. CBL.TOLOWERo 571
8.2.49. CBL.TOUPPER. 571
8.2.50. CBL.WRITE_FILE........ i, 572
8.2.51. CBL_XORo 573
8.2.52. SYSTEM ..o 574
8253, X Ol 575
82,54, XA 577
82,50, X D 577
8.2.56. X A 578
8. 2. 5T, X D 579

9. Report Writer Usage Notes................... 581

9.1. RWCOS LexiCon. .. .vvnuti e 581
9.2. The Anatomy of a Report.........o ... 582
9.3. The Anatomy of a Report Page 583
9.4. How RWCS Builds Report Pages.........................o.... 584
9.5. Control Hierarchyo 586
9.6. An Example 588
9.6.1. Data. ... 588
9.6.2. Program ...ttt 590
9.6.3. Generated Report Pages.......... 595
9.7. Control Hierarchy (Revisited)coiiiiiiiiat, 601
9.8. Turning PHYSICAL Page Formatting Into LOGICAL Formatting . . 604
10. Interfacing With The OS.................... 607
10.1. Compiling Programs, 607
10.1.1. cobc - The GnuCOBOL Compiler 607
10.1.2. Compilation Time Environment Variables 615
10.1.3. Predefined Compilation Variables 617
10.1.4. Locating Copybookso 618
10.1.5. Compiler Configuration Files............. 619
10.2. Running Programs............ccoiiiiiiiiiiiiiiiiiiiiieea... 624
10.2.1. Direct Execution.......... ... 624
10.2.2. Executing Dynamically-Loadable Libraries 625
10.2.2.1. cobcrun - Command-line Execution................. 625
10.2.2.2. Dynamically Loaded Subprograms.................. 626
Contents 15 February 2018

GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide

10.2.3. Run Time Environment Variables....................... 626
10.2.4. Program Argumentscoiiiiiiiiiiiiiia.. 636
10.3. Binary Truncation..........o i i, 636
11. Sub-Programming............................ 641
11.1. Subprogram Types.t e 641
11.2. Independent vs Contained vs Nested Subprograms............ 641
11.3. Alternate Entry Points............ ..., 643
11.4. Dynamic vs Static Subprograms.............................. 643
11.5. Subprogram Execution Flow 645
11.5.1. Subroutine Execution Flow............. 645
11.5.2. User-Defined Function Execution Flow 647
11.6. Sharing Data Between Calling and Called Programs.......... 649
11.5.1. Subprogram Arguments..............c.oiiiiiiiiiiini.n. 649
11.6.1.1. Calling Program Considerations.................... 649
11.6.1.2. Called Program Considerations..................... 650
11.6.2. GLOBAL Data Items...............oiiiiiiiii ... 651
11.6.3. EXTERNAL Data Items.............coooiiiiiiiiii., 651
11.7. Recursive SUbprogramsevutinieiinennueannen. 652
11.8. Combining GnuCOBOL and C Programs..................... 655
11.8.1. GnuCOBOL Run-Time Library Requirements........... 655

11.8.2. String Allocation Differences Between GnuCOBOL and C. . 656
11.8.3. Matching C Data Types with GnuCOBOL USAGE’s.... 657
11.8.4. GnuCOBOL Main Programs CALLing C Subprograms .. 658
11.8.5. C Main Programs Calling GnuCOBOL Subprograms 659

12. Programming Style Suggestions............. 661
12.1. Marking Changes in Programs 661
12.2. Data Item Coding and Naming Conventions.................. 662
12.3. Table Subscripting versus Table Indexing..................... 665
12.4. Copybook Naming Conventions and Usage 667
12.5. PROCEDURE DIVISION Sections Versus Paragraphs........ 667
12.6. COMPUTE Versus ADD-SUBTRACT-MULTIPLY-DIVIDE. . 669

Appendix A - Glossary of Terms................ 671

Appendix B - Reserved Word List 681

Appendix C - GNU Free Documentation License .. 687

Appendix D - Summary of Document Changes .. 695

Appendix E - Summary of Compiler Changes since
2009 and version v1-1.......................... 703

15 February 2018

xi

Contents

Contents

GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide

15 February 2018

GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide 1

Amendment Changes for Programmers Guide

For a full list of all changes since the 1st Edition, see Appendix D.

6th Edition On release of v3.0 rcl.

1.

No e

17/12 Update description for NUMVAL-C along with missing 2nd & 3rd arguments
and more detail.

Added missing third parameter execution-time to functions DATE-TO-YYYYMMDD,
DAY-TO-YYYYDDD, YEAR-TO-YYYY.

Added missing functions: FORMATTED-CURRENT-DATE, FORMATTED-DATE,
FORMATTED-DATETIME, FORMATTED-TIME, INTEGER-OF-FORMATTED-
DATE, TEST-FORMATTED-DATETIME and renumbered all functions accordingly
by position in Guide.

18/12 More notes for NUMVAL, NUMVAL-C.
NUMVAL-C contains two references for testing descriptions.
Removed the ’syntax ref for FINAL CONTROL FOOTINGS at 7.2.

Removed incorrect information about a fatal error when opening or other processing
of a file as all errors can be recovered with a Cobol program using file status test or
using a Declarative section.

8. 19/12 Moved current updates section in D and top of manual into a included text file.

10.
11.
12.

13.

14.

15.
16.
17.
18.

20/12 Added comment regard REPORT section clauses and their order.
21/12 Run Spellcheck against manual sources to catch typo’s.
Added warning about using WS area only for data referenced within RW.

Removed warning in RW notes about CODE IS and COLUMNS are ignored - not any
more.

23/12 Moved chap. 7-10t09-12,3-6to4 - 7. Created new ch.2 from 1.3 & new ch.8
from 7.16 to ch. 8. Moved 8.21 to special registers?. Removed report about specific

non-implemented functions in 8.1 that now are. Inserted page breaks in 8.2. Moved
Ch. 7.6 - 7.13 to at end of Ch. 2. NEEDS resorting.

24/12 Added support for SPLIT and SPARSE keys in ISAM (Indexed) type files see
references for RECORD and ALTERNATE KEY clauses. Update ChangeLog.

Create index for ’Split Keys’ reference.

25/12 Remove comment from RW chapter about availability as now included.

27/12 Added missing SET LAST EXCEPTION to PG and QR.

Added un-implemented functions: BOOLEAN-OF-INTEGER, CHAR-NATIONAL,

15 February 2018 Contents

19.

20.
21.
22.
23.
24.

GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide

DISPLAY-OF, EXCEPTION-FILE-N, EXCEPTION-LOCATION-N, INTEGER-
OF-BOOLEAN, NATIONAL-OF, STANDARD-COMPARE with warning not
implemented.

Added missing system functions CBL_LREAD_KBD_CHAR & CBL_SET_CSR_POS.
Spotted in NEWS file.

29/12 Adjusted format for select idx to reduce width of text.

01/01 Update all 3 for 01 Jan 2018.

05/01 Updated contents of runtime.cfg in Chp. 10.

13/01 Updated comments for CBL_.CHECK_FILE_EXIST as back to front/wrong.
14/02 For SORT replaced diagram reference of file-name-3 to file-name-2 as wrong.

Contents 15 February 2018

GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide 3

1. Introduction

This document describes the syntax, semantics and usage of the COBOL programming
language as implemented by the current version of GnuCOBOL, formerly known as Open-

COBOL.

The original principal developers of GnuCOBOL were Keisuke Nishida and Roger While.
Since then many others of the GnuCobol community are directly involved in it’s development
at any one time.

This document is intended to serve as a full-function reference and user’s guide suitable for
both those readers learning COBOL for the first time as usage as a training tool, as well as
those already familiar with some dialect of the COBOL language.

A separate manual exists that just contains the details of the GnuCOBOL implementation
which is designed strictly for experienced Cobol programmers taken from this guide. This
document (GnuCobol Quick Reference) does NOT contain any training subject matter.

Caution. Although this document is for version 2.2 of the compiler, it also includes a
description of the functions of the RWCS (Report Writer module) which is not included in
the compiler version 2.2. Please see availability notes on this at 1.3.13.

1.1. Additional Reference Sources

For those wishing to learn COBOL for the first time, I can strongly recommend the following
resources.

If you like to hold a book in your hands, I strongly recommend "Murach’s Structured
COBOL", by Mike Murach, Anne Prince and Raul Menendez (2000) - ISBN 9781890774059.
Mike Murach and his various writing partners have been writing outstanding COBOL text-
books for decades, and this text is no exception. It’s an excellent book for those familiar
with the concepts of programming in other languages, but unfamiliar with COBOL.

Would you prefer a web-based tutorial? Try the University of Limerick (Ireland) COBOL
web site - ‘http://www.csis.ul.ie/cobol/’.

In addition there is the GNU Cobol FAQ on the project website at sourceforge which has
now exceeded 1,4000 pages available as html or a downloadable .pdf file.

1.2. Introducing COBOL

If you already know a programming language, and that language isn’t COBOL, chances
are that language is Java, C or C++. You will find COBOL a much different programming
language than those; sometimes those differences are a good thing and sometimes they
aren’t. The thing to remember about COBOL is this — it was designed to solve business
problems.

COBOL, first introduced to the programming public in 1959, was the very first programming
language to become standardized (in 1960). This meant that a standard-compliant COBOL

15 February 2018 Chapter 1 - Introduction

4 GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide

program written on computer "A" made by company "B" would be able to be compiled and
executed on computer "X" made by company "Y" with very few, if any, changes. This may
not seem like such a big deal today, but it was a radical departure from all programming
languages that came before it and even many that came after it.

The name COBOL actually says it all — COBOL is an acronym that stands for "(CO)mmon
(B)usiness (O)riented (L)anguage". Note the fact that the word "common" comes before
all others. The word "business" is a close second. Therein lies the key to Cobol’s success.

1.2.1. Why YOU Should Learn COBOL

Despite statements from industry "insiders", the COBOL programming language is not
dead, even though newer and so-called "modern" languages like Java, C#, .NET, Ruby on
Rails and so on appear to have become the languages of choice in the Information Technology
world. These languages have become popular because they address the following desired
requirements for "modern" programming:

1. They conform to the principles of Object-Oriented Programming (OOP). This is de-
sired for one major reason — it facilitates "code re-usability", thus improving the
productivity of programmers by allowing them to re-use previously written (and de-
bugged) code in new applications. For one reason or another, COBOL is perceived as
being weak in this regard. It isn’t (especially today), as we’ll see in the next section,
but perception is important.

2. Those languages aren’t limited to mainframe computers, as COBOL is perceived to be.
Some, like .NET and Ruby, aren’t even available on mainframes. The "modern" pro-
gramming languages were designed and intended for use on the full variety of computer
platforms, from shirt-pocket computers (i.e. smart phones) up to the most massive of
supercomputers.

3. There are several excellent commercially available COBOL implementations available
for non-mainframe systems (Micro Focus COBOL, AccuCOBOL, NetCOBOL and Elas-
tic COBOL, just to name a few), including Windows and UNIX/Linux systems. These
aren’t cheap, however.

4. Universities love the "Modern" languages. In the U.S., 73% of colleges lack even one
COBOL course on their curricula. COBOL, it appears, is no longer "cool" enough for
students to fill a classroom.

Just because COBOL doesn’t traditionally support objects, classes, and the like doesn’t
mean that its "procedural" approach to computing isn’t valuable — after all, it runs 70%
of the worlds business transactions, and does so:

e Using programs that, for the most part, are much more self-documenting than would
be the case with any other programming language.

e Effortlessly providing arithmetic accuracy to 31 digits, with performance approaching
that of well-written assembly-language programs. Don’t think this isn’t critically im-

Chapter 1 - Introduction 15 February 2018

GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide 5

portant to banks, investment houses and any business interested in tracking revenues,
expenses and profits (duh - like ALL of them).

e Integrating well with non-COBOL infrastructures such as XML, SOA, MQ, almost
any DBMS, Transaction Processing platforms, Queue-Management facilities and other
programming languages.

e By running on almost as many different computing platforms as Java can. You can’t run
COBOL programs in your smart phone, but desktops, workstations, midframes/servers,
mainframes and supercomputers are all fair game.

Today’s IT managers and business leaders are faced with a challenging dilemma — how do
you maintain the enormous COBOL code base that is still running their businesses when
academia has all but abandoned the language they need their people to use to keep the
wheels rolling? The problem is compounded by the fact that those programmers that are
skilled in COBOL are retiring and taking their knowledge with them. In some markets, this
appears to be having an inflationary effect on the cost of resources (COBOL programmers)
whose supply is becoming smaller and smaller. The pressure to update applications to make
use of more up-to-date graphical user interfaces is also perceived as a reason to abandon
COBOL in favour of GUI-friendly languages such as Java.

Businesses are addressing the COBOL challenge in different ways:

1. By undertaking so-called "modernization projects", where existing applications are
either rewritten in "modern" languages or replaced outright with purchased pack-
ages. Most of these businesses are using such activities as an excuse to abandon
"expensive" mainframes in favour of (presumably) less-expensive "open systems" (mid
frame/server) solutions.

2. Many times these businesses are finding the cost of the system/networking engineering,
operational management and monitoring and risk management (i.e. disaster recovery)
infrastructures necessary to support truly mission-critical applications to be so high
that the "less-expensive" solution really isn’t; in these cases the mainframe may remain
the best option, thus leaving COBOL in play and businesses seeking another solution
for at least part of their application base.

3. Training their own COBOL programmers. Since colleges, universities and technical
schools have lost interest in doing so, many businesses have undertaken the task of
"growing their own" new crop of COBOL programmers. Fear of being pigeon-holed into
a niche technology is a factor inhibiting many of today’s programmers from willingly
volunteering for such training.

4. By moving the user-interface onto the desktop; such efforts involve running modern-
language front-end clients on user desktops (or laptops or smart phones, etc.) with
COBOL programs providing server functionality on mainframe or midframe platforms,
providing all the database and file "heavy lifting" on the back-end. Solutions like this
provide users with the user-interfaces they want/need while still leveraging Cobol’s
strengths on (possibly) downsized legacy mainframe or midframe systems.

15 February 2018 Chapter 1 - Introduction

6 GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide

It’s probably a true that an IT professional can no longer afford to allow COBOL to be
the only wrench in their toolbox, but with a massive code base still in production now and
for the foreseeable future, adding COBOL to a multi-lingual curriculum vitae (CV) and/or
resume (yes — they ARE different) is not a bad thing at all. Knowing COBOL as well as
the language du-jour will make you the smartest person in the room when the discussion of
migrating the current "legacy" environment to a "modern" implementation comes around.

You'll find COBOL an easy language to learn and a FAR EASIER language to master than
many of the "modern" languages.

The whole reason you're reading this is that you've discovered GnuCOBOL — another
implementation of COBOL in addition to those mentioned earlier. The distinguishing char-
acteristic of GnuCOBOL versus those others is that GnuCOBOL is FREE open-source and
therefore FREE to obtain and use. It is community-enhanced and community-supported.
Later in this document (see [So What is GnuCOBOL?], page 7), you’ll begin to learn more
about this COBOL implementation’s capabilities.

1.2.2. Programmer Productivity

Throughout the history of computer programming, the search for new ways to improve of
the productivity of programmers has been a major consideration. Other than hobbyists,
programming is an activity performed for money, and businesses abhor spending anything
more than is absolutely necessary; even government agencies try to spend as little money
on projects as is absolutely necessary.

The amount of programming necessary to accomplish a given task — including rework
needed by any errors found during testing (testing is sometimes jokingly defined as: "that
time during which an application is actually in production, allowing users to discover the
problems") is the measure of programmer productivity. Anything that reduces that effort
will therefore reduce the time spent in such activities therefore reducing the expense of same.
When the expense of programming is reduced, programmer productivity is increased.

Sometimes the quest for improved programmer productivity (and therefore reduced pro-
gramming ezpense) has taken the form of introducing new features in programming lan-
guages, or even new languages altogether. Sometimes it has resulted in new ways of using
the existing languages.

While many technological and procedural developments have made evolutionary improve-
ments to programmer productivity, each of the following three events has been responsible
for revolutionary improvements:

e The development of so-called "higher-level" programming languages that enable a pro-
grammer to specify in a single statement of the language an action that would have
required many more separate statements in a prior programming language. The stan-
dardization of such languages, making them usable on a wide variety of computers and
operating systems, was a key aspect of this development. COBOL was a pioneering de-
velopment in this area, being a direct descendant of the very first higher-level language

Chapter 1 - Introduction 15 February 2018

GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide 7

(FLOW-MATIC, developed by US Naval Lieutenant Grace Hopper) and the first to
become standardized.

e The establishment of programming techniques that make programs easier to read and
therefore easier to understand. Not only do such techniques reduce the amount of
rework necessary simply to make a program work as designed, but they also reduce the
amount of time a programmer needs to study an existing program in order how to best
adapt it to changing business requirements. The foremost development in this area was
structured programming. Introduced in the late 1970’s, this approach to programming
spawned new programming languages (PASCAL, ALGOL, PL/1 and so forth) designed
around it. With the ANSI 85 standard, COBOL embraced the principles espoused
by structured programming mavens as well as any of the languages designed strictly
around it.

e The establishment of programming techniques AND the introduction of programming
language capabilities to facilitate the re-usability of program code. Anything that sup-
ports code re-usability can have a profound impact to the amount of time it takes to
develop new applications or to make significant changes to existing ones. In recent
years, object-oriented programming (OOP) has been the industry "poster child" for
code re-usability. By enabling program logic and the data structures that logic manip-
ulates to be encapsulated into easily stored and retrieved (and therefore "reusable")
modules called classes, the object-oriented languages such as Java, C++ and C# have
become the favourites of academia. Since students are being trained in these languages
and only these, by and large, it’s no surprise that — today — object-oriented program-
ming languages are the darlings of the industry.

The reality is, however, that good programmers have been practising code re-usability
for more than a half-century. Up until recently, COBOL programmers have had some
of the best code re-usability tools available — they’ve been doing it with copybooks
and subprograms rather than classes, methods and attributes but the net results have
been similar. With the COBOL2002 standard and proposed COBOL 20XX standard,
the COBOL programming language has become just as "object-oriented" as the "mod-
ern" languages, while preserving the ability to support, modify, compile and execute
"legacy" COBOL programs as well.

While GnuCOBOL supports few of the OOP programming constructs defined by the
COBOL2002 and COBOL20xx standards, it supports every aspect of the ANSI 85
standard and therefore fully meets the needs of points #1 and #2, above. With it’s
supported feature set (see [So What is GnuCOBOL?], page 7), it provides significant
programmer productivity capabilities.

1.3. So What is GnuCOBOL?

GnuCOBOL is a free and open sourced COBOL compiler and runtime environment, written
using the C programming language. GnuCOBOL is typically distributed in source-code
form, and must then be built for your computer’s operating system using the system’s C
compiler and loader. While originally developed for the UNIX and Linux operating systems,

15 February 2018 Chapter 1 - Introduction

8 GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide

GnuCOBOL has also been successfully built for computers running OSX and Windows
utilizing the UNIX-emulation features of such tools as Cygwin and MinGW. Also see the
GNU website for more information at https://savannah.gnu.org/projects/gnucobol.

The MinGW approach is a personal favourite with the author of this manual because it
creates a GnuCOBOL compiler and runtime library that require only a single MinGW
DLL to be available for the GnuCOBOL compiler, runtime library and user programs.
That DLL is freely distributable under the terms of the GNU General Public License. A
MinGW build of GnuCOBOL fits easily on and runs from a 128MB flash drive with no
need to install any software onto the Windows computer that will be using it. Some func-
tionality of the language, dealing with the sharing of files between concurrently executing
GnuCOBOL programs and record locking on certain types of files, is sacrificed however
as the underlying operating system routines needed to implement them aren’t available to
Windows and aren’t provided by MinGW. The current version for MinGW is available at
the download link along with various other platforms at the GnuCobol download website
(https:/ /sourceforge.net /projects/open-cobol/files/gnu-cobol /2.0/).

GnuCOBOL has also been built as a truly native Windows application utilizing Microsoft’s
freely-downloadable Visual Studio Express package to provide the C compiler and
linker /loader. This approach does not lend itself well to a "portable" distribution.

The GnuCOBOL compiler generates C code from your COBOL programs; that C code is
then automatically compiled and linked using your system’s C compiler (typically, but not
limited to, "gcc").

GnuCOBOL fully supports much of the ANSI 85 standard for COBOL (the only major
exclusion is the Communications Module) and also supports some of the components of
the COBOL2002 standard, such as the "SCREEN SECTION" (see [SCREEN SECTION],
page 151), table-based "SORT" (see [Table SORT], page 380) and user-defined functions.

End of Chapter 1 — Introduction

Chapter 1 - Introduction 15 February 2018

GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide 9

2. Cobol Fundamentals

This chapter describes the syntax, semantics and usage of the COBOL programming lan-
guage as implemented by the current version of GnuCOBOL.

This document is intended to serve as a full-function reference and user’s guide suitable for
both those readers learning COBOL for the first time as usage as a training tool, as well as
those already familiar with some dialect of the COBOL language.

Separate manuals exists that just contains the details of the GnuCOBOL implementation
which is designed strictly for experienced Cobol programmers taken from this guide. These
do NOT contain any training subject matter.

These manauls are GnuCOBOL Quick Reference and this contains just the Cobol seman-
tics in a short document while the other, GnuCOBOL Programmers Reference contains
only the Cobol Language elements taken from this document again for experienced Cobol
programmers needing the Cobol implementation as used in GnuCOBOL.

2.1. The Cobol Language - The Basics

2.1.1. Language Reserved Words

COBOL programs consist of a sequence of words and symbols. Words, which consist of
sequences of letters (upper- and/or lower-case), digits, dashes ("-") and/or underscores
("_") may have a pre-defined, specific, meaning to the compiler or may be invented by the
programmer for his/her purposes.

The GnuCOBOL language specification defines over 900 ’Reserved Words® — words to
which the compiler assigns a special meaning.

Programmers may use a reserved word as part of a word they are creating themselves, but
may not create their own word as an exact duplicate (without regard to case) of a COBOL
reserved word. Note that a reserved word includes all classes, such as intrinsic functions,
mnemonics names, system routines and reserved words.

See [Appendix B - Reserved Word List], page 681, for a complete list of GnuCOBOL reserved
words for the current release.

2.1.2. User-Defined Words

When you write GnuCOBOL programs, you’ll need to create a variety of words to represent
various aspects of the program, the program’s data and the external environment in which
the program will run. This will include internal names by which data files will be referenced,
data item names and names of executable logic procedures.

User-defined words may be composed from the characters "A" through "Z" (upper- and/or
lower-case), "0" through "9", dash ("-") and underscore ("_"). User-defined words may
neither start nor end with hyphen or underscore characters.

15 February 2018 Chapter 2 - Cobol Fundamentals

10 GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide

Other programming language provide the programmer with a similar capability of creat-
ing their own words (names) for parts of a program; COBOL is somewhat unusual when
compared to other languages in that user-defined words may start with a digit.

With the exception of logic procedure names, which may consist entirely of nothing but
digits, user-defined words must contain at least one letter.

2.1.3. Case Insensitivity

All COBOL implementations allow the use of both upper and lower case letters in program
coding. GnuCOBOL is completely insensitive to the case used when writing reserved words
or user-defined names. Thus, "AAAAA", "aaaaa", "Aaaaa" and "AaAaA" are all the same
word as far as GnuCOBOL is concerned.

The only time the case used does matter is within quoted character strings, where character
values will be exactly as coded.

By convention throughout this document, COBOL reserved words will be shown entirely in
UPPER-CASE while those words that were created by a programmer will be represented
by tokens in mixed or lower case.

This isn’t a bad practice to use in actual programs, as it leads to programs where it is much
easier to distinguish reserved words from user-defined ones!

2.1.4. Readability of Programs

The most vociferous critics of COBOL frequently focus on the wordiness of the language,
often citing the case of a so-called "Hello World" program as the "proof" that COBOL is
so much more tedious to program in than more "modern" languages. This tedium is cited
as such a significant impact to programmer productivity that, in their opinions, COBOL
can’t go away quickly enough.

Here are two different "Hello World" applications — one written in Java and the second in
GnuCOBOL. First, the Java version:

Class HelloWorld {
public static void main(String[] args) {
System.out.println("Hello World!");
}

And here is the same program, written in GnuCOBOL:

IDENTIFICATION DIVISION.

PROGRAM-ID. HelloWorld.

PROCEDURE DIVISION.
DISPLAY "Hello World!".

Both of the above programs could have been written on a single line, if desired, and both

Chapter 2 - Cobol Fundamentals 15 February 2018

GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide 11

languages allow a programmer to use (or not use) indentation as they see fit to improve
program readability. Sounds like a tie so far.

Let’s look at how much more "wordy" COBOL is than Java. Count the characters in the
two programs. The Java program has 95 (not counting carriage returns and any indenta-
tion). The COBOL program has 89 (again, not counting carriage returns and indentation)!
Technically, it could have been only 65 because the "IDENTIFICATION DIVISION." header
is actually optional. Clearly, "Hello World" doesn’t look any more concise in Java than it
does in COBOL.

Let’s look at a different problem. Surely a program that asks a user to input a positive
integer, generates the sum of all positive integers from 1 to that number and then prints
the result will be MUCH shorter and MUCH easier to understand when coded in Java than
in COBOL, right?

You can be the judge. First, the Java version:

import java.util.Scanner;
public class sumofintegers {
public static void main(String[] arg) {
System.out.println("Enter a positive integer");
Scanner scan=new Scanner(System.in);
int n=scan.nextInt();
int sum=0;
for (int i=1;i<=n;i++) {
sum+=i;
}

System.out.println("The sum is "+sum);

And now for the COBOL version:

IDENTIFICATION DIVISION.

PROGRAM-ID. SumOfIntegers.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 n BINARY-LONG.

01 i BINARY-LONG.

01 sum BINARY-LONG VALUE O.

PROCEDURE DIVISION.

DISPLAY "Enter a positive integer"

ACCEPT n

PERFORM VARYING i FROM 1 BY 1 UNTIL i > n
ADD i TO sum

END-PERFORM

DISPLAY "The sum is " sum.

15 February 2018 Chapter 2 - Cobol Fundamentals

12 GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide

My familiarity with COBOL may be prejudicing my opinion, but it doesn’t appear to me
that the Java code is any simpler than the COBOL code. In case you're interested in
character counts, the Java code comes in at 278 (not counting indentation characters). The
COBOL code is 298 (274 without the "IDENTIFICATION DIVISION." header).

Despite what you’ve seen here, the more complex the programming logic being implemented,
the more concise the Java code will appear to be, even compared to 2002-standard COBOL.
That conciseness comes with a price though — program code readability. Java (or C or C++
or C#) programs are generally intelligible only to trained programmers. COBOL programs
can, however, be quite understandable by non-programmers. This is actually a side-effect
of the "wordiness" of the language, where COBOL statements use natural English words to
describe their actions. This inherent readability has come in handy many times throughout
my career when I've had to learn obscure business (or legal) processes by reading the
COBOL program code that supports them.

The "modern" languages, like Java, also have their own "boilerplate" infrastructure
overhead that must be coded in order to write the logic that is necessary in the program.
Take for example the "public static void main(String[] arg)" and "import
java.util.Scanner;" statements. The critics tend to forget about this when they
criticize COBOL for it’s structural "overhead".

When it first was developed, Cobol’s easily-readable syntax made it profoundly different
from anything that had been seen before. For the first time, it was possible to specify logic in
a manner that was — at least to some extent — comprehensible even to non-programmers.
Take for example, the following code written in FORTRAN — a language developed only
a year before COBOL:

EXT = PRICE * IQTY
INVTOT = INVTOT + EXT

With its original limitation on the length of variable names (one- to six-character names
comprised of a letter followed by up to five letters and/or digits), it’s implicit rule that
variable were automatically created as real (floating-point) unless their name started with
a letter in the range I-N, and its use of algebraic notation to express actions being taken,
FORTRAN wasn’t a particularly readable language, even for programmers. Compare this
with the equivalent COBOL code:

MULTIPLY price BY quantity GIVING extended-amount
ADD extended-amount TO invoice-total

Clearly, even a non-programmer could at least conceptually understand what was going on!
Over time, languages like FORTRAN evolved more robust variable names, and COBOL
introduced a more formula-based syntactical capability for arithmetic operations, but FOR-
TRAN was never as readable as COBOL.

Chapter 2 - Cobol Fundamentals 15 February 2018

GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide 13

Because of its inherent readability, I would MUCH rather be handed an assignment to make
significant changes to a COBOL program about which I know nothing than to be asked to
do the same with a C, C++, C# or Java program.

Those that argue that it is too boring / wasteful / time-consuming / insulting (pick one) to
have to code a COBOL program "from scratch" are clearly ignorant of the following facts:

e Many systems have program-development tools available to ease the task of coding
programs; those tools that concentrate on COBOL are capable of providing templates
for much of the "overhead" verbiage of any program. . .

e Good programmers have — for decades — maintained their own skeleton "template"
programs for a variety of program types; simply load a template into a text editor and
you've got a good start to the program. . .

e Legend has it that there’s actually only been ONE program ever written in COBOL, and
all programs ever "written" thereafter were simply derivatives of that one. Although
this is clearly intended as a (probably) bad joke, it is nevertheless close to the very
simple truth that many programmers"reuse" existing COBOL programs when creating
new ones. There’s certainly nothing preventing this from happening with programs
written in other languages, but it does seem to happen more in COBOL shops. It’s
ironic that "code re-usability" is one of the arguments used to justify the existence of
the "modern" languages.

2.1.5. Divisions Organize Programs

COBOL programs are structured into four major areas of coding, each with its own purpose.
These four areas are known as divisions.

Fach division may consist of a variety of sections and each section consists of one or more
paragraphs. A paragraph consists of sentences, each of which consists of one or more
statements.

This hierarchical structure of program components standardizes the composition of all
COBOL programs. Much of this manual describes the various divisions, sections, para-
graphs and statements that may comprise any COBOL program.

2.1.6. Copybooks

A’ Copybook’ is a segment of program code that may be utilized by multiple programs simply
by having those programs use the "COPY" statement (see [COPY], page 69) to import that
code. This code may define files, data structures or procedural code.

Today’s current programming languages have a statement (usually, this statement is named
"import", "include" or "#include") that performs this same function. What makes the
COBOL copybook feature different than the "include" facility in newer languages, however,
is the fact that the "COPY" statement can edit the imported source code as it is being copied.
This capability makes copybook libraries extremely valuable to making code reusable.

15 February 2018 Chapter 2 - Cobol Fundamentals

14 GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide

2.1.7. Structured Data

A contiguous area of storage within the memory space of a program that may be refer-
enced, by name, in a COBOL program is referred to as a ’Data Item’. Other programming
languages use the term variable, property or attribute to describe the same thing.

COBOL introduced the concept of structured data. The principle of structured data in
COBOL is based on the idea of being able to group related and contiguously-allocated
data items together into a single aggregate data item, called a ’Group Item’. For example,
a 3b-character 'Employee-Name’ group item might consist of a 20-character ’Last-Name’
followed by a 14-character "First-Name’ and a 1-character "Middle-Initial’.

A data item that isn’t itself formed from other data items is referred to in COBOL as an
'Elementary Item’. In the previous example, 'Last-Name’, 'First-Name’ and 'Middle-Initial’
are all elementary items.

2.1.8. Files

One of Cobol’s strengths is the wide variety of data files it is capable of accessing. Gnu-
COBOL programs, like those created with other COBOL implementations, need to have the
structure of any files they will be reading and/or writing described to them. The highest-
level characteristic of a file’s structure is defined by specifying the organization of the file,
as follows:

"ORGANIZATION LINE SEQUENTIAL"

These are files with the simplest of all internal structures. Their contents are
structured simply as a series of identically- or differently-sized data records,
each terminated by a special end-of-record delimiter character. An ASCII line-
feed character (hexadecimal 0A) is the end-of-record delimiter character used
by any UNIX or pseudo-UNIX (MinGW, Cygwin, OSX) GnuCOBOL build. A
truly native Windows build would use a carriage-return, line-feed (hexadecimal
0DO0A) sequence.

Records must be read from or written to these files in a purely sequential
manner. The only way to read (or write) record number 100 would be to have
read (or written) records number 1 through 99 first.

When the file is written to by a GnuCOBOL program, the delimiter sequence
will be automatically appended to each data record as it is written to the file. A
"WRITE" (see [WRITE], page 402) to this type of file will be done as if a "BEFORE
ADVANCING 1 LINE" clause were specified on the "WRITE", if no "ADVANCING"
clause is coded.

When the file is read, the GnuCOBOL runtime system will strip the trailing
delimiter sequence from each record. The data will be padded (on the right)
with spaces if the data just read is shorter than the area described for data
records in the program. If the data is too long, it will be truncated and the
excess will be lost.

Chapter 2 - Cobol Fundamentals 15 February 2018

GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide 15

These files should not be defined to contain any exact binary data fields because
the contents of those fields could inadvertently have the end-of-record sequence
as part of their values — this would confuse the runtime system when reading
the file, and it would interpret that value as an actual end-of-record sequence.

"LINE ADVANCING"

These are files with an internal structure similar to that of a line sequential file.
These files are defined (without an explicit "ORGANIZATION" specification) using
the "LINE ADVANCING" clause on their "SELECT" statement (see [SELECT],
page 109).

When this kind of file is written to by a GnuCOBOL program, an end-of-
record delimiter sequence will be automatically added to each data record as it
is written to the file. A "WRITE" to this type of file will be done as if an "AFTER
ADVANCING 1 LINE" clause were specified on the "WRITE", if no "ADVANCING"
clause is coded.

Like line sequential files, these files should not be defined to contain any exact
binary data fields because the contents of those fields could inadvertently have
the end-of-record sequence as part of their values — this would confuse the
runtime system when reading the file, and it would interpret that value as an
actual end-of-record sequence.

"ORGANIZATION SEQUENTIAL"

These files also have a simple internal structure. Their contents are structured
simply as an arbitrarily-long sequence of data characters. This sequence of
characters will be treated as a series of fixed-length records simply by logically
splitting the sequence of characters up into fixed-length segments, each as long
as the maximum record size defined in the program. There are no special end-
of-record delimiter characters in the file and when the file is written to by a
GnuCOBOL program, no delimiter sequence is appended to the data.

Records in this type of file are all the same physical length, except possibly
for the very last record in the file, which may be shorter than the others. If
variable-length logical records are defined to the program, the space occupied
by each physical record in the file will occupy the space described by the longest
record description in the program.

So, if a file contains 1275 characters of data, and a program defines the struc-
ture of that file as containing 100-character records, then the file contents will
consist of twelve (12) 100-character records with a final record containing only
75 characters.

It would appear that it should be possible to locate and process any record in
the file directly simply by calculating its starting character position based upon
the program-defined record size. Even so, however, records must be still be
read or written to these files in a purely sequential manner. The only way to

15 February 2018 Chapter 2 - Cobol Fundamentals

16 GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide

read (or write) record number 100 would be to have read (or written) records
number 1 through 99 first.

When the file is read, the data is transferred into the program exactly as it
exists in the file. In the event that a short record is read as the very last record,
that record will be padded (to the right) with spaces.

Care must be taken that programs reading such a file describe records whose
length is exactly the same as that used by the program that created the file.
For example, the following shows the contents of a "SEQUENTIAL" file created
by a program that wrote five 6-character records to it. The "A", "B", ...
values reflect the records that were written to the file:

‘AAAAAABBBBBBCCCCCCDDDDDDEEEEEE’

Now, assume that another program reads this file, but describes 10-character
records rather than 6. Here are the records that program will read:

‘AAAAAABBBB’
‘BBCCCCCCDD’
‘DDDDEEEEEE’

There may be times where this is exactly what you were looking for. More often
than not, however, this is not desirable behaviour. Suggestion: use a copybook
to describe the record layouts of any file; this guarantees that multiple programs
accessing that file will "see" the same record sizes and layouts by coding a
"COPY" statement (see [COPY], page 69) to import the record layout(s) rather
than hand-coding them.

These files can contain exact binary data fields. This is possible because —
since there is no character sequence that constitutes an end-of-record delimiter
— the contents of record fields are irrelevant to the reading process.

"ORGANIZATION RELATIVE"

The contents of these files consist of a series of fixed-length data records prefixed
with a four-byte record header. The record header contains the length of the
data, in bytes. The byte-count does not include the four-byte record header.

Records in this type of file are all the same physical length. If variable-length
logical records are defined to the program, the space occupied by each physical
record in the file will occupy the maximum possible space, and the logical
record length field will contain the number of bytes of data in the record that
are actually in use.

This file organization was defined to accommodate either sequential or ran-
dom processing. With a "RELATIVE" file, it is possible to read or write record
100 directly, without having to have first read or written records 1-99. The
GnuCOBOL runtime system uses the program-defined maximum record size to

Chapter 2 - Cobol Fundamentals 15 February 2018

GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide 17

calculate a relative byte position in the file where the record header and data
begin, and then transfers the necessary data to or from the program.

When the file is written by a GnuCOBOL program, no delimiter sequence is
appended to the data, but a record-length field is added to the beginning of
each physical record.

When the file is read, the data is transferred into the program exactly as it
exists in the file.

Care must be taken that programs reading such a file describe records whose
length is exactly the same as that used by the programs that created the file. It
won’t end well if the GnuCOBOL runtime library interprets a four-byte ASCII
character string as a record length when it transfers data from the file into the
program!

Suggestion: use a copybook to describe the record layouts of any file; this
guarantees that multiple programs accessing that file will "see" the same record
sizes and layouts by coding a "COPY" statement (see [COPY], page 69) to import
the record layout(s) rather than hand-coding them.

These files can contain exact binary data fields. The contents of record fields
are irrelevant to the reading process as there is no end-of-record delimiter.

"ORGANIZATION INDEXED"

This is the most advanced file structure available to GnuCOBOL programs.
It’s not possible to describe the physical structure of such files because that
structure will vary depending upon which advanced file-management facility
was included into the GnuCOBOL build you will be using (Berkeley Database
[BDB], VBISAM, etc.). We will — instead — discuss the logical structure of
the file.

There will be multiple structures stored for an "INDEXED" file. The first will
be a data component, which may be thought of as being similar to the internal
structure of a relative file. Data records may not, however, be directly accessed
by their record number as would be the case with a relative file, nor may they
be processed sequentially by their physical sequence in the file.

The remaining structures will be one or more index components. An index
component is a data structure that (somehow) enables the contents of a field,
called a primary key, within each data record (a customer number, an employee
number, a product code, a name, etc.) to be converted to a record number
so that the data record for any given primary key value can be directly read,
written and/or deleted. Additionally, the index data structure is defined in such
a manner as to allow the file to be processed sequentially, record-by-record, in
ascending sequence of the primary key field values. Whether this index structure
exists as a binary-searchable tree structure (b-tree), an elaborate hash structure
or something else is pretty much irrelevant to the programmer — the behaviour

15 February 2018 Chapter 2 - Cobol Fundamentals

18 GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide

of the structure will be as it was just described. The actual mechanism used
will depend upon the advanced file-management package was included into your
GnuCOBOL implementation when it was built.

The runtime system will not allow two records to be written to an indexed file
with the same primary key value.

The capability exists for an additional field to be defined as what is known as
an alternate key. Alternate key fields behave just like primary keys, allowing
both direct and sequential access to record data based upon the alternate key
field values, with one exception. That exception is the fact that alternate keys
may be allowed to have duplicate values, depending upon how the alternate key
field is described to the GnuCOBOL compiler.

There may be any number of alternate keys, but each key field comes with
a disk space penalty as well as an execution time penalty. As the number of
alternate key fields increases, it will take longer and longer to write and/or
modify records in the file.

These files can contain exact binary data fields. The contents of record fields
are irrelevant to the reading process as there is no end-of-record delimiter.

All files are initially described to a GnuCOBOL program using a "SELECT" statement (see
[SELECT], page 109). In addition to defining a name by which the file will be referenced
within the program, the "SELECT" statement will specify the name and path by which the
file will be known to the operating system along with its organization, locking and sharing
attributes.

A file description in the "FILE SECTION" (see [FILE SECTION], page 129) will define the
structure of records within the file, including whether or not variable-length records are
possible and — if so — what the minimum and maximum length might be. In addition,
the file description entry can specify file I/O block sizes.

2.1.9. Table Handling

Other programming languages have arrays, COBOL has tables. They’re basically the same
thing. There are two special statements that exist in the COBOL language — "SEARCH"
(see [SEARCH], page 362) and "SEARCH ALL" (see [SEARCH ALL], page 364) — that make
finding data in a table easy.

The first can search a table sequentially, stopping only when either a table entry matching
one of any number of search conditions is found, or when all table entries have been checked
against the search criteria and none matched any of those criteria.

The second can perform an extremely fast search against a table sorted by and searched
against a key field contained in each table entry. The algorithm used for such a search is
a binary search (also known as a half-interval search). This algorithm ensures that only
a small number of entries in the table need to be checked in order to find a desired entry
or to determine that the desired entry doesn’t exist in the table. The larger the table,

Chapter 2 - Cobol Fundamentals 15 February 2018

GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide 19

the more effective this search becomes. For example, a binary search of a table containing
32,768 entries will be able to locate a particular entry or determine the entry doesn’t exist
by looking at no more than fifteen (15) entries! The algorithm is explained in detail in the
documentation of the "SEARCH ALL" statement (see [SEARCH ALLJ, page 364).

Finally, COBOL has the ability to perform in-place sorts of the data that is found in a
table.

2.1.10. Sorting and Merging Data

The COBOL language includes a powerful "SORT" statement (see [SORT], page 376) that
can sort large amounts of data according to arbitrarily complex key structures. This data
may originate from within the program or may be contained in one or more external files.
The sorted data may be written automatically to one or more output files or may be
processed, record-by-record in the sorted sequence.

A companion statement — "MERGE" (see [MERGE], page 333) — can combine the contents
of multiple files together, provided those files are all pre-sorted in a similar manner according
to the same key structure. The resulting output will consist of the contents of all of the
input files, merged together and sequenced according to the common key structure(s). The
output generated by a "MERGE" statement may be written automatically to one or more
output files or may be processed internally by the program.

A special form of the "SORT" statement also exists just to sort the data that resides in a
table. This is particularly useful if you wish to use "SEARCH ALL" against the table.

2.1.11. String Manipulation Features

There have been programming languages designed specifically for the processing of text
strings, and there have been programming languages designed for the sole purpose of per-
forming high-powered numerical computations. Most programming languages fall some-
where in the middle.

COBOL is no exception, although it does include some very powerful string manipulation ca-
pabilities; GnuCOBOL actually has even more string-manipulation capabilities than many
other COBOL implementations. The following summarizes GnuCOBOL’s string-processing
capabilities:

Concatenate two or more strings:

e "CONCATENATE" intrinsic function (see [CONCATENATE], page 414).
e "STRING" statement (see [STRING], page 386).

Conversion of a numeric time or date to a formatted character string:

e "LOCALE-TIME" intrinsic function (see [LOCALE-TIME], page 446).
e "LOCALE-DATE" intrinsic function (see [LOCALE-DATE], page 445).

15 February 2018 Chapter 2 - Cobol Fundamentals

20 GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide

Convert a binary value to its corresponding character in the program’s character set:

e "CHAR" intrinsic function (see [CHAR], page 412). Add 1 to argument before invoking
the function; the description of the "CHAR" intrinsic function presents a technique
utilizing the "MOVE" statement that will accomplish the same thing without the need
of adding 1 to the numeric argument value first.

Convert a character string to lower-case:

e "LOWER-CASE" intrinsic function (see [LOWER-CASE]|, page 450).
e "C$TOLOWER" built-in system subroutine (see [C$TOLOWER], page 530).
e "CBL_TOLOWER" built-in system subroutine (see [CBL_.TOLOWER], page 571).

Convert a character string to upper-case:

e "UPPER-CASE" intrinsic function (see [UPPER-~-CASE], page 503).
e "C$TOUPPER" built-in system subroutine (see [C$TOUPPER], page 531).
e "CBL_TOUPPER" built-in system subroutine (see [CBL.TOUPPER], page 571).

Convert a character string to only printable characters:

e "C$PRINTABLE" built-in system subroutine (see [CSPRINTABLE], page 528).

Convert a character to its numeric value in the program’s character set:

e "ORD" intrinsic function (see [ORD], page 475). Subtract 1 from the result; the descrip-
tion of the "ORD" intrinsic function presents a technique utilizing the "MOVE" statement
that will accomplish the same thing without the need of adding 1 to the numeric ar-
gument value first.

Count occurrences of sub strings in a larger string:

e "INSPECT" statement (see [INSPECT], page 327) with the "TALLYING" clause.

Decode a formatted numeric string back to a numeric value:

e "NUMVAL" intrinsic function (see NUMVAL], page 469).
e "NUMVAL-C" intrinsic function (see [NUMVAL-C], page 472).

Determine the length of a string or data-item capable of storing strings:

e "LENGTH" intrinsic function (see [LENGTH], page 442).
e "BYTE-LENGTH" intrinsic function (see [BYTE-LENGTH], page 411).

Chapter 2 - Cobol Fundamentals 15 February 2018

GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide 21

Extract a sub string from a string based on its starting character position and length:

e Use of a reference modifier on the string field - See [Reference Modifiers|, page 44.

Format a numeric item for output, including thousands-separators ("," in the USA), cur-
rency symbols ("$" in the USA), decimal points, credit/Debit Symbols, Leading Or Trailing
Sign Characters:

e "MOVE" statement (see [MOVE], page 336) with picture-symbol editing applied to the
receiving field:

Justification (left, right or centred) of a string field:

e "C$JUSTIFY" built-in system subroutine (see [C8JUSTIFY], page 524).

Monoalphabetic substitution of one or more characters in a string with different characters:

e "INSPECT" statement (see [INSPECT], page 327) with the "CONVERTING".

e "TRANSFORM" statement (see [TRANSFORM], page 396).

e "SUBSTITUTE" intrinsic function (see [SUBSTITUTE], page 492).

e "SUBSTITUTE-CASE" intrinsic function (see [SUBSTITUTE-CASE], page 493).

Parse a string, breaking it up into sub strings based upon one or more delimiting character
sequences’:

e "UNSTRING" statement (see [UNSTRING], page 398).

Removal of leading or trailing spaces from a string:

e "TRIM" intrinsic function (see [TRIM], page 502).

Substitution of a single sub string with another of the same length, based upon the sub
strings starting character position and length:

e "MOVE" statement (see [MOVE], page 336) with a reference modifier on the "receiving"
field (see [Reference Modifiers], page 44).

Substitution of one or more sub strings in a string with replacement sub strings of the
same length, regardless of where they occur:

e "INSPECT" statement (see [INSPECT], page 327) with a "REPLACING" clause.

These delimiters may be single characters, multiple-character strings or multiple consecutive occurrences of
either

15 February 2018 Chapter 2 - Cobol Fundamentals

22 GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide

e "SUBSTITUTE" intrinsic function (see [SUBSTITUTE], page 492).
e "SUBSTITUTE-CASE" intrinsic function (see [SUBSTITUTE-CASE], page 493).

Substitution of one or more sub strings in a string with replacement sub strings of a
potentially different length, regardless of where they occur:

e "SUBSTITUTE" intrinsic function (see [SUBSTITUTE], page 492).
e "SUBSTITUTE-CASE" intrinsic function (see [SUBSTITUTE-CASE], page 493).

2.1.12. Screen Formatting Features

The COBOL2002 standard formalizes extensions to the COBOL language that allow for the
definition and processing of text-based screens, as is a typical function on mainframe and
midframe computers as well as on many point-of-sale (i.e. "cash register") systems. Gnu-
COBOL implements virtually all the screen-handling features described by COBOL2002.

These features allow fields to be displayed at specific row/column positions, various colors
and video attributes to be assigned to screen fields and the pressing of specific function keys
(F1, F2, ...) to be detectable. All of this takes place through the auspices of the "SCREEN
SECTION" (see [SCREEN SECTION], page 151) and special formats of the "ACCEPT" state-
ment (see [ACCEPT], page 258) and the "DISPLAY" statement (see [DISPLAY], page 292).

The COBOL2002 standard, and therefore GnuCOBOL, only covers textual user interface
(TUI) screens (those comprised of ASCII characters presented using a variety of visual
attributes) and not the more-advanced graphical user interface (GUI) screen design and
processing capabilities built into most modern operating systems. There are subroutine-
based packages available that can do full GUI presentation — most of which may be called
by GnuCOBOL programs, with a moderate research time investment (Tcl/ Tk, for example)
— but none are currently included with GnuCOBOL.

Chapter 2 - Cobol Fundamentals 15 February 2018

GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide 23

2.1.12.1. A Sample Screen

A Sample Screen Produced by a GnuCOBOL Program:

=" GNU COBOL Compll [EEES

I GCic (2013/12/26 10:16) GNU COROL 2.1 23NOV2013 Interactive Compilation

| Filename: mathtest.cbl
Folder: E:\Programs\Samples

Set/Clr Switches Via F1-F9; Set Config Via F12; ENTER Key Compiles; ESC Quits

Assume WITH DEBUGGING MODE "FUNCTION" Is Optional Current
Procedure+Statement Trace Enable A1l Warmings Config:
Make a Library (DLL) Source Is Free-Format DEFAULT
Execute If Compilation OK No COMP/BINARY Truncation

Produce Full Listing

Extra "cobc" Switches, If Any ("-save-temps=xxx" Prevents Listings):

e

Program Execution Arguments, I Any:

e

GCic for Windows/MinGW Copyright (C) 2009-2013, Gary L. Cutler, GPL

The above screen was produced by the GnuCOBOL Interactive Compiler, or GCic. See
Section “GCic” in GnuCOBOL Sample Programs, for the source and cross-reference listing
of this program.

Screens are defined in the screen section of the data division. Once defined, screens are used
at run-time via the "ACCEPT" and "DISPLAY" statements.

2.1.12.2. Color Palette and Video Attributes

GnuCOBOL supports the following visual attribute specifications in the "SCREEN SECTION"
(see [SCREEN SECTION], page 151):

Color

Eight (8) different colors may be specified for both the background (screen)
and foreground (text) color of any row/column position on the screen. Colors
are specified by number, although a copybook supplied with all GhuCOBOL
distributions ("screenio.cpy") defines COB-COLOR-xxxxxx names for the var-
ious colors so they may be specified as a more meaningful name rather than
a number. The eight colors, by number, with the constant names defined in
screenio.cpy, are as follows:

15 February 2018 Chapter 2 - Cobol Fundamentals

24

GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide

Black: COB-COLOR-BLACK

Blue: COB-COLOR-BLUE

Green: COB-COLOR-GREEN

Cyan (Turquoise): COB-COLOR-CYAN
Red: COB-COLOR-RED

Magenta: COB-COLOR-MAGENTA
Yellow: COB-COLOR-YELLOW
White: COB-COLOR-WHITE

No e W= o

Text Brightness

Blinking

There are three possible brightness levels supported for text — lowlight (dim),
normal and highlight (bright). Not all GnuCOBOL implementations will sup-
port all three (some treat lowlight the same as normal). The deciding factor as
to whether two or three levels are supported lies with the version of the "curses"
package that is being used. This is a utility screen-10 package that is included
into the GnuCOBOL run-time library when the GnuCOBOL software is built.

As a general rule of thumb, Windows implementations support two levels while
Unix ones support all three.

This too is a video feature that is dependent upon the "curses" package built
into your version of GnuCOBOL. If blinking is enabled in that package, text dis-
played in fields defined in the screen section as being blinking will endlessly cy-
cle between the brightest possible setting (highlight) and an "invisible" setting
where the text color matches that of the field background color. A Windows
build, which generally uses the "pcurses" package, will uses a brighter-than-
normal background color to signify "blinking".

Reverse Video

This video attribute simply swaps the foreground and background colors and
display options.

Field Outlining

It is possible, if supported by the "curses" package being used, to draw borders
on the top, left and/or bottom edges of a field.

Secure Input

If desired, screen fields used as input fields may defined as "secure" fields, where
each input character (regardless of what was actually typed) will appear as an
asterisk (*) character. The actual character whose key was pressed will still be

Chapter 2 - Cobol Fundamentals 15 February 2018

GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide 25

stored into the field in the program, however. This is very useful for password
or account number fields.

Prompt Character

Input fields may have any character used as a fill character. These fill characters
provide a visual indication of the size of the input field, and will automatically
be transformed into spaces when the input field is processed by the program.
If no such character is defined for an input field, an underscore ("_") will be
assumed.

The following is a sample of the GnuCOBOL color Palette, showing all possible combinations
of the various video attributes. This example was prepared on a Macintosh running OSX
Mavericks (10.9). Blinking works — the screen snapshot shows things in mid blink, when
the text and background colors are momentarily the same. Unfortunately, only two screen
intensities are available (like Windows, the "lowlight" setting is the same as the default).

The GnuCOBOL Color Palette and Video Options::

8006 2013-11-23-2.1 — bash — 65%26 "3

(Press ENTER when done)
HIGHLIGHT LOWLIGHT

REVERSE REVERSE
01234567 01234567 01234567 01234567 01224567

SRR

34

ST E
o ol K]
2

¥

v
.
v
e
ot
(4

<
<
8¢

L
P
L
5
L
A
[

K
2D
L2
¢

~ YW1 W N = O
-
-

:

~NHGurmkEwNRE o

-

~SndRWNRE D

-

~ YU N RO

X

X X
X X
X X
X X
X 4 X
X X
X X
DOOCOOC IROCOO0C

$4 9904 OOOOOC

LOWLIGHT LOWLIGHT HIGHLIGHT
BLINK BLINK

REVERSE REVERSE REVERSE

01234567 01234567 01234567 01234567 01234567 01234567

The rows of each block are numbered with the background color while columns are numbered
with the foreground color.

~ GV W N O
U R W N RO
] O W W N RO
SNk wWwNE O
SOV WNRE O
W R W N O

See Section “Colors” in GnuCOBOL Sample Programs, for a source and cross-reference
listing of the program (Colors.cbl) that produced the above screen.

15 February 2018 Chapter 2 - Cobol Fundamentals

26

GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide

2.1.13. Report Writer Features

GnuCOBOL includes an implementation of the Report Writer Control System, or RWCS.
The reportwriter module is implemented as of version 3.0. If you want to use the reportwriter
module in the meanwhile, please use the feature branch instead and it is currently found at
https://sourceforge.net/p/open-cobol/code/HEAD /tree/branches/reportwriter). This is a
standardized, optional add-on feature to the COBOL language which automates much of
the mechanics involved in the generation of printed reports by:

1. Controlling the pagination of reports, including;:

A.

B.

G.

The automatic production of a one-time notice on the first page of the report
(report heading).

The production of zero or more header lines at the top of every page of the report
(page heading).

The production of zero or more footer lines at the bottom of every page of the
report (page footing).

The automatic numbering of printed pages.

The formatting of those report lines that make up the main body of the report
(detail).

Full awareness of where the "pen" is about to "write" on the current page, auto-
matically forcing an eject to a new page, along with the automatic generation of
a page footer to close the old page and/or a page header to begin the new one.

The production of a one-time notice at the end of the last page of a report (report
footing).

2. Performing special reporting actions based upon the fact that the data being used to
generate the report has been sorted according to one or more key fields:

A.

Automatically suppressing the presentation of one or more fields of data from
the detail group when the value(s) of the field(s) duplicate those of the previously
generated detail group. Fields such as these are referred to as group-indicate fields.

Automatically causing suppressed detail group-indicate fields to re-appear should
a detail group be printed on a new page.

Recognizing when control fields on the report — fields tied to those that were used
as "SORT" statement (see [SORT], page 376) keys — have changed. This is known
as a control break. The RWCS can automatically perform the following reporting
actions when a control break occurs:

e Producing a footer, known as a control footing after the detail lines that shared
the same old value for the control field.

e Producing a header, known as a control heading before the detail lines that
share the same new value for the control field.

3. Perform data summarise, as follows:

Chapter 2 - Cobol Fundamentals 15 February 2018

GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide 27

A. Automatically generating subtotals in control and/or report footings, summarizing
values of any fields in the detail group.

B. Automatically generating crossfoot totals in detail groups. These would be sums
of two or more values presented in the detail group.

The "REPORT SECTION" (see [REPORT SECTION], page 143) documentation explores the
description of reports and the "PROCEDURE DIVISION" (see [PROCEDURE DIVISION],
page 237) chapter documents the various language statements that actually produce re-
ports. Before reading these, you might find it helpful to read [Report Writer Usage Notes],
page 581, which is dedicated to putting the pieces together for you.

2.1.14. Data Initialization

There are three ways in which data division data gets initialized.

1. When a program or subprogram is first executed, much of the data in it’s data division
will be initialized as follows:

e Alphanumeric and alphabetic (i.e. text) data items will be initialized to "SPACES".
e Numeric data items will be initialized to a value of "ZERQD".

e Data items with an explicit "VALUE" (see [VALUE], page 234) clause in their
definition will be initialized to that specific value.

The various sections of the data division each have their own rules as to when the
actions described above will occur — consult the documentation on those sections for
additional information.

These default initialization rules can vary quite substantially from one COBOL imple-
mentation to another. For example, it is quite common for data division storage to be
initialized to all binary zeros except for those data items where "VALUE" clauses are
present. Take care when working with applications originally developed for another
COBOL implementation to ensure that GnuCOBOL’s default initialization rules won’t
prove disruptive.

2. A programmer may use the "INITIALIZE" statement (see [INITTALIZE]|, page 321) to
initialise any group or elementary data item at any time. This statement provides far
more initialization options than just the simple rules stated above.

3. When the "ALLOCATE" statement (see [ALLOCATE], page 278) statement is used to
allocate a data item or to simply allocate an area of storage of a size specified on
the "ALLOCATE", that allocation may occur with or without initialization, as per the
programmer’s needs.

2.1.15. Syntax Diagram Conventions

Syntax of the GnuCOBOL language will be described in special "syntax diagrams" using
the following syntactical-description techniques:

15 February 2018 Chapter 2 - Cobol Fundamentals

28 GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide

MANDATORY-RESERVED-WORD

Reserved words of the COBOL language will appear in UPPER-CASE. When
they appear underlined, as this one is, they are required reserved words.

OPTIONAL-RESERVED-WORD

When reserved words appear without underlining, as this one is, they are op-
tional; such reserved words are available in the language syntax merely to im-
prove readability — their presence or absence has no effect upon the program.

ABBREVIATION

When only a portion of a reserved word is underlined, it indicates that the word
may either be coded in its full form or may be abbreviated to the portion that
is underlined.

substitutable-items

Generic terms representing user-defined substitutable items will be shown en-
tirely in lower-case in syntax diagrams. When such items are referenced in text,
they will appear as <substitutable-items>.

Complex-Syntax-Clause

Items appearing in Mixed Case within a syntax diagram represent complex
clauses of other syntax elements that may appear in that position. Some
COBOL syntax gets quite complicated, and using a convention such as this
significantly reduces the complexity of a syntax diagram. When such items are
referenced in text, they will appear as <<Complez-Syntaz-Clause>>.

]

Square bracket meta characters on syntax diagrams document language syntax
that is optional. The [] characters themselves should not be coded. If a syntax
diagram contains "a [b] ¢", the "a" and "c¢" syntax elements are mandatory
but the "b" element is optional.

Vertical bar meta characters on syntax diagrams document simple choices. The
| character itself should not be coded. If a syntax diagram contains "al|blc",
exactly one of the items "a", "b" or "c" must be selected.

{ xxxxxx }
{ yyyyyy }

{ zzzzzz }

A vertical list of items, bounded by multiple brace characters, is another way
of signifying a choice between a series of items where exactly one item must be

Chapter 2 - Cobol Fundamentals 15 February 2018

GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide 29

selected. This form is used to show choices when one or more of the selections
is more complex than just a single word, or when there are too many choices
to present horizontally with " |" meta characters.

| xxxxxx |

| yyyyyy |
| zzzzzz |

A vertical list of items, bounded by multiple vertical bar characters, signifies
a choice between a series of items where one or more of the choices could be
selected.

The ... meta character sequence signifies that the syntax element immediately
preceding it may be repeated. The ... sequence itself should not be coded. If
a syntax diagram contains "a b... c", syntax element "a" must be followed
by at least one "b" element (possibly more) and the entire sequence must be
terminated by a "c" syntax element.

{1}

The braces ({}) meta characters may be used to group a sequence of syntax
elements together so that they may be treated as a single entity. The {} char-
acters themselves should not be coded. These are typically used in combination
with the "|" or "..." meta characters.

$x~ O —+=:""<,>./

Any of these characters appearing within a syntax diagram are to be interpreted
literally, and are characters that must be coded — where allowed — in the
statement whose format is being described. Note that a "." character is a
literal character that must be coded on a statement whereas a "..." symbol is
the meta character sequence described above.

2.1.16. Format of Program Source Lines

Prior to the COBOL2002 standard, source statements in COBOL programs were structured
around 80-column punched cards. This means that each source line in a COBOL program
consisted of five different "areas", defined by their column number(s).

As of the COBOL2002 standard, a second mode now exists for COBOL source code state-
ments — in this mode of operation, COBOL statements may each be up to 255 characters
long, with no specific requirements as to what should appear in which columns.

Of course, in keeping with the long-standing COBOL tradition of maintaining backwards
compatibility with older standards, programmers (and, of course, compliant COBOL com-
pilers) are capable of working in either mode. It is even possible to switch back and forth
in the same program. The terms 'Fized Format Mode’ and ’Free Format Mode’ are used to
refer to these two modes of source code formatting.

15 February 2018 Chapter 2 - Cobol Fundamentals

30 GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide

The GnuCOBOL compiler (cobc) supports both of these source line format modes, default-
ing to Fixed Format Mode lacking any other information.

The compiler can be instructed to operate in either mode in any of the following four ways:

1. Using a compiler option switch — use the "-fixed" switch to start in Fixed Format
Mode (remember that this is the default) or the "-free" switch to start in Free Format
Mode.

2. You may use the "SOURCEFORMAT AS FIXED" and "SOURCEFORMAT AS FREE" clauses of
the ">>SET" CDF directive (see [>>SET], page 78) within your source code to switch
to Fixed or Free Format Mode, respectively.

3. You may use the ">>FORMAT IS FIXED" and "FORMAT IS FREE" clauses of the
">>DEFINE" CDF directive (see [>>DEFINE], page 74) within your source code to
switch to Fixed or Free Format Mode, respectively.

4. You may use the ">>SOURCE" CDF directive (see [>>SOURCE], page 79) to switch to
Free Format Mode (">>SOURCE FORMAT IS FREE") or Fixed Format Mode (">>SOURCE
FORMAT IS FIXED".

Using methods 2-4 above, you may switch back and forth between the two formats at will.

The last three options above are all equivalent; all three are supported by GnuCOBOL so
that source code compatibility may be maintained with a wide variety of other COBOL
implementations. With all three, if the compiler is currently in Fixed Format Mode, the
">>" must begin in column 8 or beyond, provided no part of the directive extends past
column 72. If the compiler is currently in Free Format Mode, the ">>" may appear in any
column, provided no part of the directive extends past column 255.

Depending upon which source format mode the compiler is in, you will need to follow various
rules for the format mode currently in effect. These rules are presented in the upcoming
paragraphs.

The following discussion presents the various components of every GnuCOBOL source line
record when the compiler is operating in Fixed Format Mode. Remember that this is the
default mode for the GnuCOBOL compiler.

1-6 - Sequence Number Area

Historically, back in the days when punched-cards were used to submit COBOL
program source to a COBOL compiler, this part of a COBOL statement was
reserved for a six-digit sequence number. While the contents of this area are
ignored by COBOL compilers, it existed so that a program actually punched
on 80-character cards could — if the card deck were dropped on the floor —
be run through a card sorter machine and restored to it’s proper sequence. Of
course, this isn’t necessary today; if truth be told, it hasn’t been necessary for
a long time.

Chapter 2 - Cobol Fundamentals 15 February 2018

GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide 31

See [Marking Changes in Programs], page 661, for discussion of a valuable use
to which the sequence number area may be put today.

7 - Indicator Area

Column 7 serves as an indicator in which one of five possible values will appear
— space, "D" (or "d"), "-" (dash), "/" or "*". The meanings of these characters
are as follows:

space
No special meaning — this is the normal character that will appear
in this area.

D/d
The line contains a valid GnuCOBOL statement that is normally
treated as a comment unless the program is being compiled in de-
bugging mode.

*

The line is a comment.

The line is a comment that will also force a page eject in the com-
pilation listing. While GnuCOBOL will honour such a line as a
comment, it will not form-feed any generated listing.

The line is a continuation of the previous line. These are needed
only when an alphanumeric literal (quoted character string), re-
served word or user-defined word are being split across lines.

8-11 - Area "A"

Language DIVISION, SECTION and paragraph section headers must begin in
Area A, as must the level numbers 01, 77 in data description entries and the
"FD" and "SD" file and SORT description headers.

12-72 - Area "B"

All other COBOL programming language components are coded in these
columns.

73-80 - Program Name Area

This is another obsolete area of COBOL statements. This part of every state-
ment also hails back to the day when programs were punched on cards; it was

15 February 2018 Chapter 2 - Cobol Fundamentals

32 GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide

expected that the name of the program (or at least the first 8 characters of
it) would be punched here so that — if a dropped COBOL source deck con-
tained more than one program — that handy card sorter machine could be
used to first separate the cards by program name and then sort them by se-
quence number. Today’s COBOL compilers (including GnuCOBOL) simply
ignore anything past column 72.

See [Marking Changes in Programs], page 661, for discussion of a valuable use
to which the program name area may be put today.

Chapter 2 - Cobol Fundamentals 15 February 2018

GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide 33

2.1.17. Program Structure

[Complete GnuCOBOL Program Syntax

[IDENTIFICATION DIVISION.]

PROGRAM-ID|FUNCTION-ID. name-1 [Program-Options]

[SOURCE-COMPUTER. Compilation-Computer-Specification .]
[OBJECT-COMPUTER. Execution-Computer-Specification . 1]

[REPOSITORY. Function-Specification... .]

[SPECIAL-NAMES. Program-Configuration-Specification .]

[FILE-CONTROL. General-File-Description... .]

[I-0-CONTROL. File-Buffering-Specification... .]

[FILE SECTION. Detailed-File-Description... .]

[WORKING-STORAGE SECTION. Permanent-Data-Definition... .]

[LOCAL-STORAGE SECTION. Temporary-Data-Definition... .]

[LINKAGE SECTION. Subprogram-Argument-Description... .]
[REPORT SECTION. Report-Description... .]

[SCREEN SECTION. Screen-Layout-Definition... .]

}
””””””””””””””””” { }
}

15 February 2018 Chapter 2 - Cobol Fundamentals

34

GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide

[RETURNING identifier-1]

[DECLARATIVES.] ~~~~~~~~~

[Event-Handler-Routine... .]
[END DECLARATIVES.]

General-Program-Logic
[Nested-Subprogram...]
[END PROGRAM|FUNCTION name-1]

Each program consists of up to four ’Divisions’ (major groupings of sections, paragraphs and
descriptive or procedural coding that all relate to a common purpose), named Identification,
Environment, Data and Procedure.

1. Not

all divisions are needed in every program, but they must be specified in the order

shown when they are used.

2. The

3. The

4. The

following points pertain to the identification division

The "IDENTIFICATION DIVISION." header is always optional.

following points pertain to the environment division:

If both optional sections of this division are coded, they must be coded in the
sequence shown.

Each of these sections consists of a series of specific paragraphs
("SOURCE-COMPUTER" and "OBJECT-COMPUTER", for example). Each of
these paragraphs serves a specific purpose. If no code is required for the purpose
one of the paragraphs serves, the entire paragraph may be omitted.

If none of the paragraphs within one of the sections are coded, the section header
itself may be omitted.

The paragraphs within each section may only be coded in that section, but may
be coded in any order.

If none of the sections within the environment division are coded, the
"ENVIRONMENT DIVISION." header itself may be omitted.

following points pertain to the data division:

The data division consists of six optional sections — when used, those sections
must be coded in the order shown in the syntax diagram.

Each of these sections consists of code which serves a specific purpose. If no code is
required for the purpose one of those sections serves, the entire section, including
it’s header, may be omitted.

Chapter 2 - Cobol Fundamentals 15 February 2018

GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide 35

e If none of the sections within the data division are coded (a highly unlikely, but
theoretically possible circumstance), the "DATA DIVISION." header itself may be
omitted.

5. The following points pertain to the procedure division:

e As with the other divisions, the procedure division may consist of sections and
those sections may — in turn — consist of paragraphs. Unlike the other divisions,
however, section and paragraph names are defined by the programmer, and there
may not be any defined at all if the programmer so wishes.

e FEach Event-Handler-Routine will be a separate section devoted to trapping a par-
ticular run-time event. If there are no such sections coded, the "DECLARATIVES."
and "END DECLARATIVES." lines may be omitted.

6. A single file of COBOL source code may contain:

e A portion of a program; these files are known as copybooks

e A single program. In this case, the "END PROGRAM" or "END FUNCTION" statement
is optional.

e Multiple programs, separated from one another by "END PROGRAM" or "END
FUNCTION" statements. The final program in such a source code file need not
have an "END PROGRAM" or "END FUNCTION" statement.

7. Subprogram "B" may be nested inside program "A" by including program B’s source
code at the end of program A’s procedure division without an intervening "END
PROGRAM A." or "END FUNCTION A." statement. For now, that’s all that will be said
about nesting. See [Independent vs Contained vs Nested Subprograms|, page 641, for
more information.

8. Regardless of how many programs comprise a single GnuCOBOL source file, only a
single output executable program will be generated from that source file when the file
is compiled.

2.1.18. Comments

The following information describes how comments may be embedded into GnuCOBOL
program source to provide documentation.

Comment Type Source Mode — Description
Blank Lines FIXED — Blank lines may be inserted as desired.

FREE — Blank lines may be inserted as desired.

15 February 2018 Chapter 2 - Cobol Fundamentals

36

Full-line
comments

Full-line
comments with
form-feed

Partial-line
comments

Comments that
may be treated
as code, typi-
cally for debug-
ging purposes

GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide

FIXED — An entire source line will be treated as a comment
(and will be ignored by the compiler) by coding an asterisk
("*") in column seven (7).

FREE — An entire source line will be treated as a comment
(and will be ignored by the compiler) by coding the sequence
wk>n starting in any column, as the first non-blank characters
on the line.

FIXED — An entire source line will be treated as a comment
by coding a slash ("/") in column seven (7). Many COBOL
compilers will also issue a form-feed in the program listing so
that the "/" line is at the top of a new page. The GnuCOBOL
compiler does not support this form-feed behaviour.

The GnuCOBOL Interactive Compiler, or GCic, does support
this form-feed behaviour when it generates program source list-
ings! See Section “GCic” in GnuCOBOL Sample Programs,
for the source and cross-reference listing (produced by GCic) of
this program — you can see the effect of "/" there.

FREE — There is no Free Source Mode equivalent to "/".

FIXED — Any text following the character sequence "*>" on a
source line will be treated as a comment. The "*" must appear
in column seven (7) or beyond.

FREE — Any text following the character sequence "*>" on a
source line will be treated as a comment. The "*" may appear
in any column.

FIXED — By coding a "D" in column 7 (upper- or lower-case),
an otherwise valid GnuCOBOL source line will be treated as a
comment by the compiler.

FREE — By specifying the character sequence ">>D" (upper-
or lower-case) as the first non-blank characters on a source line,
an otherwise valid GnuCOBOL source line will be treated as a
comment by the compiler.

Debugging statements may be compiled either by specify-
ing the "-fdebugging-line" switch on the GnuCOBOL com-
piler or by adding the "WITH DEBUGGING MODE" clause to the
"SOURCE-COMPUTER" paragraph.

2.1.19. Literals

Literals are constant values that will not change during the execution of a program. There

are two fundamental types of literals — numeric and alphanumeric.

Chapter 2 - Cobol Fundamentals

15 February 2018

GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide 37

2.1.19.1. Numeric Literals

A numeric literal is a numeric constant which may be used as an array subscript, as a value
in arithmetic expressions, or in any procedural statement where a numeric value may be
used. Numeric literals may take any of the following forms:

e Integers such as 1, 56, 2192 or -54.
e Non-integer fixed point values such as 1.317 or -2.95.

e Floating-point values using "Enn" notation such as 9.92E25, representing 9.92 x 10725
(10 raised to the 25th power) or 5.7E-14, representing 5.7 x 10°-14 (10 raised to the
-14th power). Both the mantissa (the number before the E) and the exponent (the
number after the E) may be explicitly specified as positive (with a +), negative (with a
-) or unsigned (and therefore implicitly positive). A floating-point literals value must
be within the range -1.7 x 107308 to +1.7 x 107308 with no more than 15 decimal digits
of precision.

e Hexadecimal numeric literals such as H"1F" (31 decimal), h’22’ (34 decimal) or
H'DEAD’ (57005 decimal). The H character may either be upper- or lower-case and
either single quote (’) or double-quote (") characters may be used in a hexadecimal
literal, provided both aren’t used in the same literal. Hexadecimal numeric literals are
limited to a maximum of sixteen hexadecimal digits (a 64-bit value).

2.1.19.2. Alphanumeric Literals

An alphanumeric literal is a character string suitable for display on a computer screen,
printing on a report, transmission through a communications connection or storage in al-
phanumeric or alphabetic data items.

An alphanumeric literal is not valid for use in arithmetic expressions unless it is first con-
verted to it’s numeric computational equivalent; there are three numeric conversion intrin-
sic functions built into GnuCOBOL that can perform this conversion — "NUMVAL" (see
[NUMVALJ, page 469), "NUMVAL-C" (see [NUMVAL-C], page 472) and "NUMVAL-F" (see
[NUMVAL-F], page 474).

Alphanumeric literals may take any of the following forms:

e A sequence of characters enclosed by a pair of single-quote (’) or double-quote (")
characters constitutes a string literal. The double-quote character (") may be used as a
data character within an apostrophe-delimited string literal, and an apostrophe may be
used as a data character within a double-quote-delimited string literal. If an apostrophe
character must be included as a data character within an apostrophe-delimited string
literal, express that character as two consecutive apostrophes (7). If a double-quote
character must be included as a data character within a double-quote-delimited string
literal, express that character as two consecutive double-quotes ("").

e A literal formed according to the same rules as for a string literal (above), but prefixed
with the letter "Z" (upper- or lower-case) constitutes a zero-delimited string literal.
These literals differ from ordinary string literals in that they will be explicitly ter-

15 February 2018 Chapter 2 - Cobol Fundamentals

38

GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide

minated with a byte of hexadecimal value 00. These ’Zero-Delimited Alphanumeric
Literals’ are easily passable to C subprograms, as this is the convention C uses to store
character strings.

A ’Hezxadecimal Alphanumeric Literal’ such as X"4A4B4C" (4A4B4C16 = the ASCII
string 'JKL.”), x’20’ (an ASCII space) or X’30313233" (3031323316 = the ASCII string
’0123’). The "X" character may either be upper- or lower-case and either single quote
() or double-quote (") characters may be used. These hexadecimal alphanumeric lit-
erals should always consist of an even number of hexadecimal digits, because each
character is represented by eight bits worth of data (2 hex digits). Hexadecimal al-
phanumeric literals may be of almost unlimited length.

Alphanumeric literals too long to fit on a single line may be continued to the next line in
one of two ways:

1.

If you are using Fixed Format Mode, the alphanumeric literal can be run right up to
and including column 72. The literal may then be continued on the next line anywhere
after column 11 by coding another quote or apostrophe (whichever was used to begin
the literal originally). The continuation line must also have a hyphen (-) coded in the
indicator area (column 7). Here is an example (the scale is just for column number
reference):

1 2 3 4 5 6 7
1234567890123456789012345678901234567890123456789012345678901234567890123

01 LONG-LITERAL-VALUE-DEMO PIC X(60) VALUE "This is a long 1

- "ong literal that

- " must be continu

- n ed . n .
Regardless of whether the compiler is operating in Fixed or Free Format Mode, Gnu-
COBOL allows alphanumeric literals to be broken up into separate fragments. These
fragments have their own beginning and ending quote/apostrophe characters and are
"glued together" at compilation time using "&" characters. No continuation indicator
is needed. Here’s an example:

1 2 3 4 5 6 7
1234567890123456789012345678901234567890123456789012345678901234567890123

01 LONG-LITERAL-VALUE-DEMO PIC X(60) VALUE "This is a" &
" long literal that must " &
"be continued.".

If your program is using Free Format Mode, there’s less need to continue long alphanumeric
literals because statements may be as long as 255 characters.

Numeric literals may be split across lines just as alphanumeric literals are, using either of
the above techniques and both reserved and user-defined words can be split across lines too
(using the first technique). The continuation of numeric literals and user-defined /reserved
words is provided merely to provide compatibility with older COBOL versions and pro-
grams, but should not be used with new programs — it just makes for ugly-looking pro-
grams.

Chapter 2 - Cobol Fundamentals 15 February 2018

GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide 39

2.1.19.3. Figurative Constants

Figurative constants are reserved words that may be used as literals anywhere the figurative
constants value could be interpreted as an arbitrarily long sequence of the characters in
question. When a specific length is required, such as would be the case with an argument
to a subprogram, a figurative constant may not be used. Thus, the following are valid uses
of figurative constants:

05 FILLER PIC 9(10) VALUE ZEROS.

MOVE SPACES TO Employee-Name
But this is not:
CALL "SUBPGM" USING SPACES

The following are the GnuCOBOL figurative constants and their respective equivalent val-
ues.

"ZERQ"
This figurative constant has a value of numeric 0 (zero). "ZEROS" and "ZEROES"
are both synonyms of "ZERQ".

"SPACE"
This figurative constant has a value of one or more space characters. "SPACES"
is a synonym of "SPACE".

IIQUOTE“
This figurative constant has a value of one or more double-quote characters (").
"QUOTES" is a synonym of "QUOTE".

"LOW-VALUE"

This figurative constant has a value of one or more of whatever character oc-
cupies the lowest position in the program’s collating sequence as defined in the
"OBJECT-COMPUTER" (see [OBJECT-COMPUTER], page 94) paragraph or —
if no such specification was made — in whatever default character set the pro-
gram is using (typically, this is the ASCII character set). "LOW-VALUES" is a
synonym of "LOW-VALUE".

When the character set in use is ASCII with no collating sequence modifications,
the "LOW-VALUES" figurative constant value is the ASCII "NUL" character.
Because character sets can be redefined, however, you should not rely on this
fact — use the "NULL" figurative constant instead.

15 February 2018 Chapter 2 - Cobol Fundamentals

40 GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide

"HIGH-VALUE"

This figurative constant has a value of one or more of whatever character occu-
pies the highest position in the program’s collating sequence as defined in the
"OBJECT-COMPUTER" paragraph or — if no such specification was made — in
whatever default character set the program is using (typically, this is the ASCII
character set). "HIGH-VALUES" is a synonym of "HIGH-VALUE".

n NULL n

A character comprised entirely of zero-bits (regardless of the programs collating
sequence).

Programmers may create their own figurative constants via the "SYMBOLIC CHARACTERS"
(see [Symbolic-Characters-Clause], page 105) clause of the "SPECIAL-NAMES" (see
[SPECIAL-NAMES], page 96) paragraph.

2.1.20. Punctuation

A comma (",") or a semicolon (";") may be inserted into a GnuCOBOL program to improve
readability at any spot where white space would be legal, except of course within alphanu-
meric literals (unless you actually mean for those characters to be part of the alphanumeric
literals value). These characters are always optional.

The use of comma characters can cause confusion to a COBOL compiler if the "DECIMAL
POINT IS COMMA" clause is used in the "SPECIAL-NAMES" (see [SPECIAL-NAMES],
page 96) paragraph, as might be the case in Europe. The following statement, which calls
a subroutine passing it two arguments (the numeric constants 1 and 2):

CALL "SUBROUTINE" USING 1,2

Would — with "DECIMAL POINT IS COMMA" in effect — actually be interpreted as a sub-
routine call with 1 argument (the non-integer numeric literal whose value is 1 and 2 tenths).
For this reason, it is best to always follow a comma with a space.

The period character (".") is used to terminate statements in the identification, environment
and data divisions and sentences in the procedure division. Syntax diagrams describing code
in the first three divisions will explicitly show where periods need to occur.

The rules for where and when periods are needed in the procedure division are somewhat
complicated. See [Use of Periods|, page 58, for the details.

2.1.21. Interfacing to Other Environments

Through the "CALL" statement, COBOL programs may invoke other COBOL programs
serving as subprograms. This is quite similar to cross-program linkage capabilities provided
by other languages. In GnuCOBOL’s case, the "CALL" facility is powerful enough to be
tailored to the point where a GnuCOBOL program can communicate with operating system,
database management and run-time library APIs, even if they weren’t written in COBOL

Chapter 2 - Cobol Fundamentals 15 February 2018

GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide 41

themselves. See [GnuCOBOL Main Programs CALLing C Subprograms], page 658, for an
example of how a GnuCOBOL program could invoke a C-language subprogram, passing
information back and forth between the two.

The fact that GnuCOBOL supports a full-featured two-way interface with C-language pro-
grams means that — even if you cannot access a library API directly — you could always
do so via a small C "wrapper" program that is "CALL"ed by a GnuCOBOL program.

15 February 2018 Chapter 2 - Cobol Fundamentals

42 GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide

2.2. The Cobol Language - Advanced Techniques

2.2.1. Table References

COBOL uses parenthesis to specify the subscripts used to reference table entries (tables in
COBOL are what other programming languages refer to as arrays).

For example, observe the following data structure which defines a 4 column by 3 row grid
of characters:

01 GRID.
05 GRID-ROW OCCURS 3 TIMES.
10 GRID-COLUMN OCCURS 4 TIMES.
15 GRID-CHARACTER PIC X(1).

If the structure contains the following grid of characters:

ABCD
EFGH
I JKL

Then "GRID-CHARACTER (2, 3)" references the "G" and "GRID-CHARACTER (3, 2)" ref-
erences the "J".

Subscripts may be specified as numeric (integer) literals, numeric (integer) data items,
data items created with any of the picture-less integer "USAGE" (see [USAGE], page 223)
specifications, "USAGE INDEX" data items or arithmetic expressions resulting in a non-zero
integer value.

In the above examples, a comma, is used as a separator character between the two subscript
values; semicolons (";") are also valid subscript separator characters, as are spaces! The
use of a comma or semicolon separator in such a situation is technically optional, but by
convention most COBOL programmers use one or the other. The use of no separator
character (other than a space) is not recommended, even though it is syntactically correct,
as this practice can lead to programmer-unfriendly code. It isn’t too difficult to read
and understand "GRID-CHARACTER(2 3)", but it’s another story entirely when trying to
comprehend "GRID-CHARACTER(I + 1 J / 3)" (instead of "GRID-CHARACTER(I + 1, J /
3)"). The compiler accepts it, but too much of this would make my head hurt.

Chapter 2 - Cobol Fundamentals 15 February 2018

GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide 43

2.2.2. Qualification of Data Names

COBOL allows data names to be duplicated within a program, provided references to those
data names may be made in such a manner as to make those references unique through a
process known as qualification.

To see qualification at work, observe the following segments of two data records defined in
a COBOL program:

01 EMPLOYEE. 01 CUSTOMER.
05 MAILING-ADDRESS. 05 MAILING-ADDRESS.
10 STREET PIC X(35). 10 STREET PIC X(35).
10 CITY PIC X(15). 10 CITY PIC X(15).
10 STATE PIC X(2). 10 STATE PIC X(2).
10 ZIP-CODE. 10 ZIP-CODE.
15 ZIP-CODE-5 PIC 9(5). 15 ZIP-CODE-5 PIC 9(5).
15 FILLER PIC X(4). 15 FILLER PIC X(4).

Now, let’s deal with the problem of setting the CITY portion of an EMPLOYEEs
MAILING-ADDRESS to "Philadelphia". Clearly, "MOVE ’Philadelphia’ TO CITY"
cannot work because the compiler will be unable to determine which of the two CITY
fields you are referring to.

In an attempt to correct the problem, we could qualify the reference to CITY as "MOVE
’Philadelphia’ TO CITY OF MAILING-ADDRESS".

Unfortunately that too is insufficient because it still insufficiently specifies which CITY is
being referenced. To truly identify which specific CITY you want, you’d have to code "MOVE
’Philadelphia’ TO CITY OF MAILING-ADDRESS OF EMPLOYEE".

Now there can be no confusion as to which CITY is being changed. Fortunately, you don’t
need to be quite so specific; COBOL allows intermediate and unnecessary qualification levels
to be omitted. This allows "MOVE ’Philadelphia’ TO CITY OF EMPLOYEE" to do the job
nicely.

If you need to qualify a reference to a table, do so by coding something like "<identifier-
1> OF <identifier-2> (subscript(s))".

The reserved word "IN" may be used in lieu of "OF".

15 February 2018 Chapter 2 - Cobol Fundamentals

44 GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide

2.2.3. Reference Modifiers

[Reference Modifier (Format 1) Syntax }

identifier-1 [OF|IN identifier-2] [(subscript...) 1 (start:[length])

[Reference Modifier (Format 2) Syntax }

intrinsic-function-reference (start:[length])

The COBOL ’85 standard introduced the concept of a reference modifier to facilitate refer-
ences to only a portion of a data item; GnuCOBOL fully supports reference modification.

The <start> value indicates the starting character position being referenced (character posi-
tion values start with 1, not 0 as is the case in some programming languages) and <length>
specifies how many characters are wanted.

If no <length> is specified, a value equivalent to the remaining character positions from
<start> to the end of <identifier-1> or to the end of the value returned by the function will
be assumed.

Both <start> and <length> may be specified as integer numeric literals, integer numeric data
items or arithmetic expressions with an integer value.

Here are a few examples:

"CUSTOMER-LAST-NAME (1:3)"
References the first three characters of CUSTOMER-LAST-NAME.

"CUSTOMER-LAST-NAME (4:)"

References all character positions of CUSTOMER-LAST-NAME from the
fourth onward.

"FUNCTION CURRENT-DATE (5:2)"

References the current month as a 2-digit number in character form. See
[CURRENT-DATE], page 417, for more information.

"Hex-Digits (Nibble + 1:1)"

Assuming that "Nibble" is a numeric data item with a value in the range 0-15,
and Hex-Digits is a "PIC X(16)" item with a value of "0123456789ABCDEF",
this converts that numeric value to a hexadecimal digit.

Chapter 2 - Cobol Fundamentals 15 February 2018

GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide 45

"Table-Entry (6) (7:5)"

References characters 7 through 11 (5 characters in total) in the 6th occurrence
of Table-Entry.

Reference modification may be used anywhere an identifier is legal, including serving as the
receiving field of statements like "MOVE" (see [MOVE], page 336), "STRING" (see [STRING],
page 386) and "ACCEPT" (see [ACCEPT], page 258), to name a few.

15 February 2018 Chapter 2 - Cobol Fundamentals

46 GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide

2.2.4. Arithmetic Expressions

[Arithmetic-Expression Syntax
Unary-Expression-1 { **|~ } Unary-Expression-2
{ =1/ 1%}
{ +I-1
[Unary-Expression Syntax
{ [+I-1 { (Arithmetic-Expression-1) }r
{ { [LENGTH OF] { identifier-1 P}
{ { -~ = { literal-1 }r7
{ { { Function-Reference } } }
{ Arithmetic-Expression-2 }

Arithmetic expressions are formed using four categories of operations — exponentiation,
multiplication & division, addition & subtraction, and sign specification.

In complex expressions composed of multiple operators and operands, a precedence of op-
eration applies whereby those operations having a higher precedence are computed first
before operations with a lower precedence.

As is the case in almost any other programming language, the programmer is always free
to use pairs of parenthesis to enclose sub-expressions of complex expressions that are to
be evaluated before other sub-expressions rather than let operator precedence dictate the
sequence of evaluation.

In highest to lowest order of precedence, here is a discussion of each category of operation:

Level 1 (Highest) — Unary Sign Specification ("+" and "-" with a single argument)

The unary "minus" (-) operator returns the arithmetic negation of its single
argument, effectively returning as its value the product of its argument and -1.

The unary "plus" (+) operator returns the value of its single argument, effec-
tively returning as its value the product of its argument and +1.

Level 2 — Exponentiation ("**" or "~")

The value of the left argument is raised to the power indicated by the right ar-

gument. Non-integer powers are allowed. The "~" and "**" operators are both
supported to provide compatibility with programs written for other COBOL
implementations.

Chapter 2 - Cobol Fundamentals 15 February 2018

GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide 47

Level 3 — Multiplication ("*") and division ("/")

The "*" operator computes the product of the left and right arguments while
the "/" operator computes the value of the left argument divided by the value
of the right argument. If the right argument has a value of zero, expression
evaluation will be prematurely terminated before a value is generated. This
may cause program failure at run-time.

A sequence of multiple 3rd-level operations ("A * B / C", for example) will
evaluate in strict left-to-right sequence if no parenthesis are used to control the
order of evaluation.

Level 4 — Addltlon ("+") or subtraction (“+ll)

The "+" operator calculates the sum of the left and right arguments while the
"-" operator computes the value of the right argument subtracted from that of
the left argument.

A sequence of multiple 4th-level operations ("A - B + C", for example) will
evaluate in strict left-to-right sequence if no parenthesis are used to control the
order of evaluation.

The syntactical rules of COBOL, allowing a dash (-) character in data item names, can lead
to some ambiguity.

01 C PIC 9 VALUE 5.
01 D PIC 9 VALUE 2.
01 C-D PIC 9 VALUE 7.
01 I PIC 9 VALUE O.

COMPUTE I=C-D+1

The "COMPUTE" (see [COMPUTE], page 288) statement will evaluate the arithmetic expres-
sion "C-D+1" and then save that result in "I".

What value will be stored in "I"? The number 4, which is the result of subtracting the
value of "D" (2) from the value of "C" (5) and then adding 1?7 Or, will it be the number 8,
which is the value of adding 1 to the value of data item "C-D" (7)?

The right answer is 8 — the value of data item "C-D" plus 1! Hopefully, that was the
intended result.

The GnuCOBOL compiler actually went through the following decision-making logic when
generating code for the "COMPUTE" Statement:

1. Isthere a data item named "C-D" defined? If so, use its value for the character sequence
n C_D n .

15 February 2018 Chapter 2 - Cobol Fundamentals

48 GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide

2. If there is no "C-D" data item, then are there "C" and "D" data items? If not, the
"COMPUTE" statement is in error. If there are, however, then code will be generated to
subtract the value of "D" from "C" and add 1 to the result.

Had there been at least one space to the left and/or the right of the "-", there would have
been no ambiguity — the compiler would have been forced to use the individual "C" and
"D" data items.

To avoid any possible ambiguity, as well as to improve program readability, it’s considered
good COBOL programming practice to always code at least one space to both the left and
right of every operator in arithmetic expressions as well as the "=" sign on a COMPUTE.

Here are some examples of how the precedence of operations affects the results of arithmetic
expressions (all examples use numeric literals, to simplify the discussion).

Expression Result Notes
3*4+1 13 * has precedence over +
4*2-3-10 22 2°3 is 8 (= has precedence over *), times 4 is 32,

minus 10 is 22.

(4*2)~3-10 502 Parenthesis provide for a recursive application of the
arithmetic expression rules, effectively allowing you
to alter the precedence of operations. 4 times 2 is 8
(the use of parenthesis "trumps" the exponentiation
operator, so the multiplication happens first); 8 ~ 3
is 512, minus 10 is 502.

5/25+7%2-1.15 15.35 Integer and non-integer operands may be freely
intermixed

Of course, arithmetic expression operands may be numeric data items (any USAGE except
POINTER or PROGRAM POINTER) as well as numeric literals.

Chapter 2 - Cobol Fundamentals 15 February 2018

GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide 49

2.2.5. Conditional Expressions

Conditional expressions are expressions which identify the circumstances under which a
program may take an action or cease taking an action. As such, conditional expressions
produce a value of TRUE or FALSE.

There are seven types of conditional expressions, as discussed in the following sections.

2.2.5.1. Condition Names

These are the simplest of all conditions. Observe the following code:

05 SHIRT-SIZE PIC 99V9.

88 TINY VALUE O THRU 12.5
88 XS VALUE 13 THRU 13.5.
88 S VALUE 14, 14.5.

88 M VALUE 15, 15.5.

88 L VALUE 16, 16.5.

88 XL VALUE 17, 17.5.

88 XXL VALUE 18, 18.5.

88 XXXL VALUE 19, 19.5.

88 VERY-LARGE VALUE 20 THRU 99.9.

The condition names "TINY", "XS", "S", 6 "M" "L", "XL", "XXL", "XXXL" and "VERY-LARGE"
will have TRUE or FALSE values based upon the values within their parent data item
(SHIRT-SIZE).

A program wanting to test whether or not the current "SHIRT-SIZE" value can be classified
as "XL" could have that decision coded as a combined condition (the most complex type of
conditional expression), as either:

IF SHIRT-SIZE 17 OR SHIRT-SIZE = 17.5
- or -

IF SHIRT-SIZE

17 OR 17.5

Or it could simply utilize the condition name XL as follows:

IF XL

15 February 2018 Chapter 2 - Cobol Fundamentals

50

GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide

2.2.5.2. Class Conditions

:

Class-Condition Syntax

identifier-1 IS [NOT] { NUMERIC }
S e }
{ ALPHABETIC }

S }

{ ALPHABETIC-LOWER }

{ " }

{ ALPHABETIC-UPPER }
S }

{ OMITTED }

{ "7 }

{ class-name-1 }

Class conditions evaluate the type of data that is currently stored in a data item.

1.

The "NUMERIC" class test considers only the characters "O", "1", ... , "9" to be
numeric; only a data item containing nothing but digits will pass a "NUMERIC" class
test. Spaces, decimal points, commas, currency signs, plus signs, minus signs and any
other characters except the digit characters will all fail "NUMERIC" class tests.

The "ALPHABETIC" class test considers only upper-case letters, lower-case letters and
spaces to be alphabetic in nature.

The "ALPHABETIC-LOWER" and "ALPHABETIC-UPPER" class conditions consider only
spaces and the respective type of letters to be acceptable in order to pass such a
class test.

The "NOT" option reverses the TRUE/FALSE value of the condition.

Note that what constitutes a "letter" (or upper/lower case too, for that manner) may
be influenced through the use of "CHARACTER CLASSIFICATION" specifications in the
"OBJECT-COMPUTER" (see [OBJECT-COMPUTER], page 94) paragraph.

Only data items whose "USAGE" (see [USAGE], page 223) is either explicitly or implic-
itly defined as "DISPLAY" may be used in "NUMERIC" or any of the "ALPHABETIC" class
conditions.

Some COBOL implementations disallow the use of group items or "PIC A" items with
"NUMERIC" class conditions and the use of "PIC 9" items with "ALPHABETIC" class
conditions. GnuCOBOL has no such restrictions.

The "OMITTED" class condition is used when it is necessary for a subprogram to deter-
mine whether or not a particular argument was passed to it. In such class conditions,
<identifier-1> must be a linkage section item defined on the "USING" clause of the sub-

Chapter 2 - Cobol Fundamentals 15 February 2018

GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide 51

programs "PROCEDURE DIVISION" header. See [PROCEDURE DIVISION USING],
page 238, for additional information.

The <class-name-1> option allows you to test for a user-defined class. Here’s an example.
First, assume the following "SPECIAL-NAMES" (see [SPECIAL-NAMES], page 96) definition
of the user-defined class "Hexadecimal":

SPECIAL-NAMES.
CLASS Hexadecimal IS ’0’ THRU ’9’, A’ THRU ’F’, ’a’ THRU ’f°’.

Now observe the following code, which will execute the "150-Process-Hex-Value" proce-
dure if "Entered-Value" contains nothing but valid hexadecimal digits:

IF Entered-Value IS Hexadecimal
PERFORM 150-Process-Hex-Value
END-IF

15 February 2018 Chapter 2 - Cobol Fundamentals

52 GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide

2.2.5.3. Sign Conditions

[Sign-Condition Syntax

identifier-1 IS [NOT] { POSITIVE }
SRS Saiataiataiatatet }

{ NEGATIVE }

{ e }

{ ZERO }

Sign conditions evaluate the numeric state of a data item defined with a "PICTURE" (see
[PICTURE], page 198) and/or "USAGE" (see [USAGE], page 223) that supports numeric
values.

1. A "POSITIVE" or "NEGATIVE" class condition will be TRUE only if the value of
<identifier-1> is strictly greater than or less than zero, respectively.

2. A "ZERO" class condition can be passed only if the value of <identifier-1> is exactly
ZETO.

3. The "NOT" option reverses the TRUE/FALSE value of the condition.

Chapter 2 - Cobol Fundamentals 15 February 2018

GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide 53

2.2.5.4. Switch-Status Conditions

In the "SPECIAL-NAMES" (see [SPECIAL-NAMES], page 96) paragraph, an external switch
name can be associated with one or more condition names. These condition names may
then be used to test the ON/OFF status of the external switch.

Here are the relevant sections of code in a program named "testprog", which is designed to
simply announce if SWITCH-1 is on:

ENVIRONMENT DIVISION.
SPECTAL-NAMES.
SWITCH-1 ON STATUS IS Switch-1-Is-0ON.

PROCEDURE DIVISION.

IF Switch-1-Is-0N
DISPLAY "Switch 1 Is On"
END-IF

the following are two different command window sessions — the left on a Unix/Cygwin/OSX
system and the right on a windows system — that will set the switch on and then execute
the "testprog" program. Notice how the message indicating that the program detected the
switch was set is displayed in both examples:

$ COB_SWITCH_1=0N C:>SET COB_SWITCH_1=0N
$ export COB_SWITCH_1 C:>testprog

$./testprog Switch 1 Is On

Switch 1 Is On C:>

$

15 February 2018 Chapter 2 - Cobol Fundamentals

54 GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide

2.2.5.5. Relation Conditions

[Relation-Condition Syntax

identifier-2

literal-2
arithmetic-expression-2
index-name-2

identifier-1 } IS [NOT] RelOp
literal-1 } e
arithmetic-expression-1 }

index-name-1 }

B N
B

}
}
}
}

[RelOp Syntax

{ EQUAL TO

LESS THAN

LESS THAN OR EQUAL TO

L B s i s T s A = T S LS L SO S SO A ST

B N e S Y e

These conditions evaluate how two different values "relate" to each other.

1. When comparing one numeric value to another, the "USAGE" (see [USAGE], page 223)
and number of significant digits in either value are irrelevant as the comparison is
performed using the actual algebraic values.

2. When comparing strings, the comparison is made based upon the program’s collating
sequence. When the two string arguments are of unequal length, the shorter is assumed
to be padded (on the right) with a sufficient number of spaces as to make the two
strings of equal length. String comparisons take place on a corresponding character-
by-character basis, left to right, until the TRUE/FALSE value for the relation test can
be established. Characters are compared according to their relative position in the
program’s "COLLATING SEQUENCE" (as defined in "SPECIAL-NAMES" (see [SPECIAL-

Chapter 2 - Cobol Fundamentals 15 February 2018

GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide 55

NAMES], page 96)), not according to the bit-pattern values the characters have in
storage.

3. By default, the program’s "COLLATING SEQUENCE" will, however, be based entirely on
the bit-pattern values of the various characters.

4. There is no functional difference between using the wordy version ("IS EQUAL TO", "IS
LESS THAN", ...) versus the symbolic version ("=", "<" ...) of the actual relation
operators.

15 February 2018 Chapter 2 - Cobol Fundamentals

56 GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide

2.2.5.6. Combined Conditions

[Combined Condition Syntax

[(] Condition-1 [)] { AND } [(] Condition-2 [) 1]
{3
{O0R }
{3

A combined condition is one that computes a TRUE/FALSE value from the TRUE/FALSE
values of two other conditions (which could themselves be combined conditions).

1. If either condition has a value of TRUE, the result of "OR"ing the two together will

result in a value of TRUE. "OR"ing two FALSE conditions will result in a value of
FALSE.

2. In order for "AND" to yield a value of TRUE, both conditions must have a value of
TRUE. In all other circumstances, "AND" produces a FALSE value.

3. When chaining multiple, similar conditions together with the same operator
(OR/AND), and left or right arguments have common subjects, it is possible to
abbreviate the program code. For example:

IF ACCOUNT-STATUS

1 OR ACCOUNT-STATUS = 2 OR ACCOUNT-STATUS = 7

Could be abbreviated as:

IF ACCOUNT-STATUS 10R20RT7
4. Just as multiplication takes precedence over addition in arithmetic expressions, so does
"AND" take precedence over "OR" in combined conditions. Use parenthesis to change
this precedence, if necessary. For example:

"FALSE AND FALSE OR TRUE AND TRUE"
Evaluates to TRUE

"(FALSE AND FALSE) OR (TRUE AND TRUE)"

Evaluates to TRUE (since AND has precedence over OR) - this is identical
to the previous example

"(FALSE AND (FALSE OR TRUE)) AND TRUE"
Evaluates to FALSE

Chapter 2 - Cobol Fundamentals 15 February 2018

GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide 57

2.2.5.7. Negated Conditions

[Negated Condition Syntax

NOT Condition-1

A condition may be negated by prefixing it with the "NOT" operator.

1. The "NOT" operator has the highest precedence of all logical operators, just as a unary
minus sign (which "negates" a numeric value) is the highest precedence arithmetic
operator.

2. Parenthesis must be used to explicitly signify the sequence in which conditions are
evaluated and processed if the default precedence isn’t desired. For example:

"NOT TRUE AND FALSE AND NOT FALSE"
Evaluates to FALSE AND FALSE AND TRUE which evaluates to FALSE

"NOT (TRUE AND FALSE AND NOT FALSE)"
Evaluates to NOT (FALSE) which evaluates to TRUE

"NOT TRUE AND (FALSE AND NOT FALSE)"

Evaluates to FALSE AND (FALSE AND TRUE) which evaluates to
FALSE

15 February 2018 Chapter 2 - Cobol Fundamentals

58 GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide

2.2.6. Use of Periods

All COBOL implementations distinguish between sentences and statements in the procedure
division. A ’Statement’ is a single executable COBOL instruction. For example, these are
all statements:

MOVE SPACES TO Employee-Address
ADD 1 TO Record-Counter
DISPLAY "Record-Counter=" Record-Counter

Some COBOL statements have a "scope of applicability" associated with them where one
or more other statements can be considered to be part of or related to the statement in
question. An example of such a situation might be the following, where the interest on a
loan is being calculated and displayed — 4% interest if the loan balance is under $10000
and 4.5% otherwise (WARNING - the following code has an error!):

IF Loan-Balance < 10000

MULTIPLY Loan-Balance BY 0.04 GIVING Interest
ELSE

MULTIPLY Loan-Balance BY 0.045 GIVING Interest
DISPLAY "Interest Amount = " Interest

In this example, the IF statement actually has a scope that can include two sets of associated
statements — one set to be executed when the "IF" (see [IF], page 319) condition is TRUE
and another if it is FALSE.

Unfortunately, there’s a problem with the above. A human being looking at that code
would probably infer that the "DISPLAY" (see [DISPLAY], page 292) statement, because
of its lack of indentation, is to be executed regardless of the TRUE/FALSE value of the
"IF" condition. Unfortunately, the GnuCOBOL compiler (or any other COBOL compiler
for that matter) won’t see it that way because it really couldn’t care less what sort of
indentation, if any, is used. In fact, any COBOL compiler would be just as happy to see
the code written like this:

IF Loan-Balance < 10000 MULTIPLY Loan-balance
BY 0.04 GIVING Interest ELSE MULTIPLY
Loan-Balance BY 0.045 GIVING Interest DISPLAY
"Interest Amount = " Interest

So how then do we inform the compiler that the "DISPLAY" statement is outside the scope
of the "IF"?

That’s where sentences come in.

A COBOL ’Sentence’ is defined as any arbitrarily long sequence of statements, followed
by a period (.) character. The period character is what terminates the scope of a set of
statements. Therefore, our example should have been coded like this:

IF Loan-Balance < 10000

Chapter 2 - Cobol Fundamentals 15 February 2018

GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide 59

MULTIPLY Loan-Balance BY 0.04 GIVING Interest
ELSE

MULTIPLY Loan-Balance BY 0.045 GIVING Interest.
DISPLAY "Interest Amount = " Interest

See the period at the end of the second "MULTIPLY" (see [MULTIPLY], page 338)? That is
what terminates the scope of the "IF", thus making the "DISPLAY" statement’s execution
completely independent of the TRUE/FALSE status of the "IF".

15 February 2018 Chapter 2 - Cobol Fundamentals

60 GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide

2.2.7. Use of VERB/END-VERB Constructs

Prior to the 1985 COBOL standard, using a period character was the only way to signal
the end of a statement’s scope.

Unfortunately, this caused some problems. Take a look at this code:

IFA=1
IFB=1
DISPLAY "A & B = 1"
ELSE *> This ELSE has a problem!

IFB=1
DISPLAY "A NOT = 1 BUT B = 1"
ELSE
DISPLAY "NEITHER A NOR B = 1".
The problem with this code is that indentation — so critical to improving the human-

readability of a program — can provide an erroneous view of the logical flow. An "ELSE"
is always associated with the most-recently encountered "IF"; this means the emphasized
"ELSE" will be associated with the "IF B = 1" statement, not the "IF A = 1" statement
as the indentation would appear to imply.

This sort of problem led to a band-aid solution — the "NEXT SENTENCE" clause — being
added to the COBOL language.

IF A =1
IFB=1
DISPLAY "A & B = 1"
ELSE
NEXT SENTENCE
ELSE
IFB=1
DISPLAY "A NOT = 1 BUT B = 1"
ELSE
DISPLAY "NEITHER A NOR B = 1".

The "NEXT SENTENCE" clause informs the compiler that if the "B = 1" condition is false,
control should fall into the first statement that follows the next period.

With the 1985 standard for COBOL, a much more elegant solution was introduced. Any
COBOL ’Verb’ (the first reserved word of a statement) that needed such a thing was allowed
to use an "END-verb" construct to end it’s scope without disrupting the scope of any other
statement it might have been in. Any COBOL 85 compiler would have allowed the following
solution to our problem:

IF A=1
IFB=1
DISPLAY "A & B = 1"

Chapter 2 - Cobol Fundamentals 15 February 2018

GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide 61

END-IF
ELSE
IFB=1
DISPLAY "A NOT = 1 BUT B = 1"
ELSE
DISPLAY "NEITHER A NOR B = 1".

This new facility made the period almost obsolete, as our program segment would probably
be coded like this today:

IF A=1
IFB=1
DISPLAY "A & B = 1"
END-IF
ELSE
IFB=1
DISPLAY "A NOT =1 BUT B = 1"
ELSE
DISPLAY "NEITHER A NOR B = 1"
END-IF
END-IF

COBOL (GnuCOBOL included) still requires that each procedure division paragraph con-
tain at least one sentence if there is any executable code in that paragraph, but a popular
coding style is now to simply code a single period right before the end of each paragraph.

The standard for the COBOL language shows the various "END-verb" clauses are optional
because using a period as a scope-terminator remains legal.

If you will be porting existing code over to GnuCOBOL, you’ll find it an accommodating
facility capable of conforming to whatever language and coding standards that code is likely
to use. If you are creating new GnuCOBOL programs, however, I would strongly counsel
you to use the "END-verb" structures in those programs.

15 February 2018 Chapter 2 - Cobol Fundamentals

62 GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide

2.2.8. Concurrent Access to Files

The manipulation of data files is one of the COBOL language’s great strengths. There
are features built into COBOL to deal with the possibility that multiple programs may be
attempting to access the same file concurrently. Multiple program concurrent access is dealt
with in two ways — file sharing and record locking.

Not all GnuCOBOL implementations support file sharing and record-locking options.
Whether they do or not depends upon the operating system they were built for and the
build options that were used when the specific GnuCOBOL implementation was generated.

2.2.8.1. File Sharing

GnuCOBOL controls concurrent-file access at the highest level through the concept of file
sharing, enforced when a program attempts to open a file. This is accomplished via a
UNIX operating-system routine called "fentl()". That module is not currently supported
by Windows and is not present in the MinGW Unix-emulation package. GnuCOBOL builds
created using a MinGW environment will be incapable of supporting file-sharing controls
— files will always be shared in such environments. A GnuCOBOL build created using the
Cygwin environment on Windows would have access to "fentl()" and therefore will support
file sharing. Of course, actual Unix builds of GnuCOBOL, as well as OSX builds, should
have no issues because "fentl()" should be available.

Any limitations imposed on a successful "OPEN" (see [OPEN], page 342) will remain in place
until your program either issues a "CLOSE" (see [CLOSE], page 286) against the file or the
program terminates.

File sharing is controlled through the use of a "SHARING" clause:
SHARING WITH { ALL OTHER }

””””””” {7 b
{ NO OTHER }
{ ¥
{ READ ONLY }

This clause may be used either in the file’s "SELECT" statement (see [SELECT], page 109),
on the "OPEN" statement (see [OPEN], page 342) which initiates your program’s use of the
file, or both. If a "SHARING" option is specified in both places, the specifications made on
the "OPEN" statement will take precedence over those from the "SELECT" statement.

Here are the meanings of the three options:

"ALL OTHER"

When your program opens a file with this sharing option in effect, no restric-
tions will be placed on other programs attempting to "OPEN" the file after your
program did. This is the default sharing mode.

Chapter 2 - Cobol Fundamentals 15 February 2018

GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide 63

"NO OTHER"

When your program opens a file with this sharing option in effect, your program
announces that it is unwilling to allow any other program to have any access
to the file as long as you are using that file; "OPEN" attempts made in other
programs will fail with a file status of 37 ("PERMISSION DENIED") until
such time as you "CLOSE" (see [CLOSE], page 286) the file.

"READ ONLY"

Opening a file with this sharing option indicates you are willing to allow other
programs to "OPEN" the file for input while you have it open. If they attempt any
other "OPEN", theirs will fail with a file status of 37. Of course, your program
may fail if someone else got to the file first and opened it with a sharing option
that imposed file-sharing limitations.

If the "SELECT" of a file is coded with a "FILE STATUS" clause, "OPEN" failures — including
those induced by sharing failures — will be detectable by the program and a graceful
recovery (or at least a graceful termination) will be possible. If no such clause was coded,
however, a runtime message will be issued and the program will be terminated.

15 February 2018 Chapter 2 - Cobol Fundamentals

64 GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide

2.2.8.2. Record Locking

Record-locking is supported by advanced file-management software built-in to the Gnu-
COBOL implementation you are using. This software provides a single point-of-control for
access to files — usually "ORGANIZATION INDEXED" (see [ORGANIZATION INDEXED],
page 120) files. One such runtime package capable of doing this is the Berkeley Database
(BDB) package — a package frequently used in GnuCOBOL builds to support indexed files.

The various I/O statements your program can execute are capable of imposing limitations
on access by other concurrently-executing programs to the file record they just accessed.
These limitations are syntactically imposed by placing a lock on the record using a "LOCK"
clause. Other records in the file remain available, assuming that file-sharing limitations
imposed at the time the file was opened didn’t prevent access to the entire file.

1. If the GnuCOBOL build you are using was configured to use the Berkeley Data-
base (BDB) package for indexed file I/O, record locking will be available by using
the "DB_HOME" run-time environment variable (see [Run Time Environment Variables],
page 626).

2. If the "SELECT" (see [SELECT], page 109) statement or file "OPEN" (see [OPEN],
page 342) specifies "SHARING WITH NO OTHER", record locking will be disabled.

3. If the file’s "SELECT" contains a "LOCK MODE IS AUTOMATIC" clause, every time a
record is read from the file, that record is automatically locked. Other programs may
access other records within the file, but not a locked record.

4. If the file’s "SELECT" contains a "LOCK MODE IS MANUAL" clause, locks are placed on
records only when a "READ" statement executed against the file includes a "LOCK"
clause (this clause will be discussed shortly).

5. If the "LOCK ON" clause is specified in the file’s "SELECT", locks (either automatically
or manually acquired) will continue to accumulate as more and more records are read,
until they are explicitly released. This is referred to as *multiple record locking’.

Locks acquired vie multiple record locking remain in-effect until the program holding
the lock. . .

e .. .terminates, or ...
e .. .executes a "CLOSE" statement (see [CLOSE], page 286) against the file, or . ..
e .. .executes an "UNLOCK" statement (see [UNLOCK], page 397) against the file, or

e .. .executes a "COMMIT" statement (see [COMMIT], page 287) or . ..

e ...executes a "ROLLBACK" statement (see [ROLLBACK], page 361).

6. If the "LOCK ON" clause is not specified, then the next I/O statement your program
executes, except for "START" (see [START], page 382), will release the lock. This is
referred to as ’single record locking’.

7. A "LOCK" clause, which may be coded on a "READ" (see [READ], page 350), "REWRITE"

Chapter 2 - Cobol Fundamentals 15 February 2018

GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide 65

(see [REWRITE], page 359) or "WRITE" statement (see [WRITE], page 402) looks like
this:
{ IGNORING LOCK

{ WITH [NO] LOCK
{ e
{ WITH KEPT LOCK
PR

{ WITH IGNORE LOCK
{
{

L B A~ B S RV

WITH WAIT

The "WITH [NO] LOCK" option is the only one available to "REWRITE" or "WRITE"
statements.

The meanings of the various record locking options are as follows:

"IGNORING LOCK"

"WITH IGNORE LOCK"
These options (which are synonymous) inform GnuCOBOL that any locks
held by other programs should be ignored.

"WITH LOCK"
Access to the record by other programs will be denied.

"WITH NO LOCK"
The record will not be locked. This is the default locking option in effect
for all statements.

"WITH KEPT LOCK"
When single record locking is in-effect, as a new record is accessed, locks
held for previous records are released. By using this option, not only is
the newly-accessed record locked (as WITH LOCK would do), but prior
record locks will be retained as well. A subsequent "READ" without the
"KEPT LOCK" option will release all "kept" locks, as will the "UNLOCK"
statement.

"WITH WAIT"
This option informs GnuCOBOL that the program is willing to wait for a
lock held (by another program) on the record being read to be released.

Without this option, an attempt to read a locked record will be immediately
aborted and a file status of 51 will be returned.

With this option, the program will wait for a pre-configured time for the
lock to be released. If the lock is released within the preconfigured wait
time, the read will be successful. If the pre-configured wait time expires

15 February 2018 Chapter 2 - Cobol Fundamentals

66 GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide

before the lock is released, the read attempt will be aborted and a 51 file
status will be issued.

End of Chapter 2 — Cobol Fundamentals

Chapter 2 - Cobol Fundamentals 15 February 2018

GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide 67

3. CDF - Compiler Directing Facility

The Compiler Directing Facility, or CDF, is a means of controlling the compilation of Gnu-
COBOL programs. CDF provides a mechanism for dynamically setting or resetting certain
compiler switches, introducing new source code from one or more source code libraries,
making dynamic source code modifications and conditionally processing or ignoring source
statements altogether. This is accomplished via a series of special CDF statements and
directives that will appear in the program source code.

When the compiler is operating in Fixed Format Mode, all CDF statements must begin in
column eight (8) or beyond.

There are two types of supported CDF statements in GnuCOBOL — Text Manipulation
Statements and Compiler Directives.

The CDF text manipulation statements "COPY" and "REPLACE" are used to introduce new
code into programs either with or without changes, or may be used to modify existing
statements already in the program. Text manipulation statements are always terminated
with a period.

CDF directives, denoted by the presence of a ">>" character sequence as part of the state-
ment name itself, are used to influence the process of program compilation.

Compiler directives are mever terminated with a period.

15 February 2018 Chapter 3 - CDF - Compiler Directing Facility

68 GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide

3.1. >CALL-CONVENTION

{ CDF >>CALL-CONVENTION Syntax

>>CALL-CONVENTION { coBoL. 1}
””””””””””””””””” { EXTERN }
{ STDCALL }
{ STATIC

This directive instructs the compiler how to treat references to program names and may be
used to determine other details for interacting with a function or program. There are four
options with COBOL being the default.

1. COBOL (the default) the program name is treated as a COBOL word that maps to
the externalised name program to be called, cancelled or referenced in the program-
address-identifier, applying the same mapping rules as for a program name for which
no AS phrase is specified.

2. EXTERN the program name is treated as an external reference.
3. STDCALL. < more info needed >

4. STATIC the program name is called as a included element and not dynamically which
is the normal default.

Chapter 3 - CDF - Compiler Directing Facility 15 February 2018

GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide 69

[

3.2. COPY
CDF COPY Statement Syntax]
COPY copybook-name
[IN|OF library-name]
[SUPPRESS PRINTING]
[REPLACING { Phrase-Clause | String-Clause }...]

CDF COPY Phrase-Clause Syntax

P SIS,

==pseudo-text-1== } BY { ==pseudo-text-2== }
identifier-1 } 7 { identifier-2 }
literal-1 } { literal-2 }
word-1 } { word-2 }

{

[LEADING|TRAILING] ==partial-word-1== BY ==partial-word-2==

"COPY" statements are used to import copybooks (see [Copybooks|, page 13) into a
program.

"COPY" statements may be used anywhere within a COBOL program where the code
contained within the copybook would be syntactically valid.

The optional "SUPPRESS" clause (with or without the optional "PRINTING" reserved
word) is valid syntactically but is non-functional. It is supported to facilitate compat-
ibility with source code written for other versions of COBOL.

There is no difference between the use of the word "IN" and the word "OF" — use the
one you prefer.

A period is absolutely mandatory at the end of every "COPY" statement, even if the
statement occurs within the scope of another one where a period might appear dis-
ruptive, such as within the scope of an "IF" (see [IF]|, page 319) statement. This

15 February 2018 Chapter 3 - CDF - Compiler Directing Facility

70

GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide

mandatory period at the end of the statement will not, however, affect the statement
scope in which the "COPY" occurs.

Both <pseudo-text-2> and <partial-word-2> may be null.

All "COPY" statements are located and the contents of the corresponding copybooks
inserted into the program source code before the actual compilation process begins.
If a copybook contains a "COPY" statement, the copybook insertion process will be
repeated to resolve the embedded "COPY". This will continue until no unresolved
"COPY" statements remain. At that point, actual program compilation will begin.

See [Locating Copybooks], page 618, for the specific rules on how copybooks are located
by the compiler.

The optional "REPLACING" clause allows for one or more of either of the following kinds
of text replacements to be made:

<< Phrase-Clause>>

Replacement of one or more complete reserved words, user-defined identi-
fiers or literals; the following points apply to this option:

e This option cannot be used to replace part of a word, identifier or
literal.

e Whatever precedes the "BY" will be referred to here as the search
string.

e Single-item search strings can be specified by coding the
"<identifier-1>", "<literal-1>" or "<word-1>" being replaced.

e Multiple-item search strings can be specified using the "==<pseudo-
text—-1>==" option. For example, to replace all occurrences of "UPON
PRINTER", you would specify "==UPON PRINTER==".

e The replacement string, which follows the "BY", may be specified using
any of the four options.

e If the replacement string is a multiple-item phrase or is to be deleted
altogether, you must use the "==<pseudo-text-2>==" option. If
"<pseudo-text-2>" is null (in other words, the replacement text is
specified as "===="), all encountered occurrences of the search string
will be deleted.

<<String-Clause>>

Using this, you may replace character sequences that occur at the beginning
("LEADING") or end ("TRAILING") of reserved or user-defined words. For
example, to change all words of the form "0100-xxxxxx" to "020-xxxxxX",
code "LEADING ==0100-== BY ==020-==". To simply remove all "0100-"
prefixes from words, code "LEADING ==0100-== BY ====",

Chapter 3 - CDF - Compiler Directing Facility 15 February 2018

GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide 71

3.3. REPLACE

[CDF REPLACE Statement (Format 1) Syntax }

REPLACE [ALSO] { Phrase-Clause | String-Clause }...

[CDF REPLACE Statement (Format 2) Syntax

REPLACE [LAST] OFF .

[CDF REPLACE Phrase-Clause Syntax

{ ==pseudo—text—1== } BY { ==pseudo-text-2==

[CDF REPLACE String-Clause Syntax

1. The "REPLACE" statement provides a mechanism for changing all or part of one or more
GnuCOBOL statements.

2. A period is absolutely mandatory at the end of every "REPLACE" statement (either
format), even if the statement occurs within the scope of another one where a period
might appear disruptive (such as within the scope of an "IF" (see [IF], page 319) state-
ment; the period will not, however, affect the statement scope in which the "REPLACE"
occurs.

3. The following points apply to Format 1 of the "REPLACE" statement:
A. Format 1 of the "REPLACE" statement can be used to make changes to program

source code in much the same way as the "REPLACING" option of the "COPY"
statement can, via these options:

15 February 2018 Chapter 3 - CDF - Compiler Directing Facility

72 GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide

<< Phrase-Clause>>
Replace one or more complete reserved words, user-defined identifiers
or literals; the following points apply to this option:
e This option cannot be used to replace part of a word, identifier

or literal.

e Whatever precedes the "BY" will be referred to here as the search
string.

e Search strings on "REPLACE" are always specified using the

"==<pseudo-text-1>==" option. For example, to replace all
occurrences of "UPON PRINTER", you would specify "==UPON
PRINTER==".

e The replacement string, which follows the "BY", is specified using
the "==<pseudo-text-2>==" option. If "<pseudo-text-2>" is
null (in other words, the replacement text is specified as "===="),
all encountered occurrences of the search string will be deleted.

<<String-Clause>>

Using this, you may replace character sequences that occur at the be-
ginning ("LEADING") or end ("TRAILING") of reserved or user-defined
words. For example, to change all words of the form "0100-xxxxxx" to

"020-xxxxxx", code "LEADING ==0100-== BY ==020-==". To simply
remove all "0100-" prefixes from words, code "LEADING ==0100-==
BY ====",

B. Once a Format 1 "REPLACE" statement is encountered in the currently-compiling
source file, Replace Mode becomes active, and the change(s) specified by that
statement will be automatically made on all subsequent source statements the
compiler reads from the file.

C. Replace Mode remains in-effect — continuing to make source code changes —
until another Format 1 "REPLACE" is encountered, the end of currently compiling
program source file is reached or a Format 2 "REPLACE" statement is encountered.

D. When a Format 1 "REPLACE" statement with the "ALSO" keyword is encountered
without Replace Mode being currently active, the effect will be as if the "ALSO"
had not been specified. If Replace Mode already was in effect, the effect will be
to "push" the current change specification(s) onto the top of a stack and add the
specification(s) of the new statement to those that were already in effect.

E. When a Format 1 "REPLACE" without the "ALSQO" keyword is encountered, any
stacked change specification(s), if any, will be discarded and the currently in-effect
change specification(s), if any, will be replaced by those of the new statement.

F. When the end of the currently-compiling source file is reached, Replace Mode is
deactivated and any stacked replace specifications will be discarded — compilation

Chapter 3 - CDF - Compiler Directing Facility 15 February 2018

GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide 73

of the next source file (if any) will begin with Replace Mode inactive and no change
specification(s) on the stack.

4. The following points apply to Format 2 of the "REPLACE" statement:

A. If Replace Mode is currently inactive, the Format 2 REPLACE statement will be
ignored.

B. If Replace Mode is currently active, a "REPLACE OFF." will deactivate Replace
Mode and discard any replace specification(s) on the stack. The compiler will
henceforth operate as if no "REPLACE" had ever been encountered, until such time
as another Format 1 "REPLACE" is encountered.

C. If Replace Mode is currently active, a "REPLACE LAST OFF." will replace the cur-
rent replace specification(s) with those popped off the top of the stack. If there
were no replace specification(s) on the stack, the effect will be as if a "REPLACE
OFF." had been coded.

15 February 2018 Chapter 3 - CDF - Compiler Directing Facility

74

GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide

3.4. >DEFINE

[CDF >>DEFINE Directive Syntax }
>>DEFINE [CONSTANT] cdf-variable-1 AS { OFF }
”””””””””””””””” {~ }

{ literal-1 [OVERRIDE] }

S }
{ PARAMETER [OVERRIDE] }

Use the ">>DEFINE" CDF directive to create CDF variables and (optionally) assign them
either literal or environment variable values.

1.

The reserved word "AS" is optional and may be included, or not, at the discretion of
the programmer. The presence or absence of this word has no effect upon the program.

CDF variables defined in this way become undefined once an "END PROGRAM" or "END
FUNCTION" directive is encountered in the input source.

The ">>DEFINE" CDF directive is one way to create CDF variables that may be pro-
cessed by other CDF statements such as ">>IF" (see [>>IF], page 75). The ">>SET"
CDF directive (see [>>SET], page 78) provides another way to create them.

CDF variable names follow the rules for standard GnuCOBOL user-defined names,
and may not duplicate any CDF reserved word. CDF variable names may duplicate
COBOL reserved words, provided the "CONSTANT" option is not specified, but such
names are not recommended.

The "CONSTANT" option is valid only in conjunction with <literal-1>. When "CONSTANT"
is specified, the CDF variable that is created may be used within your regular COBOL
code as if it were a literal value. Without this option, the CDF variable may only be
referenced on other CDF statements. The "OFF" option is used to create a variable
without assigning it any value.

The "PARAMETER" option is used to create a variable whose value is that of the environ-
ment variable of the same name. Note that this value assignment occurs at compilation
time, not program execution time.

In the absence of the "OVERRIDE" option, <cdf-variable-1> must not yet have been
defined. When the "OVERRIDE" option is specified, <cdf-variable-1> will be created
with the specified value, if it had not yet been defined. If it had already been defined,
it will be redefined with the new value.

Chapter 3 - CDF - Compiler Directing Facility 15 February 2018

GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide 75

3.5. >>IF

[CDF >>IF Directive Syntax

>>JF CDF-Conditional-Expression-1
T [Program-Source-Lines-1]

[>>ELIF CDF-Conditional-Expression-2
~~~~~~ [ Program-Source-Lines-2 ] ]...

[ >>ELSE
”””””” [ Program-Source-Lines-3 ] 1]
>>END-IF
[ CDF-Conditional-Expression Syntax
{ cdf-variable-1 } IS [ NOT ] { DEFINED }
{ literal-1 } o { ~romme }
{ SET X
{ }
{ CDF-RelOp { cdf-variable-2 } }
{ { literal-2 3
[ CDF-RelOp Syntax
>= or GREATER THAN OR EQUAL TO
> or GREATER THAN
<= or LESS THAN OR EQUAL TO
< or LESS THAN

= or EQUAL TO

<> or EQUAL TO (with "NOT")

15 February 2018 Chapter 3 - CDF - Compiler Directing Facility



76 GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide

The ">>IF" CDF directive causes the GnuCOBOL compiler to process or ignore COBOL
source statements, CDF text-manipulation statements and/or CDF directives depending
upon the value of one or more conditional expressions based upon CDF variables.

1. The reserved words "IS", "THAN" and "TO" are optional and may be included, or not,
at the discretion of the programmer. The presence or absence of these words has no
effect upon the program.

2. Each ">>IF" directive must be terminated by an ">>END-IF" directive.
3. There may be any number of ">>ELIF" clauses following an ">>IF", including zero.

4. There may no more than one ">>ELSE" clause following an ">>IF". When ">>ELSE"
is used, it must follow the ">>IF" and all ">>ELIF" clauses.

5. Only one of the <<Program-Source-Lines-n>> block of statements that lie within the
scope of the ">>IF"-">>END-IF" may be processed by the compiler. Which one (if any)
that gets processed will be decided as follows:

A. Each <<CDF-Conditional-Expression-n>> will be evaluated, in turn, in the se-
quence in which they are coded in the >>IF statement and any ">>ELIF" clauses
that may be present until one evaluates to TRUE. Once one of them evaluates
to TRUE, the <<Program-Source-Lines-n>> block of code that corresponds to the
TRUE << CDF-Conditional-Expression-n>> will be one that is processed. All oth-
ers within the ">>IF"-">>END-IF" scope will be ignored.

B. If no <<CDF-Conditional-Expression>> evaluates to TRUE, and there is an
">>ELSE" clause, the <<Program-Source-Lines-3>> block of statements following
the ">>ELSE" clause will be processed by the compiler and all others within the
">>TF"-">>END-IF" scope will be ignored.

C. If no <<CDF-Conditional-Expression-n>> evaluates to TRUE and there is
no ">>ELSE" clause, then none of the <<Program-Source-Lines-n>> block of
statements within the ">>IF"-">>END-IF" scope will be processed by the
compiler.

D. If the <Program-Source-Lines-n>> statement block selected for processing
is empty, no error results — there will just be no code generated from the
">>TF"-">>END-IF" structure.

6. A <<Program-Source-Lines-n>> block may contain any valid COBOL or CDF code.

7. The following points pertain to any << CDF-Conditional-Expression-n>>:

A. The "DEFINED" option tests for whether <cdf-variable-1> has been defined, but
not yet assigned a value (">>DEFINE ... OFF"); use the "NOT" option to test for
the variable not being defined.

B. The "SET" option tests for whether <cdf-variable-1> has been given a value, either
via a ">>SET" statement or via a ">>DEFINE" without the "OFF" option.

C. Two CDF variables, two literals or a single CDF variable and a single literal may

Chapter 3 - CDF - Compiler Directing Facility 15 February 2018



GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide 7

be compared against each other using a relational operator. Unlike the standard
GnuCOBOL "IF" statement (see [IF], page 319), multiple comparisons cannot be
"AND"ed or "OR"ed together; you may nest a second ">>IF" inside the first,
however, to simulate an "AND" and an "OR" may be simulated via the ">>ELIF"
option.

D. The "<>" symbol stands for "NOT EQUAL TO".

15 February 2018 Chapter 3 - CDF - Compiler Directing Facility



78

GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide

3.6. >>SET

:

CDF >>SET Directive Syntax

The ">>SET" CDF directive provides an alternate means of performing the actions of the
">>DEFINE" and ">>SOURCE" directives, as well as a means of controlling the compiler’s
"-free" switch, "-fixed" switch and "-ffold-copy" switch from within program source
code.

1.

The reserved word "AS" is optional (only on the "SOURCEFORMAT" and "FOLDCOPYNAME"
clauses) and may be included, or not, at the discretion of the programmer. The presence
or absence of this word has no effect upon the program.

CDF variables defined in this way become undefined once an "END PROGRAM" or "END
FUNCTION" directive is encountered in the input source.

The "FOLDCOPYNAME" option provides the equivalent of specifying the compiler
"-ffold-copy=xxx" switch, where "xxx" is either "UPPER" or "LOWER".

The "NOFOLDCOPYNAME" option turns off the effect of either the ">>SET FOLDCOPYNAME"
statement or the compiler "-ffold-copy=xxx" switch.

If the "CONSTANT" option is used, <literal-1> must also be used. This option provides
another means of defining constants that may be used anywhere in the program that
a literal could be specified.

The remaining options of the ">>SET" CDF directive provide equivalent functionality
to the ">>DEFINE" and ">>SOURCE" directives, as follows:

A. ">>SET <cdf-variable-1>" = ">>DEFINE <cdf-variable-1> AS OFF"

B. ">>SET <cdf-variable-1> AS <literal-1>" = ">>DEFINE <cdf-variable-1>
AS <literal-1>"

C. ">>SET CONSTANT <cdf-variable-1> AS <literal-1>" = ">>DEFINE
CONSTANT <cdf-variable-1> AS <literal-1>"

D. ">>SET SOURCEFORMAT AS FIXED" = ">>SQURCE FORMAT IS FIXED"

E. ">>SET SOURCEFORMAT AS FREE" = ">>SOURCE FORMAT IS FREE"

Chapter 3 - CDF - Compiler Directing Facility 15 February 2018



GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide 79

3.7. >SOURCE

[ CDF >>SOURCE Directive Syntax }

>>SO0URCE FORMAT IS FIXED|FREE|VARIABLE

The ">>SOURCE" CDF directive puts the compiler into "FIXED" or "FREE" source-code
format mode. This, in effect, provides yet another mechanism for controlling the compiler’s
"-free" switch and "-fixed" switch.

1. The reserved words "FORMAT" and "IS" are optional and may be included, or not, at
the discretion of the programmer. The presence or absence of these words has no effect
upon the program.

2. You may switch between "FIXED" and "FREE" mode as desired.
3. You may also use the ">>SET" CDF directive to perform this function.

4. If the compiler is already in the specified mode, this statement will have no effect.

15 February 2018 Chapter 3 - CDF - Compiler Directing Facility



80 GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide

3.8. >TURN

[ CDF >>TURN Directive Syntax
>>TURN { exception-name-1 [ file-name-1 ]J... Z}...
{ OFF }
{ " }
{ CHECKING ON [ WITH LOCATION ] }

The directive will (de-)activating exception checks.

Chapter 3 - CDF - Compiler Directing Facility 15 February 2018



GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide 81

3.9. >>D

[ CDF >>D Directive Syntax }

>>D

The directive removes all floating debug lines if debug mode not active. Otherwise will
ignore the directive part of the line.

15 February 2018 Chapter 3 - CDF - Compiler Directing Facility



82 GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide

3.10. >DISPLAY

[ CDF >>DISPLAY Directive Syntax

>>DISPLAY source-text [ VCS = version-string ]

The directive is a v1.0 extension and will display messages during compilation.

Chapter 3 - CDF - Compiler Directing Facility 15 February 2018



GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide 83

3.11. >PAGE

[ CDF >>PAGE Directive Syntax }

>>PAGE

The directive allows usage of the IBM paging controls namely - EJECT, SKIP1, SKIP2,
SKIP3 and TITLE.

15 February 2018 Chapter 3 - CDF - Compiler Directing Facility



84 GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide

3.12. >LISTING

[ CDF >>LISTING Directive Syntax

>>LISTING {ON}
””””””””” {0FF}

The directive allows the program listing to be de-(activated).

Chapter 3 - CDF - Compiler Directing Facility 15 February 2018



GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide 85

3.13. >LEAP-SECONDS

[ CDF >>LEAP-SECONDS Directive Syntax }

>>LEAP-SECONDS

The ">>LEAP-SECONDS" CDF directive is syntactically recognized but is otherwise non-
functional.

Allows for more than 60 seconds per minute.

15 February 2018 Chapter 3 - CDF - Compiler Directing Facility



86 GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide

3.14. * Directives

[ CDF * Directive Syntax }

$ (Dollar) Directives - Active.
These directives are active and have the same function as ones starting with >>:

$DISPLAY ON|OFF
$SET

$IF

$ELIF

$ELSE-IF

$END

$ (Dollar) Directives - Not Active.
These are NOT active and will produce a warning message:

$DISPLAY VCS ...

qOffers support for MF Compiler Directives.

End of Chapter 3 — CDF - Compiler Directing Facility

Chapter 3 - CDF - Compiler Directing Facility 15 February 2018



GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide

4. IDENTIFICATION DIVISION

87

[ IDENTIFICATION DIVISION Syntax

[{ IDENTIFICATION } DIVISION.
{ ~rommmmmmmm e S
{1 3

{ PROGRAM-ID. } program-id [ AS {literal-1
{program name }]
[ AS literal-2 ].

{ ~rommmmee 3

{ FUNCTION-ID. } { literal-1 }
{ function-name }

[ DEFAULT ROUNDED MODE IS {AWAY-FROM-ZERO
{NEAREST-AWAY-FROM-ZERO
{NEAREST-EVEN
{NEAREST-TOWARDS-ZERO
{PROHIBITED
{TOWARDS-GREATER
{TOWARDS-LESSER
{TRUNCATION

[ ENTRY-CONVENTION IS {COBOL

~~~~~~~~~~~~~~~~ {EXTERN }
{STDCALL }]

[AUTHOR. comment-1.

[DATE-COMPILED. comment-2.

[DATE-MODIFIED. comment-3.

[DATE-WRITTEN. comment-4.

[INSTALLATION. comment-5.

[REMARKS. comment-6.

[SECURITY. comment-7.

]

]

]

[Type-Clause]

I T TS~ SRR

The "AUTHOR", "DATE-COMPILED", "DATE-MODIFIED", "DATE-WRITTEN", "INSTALLATION",
"REMARKS" and "SECURITY" paragraphs are supported by GNU COBOL only to provide
compatibility with programs written for the ANS1974 (or earlier) standards. As of the
ANS1985 standard, these clauses have become obsolete and should not be used in new

programs.

15 February 2018

Chapter 4 - IDENTIFICATION DIVISION

88

GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide

:

PROGRAM-ID Type Clause Syntax

IS [COMMON 1 [INITIAL|RECURSIVE PROGRAM]

The identification division provides basic identification of the program by giving it a name
and optionally defining some high-level characteristics via the eight pre-defined paragraphs
that may be specified.

1.
2.

The paragraphs shown above may be coded in any sequence.

The reserved words "AS", "IS" and "PROGRAM" are optional and may be included, or
not, at the discretion of the programmer. The presence or absence of these words has
no effect upon the program.

A Type Clause may be coded only when "PROGRAM-ID" is specified. If one is coded,
either "COMMON", "COMMON INITIAL" or "COMMON RECURSIVE" must be specified.

While the actual "IDENTIFICATION DIVISION" or "ID DIVISION" header is optional,
the "PROGRAM-ID" / "FUNCTION-ID" paragraphs are not; only one or the other, how-
ever, may be coded.

The compiler’s "-Wobsolete" switch will cause the GnuCOBOL compiler to issue
warnings messages if these (or any other obsolete syntax) is used in a program.

If specified, <literal-1> must be an actual alphanumeric literal and may not be a figu-
rative constant.

The "PROGRAM-ID" and "FUNCTION-ID" paragraphs serve to identify the program to
the external (i.e. operating system) environment. If there is no "AS" clause present,
the <program-id> will serve as that external identification. If there is an "AS" clause
specified, that specified literal will serve as the external identification. For the remain-
der of this document, that "external identification" will be referred to as the primary
entry-point name.

The "INITIAL", "COMMON" and "RECURSIVE" words are used only within subprograms
serving as subroutines. Their purposes are as follows:

A. "COMMON" should be used only within subprograms that are nested subprograms. A
nested subprogram declared as "COMMON" may be called from any nested program
in the source file being compiled, not just those "above" it in the nesting structure.

B. The "RECURSIVE" clause, if any, will cause the compiler to generate different object
code for the subprogram that will enable it to invoke itself and to properly return
back to the program that invoked it.

User-defined functions (i.e. "FUNCTION-ID") are always recursive.

Chapter 4 - IDENTIFICATION DIVISION 15 February 2018

GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide 89

C. The "INITIAL" clause, if specified, guarantees the subprogram will be in its initial
(i.e. compiled) state each and every time it is executed, not just the first time.

End of Chapter 4 — IDENTIFICATION DIVISION

15 February 2018 Chapter 4 - IDENTIFICATION DIVISION

GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide 91

5. ENVIRONMENT DIVISION

[ENVIRONMENT DIVISION Syntax]

ENVIRONMENT DIVISION.

[SOURCE-COMPUTER. Compilation-Computer-Specification .]
[OBJECT-COMPUTER. Execution-Computer-Specification . 1]

[SPECIAL-NAMES. Program-Configuration-Specification .]
[REPOSITORY. Function-Specification... .]

[FILE-CONTROL. General-File-Description... .]

[I-0-CONTROL. File-Buffering Specification... . 1]

This division defines the external computer environment in which the program will be
operating. This includes defining any files that the program may be .

e If both optional sections of this division are coded, they must be coded in the sequence
shown.

e The paragraphs within the sections may be coded in any order.

e These sections consist of a series of specific, pre-defined, paragraphs
("SOURCE-COMPUTER" and "OBJECT-COMPUTER", for example), each of which
serves a specific purpose. If no code is required for the purpose one of the paragraphs
serves, the entire paragraph may be omitted.

e If any of the paragraphs within one of the sections are coded, the section header itself
must be coded.

e If none of the paragraphs within one of the sections are coded, the section header itself
may be omitted.

e If none of the sections within the environment division are coded, the "ENVIRONMENT
DIVISION." header itself may be omitted.

15 February 2018 Chapter 5 - ENVIRONMENT DIVISION

92 GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide

5.1. CONFIGURATION SECTION

{ CONFIGURATION SECTION Syntax

CONFIGURATION SECTION.

[SOURCE-COMPUTER. Compilation-Computer-Specification .]

[OBJECT-COMPUTER. Execution-Computer-Specification .]

[SPECIAL-NAMES. Program-Configuration-Specification .]

[REPOSITORY. Function-Specification... .]

This section defines the computer system upon which the program is being compiled and
executed and also specifies any special environmental configuration or compatibility char-
acteristics.

1. The four paragraphs in this section may be specified in any order but if not in this
order, a warning will be issued.

2. The configuration section is not allowed in a nested subprogram — nested programs
will inherit the configuration section settings of their parent program.

3. If none of the features provided by the configuration section are required by a program,
the entire "CONFIGURATION SECTION." header may be omitted from the program.

Chapter 5 - ENVIRONMENT DIVISION 15 February 2018

GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide 93

5.1.1. SOURCE-COMPUTER

:

SOURCE-COMPUTER Syntax

SOURCE-COMPUTER. computer-name [WITH DEBUGGING MODE]

This paragraph defines the computer upon which the program is being compiled and pro-
vides one way in which debugging code embedded within the program may be activated.

1.

The reserved word "WITH" is optional and may be included, or not, at the discretion of
the programmer. The presence or absence of this word has no effect upon the program.

This paragraph is not allowed in a nested subprogram — nested programs will inherit
the "SOURCE-COMPUTER" settings of their parent program.

The value specified for <computer-name> is irrelevant, provided it is a valid COBOL
word that does not match any GnuCOBOL reserved word. The <computer-name>
value may include spaces. This need not match the <computer-name> used with the
"OBJECT-COMPUTER" paragraph, if any.

The "DEBUGGING MODE" clause, if present, will inform the compiler that debugging lines
(those with a "D" in column 7 if Fixed Source Mode is in effect, or those prefixed with
a ">>D" if Free Source Mode is in effect) — normally treated as comments — are to
be compiled.

Even without the "DEBUGGING MODE" clause, it is still possible to compile debugging
lines. Debugging lines may also be compiled by specifying the "-fdebugging-line"
switch to the GnuCOBOL compiler.

15 February 2018 Chapter 5 - ENVIRONMENT DIVISION

94

GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide

5.1.2. OBJECT-COMPUTER

:

OBJECT-COMPUTER Syntax

OBJECT-COMPUTER. [computer-name]

[CHARACTER CLASSIFICATION IS { locale-name-1

]
”””””””””””””” { LOCALE

+
+
}
}
}
+

{ SYSTEM-DEFAULT

The "MEMORY SIZE" and "SEGMENT-LIMIT" clauses are syntactically recognized but are
otherwise non-functional.

This paragraph describes the computer upon which the program will execute.

1.

The <computer-name>, if specified, must immediately follow the "0OBJECT-COMPUTER"
paragraph name. The remaining clauses may be coded in any sequence.

The reserved words "CHARACTER", "IS", "PROGRAM" and "SEQUENCE" are optional and
may be included, or not, at the discretion of the programmer. The presence or absence
of these words has no effect upon the program.

The value specified for <computer-name>, if any, is irrelevant provided it is a valid
COBOL word that does not match any GnuCOBOL reserved word. The <computer-
name> may include spaces. This need not match the <computer-name> used with the
"SQURCE-COMPUTER" paragraph, if any.

The "0OBJECT-COMPUTER" paragraph is not allowed in a nested subprogram — nested
programs will inherit the "OBJECT-COMPUTER" settings of their parent program.

The "COLLATING SEQUENCE" clause allows you to specify a customized character col-
lating sequence to be used when alphanumeric values are compared to one another.
Data will still be stored in the character set native to the computer, but the logical
sequence in which characters are ordered for comparison purposes can be altered from
that defined by the computer’s native character set. The <alphabet-name-1> you spec-

Chapter 5 - ENVIRONMENT DIVISION 15 February 2018

GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide 95

ify needs to be defined in the "SPECIAL-NAMES" (see [SPECIAL-NAMES], page 96)
paragraph.

6. If no "COLLATING SEQUENCE" clause is specified, the collating sequence implied by the
character set native to the computer (usually ASCII) will be used.

7. The optional "CLASSIFICATION" clause may be used to specify a locale for the envi-
ronment in which the program will be executing, for the purpose of influencing the
upper-case and lower-case mappings of characters for the "UPPER-CASE" (see [UPPER-
CASE], page 503) and "LOWER-CASE" (see [LOWER-CASE]|, page 450) intrinsic func-
tions and the classification of characters for the "ALPHABETIC", "ALPHABETIC-LOWER"
and "ALPHABETIC-UPPER" class tests. The definitions of these classes will be taken
from the cultural convention specification ("LC_CTYPE") from the specified locale.

The meanings of the four locale specifications are as follows:
A. <locale-name-1> references a "LOCALE" (see [SPECIAL-NAMES], page 96) defini-
tion.

B. The keyword "LOCALE" refers to the current locale (in effect at the time the pro-
gram is executed)

C. The keyword "USER-DEFAULT" references the default locale specified for the user
currently executing this program.

D. The keyword "SYSTEM-DEFAULT" denotes the default locale specified for the com-
puter upon which the program is executing.

8. Absence of a "CLASSIFICATION" clause will cause character classification to occur ac-
cording to the rules for the computer’s native character set (ASCII, EBCDIC, ...).

15 February 2018 Chapter 5 - ENVIRONMENT DIVISION

96 GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide

5.1.3. SPECIAL-NAMES

[SPECIAL-NAMES Syntax

SPECIAL-NAMES.

[CONSOLE IS CRT]

[device-name-1 IS mnemonic-name-2 J...
[feature-name-1 IS mnemonic-name-3]...
[Alphabet-Clause]...

[Class-Definition-Clause]...

[Switch-Definition-Clause J...

[Symbolic-Characters-Clause J]...

The "EVENT STATUS" and "SCREEN CONTROL" clauses are syntactically recognized but are
otherwise non-functional.

<< Alphabet-Name-Clause>>, << Class-Definition-Clause>>,
<<Switch-Definition-Clause>> and <<Symbolic- Characters-Clause>>
are discussed in detail in the next four sections.

Chapter 5 - ENVIRONMENT DIVISION 15 February 2018

GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide 97

The "SPECIAL-NAMES" paragraph provides a means for specifying various program and
operating environment configuration options.

10.

11.

The various clauses that may be specified within the "SPECIAL-NAMES" paragraph may
be coded in any order.

The reserved word "IS" is optional and may be included, or not, at the discretion of
the programmer. The presence or absence of this word has no effect upon the program.

The "SPECIAL-NAMES" paragraph is not allowed in a nested subprogram — nested
programs will inherit the "SPECIAL-NAMES" settings of their parent program.

Only the final clause specified within this paragraph should be terminated with a
period.

The "CALL-CONVENTION" clause allows a decimal integer, representing a series of
ON/OFF switch settings, to be associated with a mnemonic name which may then
be coded on a "CALL" statement (see [CALL], page 281). The switch settings defined
by this mnemonic will then control how the linkage to a subroutine invoked by the
"CALL" statement that references <mnemonic-name-1> will be handled.

The "CONSOLE IS CRT" clause, if specified, will cause a "DISPLAY" statement lack-
ing an explicit "UPON" clause to be treated as a "DISPLAY screen-data-item" state-
ment (see [DISPLAY screen-data-item], page 296), and any "ACCEPT" statement lack-
ing a "FROM" clause to be treated as a "ACCEPT screen-data-item" statement (see
[ACCEPT screen-data-item|, page 262).

If the "CRT STATUS" clause is not specified, an implicit "COB-CRT-STATUS" identifier
(with a "PICTURE 9(4)") will be allocated for the purpose of receiving screen "ACCEPT"
statuses. If "CRT STATUS" is specified, then <identifier-1> must be defined in the
program as a "PICTURE 9(4)" field.

The "CURRENCY SIGN" clause may be used to redefine the character to be used as a
currency sign in a "PICTURE" (see [PICTURE], page 198) clause. The default currency
sign is a dollar-sign ($). You may specify any character except "0"-"9", 6 "A"-"Z",
lla"_llzll ||+" n_n n s n n . n "*ll ll/" n ; n n (ll ll) n n=n "\|| quote (") or Space-

The "CURSOR IS" clause allows you to specify a 4- or 6-character data item into which
the cursor screen location at the time a screen "ACCEPT" is satisfied. The value will be
returned as rrcc or rrrcee, depending upon the length of the specified <identifier-2>,
where rr and rrr represent the row number (starting at zero) and cc and ccc represent
the column number (also starting at zero). There is no default data item allocated
for this data if the "CURSOR IS" clause is not specified, and it is the programmer’s
responsibility to define <identifier-2> if the clause is specified.

The "DECIMAL POINT IS COMMA" clause reverses the definition of the "," and "." char-
acters when they are used as "PICTURE" editing symbols and within numeric literals.
This can have unwanted side-effects - see [Punctuation], page 40.

The "LOCALE" clause may be used to associate external OS-defined locale names
(<literal-2>) with an internal name (<locale-name-1>) that may then be referenced

15 February 2018 Chapter 5 - ENVIRONMENT DIVISION

98 GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide

within the program. Locale names are defined by the Operating System and/or C
compiler GnuCOBOL will be utilizing on your computer.

12. The following is the list of possible locale codes, for example, that would be available
on a Windows computer running a GnuCOBOL version that was built utilizing the
MinGW Unix-emulator and the GNU C compiler (gcc):

A af_ZA, am_ET, ar_AE, ar_BH, ar_DZ, ar_EG, ar_1Q, ar_JO, ar_KW,
ar_LB, ar_LY, ar_MA, ar_OM, ar_QA, ar_SA, ar_SY, ar_.TN, ar_YE,
arn_CL, as_IN, az_Cyrl_AZ, az_Latn_AZ

B ba_R, be_BY, bg_ BG, bn_IN bo_BT, bo_CN, br_FR, bs_Cyrl_.BA,
bs_Latn_BA

ca_ES, ¢s_CZ, cy_GB
D da_DK, de_AT, de_CH, de_DE, de_LI, de_LU, dsb_DE, dv_.MV

el_GR, en_029, en_AU, en_BZ, en_CA, en_GB, en_IE, en_IN, en_JM,
en_.MY en_NZ, en_.PH, en_SG, en_.TT, en_US, en_ZA, en_ZW, es_AR,
es_.BO, es_CL, es_CO, es_CR, es_.DO, es_EC, es_ES, es_.GT, es_HN,
es_MX, es_NI, es_PA, es_PE, es_PR, es_PY, es_SV, es_US, es_UY es_VE,

et_EE, eu_ES

F fa_IR, fi_FI, fil. PH, fo_FO, fr_BE, fr_.CA, fr_CH, fr_FR, fr_LU, fr_MC,
fy_NL

G ga_lE, ghz_AF, gl ES, gsw_FR, gu_IN

ha_Latn_NG, he_IL, hi_IN, hr_BA, hr_HR, hu_HU, hy_AM

1 id_ID, ig_NG, ii_CN, is_IS, it_CH, it_IT, iu_Cans_CA, iu_Latn_CA

J ja_JP

K ka_GE, kh_KH, kk_KZ, kl_GL, kn_IN, ko_KR, kok_IN, ky_KG

L Ib_.LU, lo_LA, It _LT, Iv_.LV

M mi_NZ, mk_MK, ml_IN, mn_Cyrl_ MN, mn_Mong_CN moh_CA, mr_IN,

ms_BN, ms_ MY, mt_MT

nb_NO, ne_NP, nl_BE, nl_NL, nn_NO, ns_ZA
oc_FR, or_IN

pa_IN, pl_PL, ps_AF, pt_BR, pt_PT

qut_GT, quz_BO, quz_EC, quz_PE

g/ o 9 o Z

rm_CH, ro_RO, ru_RU, rw_RW

Chapter 5 - ENVIRONMENT DIVISION 15 February 2018

GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide 99

=

N < X o2 < <

sa_IN, sah_RU, se_FI, se_NO se_SE, si_LK, sk_SK, sl_SI, sma_NO,
sma_SE, smj_NO, smj_SE, smn_FI, sms_FI, sq_AL, sr_Cyrl.BA,
sr_Cyrl_CS, sr_Latn_BA, sr_Latn_CS, sv_FI, sv_SE, sw_KE syr_SY

ta_IN, te_IN, tg_Cyrl.TJ, th. TH tk_TM, tmz_Latn_DZ, tn_ZA, tr_IN,
tr_TR, tt_RU

ug_CN, uk_UA, ur_PK, uz_Cyrl_UZ, uz_Latn_UZ
vi_VN

wen_DE, wo_SN

xh_ZA

yo_ NG

zh_CN, zh_HK, zh_MO, zh_SG, zh_TW, zu_ZA

13. The "NUMERIC SIGN TRAILING SEPARATE" specification causes all signed numeric
"USAGE DISPLAY" data items to be created as if the "SIGN IS TRAILING SEPARATE
CHARACTER" clause was included in their definitions.

14. The "<device-name-1> IS <mnemonic-name-2>" clause allows you to specify an al-
ternate name (<device-name-1>) for one of the built-in GnuCOBOL device name
<mnemonic-name-2>. The list of device names built-into GnuCOBOL, and the physi-
cal device associated with that name, are as follows:

"CONSOLE"

"STDIN"
"SYSIN"
"SYSIPT"

"PRINTER"
"STDOUT"
"SYSLIST"
"SYSLST"
"SysouT"

This is the (screen-mode) display of the PC or Unix system.

These devices (they are all synonymous) represent standard system input
(pipe 0). On a PC or UNIX system, this is typically the keyboard. The
contents of a file may be delivered to a GnuCOBOL program for access
via one of these device names by adding the sequence "0< filename" to the
end of the programs execution command.

These devices (they are all synonymous) represent standard system output
(pipe 1). On a PC or UNIX system, this is typically the display. Output

15 February 2018 Chapter 5 - ENVIRONMENT DIVISION

100 GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide

sent to one of these devices by a GnuCOBOL program can be sent to a file
by adding the sequence "1> filename" to the end of the programs execution
command.

"STDERR"
"SYSERR"

These devices (they are synonymous) represent standard system error out-
put (pipe 2). On a PC or UNIX system, this is typically the display.
Output sent to one of these devices by a GnuCOBOL program can be sent
to a file by adding the sequence "2> filename" to the end of the programs
execution command.

15. The "<feature-name-1> IS <mnemonic-name-3>" clause allow for mnemonic names
to be assigned to up to the 13 printer channel (i.e. vertical page positioning) position
feature names "Cnn" (nn=01-12) and "CSP". Once a channel position has been assigned
a mnemonic name, statements of the form "WRITE <record-name> AFTER ADVANCING
<mnemonic-name-3>" may be coded to write the specified print record at the channel
position assigned to <mnemonic-name-3>.

Printers supporting channel positioning are generally mainframe-type line printers.
When writing to printers that do not support channel positioning, a formfeed will be
issued to the printer.

The "CSP" positioning option stands for "No Spacing". Testing on a MinGW build of
GnuCOBOL shows that this too results in a formfeed being issued.

Chapter 5 - ENVIRONMENT DIVISION 15 February 2018

GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide 101

5.1.3.1. Alphabet-Name-Clause

[

SPECIAL-NAMES Alphabet-Clause Syntax

ALPHABET alphabet-name-1 IS { ASCII

~
R
3
R
R
R
R
N N Y Y S S Y S

{ Literal-Clause...

:

SPECIAL-NAMES ALPHABET Literal-Clause Syntax }

literal-1 [{ THRU|THROUGH literal-2 }]

{ "~ e }
{ {ALSO literal-3}... }

The "ALPHABET" clause provides a means for relating a name to a specified character code
set or collating sequence, including those you define yourself using the <literal-1> option.

1.

The reserved word "IS" is optional and may be included, or not, at the discretion of
the programmer. The presence or absence of this word has no effect upon the program.

The reserved words "THRU" and "THROUGH" are interchangeable.

GnuCOBOL considers "ASCII", "STANDARD-1" and "STANDARD-2" to be interchange-
able.

"NATIVE" specifies the system default character set.

The following points apply to using the <literal-n> specifications to compose a custom
character set:

A. The <literal-n> values are either integers or alphanumeric quoted characters. These
represent a single character in the "NATIVE" character set, either by it’s actual
text value (alphanumeric quoted character) or by ordinal position in the "NATIVE"
character set (integer),

15 February 2018 Chapter 5 - ENVIRONMENT DIVISION

102

B.

C.

GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide

The sequence in which characters are defined in this clause specifies the relative
order those characters should have when comparisons are made using this alphabet.

Character positions in this list do not affect the actual binary storage values used
for the characters — binary values will still be those of the "NATIVE" character
set.

You may specify any of the figurative constants "SPACE", "SPACES", "ZERO",
"ZEROS", "ZEROES", "QUOTE", "QUOTES", "HIGH-VALUE", "HIGH-VALUES",
"LOW-VALUE" or "LOW-VALUES" for any of the <literal-1>, <literal-2> or <literal-3>
specifications.

6. Once you have defined an alphabet name, that alphabet name may be used on speci-
fications in "CODE-SET", "COLLATING SEQUENCE", or "SYMBOLIC CHARACTERS" clauses
elsewhere in the program.

Chapter 5 - ENVIRONMENT DIVISION 15 February 2018

GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide 103

5.1.3.2. Class-Definition-Clause

[SPECIAL-NAMES Class-Definition-Clause Syntax }

CLASS class—name-1 IS { literal-1 [THRU|THROUGH literal-2] }...

1. The reserved word "IS" is optional and may be included, or not, at the discretion of
the programmer. The presence or absence of this word has no effect upon the program.

2. The reserved words "THRU" and "THROUGH" are interchangeable.
3. Both <literal-1> and <literal-2> must be alphanumeric literals of length 1.

4. The literal(s) specified on this clause define the possible characters that may be found
in a data item’s value in order to be considered part of the class.

5. For example, the following defines a class called "Hexadecimal", the definition of which
specifies the only characters that may be present in an alphanumeric data item if that
data item is to be part of the "Hexadecimal" class:

CLASS Hexadecimal IS ’0’ THRU 9’

A’ THRU °F°

’a’ THRU °’f°
6. Once class "Hexadecimal" has been defined, program code could then use a statement
such as "IF input-item IS Hexadecimal" to determine if the value of characters in

a data item are valid according to that class.

15 February 2018 Chapter 5 - ENVIRONMENT DIVISION

104

GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide

5.1.3.3. Switch-Definition-Clause

:

SPECIAL-NAMES Switch-Definition-Clause Syntax

switch-name-1 [IS mnemonic-name-1]

[ON STATUS IS condition-name-1]

[OFF STATUS IS condition-name-2]

The switch-definition clause associates a condition-name with a run-time execution switch
so that the status of that switch may be tested from within a program.

1.

The reserved words "IS" and "STATUS" are optional and may be included, or not, at
the discretion of the programmer. The presence or absence of these words has no effect
upon the program.

The valid <switch-name-1> names are "SWITCH-n" (n=0-36).

If the program is compiled with the "-fsyntax-extension" switch, the switch names
"SWn" (n=0-15) are also valid; they correspond to "SWITCH-0" through "SWITCH-15",
respectively as well as "SWITCH-16" through "SWITCH-36", "SWITCH 0" through
"SWITCH 26" and "SWITCH A" through "SWITCH Z".

At execution time, each switch will be associated with a "COB_SWITCH_n" run-time
environment variable (see [Run Time Environment Variables|, page 626), where "n"
will have the value "0" through "15". Any of these sixteen environment variables that
have the value "ON" (regardless of upper- or lower-case value) will be considered to be
set "on". Any of these sixteen environment variables having no value at all or a value
other than "ON" will be considered "OFF".

Each specified switch must have at least one of a "IS <mnemonic-name-1>", "ON
STATUS" or an "OFF STATUS" option defined for it, otherwise there will be no way
to reference the switch from within a GnuCOBOL program.

The "IS <mnemonic-name-1>" syntax provides a means for setting the switch to either
an ON or OFF value via the "SET" statement (see [SET], page 367).

The "ON STATUS" and "OFF STATUS" syntax provides a way of associating a condition-
name with either the on or off status of the switch, so that status may be tested at
execution time via the "IF" statement (see [IF], page 319).

Chapter 5 - ENVIRONMENT DIVISION 15 February 2018

GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide 105

5.1.3.4. Symbolic-Characters-Clause

[SPECIAL-NAMES-Symbolic-Characters-Clause Syntax

SYMBOLIC CHARACTERS

{ symbolic-character-1... IS|ARE integer-1... }...

[IN alphabet-name-1]

This clause may be used to define your own figurative constants.

1. The reserved words "ARE", "CHARACTERS" and "IS" are optional and may be included,
or not, at the discretion of the programmer. The presence or absence of these words
has no effect upon the program.

2. There must be exactly as many <integer-1> values specified as there are <symbolic-
character-1> names.

3. Each symbolic character name will be associated with the corresponding <integer-1>th
character in the alphabet named in the "IN" clause. The integer values are selecting
characters from the alphabet by their ordinal position and not by their numeric value;
thus, an integer of 15 will select the 15th character in the specified alphabet, regardless
of the actual numeric value of the bit pattern that constitutes that character.

4. If no <alphabet-name-1> is specified, the systems native character set will be assumed.

5. The following two code examples define the same set of figurative constant names for
five ASCII control characters (assuming that ASCII is the system’s native character
set). The two examples are identical in their effects, even though the manner in which
the figurative constants are defined is different.

SYMBOLIC CHARACTERS NUL IS 1 SYMBOLIC CHARACTERS NUL SOH BEL DC1 DC2
SOH IS 2 ARE 1 2 8 18 19
BEL IS 8
DC1 IS 18
DC2 IS 19

15 February 2018 Chapter 5 - ENVIRONMENT DIVISION

106

GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide

5.1.4. REPOSITORY

:

REPOSITORY Syntax

{ intrinsic-function-name-2 INTRINSIC

REPOSITORY.
FUNCTION { function-prototype-name-1 [AS literal-1] }..
~~~~~~~~ { o }
{ intrinsic-function-name-1 [ AS literal-2 ] }
{ ~r }
}
}

{ ALL INTRINSIC  ~  ~7~7oveees

The REPOSITORY paragraph provides a way to control access to the various built-in
intrinsic functions and any user defined functions that your program will be using.

1.

The "REPOSITORY" paragraph is not allowed in a nested subprogram — nested pro-
grams will inherit the "REPOSITORY" settings of their parent program.

The "INTRINSIC" clause allows you to flag one or more (or "ALL") built-in intrinsic
functions as being usable without the need to code the keyword "FUNCTION" in front
of the function names.

As an alternative to using the "ALL INTRINSIC" clause, you may instead compile your
GnuCOBOL programs using the "-fintrinsics=ALL" switch.

The <function-prototype-name-1> option is required to specify the name of a user-
defined function your program will be using. Optionally, should you desire, you may
specify an alias name by which you will reference that user-defined function. Should
you wish, you may also use the "AS" clause to provide an alias name for a built-in
intrinsic function.

The following example enables all intrinsic functions to be specified without
the use of the "FUNCTION" keyword, (2) names two user-defined functions
named "MY-FUNCTION-1" and "MY-FUNCTION-2" that will be used by the
program and (3) specifies the alias names "SIGMA" for the intrinsic function
"STANDARD-DEVIATION" and "MF2" for "MY-FUNCTION-2".

REPOSITORY.
FUNCTION ALL INTRINSIC.
FUNCTION MY-FUNCTION-1.
FUNCTION MY-FUNCTION-2 AS "MF2".
FUNCTION STANDARD-DEVIATION AS "SIGMA".

A special note about user-defined functions — because you must name a user-defined func-

Chapter 5 - ENVIRONMENT DIVISION 15 February 2018



GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide 107

tion that your program will be using in the "REPOSITORY" paragraph, you may always
reference that function from your program’s procedure division without needing to use the
"FUNCTION" keyword.

15 February 2018 Chapter 5 - ENVIRONMENT DIVISION



108 GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide

5.2. INPUT-OUTPUT SECTION

{ INPUT-OUTPUT SECTION Syntax

[ INPUT-OUTPUT SECTION. ]

[ SELECT-Statement... ]
[ I-0-CONTROL. 1]

[ MULTIPLE-FILE-Statement ]

[ SAME-RECORD-Statement ]

The "INPUT-OUTPUT" section provides for the definition of any files the program will be
accessing as well as control of the I/O buffering process against those files through the
"FILE-CONTROL" and "I-0-CONTROL" paragraphs, respectively.

1. As the diagram shows, there are three types of statements that may occur in the
two paragraphs of this section. If none of the statements are coded in a particular
paragraph, the paragraph itself may be omitted, otherwise it is required.

2. If neither paragraph is coded, the "INPUT-OUTPUT SECTION." header itself may be
omitted, otherwise it is normally required.

3. If the compiler "config" file you are using has "relaxed-syntax-check" set to "yes",
the "FILE-CONTROL" and "I-0-CONTROL" paragraphs may be specified without the
"INPUT-OUTPUT SECTION." header having been coded.

4. If both statement types are coded in the "I-0-CONTROL" paragraph, the order in which
those statements are coded is irrelevant.

Chapter 5 - ENVIRONMENT DIVISION 15 February 2018



GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide 109

5.2.1. SELECT

[ SELECT Statement Syntax }

1 [{ identifier-1 }] ]
{ word-1 }
{ literal-1 }

”””””” {UsING } { -~~~y {7 T
{ DYNAMIC } { DISPLAY

{ TAPE

[ COLLATING SEQUENCE IS alphabet-name-1 ]

[ LOCK MODE IS { MANUAL|AUTOMATIC ]
T { "~ v }
{ EXCLUSIVE [ WITH { LOCK ON MULTIPLE RECORDS } ] }
””””””””” { 7777 v Ty mmmmees }
{ LOCK ON RECORD }
[ ORGANIZATION-Clause ] { ~~~~ =~ ~vmmm b
{ ROLLBACK }

ALL OTHER

{ }
{ }
{ NO OTHER }
{ - }
{ }

READ ONLY

The "COLLATING SEQUENCE", "RECORD DELIMITER", "RESERVE" and "ALL OTHER" clauses
are syntactically recognized but are otherwise non-functional.

15 February 2018 Chapter 5 - ENVIRONMENT DIVISION



110 GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide

The "SELECT" statement creates a definition of a file and links that COBOL definition to
the external operating system environment.

1. The reserved words "AREAS", "IS", "MODE", "OTHER", "SEQUENCE", "TO", "USING" and
"WITH" are optional and may be included, or not, at the discretion of the programmer.
The presence or absence of these words has no effect upon the program.

2. After <file-name-1>, the various clauses may be coded in any sequence.
3. A period must follow the last coded clause.

4. The "OPTIONAL" clause, to be used only for files that will be used to provide input data
to the program, indicates the file may or may not actually be available at run-time.
Attempts to "OPEN" an "OPTIONAL" file when the file does not exist will receive a special
non-fatal file status value (see status 05 in the list of file status values below) indicating
the file is not available; a subsequent attempt to "READ" that file will return an "AT
END" (end-of-file) condition. Optionally, files may be designated as "NOT OPTIONAL",
if desired. This is useful when specifying the compiler’s "-foptional-file" switch,
which automatically makes all files "OPTIONAL" except for those explicitly declared as
"NOT OPTIONAL".

5. The <file-name-1> value that you specify will be the name by which you will reference
the file within your program. This name should be formed according to the rules for
user-defined names (see [User-Defined Words], page 9).

6. The optional "ASSIGN" clause specifies how — at runtime, when <file-name-1> is
opened — either a logical device (STDIN, STDOUT) or a file anywhere in one of
the currently-mounted file systems will be associated with <file-name-1>, as follows:

A. There are three components to the "ASSIGN" clause — a <<Type>> specification
("EXTERNAL", "DYNAMIC" or neither), a <<Dewvice>> (the list of device choices) and
a <<Locator>> (shown as a choice between <identifier-1>, <word-1> and <literal-
1>).

B. "ASSIGN TO DISC ’<file-name-1>’" will be assumed if there is no "ASSIGN"
clause on a "SELECT".

C. If an "ASSIGN" clause is coded without a <<Device>>, the device "DISC" will be
assumed.

D. If a <<Locator>> clause is coded, the COBOL file <file-name-1> will be attached
to a data file within any file system that is mounted and available to the executing
program at the time <file-name-1> is opened. How that file is identified varies,
depending upon the specified <<Locator>>, as follows:

a. If <literal-1> is coded, the value of the literal will serve as the File Location
String that will identify the data file.

b. If <identifier-1> is coded, the value of the identifier will serve as the File
Location String that will identify the data file.

c. If <word-1> (a syntactically valid word not duplicating that of a reserved

Chapter 5 - ENVIRONMENT DIVISION 15 February 2018



GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide 111

d.

or user-defined word) is coded, and a <<Type>> of "EXTERNAL" is specified,
<word-1> itself will serve as the File Location String that will identify the data
file. If, however, a <<Type>> of "EXTERNAL" was not specified, the compiler
will create a "PIC X(1024)" data item named <word-1> within the program;
the contents of that data item at the time the program opens <file-name-1>
will then serve as the File Location String that will identify the data file.

File Location Strings will be discussed shortly.

E. If no <<Locator>> is coded, <file-name-1> will be attached to a logical device or a
file based upon the specified (or implied) <<Device>>, as follows:

a.

"DISC" or "DISK" will assume an attachment to a file named <file-name-1>
in whatever directory is current at the time the file is opened.

"DISPLAY" will assume an attachment to the "STDOUT" logical device; these
files should only be used for output.

"KEYBOARD" will assume an attachment to the "STDIN" logical device; these
files should only be used for input.

"PRINTER" will assume an attachment to the "LPT1" logical device/port; these
files should only be used for output.

"RANDOM" or "TAPE" will behave exactly as "DISC" does. These two additional
<< Device>>s are provided to facilitate the compilation of COBOL source from
other COBOL implementations.

F. The "LINE ADVANCING" device requires that a <<Locator>> be specified; these files
should only be used for output. A COBOL Line Advancing file will allow carriage-
control characters such as line-feeds and form-feeds to be written to the attached
operating system file, via the "ADVANCING" clause of the "WRITE" statement (see
[WRITE], page 402).

G. File Location Strings are used (at runtime) to identify the path and filename to
the data file that must be attached to <file-name-1> when that file is opened.

H. If the compiler "config" file you used to compile the program with had a "filename-
mapping" value of "yes", the GnuCOBOL runtime system will first attempt to
identify a currently-defined environment variable whose value will serve as the
data file’s path and filename, as follows:

a.

If the compiler "config" file (see [Compiler Configuration Files|, page 619) you
used to compile the program specified "mf" as the "assign-clause" value, then
the File Locator String will be interpreted according to Microfocus COBOL

rules — namely, everything before the last "-" in the File Locator String
will be ignored; the characters after the last "-" will be treated as the base
of an environment variable name. If there is no "-" character in the File

Locator String then the entire File Locator String will serve as the base of an
environment variable name. This is the default behaviour for every config file
except "ibm".

15 February 2018 Chapter 5 - ENVIRONMENT DIVISION



112 GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide

b. If, on the other hand, the compiler "config" file you used to compile the
program specified "mf" as the "assign-clause" value, then the File Locator
String will be interpreted according to according to IBM COBOL rules —
namely, the File Locator String is expected to be of the form "S-xxx" or "AS-
xxx", in which case the "xxx" will be treated as the base of an environment

variable name. If there is no "-" character in the File Locator String then the
entire File Locator String will serve as the base of an environment variable
name.

c. Once an environment variable name base (let’s refer to it as "bbbb") has been
determined, the runtime system will look for the first one of the following
environment variables that exists, in this sequence:

DD_bbbb
dd_bbbb
bbbb

Windows systems are case-insensitive with regard to environment variables,
so there is no difference between the first two when using a GnuCOBOL
implementation built for either Windows/MinGW or native Windows.

If an environment variable was found, it’s value will serve as the path and
filename to the data file.

I. If no environment variable was found, or the "config" file used to compile the
program had a "filename-mapping" value of "no", then the File Locator String
value will serve as the path and filename to the data file.

J. Paths and file names may be specified on an absolute ("C:\Data\datafile.dat",
"/Data/datafile.dat", o) or relative-to-the-current-directory
("Data\datafile.dat", "Data/datafile.dat", ...) basis.

There may not even be a path ("datafile.dat"), in which case the file must be
in the current directory.

7. The "FILE STATUS" or "SORT STATUS" clause (they are both equivalent and only one
or the other, if any, should be specified) is used to specify the name of a two-digit
numeric data item into which an I/O status code will be saved after every I/O verb
that is executed against the file. This does not actually allocate the data item — you
must define the item yourself somewhere in the data division.

Possible status codes that can be returned to a "FILE STATUS" data item are as follows:

Code Explanation

00 Success

02 Success (Duplicate Record Key Written)
05 Success (Optional File Not Found)

07 Success (No Unit)

Chapter 5 - ENVIRONMENT DIVISION 15 February 2018



GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide 113

10

14
21
22
23
30
31
34
35
37
38
39
41
42
43
44
46
47
48
49
o1
52
57
61
91

End of file reached if reading forward or beginning-of-file reached if reading
backward

Out of key range

Key invalid

Attempt to duplicate key value

Key not found

Permanent I/O error

Inconsistent filename

Boundary violation

File not found

Permission denied

Closed with lock

Conflicting attribute

File already open

File not open

Read not done

Record overflow

Read error

"OPEN INPUT" denied (insufficient permissions to read file)
"OPEN OUTPUT" denied (insufficient permissions to write to file)
"OPEN I-0" denied (insufficient permissions to read and/or write file)
Record locked

End of page

"LINAGE" specifications invalid

File sharing failure

File not available

8. The "SHARING" clause defines the conditions under which the program will be willing
(or not) to allow other programs executing at the same time to access the file. See [File
Sharing], page 62, for the details.

9. The "LOCK" clause defines how concurrent access to the file will be managed on a
record-by-record basis. See [Record Locking], page 64, for the details.

10. A "SELECT" statement without an "ORGANIZATION" explicitly coded will be handled
as if the following ORGANIZATION clause had been specified:

ORGANIZATION IS SEQUENTIAL

ACCESS MODE IS SEQUENTIAL

15 February 2018 Chapter 5 - ENVIRONMENT DIVISION



114

GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide

5.2.1.1. ORGANIZATION SEQUENTIAL

[

ORGANIZATION SEQUENTIAL Clause Syntax

[ ORGANIZATION|ORGANISATION IS ] RECORD BINARY SEQUENTIAL

Files declared as "ORGANIZATION SEQUENTIAL" will consist of records with no explicit end-
of-record delimiter character sequences; records in such files are "delineated" by a calculated
byte-offset (based on the maximum record length) into the file.

1.

The reserved words "BINARY", "IS", "MODE" and "RECORD" are optional and may be
included, or not, at the discretion of the programmer. The presence or absence of these
words has no effect upon the program.

The reserved words "ORGANIZATION" and "ORGANISATION" are interchangeable.

The phrase "ORGANIZATION IS" (and it’s internationalized alternative, "ORGANISATION
IS") is optional to provide compatibility with those (few) COBOL implementations
that consider "ORGANIZATION" to be optional. Most COBOL implementations do re-
quire the word "ORGANIZATION", so it should be used in new programs.

These files cannot be prepared with any standard text-editing or word processing soft-
ware as all such programs will embed delimiter characters at the end of records (use
"ORGANIZATION IS LINE SEQUENTIAL" instead).

These files may contain either "USAGE DISPLAY" or "USAGE COMPUTATIONAL" (of any
variety) data since no binary data sequence can be accidentally interpreted as an end-
of-record delimiter.

While records in a "ORGANIZATION SEQUENTIAL" file may be defined as having variable-
length records, the file will be structured in such a manner as to reserve space for each
record equal to the size of the largest possible record, based on the file’s description in
the "FILE SECTION".

The "ACCESS MODE SEQUENTIAL" clause is optional because, if absent, it will be as-
sumed anyway for this type of file. The internal structure of these files is such that
they can only be processed in a sequential manner; in order to read the 100th record
in such a file, for example, you first must read records 1 through 99.

Sequential files are processed using the following statements:

e "CLOSE" (see [CLOSE], page 286)
e "COMMIT" (see [COMMIT], page 287)
e "DELETE" (see [DELETE], page 291)

Chapter 5 - ENVIRONMENT DIVISION 15 February 2018



GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide 115

e "MERGE" (see [MERGE], page 333)

e "OPEN" (see [OPEN], page 342)

e "READ" (see [READ], page 350)

e "REWRITE" (see REWRITE], page 359)
e "SORT" (see [SORT], page 376)

e "UNLOCK" (see [UNLOCK], page 397)

e "WRITE" (see [WRITE], page 402)

15 February 2018 Chapter 5 - ENVIRONMENT DIVISION



116 GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide

5.2.1.2. ORGANIZATION LINE SEQUENTIAL

[ ORGANIZATION LINE SEQUENTIAL Clause Syntax

[ ORGANIZATION|ORGANISATION IS ] LINE SEQUENTIAL

[ PADDING CHARACTER IS literal-1 | identifier-1 ]

The "PADDING CHARACTER" clause is syntactically recognized but is otherwise
non-functional.

Files declared as "ORGANIZATION LINE SEQUENTIAL" will consist of records terminated by
an end-of-record delimiter character or character sequence.

1. The reserved words "CHARACTER", "IS" and "MODE" are optional and may be included,
or not, at the discretion of the programmer. The presence or absence of these words
has no effect upon the program.

2. The reserved words "ORGANIZATION" and "ORGANISATION" are interchangeable.

3. The phrase "ORGANIZATION IS" (and it’s internationalized alternative, "ORGANISATION
IS") is optional to provide compatibility with those (few) COBOL implementations
that consider that word to be optional. Most COBOL implementations do require the
word "ORGANIZATION", so it should be used in new programs.

4. This is the only "ORGANIZATION" valid for files that are assigned to the "PRINTER"
device.

5. These files may be created with any standard text-editing or word processing software
capable of writing text files. Such files should not contain any "USAGE COMPUTATIONAL"
or "BINARY" (of any variety) data since such fields could accidentally contain byte
sequences that could be interpreted as an end-of-record delimiter.

6. Both fixed- and variable-length record formats are supported.

7. The end-of-record delimiter sequence will be X’0A’ (an ASCII line-feed character) or a
X’0D0A’ (an ASCII carriage-return + line-feed sequence). The former is used on Unix
implementations of GnuCOBOL (including Windows/MinGW, Windows/Cygwin and
OSX implementations) while the latter would be used with native Windows implemen-
tations.

8. When reading a "LINE SEQUENTIAL" file, records in excess of the size implied by the
file’s description in the "FILE SECTION" will be truncated while records shorter than
that size will be padded to the right with "SPACES".

Chapter 5 - ENVIRONMENT DIVISION 15 February 2018



GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide 117

9. The "ACCESS MODE SEQUENTIAL" clause is optional because, if absent, it will be as-
sumed anyway for this type of file. The internal structure of these files is such that the
data can only be processed in a sequential manner; in order to read the 100th record
in such a file, for example, you first must read records 1 through 99.

10. Files assigned to "PRINTER" or "CONSOLE" should be specified as "ORGANIZATION LINE
SEQUENTIAL".

11. Line Sequential files are processed using the following statements:

"CLOSE" (see [CLOSE], page 286)
"COMMIT" (see [COMMIT], page 287)
"DELETE" (see [DELETE], page 291)
"MERGE" (see [MERGE], page 333)
"OPEN" (see [OPEN], page 342)

"READ" (see [READ], page 350)
"REWRITE" (sce [REWRITE], page 359)
"SORT" (see [SORT], page 376)
"UNLOCK" (see [UNLOCK], page 397)
"WRITE" (see [WRITE], page 402)

15 February 2018

Chapter 5 - ENVIRONMENT DIVISION



118

GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide

5.2.1.3. ORGANIZATION RELATIVE

:

ORGANIZATION RELATIVE Clause Syntax

[ ORGANIZATION|ORGANISATION IS ] RELATIVE

~~~~~~ S e
{ DYNAMIC }
{ ~w~ - }
{ RANDOM }

These files are files with an internal organization such that records may be processed in a
sequential manner based upon their physical location in the file or in a random manner by
allowing records to be read, written or updated by specifying the relative record number in

the

file.

The reserved words "IS", "KEY" and "MODE" are optional and may be included, or not,
at the discretion of the programmer. The presence or absence of these words has no
effect upon the program.

The reserved words "ORGANIZATION" and "ORGANISATION" are interchangeable.

The phrase "ORGANIZATION IS" (and it’s internationalized alternative, "ORGANISATION
IS") is optional to provide compatibility with those (few) COBOL implementations
that consider that word to be optional. Most COBOL implementations do require the
word "ORGANIZATION", so it should be used in new programs.

"ORGANIZATION RELATIVE" files cannot be assigned to the "CONSOLE", "DISPLAY",
"LINE ADVANCING" or "PRINTER" devices.

The "RELATIVE KEY" clause is optional only if "ACCESS MODE SEQUENTIAL" is specified.

While an "ORGANIZATION RELATIVE" file may be defined as having variable-length
records, the file will be structured in such a manner as to reserve space for each record
equal to the size of the largest possible record as defined by the file’s description in the
"FILE SECTION".

"ACCESS MODE SEQUENTIAL", the default "ACCESS MODE" if none is specified, indicates
that the records of the file will be processed in a sequential manner, according to their
physical sequence in the file.

"ACCESS MODE RANDOM" means that records will be processed in random sequence by
specifying their record number in the file every time the file is read or written.

Chapter 5 - ENVIRONMENT DIVISION 15 February 2018

GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide 119

9. "ACCESS MODE DYNAMIC" indicates the program may switch back and forth between
"SEQUENTIAL" and "RANDOM" mode during execution. The file starts out initially in
"SEQUENTIAL" mode when first opened but the program may use the "START" statement
(see [START], page 382) to switch between sequential and random access.

10. The "RELATIVE KEY" data item is a numeric data item that cannot be defined as a field
within records of this file. Its purpose is to return the current relative record number
of a relative file that is being processed in "SEQUENTIAL" access mode and to serve as
a key that specifies the relative record number to be read or written when processing
a relative file in "RANDOM" access mode.

11. Relative files are processed using the following statements:

e "CLOSE" (see [CLOSE], page 286)

e "COMMIT" (see [COMMIT], page 287)

e "DELETE" (sece [DELETE], page 291)

e "MERGE" (see [MERGE], page 333), "ACCESS MODE RANDOM" not allowed
e "OPEN" (see [OPEN], page 342)

e "READ" (see [READ], page 350)

e "REWRITE" (see [REWRITE], page 359)

e "SORT" (see [SORT], page 376), "ACCESS MODE RANDOM" not allowed
e "START" (see [START], page 382)

e "UNLOCK" (see [UNLOCK], page 397)

e "WRITE" (see [WRITE], page 402)

15 February 2018 Chapter 5 - ENVIRONMENT DIVISION

120 GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide

5.2.1.4. ORGANIZATION INDEXED

[ORGANIZATION INDEXED Clause Syntax

[ORGANIZATION|ORGANISATION IS] INDEXED

”””””” { ~wrmmmmmm
{ DYNAMIC }
{ e 3
{ RANDOM X
[RECORD KEY IS { [data-name-1 1

{ [record-key-name-1]
[=|{SOURCE IS} data-name-2] ... 1 }

[ALTERNATE RECORD KEY IS { [data-name-3]

{ [record-key-name-2]
[=|{SOURCE IS} data-name-4] ... 1 }

Indexed files, like relative files, may have their records processed in either a sequential or
random manner. Unlike relative files, however, the actual location of a record in an indexed
file is calculated automatically based upon the value(s) of one or more alphanumeric fields
within records of the file. For example, an indexed file containing product data might use
the product identification code as a record key. This means you may read, write or update
the "A6G4328"th record or the "Z8X7723"th record directly, based upon the product id
value of those records!

1. The reserved words "IS", "KEY" and "MODE" are optional and may be included, or not,
at the discretion of the programmer. The presence or absence of these words has no
effect upon the program.

2. The reserved words "ORGANIZATION" and "ORGANISATION" are interchangeable.

3. The phrase "ORGANIZATION IS" (and it’s internationalized alternative, "ORGANISATION
IS") is optional to provide compatibility with those (few) COBOL implementations

Chapter 5 - ENVIRONMENT DIVISION 15 February 2018

GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide 121

10.

11.

12.

that consider that word to be optional. Most COBOL implementations do require the
word "ORGANIZATION", so it should be used in new programs.

"ORGANIZATION INDEXED" files cannot be assigned to "CONSOLE", "DISPLAY",
"KEYBOARD", "LINE ADVANCING" or "PRINTER".

"ACCESS MODE SEQUENTIAL", the default "ACCESS MODE" if none is specified, indicates
that the records of the file will be processed in a sequential manner with respect to the
values of the "RECORD KEY" or the "ALTERNATE RECORD KEY" most-recently referenced
on a "START" statement (see [START], page 382).

"ACCESS MODE RANDOM" means that records will be processed in random sequence by
accessing the record with specific record key or alternate record key values.

"ACCESS MODE DYNAMIC" allows the file will be processed either in "RANDOM" or
"SEQUENTIAL" mode; the program may switch between the two modes as needed. The
"START" statement is used to make the switch between modes.

The "RECORD KEY" clause defines the field within the record used to provide the primary
access to records within the file. No two records in the file will be allowed to have the
same "PRIMARY KEY" field value. The "SOURCE IS" clause is for use with "Split
Keys".

The "ALTERNATE RECORD KEY" clause, if used, defines an additional field within the
record that provides an alternate means of directly accessing records or an additional
field by which the file’s contents may be processed sequentially. You have the choice of
allowing records to have duplicate alternate key values, if necessary.

There may be multiple "ALTERNATE RECORD KEY" clauses, each defining an additional
alternate key for the file.

Usage of the "SUPPRESS WHEN" clause is used when "Sparse Keys" are required which
may take the form for a literal or spaces or zeroes.

Indexed files are processed using the following statements:

e "CLOSE" (see [CLOSE], page 286)

e "COMMIT" (see [COMMIT], page 287)

e "DELETE" (see [DELETE], page 291)

e "MERGE" (see [MERGE], page 333), "ACCESS MODE RANDOM" not allowed
e "OPEN" (see [OPEN], page 342)

e "READ" (see [READ], page 350)

e "REWRITE" (see [REWRITE], page 359)

e "SORT" (see [SORT], page 376), "ACCESS MODE RANDOM" not allowed

e "START" (see [START], page 382)

e "UNLOCK" (see [UNLOCK], page 397)

15 February 2018 Chapter 5 - ENVIRONMENT DIVISION

122 GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide

e "WRITE" (see [WRITE], page 402)

Chapter 5 - ENVIRONMENT DIVISION 15 February 2018

GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide 123

5.2.2. SAME RECORD AREA

:

I-0-CONTROL SAME AREA Syntax }
SAME { SORT-MERGE } AREA FOR file-name-1...
AN S X
{ SORT }
{ }
{ RECORD }

The "SAME SORT-MERGE" and "SAME SORT" clauses are syntactically recognized but are
otherwise non-functional.

The "SAME RECORD AREA" clause allows you to specify that multiple files should share the
same input and output memory buffers.

1. The reserved words "AREA" and "FOR" are optional and may be included, or not, at

the discretion of the programmer. The presence or absence of these words has no effect
upon the program.

. This statement must be terminated with a period.

. While coding only a single file name (the repeated <file-name-1> item) is syntactically

valid, this statement will have no effect upon the program unless at least two files are
specified.

. The effect of this statement will be to cause the specified files to share the same 1/0O

buffer in memory. These buffers can sometimes get quite large, and by having multiple
files share the same buffer memory you may significantly cut down the amount of
memory the program is using (thus making "room" for more procedural code or data).
If you do use this feature, take care to ensure that no more than one of the specified
files are ever OPEN simultaneously.

15 February 2018 Chapter 5 - ENVIRONMENT DIVISION

124 GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide

5.2.3. MULTIPLE FILE

[I-O-CONTROL MULTIPLE FILE Syntax }

MULTIPLE FILE TAPE CONTAINS

The "MULTIPLE FILE TAPE" clause is obsolete and is therefore recognized but not func-
tional.

End of Chapter 5 — ENVIRONMENT DIVISION

Chapter 5 - ENVIRONMENT DIVISION 15 February 2018

GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide 125

6. DATA DIVISION

[DATA DIVISION Syntax }

DATA DIVISION.

{ File/Sort-Description [{ FILE-SECTION-Data-Item } J...]
{ { 01-Level-Constant }
{ { 78-Level-Constant }

{ 01-Level-Constant
{ 78-Level-Constant
[WORKING-STORAGE SECTION.

N

[{ WORKING-STORAGE-SECTION-Data-Item } 1... 1]
{ 01-Level-Constant }
{ 78-Level-Constant }

[LOCAL-STORAGE SECTION.

[{ LOCAL-STORAGE-SECTION-Data-Item } ...]
{ 01-Level-Constant }
{ 78-Level-Constant }

[LINKAGE SECTION.

[{ LINKAGE-SECTION-Data-Item } J... 1]
{ 01-Level-Constant }
{ 78-Level-Constant T

[REPORT SECTION.

{ Report-Description [{ Report-Group-Definition } J... }... 1]
{ { 01-Level-Constant } }
{ { 78-Level-Constant } }
{ 01-Level-Constant }
{ 78-Level-Constant }
[SCREEN SECTION.
[{ SCREEN-SECTION-Data-Item }]...]
{ 01-Level-Constant }
{ 78-Level-Constant }

All data used by any COBOL program must be defined in one of the six sections of the
data division, depending upon the purpose of the data.

15 February 2018 Chapter 6 - DATA DIVISION

126 GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide

1. If no data will be described in one of the data division sections, that section header
may be omitted.

2. If no data division sections are needed, the "DATA DIVISION." header itself may be
omitted.

3. If more than one section is needed in the data division (a common situation), the
sections must be coded in the sequence they are presented above.

6.1. Data Definition Principles

GnuCOBOL data items, like those of other COBOL implementations, are described in a
hierarchical manner. This accommodates the fact that data items frequently need to be
able to be broken up into subordinate items. Take for example, the following logical layout
of a portion of a data item named "Employee":

Employee
| | » additional data items ...
Employee-Name Employment-Dates
l |
I | | | |
Last-Name First-Name Middle-Initial From-Date To-Date

!—VJ—\!—‘—\

Year Month Day Year Month Day

The "Employee" data item consists of two subordinate data items — an "Employee-Name"
and an "Employment-Dates" data item (presumably there would be a lot of others too, but
we don’t care about them right now). As the diagram shows, each of those data items are,
in turn, broken down into subordinate data items. This hierarchy of data items can get
rather "deep", and GnuCOBOL, like other COBOL implementations, can handle up to 49
levels of such hierarchical structures.

As was presented earlier (see [Structured Data], page 14), a data item that is broken down
into other data items is referred to as a group item, while one that isn’t broken down is
called an elementary item.

COBOL uses the concept of a "level number" to indicate the level at which a data item
occurs in a data structure such as the example shown above. When these data items are
defined, they are all defined together with a number in the range 1-49 specified in front of
their names. Over the years, a convention has come to exist among COBOL programmers
that level numbers are always coded as two-digit numbers — they don’t have to be specified
as two-digit numbers, but every example you see in this document will take that approach!

Chapter 6 - DATA DIVISION 15 February 2018

GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide 127

The data item at the top, also referred to as a "record", always has a level number of 01.
After that, you may assign level numbers as you wish (01-02-03-04. .., 01-05-10-15. . .,
etc.), as long as you follow these simple rules:

1. Every data item at the same "level" of a hierarchy diagram such as the one you see
here (if you were to make one, which you rarely — if ever — will, once you get used to
this concept) must have the same level number.

2. Every new level uses a level number that is strictly greater than the one used in the
parent (next higher) level.

3. When describing data hierarchies, you may never use a level number greater than 49
(except for 66, 77, 78 and 88 which have very special meanings — see see [Special Data
Items], page 154).

So, the definition of these data items in a GnuCOBOL program would go something like
this:

01 Employee
05 Employee-Name
10 Last-Name
10 First-Name
10 Middle-Initial
05 Employment-Dates
10 From-Date
15 Year
15 Month
15 Day
10 To-Date
15 Year
15 Month
15 Day

The indentation is purely at the discretion of the programmer to make things easier for
humans to read (the compiler couldn’t care less). Historically, COBOL implementations
that required Fixed Format Mode source programs required that the "01" level number
begin in Area A and that everything else begins in Area B. GnhuCOBOL only requires that
all data definition syntax occur in columns 8-72. In Free Format Mode, of course, there
aren’t even those limitations.

Did you notice that there are two each of "Year", "Month" and "Day" data names defined?
That’s perfectly legal, provided that each can be uniquely "qualified" so as to be dis-
tinct from the other. Take for example the "Year" items. One is defined as part of the
"From-Date" data item while the other is defined as part of the "To-Date" data item. In
COBOL, we would actually code references to these two data items as either "Year OF
From-Date" and "Year OF To-Date" or "Year IN From-Date" and "Year IN To-Date"
(COBOL allows either "IN" or "OF" to be used). Since these references would clarify any

15 February 2018 Chapter 6 - DATA DIVISION

128 GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide

confusion to us as to which "Year" might be referenced, the GnuCOBOL compiler won’t
be confused either.

The coding example shown above is incomplete — it only describes the data item names
and their hierarchical relationships to one other. In addition, any valid data item definitions
will also need to describe what type of data is to be contained in a data item (Numeric?
Alphanumeric? Alphabetic?), how much data can be held in the data item and a multitude
of other characteristics.

When group items are being defined, subordinate items may be assigned a "name" of
"FILLER". There may be any number of "FILLER" items defined within a group item.
A data item named "FILLER" cannot be referenced directly; these items are generally used
to specify an unused portion of the total storage allocated to a group item. Note that it is
possible that the name of the group item itself might be specified as "FILLER" if there is
no need to ever refer directly to the group structure itself.

Chapter 6 - DATA DIVISION 15 February 2018

GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide 129

6.2. FILE SECTION

{ FILE SECTION Syntax

[FILE SECTION.

{ File/Sort-Description [{ FILE-SECTION-Data-Item } J... }...]
{ { 01-Level-Constant } }
{ { 78-Level-Constant } }
{ 01-Level-Constant }
{ 78-Level-Constant }

Every file that has been referenced by a "SELECT" statement (see [SELECT], page 109)
must also be described in the file section of the data division.

Files destined for use as sort/merge work files must be described with a Sort/Merge File
Description ("SD") while every other file is described with a File Description ("FD"). Each
of these descriptions will almost always be followed with at least one record description.

15 February 2018 Chapter 6 - DATA DIVISION

130 GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide

6.2.1. File/Sort-Description

[File/Sort-Description Syntax

FD|SD file-name-1 [IS EXTERNAL|GLOBAL]

[BLOCK CONTAINS [integer-1 TO] integer-2 CHARACTERS|RECORDS]

[CODE-SET IS alphabet-name-1]
[DATA { RECORD IS } identifier-1... 1]

R S }
{ RECORDS ARE }

[LABEL { RECORD IS } OMITTED|STANDARD]

[LINES AT TOP integer-5 | identifier-4]

[WITH FOOTING AT integer-6 | identifier-5]]

[RECORD { CONTAINS [integer-7 TO] integer-8 CHARACTERS }
”””””” { o }
{ IS VARYING IN SIZE b

{ -~ }

{ [FROM [integer-7 TO] integer-8 CHARACTERS }

{ o }

{ }

]

DEPENDING ON identifier-6]

[{ REPORT IS } report-name-1...]
{ }

Chapter 6 - DATA DIVISION 15 February 2018

GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide 131

The "BLOCK CONTAINS", "DATA RECORD", "LABEL RECORD", "RECORDING MODE" and
"VALUE OF" clauses are syntactically recognized but are obsolete and non-functional.
These clauses should not be coded in new programs.

1. The reserved words "ARE", "AT", "CHARACTERS" ("RECORD" clause only), "CONTAINS",
"FROM", "IN", "IS", "ON" and "WITH" are optional and may be included, or not, at
the discretion of the programmer. The presence or absence of these words has no effect
upon the program.

2. The terms "RECORD IS" and "RECORDS ARE" are interchangeable.
3. The terms "REPORT IS" and "REPORTS ARE" are interchangeable.

4. Only files intended for use as work files for either the "SORT" (see [SORT], page 376)
or "MERGE" (see [MERGE], page 333) statements should be coded with an SD — all
others should be defined with a FD.

5. The sequence in which files are defined via "FD" or "SD", as compared to the sequence
in which their "SELECT" statements were coded, is irrelevant.

6. The name specified as <file-name-1> must exactly match the name specified on the
file’s "SELECT" statement.

7. The "CODE-SET" clause allows a custom alphabet, defined in the "SPECIAL-NAMES"
(see [SPECIAL-NAMES], page 96) paragraph, to be associated with a file. This clause
is valid only when used with sequential or line sequential files.

8. The "LINAGE" clause may only be specified in the "FD" of a sequential or line sequential
file. If used with a sequential file, the organization of that file will be implicitly changed
to line sequential. The various components of the "LINAGE" clause define the layout of
printed pages as follows:

e "LINES AT TOP" — the number of unused (i.e. left blank) lines at the top of every
page. The default if this if not specified is zero.

e "LINES AT BOTTOM" — the number of unused (i.e. left blank) lines at the bottom
of every page. The default if this if not specified is zero.

e "LINAGE IS n LINES" — the total number of used/usable lines on the page.

e The sum of the previous three specifications should be the total number of possible
lines available on one printed page.

e "FOOTING AT" — the line number beyond which nothing may be printed except
for any footing that is to appear on every page. The default for this if not specified
is zero, meaning there will be no footings. This value cannot be larger than the
"LINAGE IS n LINES" value.

9. This page structure — once defined — can be automatically enforced by the "WRITE"
statement (see [WRITE], page 402).

15 February 2018 Chapter 6 - DATA DIVISION

132

10.

11.

12.

13.

GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide

Specifying a "LINAGE" clause in an "FD" will cause the "LINAGE-COUNTER" special
register to be created for the file. This automatically-created data item will always
contain the current relative line number on the page being prepared which will serve
as the starting point for a "WRITE" statement.

The "RECORD CONTAINS" and "RECORD IS VARYING" clauses are ignored (with a warn-
ing message issued) when used with line sequential files. With other file organizations,
these mutually-exclusive clauses define the length of data records within the file. The
data item specified as <identifier-6> must be defined within one of the record descrip-
tions of <file-name-1>.

The "REPORT IS" clause announces to the compiler that the file will be dedicated to
the Report Writer Control System (RWCS); the clause names one or more reports,
each to be described in the report section. The following special rules apply when the
"REPORT" clause is used:

A. The clause may only be specified in the "FD" of a sequential or line sequential file.
If used with a sequential file, the organization of that file will be implicitly changed
to line sequential.

B. The "FD" cannot be followed by record descriptions — detailed descriptions of data
to be printed to the file will be defined in the "REPORT SECTION" (see [REPORT
SECTION], page 143).

C. If a "LINAGE" clause is also specified, Values specified for "LINAGE IS" and
"FOOTING AT" will be ignored. The values of "LINES AT BOTTOM" and "LINES
AT TOP", if any, will be honoured.

The following special rules apply only to sort/merge work files:

A. Sort/merge work files should be assigned to "DISK" (or "DISC") on their "SELECT"
statements.

B. Sorts and merges will be performed in memory, if the amount of data being sorted
allows.

C. Should actual disk work files be necessary due to the amount of data being sorted
or merged, they will be automatically allocated to disk in a folder defined by:

e The "TMPDIR" run-time environment variable (see [Run Time Environment
Variables|, page 626)

e The "TMP" run-time environment variable

e The "TEMP" run-time environment variable

(in that order)

D. These disk files will be automatically purged upon "SORT" or "MERGE" termination.
They will also be purged if the program terminates abnormally before the "SORT"
or "MERGE" finishes. Should you ever need to know, temporary sort/merge work
files will be named "cob*.tmp".

Chapter 6 - DATA DIVISION 15 February 2018

GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide 133

E. If you specify a specific filename in the sort/merge work file’s "SELECT", it will be
ignored.

14. See [Data Description Clauses], page 161, for information on the "EXTERNAL" and
"GLOBAL" options.

15 February 2018 Chapter 6 - DATA DIVISION

134 GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide

6.2.2. FILE-SECTION-Data-Item

[FILE-SECTION-Data-Item Syntax

level-number [identifier-1 | FILLER] [IS GLOBAL|EXTERNAL]

[BLANK WHEN ZERO]

[JUSTIFIED RIGHT]

[PICTURE IS picture-string]

[REDEFINES identifier-5]

[SYNCRONIZED|SYNCHRONISED [LEFT|RIGHT] 1]

[USAGE IS data-item-usage] . [FILE-SECTION-Data-Item]...

The "LEFT" and "RIGHT" (SYNCRONIZED) clauses are syntactically recognized but are
otherwise non-functional.

Every sort file description ("SD" or "FD") must be followed by at least one 0l-level data
item, except for file descriptions containing the "REPORT IS" clause. These 0l-level data
items, in turn, may be broken down into subordinate group and elementary items. An
01-level data item defined here in the file section is also known as a ’Record’, even if it is
an elementary item, provided that elementary item lacks the "CONSTANT" attribute.

1. The reserved words "BY", "IS", "KEY", "ON" and "WHEN" are optional and may be
included, or not, at the discretion of the programmer. The presence or absence of these
words has no effect upon the program.

2. The reserved words "SYNCRONIZED" and "SYNCRONIZED" are interchangeable. Both
may be abbreviated to "SYNC".

Chapter 6 - DATA DIVISION 15 February 2018

GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide 135

10.
11.

12.

The reserved word "PICTURE" may be abbreviated to "PIC".

As the syntax diagram shows, the definition of a <<FILE-SECTION-Data-Item>> is a
recursive one in that there may be any number of such specifications coded following
a FD or SD. The first such specification must have a level number of 01, and will
describe a specific format of data record within the file. Specifications that follow
that one may have level numbers greater than 01, in which case they are defining a
hierarchical breakdown of the record. The definition of a record is terminated when
one of the following occurs:

e Another 0l-level item is found — this signifies the start of another record layout
for the file.

e Another "FD" or "SD" is found — this marks the completion of the detailed de-
scription of the file and begins another.

e A division or section header is found — this also marks the completion of the
detailed description of the file and signifies the end of the file section as well.

Every <<FILE-SECTION-Data-Item>> description must be terminated with a period.

If there are multiple record descriptions present for a given "FD" or "SD", the one
with the longest length will define the size of the record buffer into which a "READ"
statement (see [READ], page 350) or a "RETURN" statement (see [RETURN], page 358)
will deliver data read from the file and from which a "WRITE" statement (see [WRITE],
page 402) or "RELEASE" statement (see [RELEASE]|, page 356) statement will obtain
the data to be written to the file.

The various 01-level record descriptions for a file description implicitly share that one
common record buffer (thus, they provide different ways to view the structure of data
that can exist within the file). Record buffers can be shared between files by using the
"SAME RECORD AREA" (see [SAME RECORD AREA], page 123) clause.

The only valid level numbers are 01-49, 66, 77, 78 and 88. Level numbers 66, 77, 78
and 88 all have special uses — See [Special Data Items], page 154, for details.

Not specifying an <identifier-1> or "FILLER" immediately after the level number has
the same effect as if "FILLER" were specified. A data item named "FILLER" cannot
be referenced directly; these items are generally used to specify an unused portion of
the total storage allocated to a group item or to describe a group item whose contents
which will only be referenced using the names of those items that belong to it.

"EXTERNAL" cannot be combined with "GLOBAL" or "REDEFINES".

File section data buffers (and therefore all 01-level record layouts defined in the file
section) are initialized to all binary zeros when the program is loaded into storage.

See [Data Description Clauses]|, page 161, for information on the usage of the various
data description clauses.

15 February 2018 Chapter 6 - DATA DIVISION

136 GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide

6.3. WORKING-STORAGE SECTION

{ WORKING-STORAGE-SECTION-Data-Item Syntax

level-number [identifier-1 | FILLER] [IS GLOBAL | EXTERNAL]

[BASED 1]

[BLANK WHEN ZERO]

[JUSTIFIED RIGHT]

[OCCURS [integer-1 TO] integer-2 TIMES

[DEPENDING ON identifier-2]

[PICTURE IS picture-string]

[REDEFINES identifier-5]

[SYNCRONIZED|SYNCHRONISED [LEFT|RIGHT] 1

[USAGE IS data-item-usage]

[VALUE IS [ALL] literal-1] . [WORKING-STORAGE-SECTION-Data-Item]...

The "LEFT" and "RIGHT" (SYNCRONIZED) clauses are syntactically recognized but are
otherwise non-functional.

The working-storage section is used to describe data items that are not part of files, screens
or reports and whose data values persist throughout the execution of the program.

1. The reserved words "BY", "CHARACTER", "IS", "KEY", "ON", "RIGHT" (JUSTIFIED),
"TIMES" and "WHEN" are optional and may be included, or not, at the discretion of the
programmer. The presence or absence of these words has no effect upon the program.

2. The reserved words "SYNCRONIZED" and "SYNCHRONISED" are interchangeable. Both
may be abbreviated as "SYNC".

Chapter 6 - DATA DIVISION 15 February 2018

GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide 137

10.

11.

The reserved word "PICTURE" may be abbreviated to "PIC".
The reserved word "JUSTIFIED" may be abbreviated to "JUST".

As the syntax diagram shows, the definition of a << WORKING-STORAGE-SECTION-
Data-Item>> is a recursive one in that there may be any number of such specifications
coded following one another. The first such specification must have a level number
of 01. Specifications that follow that one may have level numbers greater than 01, in
which case they are defining a hierarchical breakdown of a record. The definition of a
record is terminated when one of the following occurs:

e Another 0l-level item is found — this signifies the end of the definition of one
record and the start of a another.

e A T7-level item is found — this signifies the end of the definition of the record and
begins the definition of a special data item; See [77-Level Data Items], page 158,
for more information.

e A division or section header is found — this also marks the completion of a record
and signifies the end of the working-storage section as well.

Every << WORKING-STORAGE-SECTION-Data-Item>> description must be termi-
nated with a period.

The only valid level numbers are 01-49, 66, 77, 78 and 88. Level numbers 01 through
49 are used to define data items that may be part of a hierarchical structure. Level
number 01 can also be used to define a constant — an item with an unchangeable value
specified at compilation time.

Level numbers 66, 77, 78 and 88 all have special uses — See [Special Data Items],
page 154, for details.

Not specifying an <identifier-1> or "FILLER" immediately after the level number has
the same effect as if "FILLER" were specified. A data item named "FILLER" cannot
be referenced directly; these items are generally used to specify an unused portion of
the total storage allocated to a group item or to describe a group item whose contents
which will only be referenced using the names of those items that belong to it.

Data items defined within the working-storage section are automatically initialized once
— as the program in which the data is defined is loaded into memory. Subprograms may
be loaded into memory more than once (see the "CANCEL" statement (see [CANCEL],
page 285)), in which case initialization will happen each time they are loaded. See
[Data Initialization], page 27, for a discussion of the initialization rules.

See [Data Description Clauses]|, page 161, for information on the usage of the various
data description clauses.

15 February 2018 Chapter 6 - DATA DIVISION

138 GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide

6.4. LOCAL-STORAGE SECTION

{ LOCAL-STORAGE-SECTION-Data-Item Syntax

level-number [identifier-1 | FILLER] [IS GLOBAL|EXTERNAL]

[BASED]

[BLANK WHEN ZERO]

[JUSTIFIED RIGHT]

[OCCURS [integer-1 TO] integer-2 TIMES

[DEPENDING ON identifier-2]

[PICTURE IS picture-string]

[REDEFINES identifier-5]

[SYNCRONIZED|SYNCHRONISED [LEFT|RIGHT] 1

[USAGE IS data-item-usage]

[VALUE IS [ALL] literal-1] . [LOCAL-STORAGE-SECTION-Data-Item]...

The "LEFT" and "RIGHT" (SYNCRONIZED) clauses are syntactically recognized but are
otherwise non-functional.

The local-storage section is similar to working-storage, but describes data within a sub-
program that will be dynamically allocated and initialized (automatically) each time the
subprogram is executed. See [Data Initialization], page 27, for the rules of data initializa-
tion.

1. The reserved words "BY", "CHARACTER" "IS", "KEY", "ON", "RIGHT" (JUSTIFIED),
"TIMES" and "WHEN" are optional and may be included, or not, at the discretion of the
programmer. The presence or absence of these words has no effect upon the program.

Chapter 6 - DATA DIVISION 15 February 2018

GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide 139

10.
11.

The reserved words "SYNCRONIZED" and "SYNCHRONISED" are interchangeable. Both
may be abbreviated as "SYNC".

The reserved word "PICTURE" may be abbreviated to "PIC".
The reserved word "JUSTIFIED" may be abbreviated to "JUST".

As the syntax diagram shows, the definition of a <<LOCAL-STORAGE-SECTION-
Data-Item>> is a recursive one in that there may be any number of such specifications
coded following one another. The first such specification must have a level number
of 01. Specifications that follow that one may have level numbers greater than 01, in
which case they are defining a hierarchical breakdown of a record. The definition of a
record is terminated when one of the following occurs:

e Another 0l-level item is found — this signifies the end of the definition of one
record and the start of a another.

e A division or section header is found — this also marks the completion of a record
and signifies the end of the local-storage section as well.

Every <<LOCAL-STORAGE-SECTION-Data-Item>> description must be terminated
with a period.

The only valid level numbers are 01-49, 66, 77, 78 and 88. Level numbers 01 through
49 are used to define data items that may be part of a hierarchical structure. Level
number 01 can also be used to define a constant — an item with an unchangeable value
specified at compilation time.

Level numbers 66, 77, 78 and 88 all have special uses — See [Special Data Items],
page 154, for details.

Not specifying an <identifier-1> or "FILLER" immediately after the level number has
the same effect as if "FILLER" were specified. A data item named "FILLER" cannot
be referenced directly; these items are generally used to specify an unused portion of
the total storage allocated to a group item or to describe a group item whose contents
which will only be referenced using the names of those items that belong to it.

Local-storage cannot be used in nested subprograms.

See [Data Description Clauses]|, page 161, for information on the usage of the various
data description clauses.

15 February 2018 Chapter 6 - DATA DIVISION

140 GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide

6.5. LINKAGE SECTION

{ LINKAGE-SECTION-Data-Item Syntax

level-number [identifier-1 | FILLER] [IS GLOBAL|EXTERNAL]

[ANY LENGTH]

[BLANK WHEN ZERO]

[JUSTIFIED RIGHT]

[PICTURE IS picture-string]

[REDEFINES identifier-6]

[SYNCRONIZED|SYNCHRONISED [LEFT|RIGHT] 1]

[USAGE IS data-item-usage] . [LINKAGE-SECTION-Data-Item]...

The "LEFT" and "RIGHT" (SYNCRONIZED) clauses are syntactically recognized but are
otherwise non-functional.

The linkage section describes data within a subprogram that serves as either input argu-
ments to or output results from the subprogram.

1. The reserved words "BY", "CHARACTER", "IS", "KEY", "ON" and "WHEN" are optional
and may be included, or not, at the discretion of the programmer. The presence or
absence of these words has no effect upon the program.

2. The reserved words "SYNCRONIZED" and ""SYNCHRONISED"" are interchangeable. Both
may be abbreviated as "SYNC".

Chapter 6 - DATA DIVISION 15 February 2018

GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide 141

10.

11.

The reserved word "PICTURE" may be abbreviated to "PIC".
The reserved word "JUSTIFIED" may be abbreviated to "JUST".

As the syntax diagram shows, the definition of a << LINKAGE-SECTION-Data-Item>>
is a recursive one in that there may be any number of such specifications coded following
one another. The first such specification must have a level number of 01. Specifications
that follow that one may have level numbers greater than 01, in which case they are
defining a hierarchical breakdown of a record. The definition of a record is terminated
when one of the following occurs:

e Another 01-level item is found — this signifies the end of the definition of one
record and the start of a another.

e A division or section header is found — this also marks the completion of a record
and signifies the end of the linkage section as well.

Every <<LINKAGE-SECTION-Data-Item>> description must be terminated with a
period.

The only valid level numbers are 01-49, 66, 77, 78 and 88. Level numbers 01 through
49 are used to define data items that may be part of a hierarchical structure. Level
number 01 can also be used to define a constant — an item with an unchangeable value
specified at compilation time.

Level numbers 66, 77, 78 and 88 all have special uses — See [Special Data Items],
page 154, for details.

It is expected that:

A. A linkage section should occur only within a subprogram. The compiler will not
prevent its use in a main program, however.

B. All O1-level data items described within a subprogram’s linkage section should ap-
pear in a "PROCEDURE DIVISION USING" (see [PROCEDURE DIVISION USING],
page 238) or as arguments on an "ENTRY" statement.

C. Each 01-level data item described within a subprogram’s linkage section should
correspond to an argument passed on a "CALL" statement (see [CALL], page 281)
or an argument on a function call to the subprogram.

Not specifying an <identifier-1> or "FILLER" immediately after the level number has
the same effect as if "FILLER" were specified. A data item named "FILLER" cannot
be referenced directly; these items are generally used to specify an unused portion of
the total storage allocated to a group item or to describe a group item whose contents
which will only be referenced using the names of those items that belong to it. In the
linkage section, 01-level data items cannot be named "FILLER".

No storage is allocated for data defined in the linkage section; the data descriptions
there are merely defining storage areas that will be passed to the subprogram by a
calling program. Therefore, any discussion of the default initialization of such data
is irrelevant. It is possible, however, to manually allocate linkage section data items

15 February 2018 Chapter 6 - DATA DIVISION

142 GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide

that aren’t subprogram arguments via the "ALLOCATE" statement (see [ALLOCATE],
page 278) statement. In such cases, initialization will take place as per the documen-
tation of that statement.

12. See [Data Description Clauses]|, page 161, for information on the usage of the various
data description clauses.

Chapter 6 - DATA DIVISION 15 February 2018

GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide 143

6.6. REPORT SECTION

{ REPORT SECTION Syntax

[REPORT SECTION.

{ Report-Description [{ Report-Group-Definition }]... }... 1]
{ { 01-Level-Constant } }
{ { 78-Level-Constant } }
{ 01-Level-Constant }
{ 78-Level-Constant }

[Report-Description (RD) Syntax

RD report-name [IS GLOBAL]

[CODE IS literal-1 | identifier-1]

[{ CONTROL IS } { FINAL oo]
{) S }
{ CONTROLS ARE } { identifier-2 }

[PAGE [{ LIMIT IS }] [{ literal-2 } LINES]
R B } { identifier-3 } ~~~~

[literal-3 | identifier-4 COLUMNS|COLS]

[HEADING IS literal-4 | identifier-5]

[FIRST DE|DETAIL IS literal-5 | identifier-6]

[LAST CH|{CONTROL HEADING} IS literal-6 | identifier-7 1]

[LAST DE|DETAIL IS literal-7 | identifier-8]

[FOOTING IS literal-8 | identifier-9]]

This section describes the layout of printed reports as well as many of the functional aspects
of the generation of reports that will be produced via the Report Writer Control System.

15 February 2018 Chapter 6 - DATA DIVISION

144 GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide

It is important to maintain the order of these clauses and ensure that all fields defined or
referenced with this section are actually defined in the WORKING-STORAGE SECTION
and not elsewhere.

1. The reserved words "ARE" and "IS" are optional and may be included, or not, at the
discretion of the programmer. The presence or absence of these words has no effect
upon the program.

2. The phrases "CONTROL IS" and "CONTROLS ARE" are interchangeable, as are the "PAGE
LIMIT" and "PAGE LIMITS" phrases.

3. The reserved word "LINES" may be abbreviated as "LINE".
4. The reserved word "COLUMNS" may be abbreviated as "COLS".

5. Each report referenced on a "REPORT IS" clause (see [File/Sort-Description], page 130)
must be described with a report description ("RD").

6. See [GLOBAL], page 182, for information on the "GLOBAL" option.

7. Please see [Report Writer Features|, page 26, if you have not read it already. This will
familiarize you with the Report Writer terminology that will follow.

8. The following rules pertain to the "PAGE LIMITS" clause:

A. If no "PAGE LIMITS" clause is specified, the entire report will be generated as if it
consists of a single arbitrarily long page.

B. Allliterals (<literal-2> through <literal-8>) must be numeric with non-zero positive
integer values.

C. All identifiers (<identifier-2> through <identifier-8>) must be numeric, unedited
with non-zero positive integer values.

D. Any value specified for <literal-2>|<identifier-2> will define the total number
of available lines on any report page, not counting any unused margins at the
top and/or bottom of the page (defined by the "LINES AT TOP" and "LINES AT
BOTTOM" values specified on the "LINAGE" clause of the "FD" this "RD" is linked to
— see [File/Sort-Description|, page 130).

E. Any value specified for <literal-3>|<identifier-3> will be ignored.

F. The "HEADING" clause defines the first line number at which a report heading or
page heading may be presented.

G. The "FIRST DETAIL" clause defines the first line at which a detail group may be
presented.

H. The "LAST CONTROL" HEADING clause defines the last line at which any line of
a control heading may be presented.

I. The "LAST DETAIL" clause defines the last line at which any line of a detail group
may be presented.

Chapter 6 - DATA DIVISION 15 February 2018

GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide 145

The "FOOTING" clause defines the last line at which any line of a control footing
group may be presented.

The following rules establish default values for the various "PAGE LIMIT" clauses,
assuming there is one:

e "HEADING" — the default is one (1)

e "FIRST DETAIL" — the HEADING value is used

e "LAST CONTROL HEADING" — the value from "LAST DETAIL" or, if that is
absent, the value from "FOOTING" or, if that too is absent, the value from
"PAGE LIMIT"

e "LAST DETAIL" — the value from "FOOTING" or, if that is absent, the value
from "PAGE LIMIT"

e "FOOTING" — the value from "LAST DETAIL" or, if that is absent, the value
from "PAGE LIMIT"

For the values specified on a "PAGE LIMIT" clause to be valid, all of the following
must be true:

e "HEADING" not > "FIRST DETAIL"

e "FIRST DETAIL" not > "LAST CONTROL HEADING"
e "LAST CONTROL HEADING" not > "LAST DETAIL"
e "LAST DETAIL" not > "FOOTING"

9. The following rules pertain to the "CONTROL" clause:

A.

If there is no "CONTROL" clause, the report will contain no control breaks; this
implies that there can be no "CONTROL HEADING" or "CONTROL FOOTING" report
groups defined for this "RD".

Include the reserved word "FINAL" if you want to include a special control heading
before the first detail line is generated ("CONTROL HEADING FINAL") or after the
last detail line is generated ("CONTROL FOOTING FINAL").

If you specify "FINAL", it must be the first control break named in the "RD".

Any <identifier-9> specifications included on the "CONTROL" clause are referencing
data names defined in any data division section except for the report section.

There must be a "CONTROL HEADING" and/or "CONTROL FOOTING" report group
defined in the report section for each <identifier-9>.

At execution time:
e Each time a "GENERATE" statement (see [GENERATE], page 313) is executed

against a detail report group defined for this "RD", the RWCS will check the
contents of each <identifier-2> data item; whenever an <identifier-9>’s value

15 February 2018 Chapter 6 - DATA DIVISION

146 GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide

has changed since the previous GENERATE, a control break condition will
be in effect for that <identifier-2>.

e Once the list of control breaks has been determined, the "CONTROL FOOTING"
for each <identifier-2> having a control break (if any such report group is
defined) will be presented.

e Next, the "CONTROL HEADING" for each <identifier-2> having a control break
(if any such report group is defined) will be presented.

e The "CONTROL FOOTING" and "CONTROL HEADING" report groups will be pre-
sented in the sequence in which they are listed on the "CONTROL" clause.

e Only after this processing has occurred will the detail report group specified
on the "GENERATE" be presented.
10. Each "RD" will have the following allocated for it:

A. The "PAGE-COUNTER" special register (see [Special Registers|, page 255), which
will contain the current report page number.

e This register will be set to a value of 1 when an "INITIATE" statement (see
[INITIATE], page 326) is executed for the report and will be incremented by
1 each time the RWCS starts a new page of the report.

e References to "PAGE-COUNTER" within the report section will be implicitly
qualified with the name of the report to which the report group referencing
the register belongs.

e References to "PAGE-COUNTER" in the procedure division must be qualified
with the appropriate report name if there are multiple "RD"s defined.

B. The "LINE-COUNTER" special register , which will contain the current line number
on the current page.

11. The "RD" must be followed by at least one 01-level report group definition.

Chapter 6 - DATA DIVISION 15 February 2018

GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide 147

6.6.1. Report Group Definitions

[Report-Group-Definition Syntax

01 [identifier-1]

[LINE NUMBER IS { integer-1 [[ON NEXT PAGE] }]

T <« Tmmmommnn }
{ +|PLUS integer-1 }
{ = }
{ ON NEXT PAGE }
[NEXT GROUP IS { [+|PLUS] integer-2 }]
””””””””” { T }
{ NEXT|{NEXT PAGE}|PAGE }
[TYPE IS { RH|{REPORT HEADING} +]
T { ~ ~rmmmm ommmmmes }
{ PH|{PAGE HEADING} }
{ =rmm o }
{ CH|{CONTROL HEADING} FINAL|identifier-2 }
{7~ rrmmmmm ommmmmsn mmees }
{ DE|DETAIL }
{ " ~7 }
{ CF|{CONTROL FOOTING} FINAL|identifier-2 }
{7~ ~rmmmmm ommmmmem mmes }
{ PF|{PAGE FOOTING} }
{ =7 777 o }
}

[REPORT-SECTION-Data-Item]...

The syntax shown here documents how a report group is defined to a report. This syntax
is valid only in the report section, and only then after an "RD".

1. The reserved words "IS", "NUMBER" and "ON" are optional and may be included, or
not, at the discretion of the programmer. The presence or absence of these words has
no effect upon the program.

2. The "RH" and "REPORT HEADING" terms are interchangeable, as are "PH" and "PAGE
HEADING", "CH" and "CONTROL HEADING", "DE" and "DETAIL", "CF" and "CONTROL
FOOTING", "PF" and "PAGE FOOTING" as well as "RF" and "REPORT FOOTING".

3. The report group being defined will be a part of the most-recently coded "RD".

15 February 2018 Chapter 6 - DATA DIVISION

148 GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide

4. The "TYPE" (see [TYPE], page 221) clause specifies the type of report group being
defined.

5. The level number used for a report group definition must be 01.

6. The optional <identifier-1> specification assigns a name to this report group so that
the group may be referenced either by a GENERATE statement or on a "USE BEFORE
REPORTING".

7. No two report groups in the same report ("RD") may named with the same <identifier-
1>. There may, however, be multiple <identifier-1> definitions in different reports. In
such instances, references to <identifier-1> must be qualified by the report name.

8. There may only be one report heading, report footing, final control heading, final
control footing, page heading and page footing defined per report.

9. Report group declarations must be followed by at least one <<REPORT-SECTION-
Data-Item>> with a level number in the range 02-49.

10. See [Data Description Clauses|, page 161, for information on the usage of the various
data description clauses.

Chapter 6 - DATA DIVISION 15 February 2018

GnuCOBOL 3.0 rcl [01Jan2018] Programmer’s Guide 149

6.6.2. REPORT SECTION Data Items

[REPORT-SECTION-Data-Item Syntax

level-number [identifier-1]

[BLANK WHEN ZERO]
[coLuMN [{ NUMBER IS }] [+|PLUS] integer-1]
——— PRS- } R

[JUSTIFIED RIGHT]
[