
GnuCOBOL Programmer’s Guide
For Version 3.0 rc1 [01Jan2018]

Gary L. Cutler (cutlergl@gmail.com).
For updates Vincent B. Coen (vbcoen@gmail.com).

mailto:cutlergl@gmail.com
mailto:vbcoen@gmail.com


This manual documents GnuCOBOL 3.0 rc1, 01Jan2018 build.

Document Copyright 2009-2014 Gary L. Cutler, FSF (Free Software Foundation).

Updates: Copyright 2014-2018 Vincent B. Coen, Gary L. Cutler & FSF.

The authors and copyright holders of the Cobol programming language itself
used herein:

FLOW-MATIC (trademark for Sperry Rand Corporation) Programming for
the Univac(R) I & II. Data Automation Systems copyrighted 1958, 1959,
by Sperry Rand Corporation; IBM commercial translator form F28-8013,
copyrighted 1959 by IBM; FACT DSI27A5260-2760, copyrighted 1960 by
Minneapolis-Honeywell, have specifically authorised the use of this material in
whole or in part of the COBOL specifications. Such authorisation extends to
the reproduction & use of COBOL specifications in programming manuals or
similar publications.

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License [FDL], Version 1.3 or any
later version published by the Free Software Foundation; with Invariant Section
”Introduction”, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide i

Table of Contents

Amendment Changes for Programmers Guide . . . . 1

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1. Additional Reference Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2. Introducing COBOL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1. Why YOU Should Learn COBOL . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2. Programmer Productivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3. So What is GnuCOBOL? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2. Cobol Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1. The Cobol Language - The Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1. Language Reserved Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2. User-Defined Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.3. Case Insensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.4. Readability of Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.5. Divisions Organize Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.6. Copybooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.7. Structured Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.8. Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.9. Table Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.1.10. Sorting and Merging Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1.11. String Manipulation Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1.12. Screen Formatting Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1.12.1. A Sample Screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.1.12.2. Color Palette and Video Attributes . . . . . . . . . . . . . . . . . . 23

2.1.13. Report Writer Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.1.14. Data Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.1.15. Syntax Diagram Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.1.16. Format of Program Source Lines . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.1.17. Program Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.1.18. Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.1.19. Literals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.1.19.1. Numeric Literals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.1.19.2. Alphanumeric Literals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.1.19.3. Figurative Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.1.20. Punctuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.1.21. Interfacing to Other Environments . . . . . . . . . . . . . . . . . . . . . . . 40

2.2. The Cobol Language - Advanced Techniques . . . . . . . . . . . . . . . . . . . . 42
2.2.1. Table References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.2.2. Qualification of Data Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.2.3. Reference Modifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

15 February 2018 Contents



ii GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

2.2.4. Arithmetic Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.2.5. Conditional Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.2.5.1. Condition Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.2.5.2. Class Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.2.5.3. Sign Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.2.5.4. Switch-Status Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.2.5.5. Relation Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.2.5.6. Combined Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.2.5.7. Negated Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.2.6. Use of Periods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.2.7. Use of VERB/END-VERB Constructs . . . . . . . . . . . . . . . . . . . . . 60
2.2.8. Concurrent Access to Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.2.8.1. File Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.2.8.2. Record Locking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3. CDF - Compiler Directing Facility . . . . . . . . . . . . 67
3.1. >>CALL-CONVENTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.2. COPY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.3. REPLACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.4. >>DEFINE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.5. >>IF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.6. >>SET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.7. >>SOURCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.8. >>TURN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.9. >>D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.10. >>DISPLAY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.11. >>PAGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.12. >>LISTING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.13. >>LEAP-SECONDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.14. * Directives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4. IDENTIFICATION DIVISION . . . . . . . . . . . . . . . . 87

5. ENVIRONMENT DIVISION . . . . . . . . . . . . . . . . . . 91
5.1. CONFIGURATION SECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.1.1. SOURCE-COMPUTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.1.2. OBJECT-COMPUTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.1.3. SPECIAL-NAMES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.1.3.1. Alphabet-Name-Clause . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.1.3.2. Class-Definition-Clause . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.1.3.3. Switch-Definition-Clause . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.1.3.4. Symbolic-Characters-Clause . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.1.4. REPOSITORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.2. INPUT-OUTPUT SECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.2.1. SELECT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.2.1.1. ORGANIZATION SEQUENTIAL . . . . . . . . . . . . . . . . . . . 114

Contents 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide iii

5.2.1.2. ORGANIZATION LINE SEQUENTIAL . . . . . . . . . . . . . 116
5.2.1.3. ORGANIZATION RELATIVE . . . . . . . . . . . . . . . . . . . . . . 118
5.2.1.4. ORGANIZATION INDEXED . . . . . . . . . . . . . . . . . . . . . . . 120

5.2.2. SAME RECORD AREA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.2.3. MULTIPLE FILE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6. DATA DIVISION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.1. Data Definition Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
6.2. FILE SECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.2.1. File/Sort-Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
6.2.2. FILE-SECTION-Data-Item . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.3. WORKING-STORAGE SECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
6.4. LOCAL-STORAGE SECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
6.5. LINKAGE SECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.6. REPORT SECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.6.1. Report Group Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
6.6.2. REPORT SECTION Data Items . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.7. SCREEN SECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.8. Special Data Items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.8.1. 01-Level Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
6.8.2. 66-Level Data Items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
6.8.3. 77-Level Data Items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
6.8.4. 78-Level Data Items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
6.8.5. 88-Level Data Items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6.9. Data Description Clauses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
6.9.1. ANY LENGTH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
6.9.2. AUTO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
6.9.3. AUTO-SKIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
6.9.4. AUTOTERMINATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
6.9.5. BACKGROUND-COLOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
6.9.6. BASED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
6.9.7. BEEP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
6.9.8. BELL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
6.9.9. BLANK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
6.9.10. BLANK WHEN ZERO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
6.9.11. BLINK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
6.9.12. COLUMN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
6.9.13. CONSTANT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
6.9.14. EMPTY-CHECK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
6.9.15. ERASE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
6.9.16. EXTERNAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
6.9.17. FALSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
6.9.18. FOREGROUND-COLOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
6.9.19. FROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
6.9.20. FULL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
6.9.21. GLOBAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
6.9.22. GROUP INDICATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

15 February 2018 Contents



iv GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

6.9.23. HIGHLIGHT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
6.9.24. JUSTIFIED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
6.9.25. LEFTLINE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
6.9.26. LENGTH-CHECK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
6.9.27. LINE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
6.9.28. LOWLIGHT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
6.9.29. NEXT GROUP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
6.9.30. NO-ECHO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
6.9.31. OCCURS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
6.9.32. OVERLINE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
6.9.33. PICTURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
6.9.34. PRESENT WHEN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
6.9.35. PROMPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
6.9.36. PROTECTED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
6.9.37. REDEFINES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
6.9.38. RENAMES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
6.9.39. REQUIRED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
6.9.40. REVERSE-VIDEO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
6.9.41. SECURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
6.9.42. SIGN IS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
6.9.43. SOURCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
6.9.44. SUM OF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
6.9.45. SYNCRONIZED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
6.9.46. TO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
6.9.47. TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
6.9.48. UNDERLINE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
6.9.49. USAGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
6.9.50. USING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
6.9.51. VALUE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

7. PROCEDURE DIVISION . . . . . . . . . . . . . . . . . . . . 237
7.1. PROCEDURE DIVISION USING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
7.2. PROCEDURE DIVISION CHAINING . . . . . . . . . . . . . . . . . . . . . . . . 240
7.3. PROCEDURE DIVISION RETURNING . . . . . . . . . . . . . . . . . . . . . . 242
7.4. PROCEDURE DIVISION Sections and Paragraphs . . . . . . . . . . . . 243
7.5. DECLARATIVES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
7.6. Common Clauses on Executable Statements . . . . . . . . . . . . . . . . . . . 246

7.6.1. AT END + NOT AT END . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
7.6.2. CORRESPONDING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
7.6.3. INVALID KEY + NOT INVALID KEY . . . . . . . . . . . . . . . . . . 250
7.6.4. ON EXCEPTION + NOT ON EXCEPTION . . . . . . . . . . . . . 250
7.6.5. ON OVERFLOW + NOT ON OVERFLOW . . . . . . . . . . . . . 251
7.6.6. ON SIZE ERROR + NOT ON SIZE ERROR . . . . . . . . . . . . 251
7.6.7. ROUNDED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

7.7. Special Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
7.8. GnuCOBOL Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

7.8.1. ACCEPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

Contents 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide v

7.8.1.1. ACCEPT FROM CONSOLE . . . . . . . . . . . . . . . . . . . . . . . . 258
7.8.1.2. ACCEPT FROM COMMAND-LINE . . . . . . . . . . . . . . . . 259
7.8.1.3. ACCEPT FROM ENVIRONMENT . . . . . . . . . . . . . . . . . 261
7.8.1.4. ACCEPT screen-data-item . . . . . . . . . . . . . . . . . . . . . . . . . . 262
7.8.1.5. ACCEPT FROM DATE/TIME . . . . . . . . . . . . . . . . . . . . . 267
7.8.1.6. ACCEPT FROM Screen-Info . . . . . . . . . . . . . . . . . . . . . . . . 268
7.8.1.7. ACCEPT FROM Runtime-Info . . . . . . . . . . . . . . . . . . . . . . 269
7.8.1.8. ACCEPT OMITTED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
7.8.1.9. ACCEPT FROM EXCEPTION-STATUS . . . . . . . . . . . . 271

7.8.2. ADD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
7.8.2.1. ADD TO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
7.8.2.2. ADD GIVING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
7.8.2.3. ADD CORRESPONDING . . . . . . . . . . . . . . . . . . . . . . . . . . 276

7.8.3. ALLOCATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
7.8.4. ALTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
7.8.5. CALL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
7.8.6. CANCEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
7.8.7. CLOSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
7.8.8. COMMIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
7.8.9. COMPUTE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
7.8.10. CONTINUE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
7.8.11. DELETE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
7.8.12. DISPLAY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292

7.8.12.1. DISPLAY UPON device . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
7.8.12.2. DISPLAY UPON COMMAND-LINE . . . . . . . . . . . . . . . 294
7.8.12.3. DISPLAY UPON ENVIRONMENT-NAME . . . . . . . . 295
7.8.12.4. DISPLAY screen-data-item . . . . . . . . . . . . . . . . . . . . . . . . . 296

7.8.13. DIVIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
7.8.13.1. DIVIDE INTO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
7.8.13.2. DIVIDE INTO GIVING . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
7.8.13.3. DIVIDE BY GIVING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302

7.8.14. ENTRY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
7.8.15. EVALUATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
7.8.16. EXIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
7.8.17. FREE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
7.8.18. GENERATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
7.8.19. GOBACK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
7.8.20. GO TO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316

7.8.20.1. Simple GO TO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
7.8.20.2. GO TO DEPENDING ON . . . . . . . . . . . . . . . . . . . . . . . . . 317

7.8.21. IF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
7.8.22. INITIALIZE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
7.8.23. INITIATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
7.8.24. INSPECT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
7.8.25. MERGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
7.8.26. MOVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336

7.8.26.1. Simple MOVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
7.8.26.2. MOVE CORRESPONDING . . . . . . . . . . . . . . . . . . . . . . . . 337

15 February 2018 Contents



vi GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

7.8.27. MULTIPLY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
7.8.27.1. MULTIPLY BY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
7.8.27.2. MULTIPLY GIVING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340

7.8.28. OPEN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
7.8.29. PERFORM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344

7.8.29.1. Procedural PERFORM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
7.8.29.2. Inline PERFORM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346
7.8.29.3. VARYING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347

7.8.30. READ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
7.8.30.1. Sequential READ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
7.8.30.2. Random READ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352

7.8.31. READY TRACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
7.8.32. RELEASE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356
7.8.33. RESET TRACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
7.8.34. RETURN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
7.8.35. REWRITE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
7.8.36. ROLLBACK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
7.8.37. SEARCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362
7.8.38. SEARCH ALL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
7.8.39. SET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367

7.8.39.1. SET ENVIRONMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367
7.8.39.2. SET Program-Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368
7.8.39.3. SET ADDRESS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
7.8.39.4. SET Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
7.8.39.5. SET UP/DOWN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
7.8.39.6. SET Condition Name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372
7.8.39.7. SET Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
7.8.39.8. SET ATTRIBUTE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374
7.8.39.9. SET LAST EXCEPTION . . . . . . . . . . . . . . . . . . . . . . . . . . 375

7.8.40. SORT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
7.8.40.1. File-Based SORT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
7.8.40.2. Table SORT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380

7.8.41. START . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
7.8.42. STOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384
7.8.43. STRING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
7.8.44. SUBTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388

7.8.44.1. SUBTRACT FROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388
7.8.44.2. SUBTRACT GIVING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390
7.8.44.3. SUBTRACT CORRESPONDING . . . . . . . . . . . . . . . . . . 392

7.8.45. SUPPRESS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394
7.8.46. TERMINATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395
7.8.47. TRANSFORM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396
7.8.48. UNLOCK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397
7.8.49. UNSTRING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398
7.8.50. WRITE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402

Contents 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide vii

8. FUNCTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
8.1. Intrinsic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405

8.1.1. ABS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406
8.1.2. ACOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407
8.1.3. ANNUITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408
8.1.4. ASIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409
8.1.5. ATAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410
8.1.6. BYTE-LENGTH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
8.1.7. CHAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412
8.1.8. COMBINED-DATETIME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413
8.1.9. CONCATENATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414
8.1.10. COS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415
8.1.11. CURRENCY-SYMBOL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416
8.1.12. CURRENT-DATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417
8.1.13. DATE-OF-INTEGER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418
8.1.14. DATE-TO-YYYYMMDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419
8.1.15. DAY-OF-INTEGER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420
8.1.16. DAY-TO-YYYYDDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421
8.1.17. E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422
8.1.18. EXCEPTION-FILE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423
8.1.19. EXCEPTION-LOCATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424
8.1.20. EXCEPTION-STATEMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
8.1.21. EXCEPTION-STATUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426
8.1.22. EXP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428
8.1.23. EXP10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429
8.1.24. FACTORIAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430
8.1.25. FORMATTED-CURRENT-DATE . . . . . . . . . . . . . . . . . . . . . . 431
8.1.26. FORMATTED-DATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432
8.1.27. FORMATTED-DATETIME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433
8.1.28. FORMATTED-TIME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434
8.1.29. FRACTION-PART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435
8.1.30. HIGHEST-ALGEBRAIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436
8.1.31. INTEGER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437
8.1.32. INTEGER-OF-DATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438
8.1.33. INTEGER-OF-DAY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439
8.1.34. INTEGER-OF-FORMATTED-DATE . . . . . . . . . . . . . . . . . . . 440
8.1.35. INTEGER-PART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441
8.1.36. LENGTH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442
8.1.37. LENGTH-AN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443
8.1.38. LOCALE-COMPARE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444
8.1.39. LOCALE-DATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445
8.1.40. LOCALE-TIME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446
8.1.41. LOCALE-TIME-FROM-SECONDS . . . . . . . . . . . . . . . . . . . . . 447
8.1.42. LOG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448
8.1.43. LOG10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449
8.1.44. LOWER-CASE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450
8.1.45. LOWEST-ALGEBRAIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451

15 February 2018 Contents



viii GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

8.1.46. MAX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452
8.1.47. MEAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453
8.1.48. MEDIAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454
8.1.49. MIDRANGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
8.1.50. MIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456
8.1.51. MOD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457
8.1.52. MODULE-CALLER-ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458
8.1.53. MODULE-DATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459
8.1.54. MODULE-FORMATTED-DATE . . . . . . . . . . . . . . . . . . . . . . . . 460
8.1.55. MODULE-ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461
8.1.56. MODULE-PATH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462
8.1.57. MODULE-SOURCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463
8.1.58. MODULE-TIME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464
8.1.59. MONETARY-DECIMAL-POINT . . . . . . . . . . . . . . . . . . . . . . . 465
8.1.60. MONETARY-THOUSANDS-SEPARATOR . . . . . . . . . . . . . 466
8.1.61. NUMERIC-DECIMAL-POINT . . . . . . . . . . . . . . . . . . . . . . . . . . 467
8.1.62. NUMERIC-THOUSANDS-SEPARATOR . . . . . . . . . . . . . . . . 468
8.1.63. NUMVAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469
8.1.64. NUMVAL-C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470
8.1.64B. NUMVAL-C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472
8.1.65. NUMVAL-F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474
8.1.66. ORD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475
8.1.67. ORD-MAX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 476
8.1.68. ORD-MIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477
8.1.69. PI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478
8.1.70. PRESENT-VALUE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479
8.1.71. RANDOM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480
8.1.72. RANGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482
8.1.73. REM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483
8.1.74. REVERSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484
8.1.75. SECONDS-FROM-FORMATTED-TIME . . . . . . . . . . . . . . . . 485
8.1.76. SECONDS-PAST-MIDNIGHT . . . . . . . . . . . . . . . . . . . . . . . . . . 486
8.1.77. SIGN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487
8.1.78. SIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488
8.1.79. SQRT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489
8.1.80. STANDARD-DEVIATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 490
8.1.81. STORED-CHAR-LENGTH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491
8.1.82. SUBSTITUTE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492
8.1.83. SUBSTITUTE-CASE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493
8.1.84. SUM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494
8.1.85. TAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495
8.1.86. TEST-DATE-YYYYMMDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496
8.1.87. TEST-DAY-YYYYDDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497
8.1.88. TEST-FORMATTED-DATETIME . . . . . . . . . . . . . . . . . . . . . . 498
8.1.89. TEST-NUMVAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499
8.1.90. TEST-NUMVAL-C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500
8.1.91. TEST-NUMVAL-F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501
8.1.92. TRIM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502

Contents 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide ix

8.1.93. UPPER-CASE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503
8.1.94. VARIANCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 504
8.1.95. WHEN-COMPILED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505
8.1.96. YEAR-TO-YYYY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506
8.1.97. BOOLEAN-OF-INTEGER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507
8.1.98. CHAR-NATIONAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 508
8.1.99. DISPLAY-OF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509
8.1.100. EXCEPTION-FILE-N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 510
8.1.101. EXCEPTION-LOCATION-N . . . . . . . . . . . . . . . . . . . . . . . . . . 511
8.1.102. INTEGER-OF-BOOLEAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 512
8.1.103. NATIONAL-OF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513
8.1.104. STANDARD-COMPARE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 514

8.2. Built-In System Subroutines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 516
8.2.1. C$CALLEDBY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518
8.2.2. C$CHDIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519
8.2.3. C$COPY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 520
8.2.4. C$DELETE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521
8.2.5. C$FILEINFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 522
8.2.6. C$GETPID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523
8.2.7. C$JUSTIFY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524
8.2.8. C$MAKEDIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525
8.2.9. C$NARG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 526
8.2.10. C$PARAMSIZE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527
8.2.11. C$PRINTABLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528
8.2.12. C$SLEEP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529
8.2.13. C$TOLOWER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 530
8.2.14. C$TOUPPER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531
8.2.15. CBL AND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 532
8.2.16. CBL CHANGE DIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533
8.2.17. CBL CHECK FILE EXIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 534
8.2.18. CBL CLOSE FILE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535
8.2.19. CBL COPY FILE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 536
8.2.20. CBL CREATE DIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 537
8.2.21. CBL CREATE FILE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 538
8.2.22. CBL DELETE DIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539
8.2.23. CBL DELETE FILE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 540
8.2.24. CBL EQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541
8.2.25. CBL ERROR PROC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542
8.2.26. CBL EXIT PROC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544
8.2.27. CBL FLUSH FILE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 546
8.2.28. CBL GC FORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 547
8.2.29. CBL GC GETOPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549
8.2.30. CBL GC HOSTED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 552
8.2.31. CBL GC NANOSLEEP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555
8.2.32. CBL GC PRINTABLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 556
8.2.33. CBL GC WAITPID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557
8.2.34. CBL GET CSR POS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558
8.2.35. CBL GET CURRENT DIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 559

15 February 2018 Contents



x GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

8.2.36. CBL GET SCR SIZE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 560
8.2.37. CBL IMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 561
8.2.38. CBL NIMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 562
8.2.39. CBL NOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563
8.2.40. CBL NOT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 564
8.2.42. CBL OPEN FILE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565
8.2.43. CBL OR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 566
8.2.44. CBL READ FILE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 567
8.2.45. CBL READ KBD CHAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 568
8.2.46. CBL RENAME FILE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 569
8.2.47. CBL SET CSR POS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 570
8.2.48. CBL TOLOWER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 571
8.2.49. CBL TOUPPER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 571
8.2.50. CBL WRITE FILE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 572
8.2.51. CBL XOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573
8.2.52. SYSTEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 574
8.2.53. X"91" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 575
8.2.54. X"E4" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 577
8.2.55. X"E5" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 577
8.2.56. X"F4" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 578
8.2.57. X"F5" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 579

9. Report Writer Usage Notes . . . . . . . . . . . . . . . . . . . 581
9.1. RWCS Lexicon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 581
9.2. The Anatomy of a Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 582
9.3. The Anatomy of a Report Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 583
9.4. How RWCS Builds Report Pages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 584
9.5. Control Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 586
9.6. An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 588

9.6.1. Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 588
9.6.2. Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 590
9.6.3. Generated Report Pages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 595

9.7. Control Hierarchy (Revisited) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 601
9.8. Turning PHYSICAL Page Formatting Into LOGICAL Formatting . . 604

10. Interfacing With The OS . . . . . . . . . . . . . . . . . . . . 607
10.1. Compiling Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 607

10.1.1. cobc - The GnuCOBOL Compiler . . . . . . . . . . . . . . . . . . . . . . . 607
10.1.2. Compilation Time Environment Variables . . . . . . . . . . . . . . . 615
10.1.3. Predefined Compilation Variables . . . . . . . . . . . . . . . . . . . . . . . 617
10.1.4. Locating Copybooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 618
10.1.5. Compiler Configuration Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . 619

10.2. Running Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 624
10.2.1. Direct Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 624
10.2.2. Executing Dynamically-Loadable Libraries . . . . . . . . . . . . . . 625

10.2.2.1. cobcrun - Command-line Execution . . . . . . . . . . . . . . . . . 625
10.2.2.2. Dynamically Loaded Subprograms . . . . . . . . . . . . . . . . . . 626

Contents 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide xi

10.2.3. Run Time Environment Variables . . . . . . . . . . . . . . . . . . . . . . . 626
10.2.4. Program Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 636

10.3. Binary Truncation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 636

11. Sub-Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . 641
11.1. Subprogram Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 641
11.2. Independent vs Contained vs Nested Subprograms . . . . . . . . . . . . 641
11.3. Alternate Entry Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 643
11.4. Dynamic vs Static Subprograms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 643
11.5. Subprogram Execution Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 645

11.5.1. Subroutine Execution Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 645
11.5.2. User-Defined Function Execution Flow . . . . . . . . . . . . . . . . . . 647

11.6. Sharing Data Between Calling and Called Programs . . . . . . . . . . 649
11.5.1. Subprogram Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 649

11.6.1.1. Calling Program Considerations . . . . . . . . . . . . . . . . . . . . 649
11.6.1.2. Called Program Considerations . . . . . . . . . . . . . . . . . . . . . 650

11.6.2. GLOBAL Data Items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 651
11.6.3. EXTERNAL Data Items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 651

11.7. Recursive Subprograms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 652
11.8. Combining GnuCOBOL and C Programs . . . . . . . . . . . . . . . . . . . . . 655

11.8.1. GnuCOBOL Run-Time Library Requirements . . . . . . . . . . . 655
11.8.2. String Allocation Differences Between GnuCOBOL and C . . 656
11.8.3. Matching C Data Types with GnuCOBOL USAGE’s . . . . 657
11.8.4. GnuCOBOL Main Programs CALLing C Subprograms . . 658
11.8.5. C Main Programs Calling GnuCOBOL Subprograms . . . . 659

12. Programming Style Suggestions . . . . . . . . . . . . . 661
12.1. Marking Changes in Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 661
12.2. Data Item Coding and Naming Conventions . . . . . . . . . . . . . . . . . . 662
12.3. Table Subscripting versus Table Indexing . . . . . . . . . . . . . . . . . . . . . 665
12.4. Copybook Naming Conventions and Usage . . . . . . . . . . . . . . . . . . . 667
12.5. PROCEDURE DIVISION Sections Versus Paragraphs . . . . . . . . 667
12.6. COMPUTE Versus ADD-SUBTRACT-MULTIPLY-DIVIDE . . 669

Appendix A - Glossary of Terms . . . . . . . . . . . . . . . . 671

Appendix B - Reserved Word List . . . . . . . . . . . . . . 681

Appendix C - GNU Free Documentation License . . 687

Appendix D - Summary of Document Changes . . 695

Appendix E - Summary of Compiler Changes since
2009 and version v1-1 . . . . . . . . . . . . . . . . . . . . . . . . . . 703

15 February 2018 Contents



xii GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 715

Contents 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 1

Amendment Changes for Programmers Guide

For a full list of all changes since the 1st Edition, see Appendix D.

6th Edition On release of v3.0 rc1.

1. 17/12 Update description for NUMVAL-C along with missing 2nd & 3rd arguments
and more detail.

2. Added missing third parameter execution-time to functions DATE-TO-YYYYMMDD,
DAY-TO-YYYYDDD, YEAR-TO-YYYY.

3. Added missing functions: FORMATTED-CURRENT-DATE, FORMATTED-DATE,
FORMATTED-DATETIME, FORMATTED-TIME, INTEGER-OF-FORMATTED-
DATE, TEST-FORMATTED-DATETIME and renumbered all functions accordingly
by position in Guide.

4. 18/12 More notes for NUMVAL, NUMVAL-C.

5. NUMVAL-C contains two references for testing descriptions.

6. Removed the ’syntax ref for FINAL CONTROL FOOTINGS at 7.2.

7. Removed incorrect information about a fatal error when opening or other processing
of a file as all errors can be recovered with a Cobol program using file status test or
using a Declarative section.

8. 19/12 Moved current updates section in D and top of manual into a included text file.

9. 20/12 Added comment regard REPORT section clauses and their order.

10. 21/12 Run Spellcheck against manual sources to catch typo’s.

11. Added warning about using WS area only for data referenced within RW.

12. Removed warning in RW notes about CODE IS and COLUMNS are ignored - not any
more.

13. 23/12 Moved chap. 7 - 10 to 9 - 12, 3 - 6 to 4 - 7. Created new ch.2 from 1.3 & new ch.8
from 7.16 to ch. 8. Moved 8.21 to special registers?. Removed report about specific
non-implemented functions in 8.1 that now are. Inserted page breaks in 8.2. Moved
Ch. 7.6 - 7.13 to at end of Ch. 2. NEEDS resorting.

14. 24/12 Added support for SPLIT and SPARSE keys in ISAM (Indexed) type files see
references for RECORD and ALTERNATE KEY clauses. Update ChangeLog.

15. Create index for ’Split Keys’ reference.

16. 25/12 Remove comment from RW chapter about availability as now included.

17. 27/12 Added missing SET LAST EXCEPTION to PG and QR.

18. Added un-implemented functions: BOOLEAN-OF-INTEGER, CHAR-NATIONAL,

15 February 2018 Contents



2 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

DISPLAY-OF, EXCEPTION-FILE-N, EXCEPTION-LOCATION-N, INTEGER-
OF-BOOLEAN, NATIONAL-OF, STANDARD-COMPARE with warning not
implemented.

19. Added missing system functions CBL READ KBD CHAR & CBL SET CSR POS.
Spotted in NEWS file.

20. 29/12 Adjusted format for select idx to reduce width of text.

21. 01/01 Update all 3 for 01 Jan 2018.

22. 05/01 Updated contents of runtime.cfg in Chp. 10.

23. 13/01 Updated comments for CBL CHECK FILE EXIST as back to front/wrong.

24. 14/02 For SORT replaced diagram reference of file-name-3 to file-name-2 as wrong.

Contents 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 3

1. Introduction

This document describes the syntax, semantics and usage of the COBOL programming
language as implemented by the current version of GnuCOBOL, formerly known as Open-
COBOL.

The original principal developers of GnuCOBOL were Keisuke Nishida and Roger While.
Since then many others of the GnuCobol community are directly involved in it’s development
at any one time.

This document is intended to serve as a full-function reference and user’s guide suitable for
both those readers learning COBOL for the first time as usage as a training tool, as well as
those already familiar with some dialect of the COBOL language.

A separate manual exists that just contains the details of the GnuCOBOL implementation
which is designed strictly for experienced Cobol programmers taken from this guide. This
document (GnuCobol Quick Reference) does NOT contain any training subject matter.

Caution. Although this document is for version 2.2 of the compiler, it also includes a
description of the functions of the RWCS (Report Writer module) which is not included in
the compiler version 2.2. Please see availability notes on this at 1.3.13.

1.1. Additional Reference Sources

For those wishing to learn COBOL for the first time, I can strongly recommend the following
resources.

If you like to hold a book in your hands, I strongly recommend "Murach’s Structured
COBOL", by Mike Murach, Anne Prince and Raul Menendez (2000) - ISBN 9781890774059.
Mike Murach and his various writing partners have been writing outstanding COBOL text-
books for decades, and this text is no exception. It’s an excellent book for those familiar
with the concepts of programming in other languages, but unfamiliar with COBOL.

Would you prefer a web-based tutorial? Try the University of Limerick (Ireland) COBOL
web site - ‘http://www.csis.ul.ie/cobol/’.

In addition there is the GNU Cobol FAQ on the project website at sourceforge which has
now exceeded 1,4000 pages available as html or a downloadable .pdf file.

1.2. Introducing COBOL

If you already know a programming language, and that language isn’t COBOL, chances
are that language is Java, C or C++. You will find COBOL a much different programming
language than those; sometimes those differences are a good thing and sometimes they
aren’t. The thing to remember about COBOL is this — it was designed to solve business
problems.

COBOL, first introduced to the programming public in 1959, was the very first programming
language to become standardized (in 1960). This meant that a standard-compliant COBOL

15 February 2018 Chapter 1 - Introduction



4 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

program written on computer "A" made by company "B" would be able to be compiled and
executed on computer "X" made by company "Y" with very few, if any, changes. This may
not seem like such a big deal today, but it was a radical departure from all programming
languages that came before it and even many that came after it.

The name COBOL actually says it all — COBOL is an acronym that stands for "(CO)mmon
(B)usiness (O)riented (L)anguage". Note the fact that the word "common" comes before
all others. The word "business" is a close second. Therein lies the key to Cobol’s success.

1.2.1. Why YOU Should Learn COBOL

Despite statements from industry "insiders", the COBOL programming language is not
dead, even though newer and so-called "modern" languages like Java, C#, .NET, Ruby on
Rails and so on appear to have become the languages of choice in the Information Technology
world. These languages have become popular because they address the following desired
requirements for "modern" programming:

1. They conform to the principles of Object-Oriented Programming (OOP). This is de-
sired for one major reason — it facilitates "code re-usability", thus improving the
productivity of programmers by allowing them to re-use previously written (and de-
bugged) code in new applications. For one reason or another, COBOL is perceived as
being weak in this regard. It isn’t (especially today), as we’ll see in the next section,
but perception is important.

2. Those languages aren’t limited to mainframe computers, as COBOL is perceived to be.
Some, like .NET and Ruby, aren’t even available on mainframes. The "modern" pro-
gramming languages were designed and intended for use on the full variety of computer
platforms, from shirt-pocket computers (i.e. smart phones) up to the most massive of
supercomputers.

3. There are several excellent commercially available COBOL implementations available
for non-mainframe systems (Micro Focus COBOL, AccuCOBOL, NetCOBOL and Elas-
tic COBOL, just to name a few), including Windows and UNIX/Linux systems. These
aren’t cheap, however.

4. Universities love the "Modern" languages. In the U.S., 73% of colleges lack even one
COBOL course on their curricula. COBOL, it appears, is no longer "cool" enough for
students to fill a classroom.

Just because COBOL doesn’t traditionally support objects, classes, and the like doesn’t
mean that its "procedural" approach to computing isn’t valuable — after all, it runs 70%
of the worlds business transactions, and does so:

• Using programs that, for the most part, are much more self-documenting than would
be the case with any other programming language.

• Effortlessly providing arithmetic accuracy to 31 digits, with performance approaching
that of well-written assembly-language programs. Don’t think this isn’t critically im-

Chapter 1 - Introduction 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 5

portant to banks, investment houses and any business interested in tracking revenues,
expenses and profits (duh - like ALL of them).

• Integrating well with non-COBOL infrastructures such as XML, SOA, MQ, almost
any DBMS, Transaction Processing platforms, Queue-Management facilities and other
programming languages.

• By running on almost as many different computing platforms as Java can. You can’t run
COBOL programs in your smart phone, but desktops, workstations, midframes/servers,
mainframes and supercomputers are all fair game.

Today’s IT managers and business leaders are faced with a challenging dilemma — how do
you maintain the enormous COBOL code base that is still running their businesses when
academia has all but abandoned the language they need their people to use to keep the
wheels rolling? The problem is compounded by the fact that those programmers that are
skilled in COBOL are retiring and taking their knowledge with them. In some markets, this
appears to be having an inflationary effect on the cost of resources (COBOL programmers)
whose supply is becoming smaller and smaller. The pressure to update applications to make
use of more up-to-date graphical user interfaces is also perceived as a reason to abandon
COBOL in favour of GUI-friendly languages such as Java.

Businesses are addressing the COBOL challenge in different ways:

1. By undertaking so-called "modernization projects", where existing applications are
either rewritten in "modern" languages or replaced outright with purchased pack-
ages. Most of these businesses are using such activities as an excuse to abandon
"expensive" mainframes in favour of (presumably) less-expensive "open systems" (mid
frame/server) solutions.

2. Many times these businesses are finding the cost of the system/networking engineering,
operational management and monitoring and risk management (i.e. disaster recovery)
infrastructures necessary to support truly mission-critical applications to be so high
that the "less-expensive" solution really isn’t; in these cases the mainframe may remain
the best option, thus leaving COBOL in play and businesses seeking another solution
for at least part of their application base.

3. Training their own COBOL programmers. Since colleges, universities and technical
schools have lost interest in doing so, many businesses have undertaken the task of
"growing their own" new crop of COBOL programmers. Fear of being pigeon-holed into
a niche technology is a factor inhibiting many of today’s programmers from willingly
volunteering for such training.

4. By moving the user-interface onto the desktop; such efforts involve running modern-
language front-end clients on user desktops (or laptops or smart phones, etc.) with
COBOL programs providing server functionality on mainframe or midframe platforms,
providing all the database and file "heavy lifting" on the back-end. Solutions like this
provide users with the user-interfaces they want/need while still leveraging Cobol’s
strengths on (possibly) downsized legacy mainframe or midframe systems.

15 February 2018 Chapter 1 - Introduction



6 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

It’s probably a true that an IT professional can no longer afford to allow COBOL to be
the only wrench in their toolbox, but with a massive code base still in production now and
for the foreseeable future, adding COBOL to a multi-lingual curriculum vitae (CV) and/or
resume (yes — they ARE different) is not a bad thing at all. Knowing COBOL as well as
the language du-jour will make you the smartest person in the room when the discussion of
migrating the current "legacy" environment to a "modern" implementation comes around.

You’ll find COBOL an easy language to learn and a FAR EASIER language to master than
many of the "modern" languages.

The whole reason you’re reading this is that you’ve discovered GnuCOBOL — another
implementation of COBOL in addition to those mentioned earlier. The distinguishing char-
acteristic of GnuCOBOL versus those others is that GnuCOBOL is FREE open-source and
therefore FREE to obtain and use. It is community-enhanced and community-supported.
Later in this document (see [So What is GnuCOBOL?], page 7), you’ll begin to learn more
about this COBOL implementation’s capabilities.

1.2.2. Programmer Productivity

Throughout the history of computer programming, the search for new ways to improve of
the productivity of programmers has been a major consideration. Other than hobbyists,
programming is an activity performed for money, and businesses abhor spending anything
more than is absolutely necessary; even government agencies try to spend as little money
on projects as is absolutely necessary.

The amount of programming necessary to accomplish a given task — including rework
needed by any errors found during testing (testing is sometimes jokingly defined as: "that
time during which an application is actually in production, allowing users to discover the
problems") is the measure of programmer productivity. Anything that reduces that effort
will therefore reduce the time spent in such activities therefore reducing the expense of same.
When the expense of programming is reduced, programmer productivity is increased.

Sometimes the quest for improved programmer productivity (and therefore reduced pro-
gramming expense) has taken the form of introducing new features in programming lan-
guages, or even new languages altogether. Sometimes it has resulted in new ways of using
the existing languages.

While many technological and procedural developments have made evolutionary improve-
ments to programmer productivity, each of the following three events has been responsible
for revolutionary improvements:

• The development of so-called "higher-level" programming languages that enable a pro-
grammer to specify in a single statement of the language an action that would have
required many more separate statements in a prior programming language. The stan-
dardization of such languages, making them usable on a wide variety of computers and
operating systems, was a key aspect of this development. COBOL was a pioneering de-
velopment in this area, being a direct descendant of the very first higher-level language

Chapter 1 - Introduction 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 7

(FLOW-MATIC, developed by US Naval Lieutenant Grace Hopper) and the first to
become standardized.

• The establishment of programming techniques that make programs easier to read and
therefore easier to understand. Not only do such techniques reduce the amount of
rework necessary simply to make a program work as designed, but they also reduce the
amount of time a programmer needs to study an existing program in order how to best
adapt it to changing business requirements. The foremost development in this area was
structured programming. Introduced in the late 1970’s, this approach to programming
spawned new programming languages (PASCAL, ALGOL, PL/1 and so forth) designed
around it. With the ANSI 85 standard, COBOL embraced the principles espoused
by structured programming mavens as well as any of the languages designed strictly
around it.

• The establishment of programming techniques AND the introduction of programming
language capabilities to facilitate the re-usability of program code. Anything that sup-
ports code re-usability can have a profound impact to the amount of time it takes to
develop new applications or to make significant changes to existing ones. In recent
years, object-oriented programming (OOP) has been the industry "poster child" for
code re-usability. By enabling program logic and the data structures that logic manip-
ulates to be encapsulated into easily stored and retrieved (and therefore "reusable")
modules called classes, the object-oriented languages such as Java, C++ and C# have
become the favourites of academia. Since students are being trained in these languages
and only these, by and large, it’s no surprise that — today — object-oriented program-
ming languages are the darlings of the industry.

The reality is, however, that good programmers have been practising code re-usability
for more than a half-century. Up until recently, COBOL programmers have had some
of the best code re-usability tools available — they’ve been doing it with copybooks
and subprograms rather than classes, methods and attributes but the net results have
been similar. With the COBOL2002 standard and proposed COBOL 20XX standard,
the COBOL programming language has become just as "object-oriented" as the "mod-
ern" languages, while preserving the ability to support, modify, compile and execute
"legacy" COBOL programs as well.

While GnuCOBOL supports few of the OOP programming constructs defined by the
COBOL2002 and COBOL20xx standards, it supports every aspect of the ANSI 85
standard and therefore fully meets the needs of points #1 and #2, above. With it’s
supported feature set (see [So What is GnuCOBOL?], page 7), it provides significant
programmer productivity capabilities.

1.3. So What is GnuCOBOL?

GnuCOBOL is a free and open sourced COBOL compiler and runtime environment, written
using the C programming language. GnuCOBOL is typically distributed in source-code
form, and must then be built for your computer’s operating system using the system’s C
compiler and loader. While originally developed for the UNIX and Linux operating systems,

15 February 2018 Chapter 1 - Introduction



8 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

GnuCOBOL has also been successfully built for computers running OSX and Windows
utilizing the UNIX-emulation features of such tools as Cygwin and MinGW. Also see the
GNU website for more information at https://savannah.gnu.org/projects/gnucobol.

The MinGW approach is a personal favourite with the author of this manual because it
creates a GnuCOBOL compiler and runtime library that require only a single MinGW
DLL to be available for the GnuCOBOL compiler, runtime library and user programs.
That DLL is freely distributable under the terms of the GNU General Public License. A
MinGW build of GnuCOBOL fits easily on and runs from a 128MB flash drive with no
need to install any software onto the Windows computer that will be using it. Some func-
tionality of the language, dealing with the sharing of files between concurrently executing
GnuCOBOL programs and record locking on certain types of files, is sacrificed however
as the underlying operating system routines needed to implement them aren’t available to
Windows and aren’t provided by MinGW. The current version for MinGW is available at
the download link along with various other platforms at the GnuCobol download website
(https://sourceforge.net/projects/open-cobol/files/gnu-cobol/2.0/).

GnuCOBOL has also been built as a truly native Windows application utilizing Microsoft’s
freely-downloadable Visual Studio Express package to provide the C compiler and
linker/loader. This approach does not lend itself well to a "portable" distribution.

The GnuCOBOL compiler generates C code from your COBOL programs; that C code is
then automatically compiled and linked using your system’s C compiler (typically, but not
limited to, "gcc").

GnuCOBOL fully supports much of the ANSI 85 standard for COBOL (the only major
exclusion is the Communications Module) and also supports some of the components of
the COBOL2002 standard, such as the "SCREEN SECTION" (see [SCREEN SECTION],
page 151), table-based "SORT" (see [Table SORT], page 380) and user-defined functions.

————————————————————
End of Chapter 1 — Introduction

Chapter 1 - Introduction 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 9

2. Cobol Fundamentals

This chapter describes the syntax, semantics and usage of the COBOL programming lan-
guage as implemented by the current version of GnuCOBOL.

This document is intended to serve as a full-function reference and user’s guide suitable for
both those readers learning COBOL for the first time as usage as a training tool, as well as
those already familiar with some dialect of the COBOL language.

Separate manuals exists that just contains the details of the GnuCOBOL implementation
which is designed strictly for experienced Cobol programmers taken from this guide. These
do NOT contain any training subject matter.

These manauls are GnuCOBOL Quick Reference and this contains just the Cobol seman-
tics in a short document while the other, GnuCOBOL Programmers Reference contains
only the Cobol Language elements taken from this document again for experienced Cobol
programmers needing the Cobol implementation as used in GnuCOBOL.

2.1. The Cobol Language - The Basics

2.1.1. Language Reserved Words

COBOL programs consist of a sequence of words and symbols. Words, which consist of
sequences of letters (upper- and/or lower-case), digits, dashes ("-") and/or underscores
(" ") may have a pre-defined, specific, meaning to the compiler or may be invented by the
programmer for his/her purposes.

The GnuCOBOL language specification defines over 900 ’Reserved Words’ — words to
which the compiler assigns a special meaning.

Programmers may use a reserved word as part of a word they are creating themselves, but
may not create their own word as an exact duplicate (without regard to case) of a COBOL
reserved word. Note that a reserved word includes all classes, such as intrinsic functions,
mnemonics names, system routines and reserved words.

See [Appendix B - ReservedWord List], page 681, for a complete list of GnuCOBOL reserved
words for the current release.

2.1.2. User-Defined Words

When you write GnuCOBOL programs, you’ll need to create a variety of words to represent
various aspects of the program, the program’s data and the external environment in which
the program will run. This will include internal names by which data files will be referenced,
data item names and names of executable logic procedures.

User-defined words may be composed from the characters "A" through "Z" (upper- and/or
lower-case), "0" through "9", dash ("-") and underscore (" "). User-defined words may
neither start nor end with hyphen or underscore characters.

15 February 2018 Chapter 2 - Cobol Fundamentals



10 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

Other programming language provide the programmer with a similar capability of creat-
ing their own words (names) for parts of a program; COBOL is somewhat unusual when
compared to other languages in that user-defined words may start with a digit.

With the exception of logic procedure names, which may consist entirely of nothing but
digits, user-defined words must contain at least one letter.

2.1.3. Case Insensitivity

All COBOL implementations allow the use of both upper and lower case letters in program
coding. GnuCOBOL is completely insensitive to the case used when writing reserved words
or user-defined names. Thus, "AAAAA", "aaaaa", "Aaaaa" and "AaAaA" are all the same
word as far as GnuCOBOL is concerned.

The only time the case used does matter is within quoted character strings, where character
values will be exactly as coded.

By convention throughout this document, COBOL reserved words will be shown entirely in
UPPER-CASE while those words that were created by a programmer will be represented
by tokens in mixed or lower case.

This isn’t a bad practice to use in actual programs, as it leads to programs where it is much
easier to distinguish reserved words from user-defined ones!

2.1.4. Readability of Programs

The most vociferous critics of COBOL frequently focus on the wordiness of the language,
often citing the case of a so-called "Hello World" program as the "proof" that COBOL is
so much more tedious to program in than more "modern" languages. This tedium is cited
as such a significant impact to programmer productivity that, in their opinions, COBOL
can’t go away quickly enough.

Here are two different "Hello World" applications — one written in Java and the second in
GnuCOBOL. First, the Java version:

Class HelloWorld {

public static void main(String[] args) {

System.out.println("Hello World!");

}

}

And here is the same program, written in GnuCOBOL:

IDENTIFICATION DIVISION.

PROGRAM-ID. HelloWorld.

PROCEDURE DIVISION.

DISPLAY "Hello World!".

Both of the above programs could have been written on a single line, if desired, and both

Chapter 2 - Cobol Fundamentals 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 11

languages allow a programmer to use (or not use) indentation as they see fit to improve
program readability. Sounds like a tie so far.

Let’s look at how much more "wordy" COBOL is than Java. Count the characters in the
two programs. The Java program has 95 (not counting carriage returns and any indenta-
tion). The COBOL program has 89 (again, not counting carriage returns and indentation)!
Technically, it could have been only 65 because the "IDENTIFICATION DIVISION." header
is actually optional. Clearly, "Hello World" doesn’t look any more concise in Java than it
does in COBOL.

Let’s look at a different problem. Surely a program that asks a user to input a positive
integer, generates the sum of all positive integers from 1 to that number and then prints
the result will be MUCH shorter and MUCH easier to understand when coded in Java than
in COBOL, right?

You can be the judge. First, the Java version:

import java.util.Scanner;

public class sumofintegers {

public static void main(String[] arg) {

System.out.println("Enter a positive integer");

Scanner scan=new Scanner(System.in);

int n=scan.nextInt();

int sum=0;

for (int i=1;i<=n;i++) {

sum+=i;

}

System.out.println("The sum is "+sum);

}

}

And now for the COBOL version:

IDENTIFICATION DIVISION.

PROGRAM-ID. SumOfIntegers.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 n BINARY-LONG.

01 i BINARY-LONG.

01 sum BINARY-LONG VALUE 0.

PROCEDURE DIVISION.

DISPLAY "Enter a positive integer"

ACCEPT n

PERFORM VARYING i FROM 1 BY 1 UNTIL i > n

ADD i TO sum

END-PERFORM

DISPLAY "The sum is " sum.

15 February 2018 Chapter 2 - Cobol Fundamentals



12 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

My familiarity with COBOL may be prejudicing my opinion, but it doesn’t appear to me
that the Java code is any simpler than the COBOL code. In case you’re interested in
character counts, the Java code comes in at 278 (not counting indentation characters). The
COBOL code is 298 (274 without the "IDENTIFICATION DIVISION." header).

Despite what you’ve seen here, the more complex the programming logic being implemented,
the more concise the Java code will appear to be, even compared to 2002-standard COBOL.
That conciseness comes with a price though — program code readability. Java (or C or C++
or C#) programs are generally intelligible only to trained programmers. COBOL programs
can, however, be quite understandable by non-programmers. This is actually a side-effect
of the "wordiness" of the language, where COBOL statements use natural English words to
describe their actions. This inherent readability has come in handy many times throughout
my career when I’ve had to learn obscure business (or legal) processes by reading the
COBOL program code that supports them.

The "modern" languages, like Java, also have their own "boilerplate" infrastructure
overhead that must be coded in order to write the logic that is necessary in the program.
Take for example the "public static void main(String[] arg)" and "import

java.util.Scanner;" statements. The critics tend to forget about this when they
criticize COBOL for it’s structural "overhead".

When it first was developed, Cobol’s easily-readable syntax made it profoundly different
from anything that had been seen before. For the first time, it was possible to specify logic in
a manner that was — at least to some extent — comprehensible even to non-programmers.
Take for example, the following code written in FORTRAN — a language developed only
a year before COBOL:

EXT = PRICE * IQTY

INVTOT = INVTOT + EXT

With its original limitation on the length of variable names (one- to six-character names
comprised of a letter followed by up to five letters and/or digits), it’s implicit rule that
variable were automatically created as real (floating-point) unless their name started with
a letter in the range I-N, and its use of algebraic notation to express actions being taken,
FORTRAN wasn’t a particularly readable language, even for programmers. Compare this
with the equivalent COBOL code:

MULTIPLY price BY quantity GIVING extended-amount

ADD extended-amount TO invoice-total

Clearly, even a non-programmer could at least conceptually understand what was going on!
Over time, languages like FORTRAN evolved more robust variable names, and COBOL
introduced a more formula-based syntactical capability for arithmetic operations, but FOR-
TRAN was never as readable as COBOL.

Chapter 2 - Cobol Fundamentals 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 13

Because of its inherent readability, I would MUCH rather be handed an assignment to make
significant changes to a COBOL program about which I know nothing than to be asked to
do the same with a C, C++, C# or Java program.

Those that argue that it is too boring / wasteful / time-consuming / insulting (pick one) to
have to code a COBOL program "from scratch" are clearly ignorant of the following facts:

• Many systems have program-development tools available to ease the task of coding
programs; those tools that concentrate on COBOL are capable of providing templates
for much of the "overhead" verbiage of any program. . .

• Good programmers have — for decades — maintained their own skeleton "template"
programs for a variety of program types; simply load a template into a text editor and
you’ve got a good start to the program. . .

• Legend has it that there’s actually only been ONE program ever written in COBOL, and
all programs ever "written" thereafter were simply derivatives of that one. Although
this is clearly intended as a (probably) bad joke, it is nevertheless close to the very
simple truth that many programmers"reuse" existing COBOL programs when creating
new ones. There’s certainly nothing preventing this from happening with programs
written in other languages, but it does seem to happen more in COBOL shops. It’s
ironic that "code re-usability" is one of the arguments used to justify the existence of
the "modern" languages.

2.1.5. Divisions Organize Programs

COBOL programs are structured into four major areas of coding, each with its own purpose.
These four areas are known as divisions.

Each division may consist of a variety of sections and each section consists of one or more
paragraphs. A paragraph consists of sentences, each of which consists of one or more
statements.

This hierarchical structure of program components standardizes the composition of all
COBOL programs. Much of this manual describes the various divisions, sections, para-
graphs and statements that may comprise any COBOL program.

2.1.6. Copybooks

A ’Copybook ’ is a segment of program code that may be utilized by multiple programs simply
by having those programs use the "COPY" statement (see [COPY], page 69) to import that
code. This code may define files, data structures or procedural code.

Today’s current programming languages have a statement (usually, this statement is named
"import", "include" or "#include") that performs this same function. What makes the
COBOL copybook feature different than the "include" facility in newer languages, however,
is the fact that the "COPY" statement can edit the imported source code as it is being copied.
This capability makes copybook libraries extremely valuable to making code reusable.

15 February 2018 Chapter 2 - Cobol Fundamentals



14 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

2.1.7. Structured Data

A contiguous area of storage within the memory space of a program that may be refer-
enced, by name, in a COBOL program is referred to as a ’Data Item’. Other programming
languages use the term variable, property or attribute to describe the same thing.

COBOL introduced the concept of structured data. The principle of structured data in
COBOL is based on the idea of being able to group related and contiguously-allocated
data items together into a single aggregate data item, called a ’Group Item’. For example,
a 35-character ’Employee-Name’ group item might consist of a 20-character ’Last-Name’
followed by a 14-character ’First-Name’ and a 1-character ’Middle-Initial’.

A data item that isn’t itself formed from other data items is referred to in COBOL as an
’Elementary Item’. In the previous example, ’Last-Name’, ’First-Name’ and ’Middle-Initial’
are all elementary items.

2.1.8. Files

One of Cobol’s strengths is the wide variety of data files it is capable of accessing. Gnu-
COBOL programs, like those created with other COBOL implementations, need to have the
structure of any files they will be reading and/or writing described to them. The highest-
level characteristic of a file’s structure is defined by specifying the organization of the file,
as follows:

"ORGANIZATION LINE SEQUENTIAL"

These are files with the simplest of all internal structures. Their contents are
structured simply as a series of identically- or differently-sized data records,
each terminated by a special end-of-record delimiter character. An ASCII line-
feed character (hexadecimal 0A) is the end-of-record delimiter character used
by any UNIX or pseudo-UNIX (MinGW, Cygwin, OSX) GnuCOBOL build. A
truly native Windows build would use a carriage-return, line-feed (hexadecimal
0D0A) sequence.

Records must be read from or written to these files in a purely sequential
manner. The only way to read (or write) record number 100 would be to have
read (or written) records number 1 through 99 first.

When the file is written to by a GnuCOBOL program, the delimiter sequence
will be automatically appended to each data record as it is written to the file. A
"WRITE" (see [WRITE], page 402) to this type of file will be done as if a "BEFORE
ADVANCING 1 LINE" clause were specified on the "WRITE", if no "ADVANCING"

clause is coded.

When the file is read, the GnuCOBOL runtime system will strip the trailing
delimiter sequence from each record. The data will be padded (on the right)
with spaces if the data just read is shorter than the area described for data
records in the program. If the data is too long, it will be truncated and the
excess will be lost.

Chapter 2 - Cobol Fundamentals 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 15

These files should not be defined to contain any exact binary data fields because
the contents of those fields could inadvertently have the end-of-record sequence
as part of their values — this would confuse the runtime system when reading
the file, and it would interpret that value as an actual end-of-record sequence.

"LINE ADVANCING"

These are files with an internal structure similar to that of a line sequential file.
These files are defined (without an explicit "ORGANIZATION" specification) using
the "LINE ADVANCING" clause on their "SELECT" statement (see [SELECT],
page 109).

When this kind of file is written to by a GnuCOBOL program, an end-of-
record delimiter sequence will be automatically added to each data record as it
is written to the file. A "WRITE" to this type of file will be done as if an "AFTER

ADVANCING 1 LINE" clause were specified on the "WRITE", if no "ADVANCING"

clause is coded.

Like line sequential files, these files should not be defined to contain any exact
binary data fields because the contents of those fields could inadvertently have
the end-of-record sequence as part of their values — this would confuse the
runtime system when reading the file, and it would interpret that value as an
actual end-of-record sequence.

"ORGANIZATION SEQUENTIAL"

These files also have a simple internal structure. Their contents are structured
simply as an arbitrarily-long sequence of data characters. This sequence of
characters will be treated as a series of fixed-length records simply by logically
splitting the sequence of characters up into fixed-length segments, each as long
as the maximum record size defined in the program. There are no special end-
of-record delimiter characters in the file and when the file is written to by a
GnuCOBOL program, no delimiter sequence is appended to the data.

Records in this type of file are all the same physical length, except possibly
for the very last record in the file, which may be shorter than the others. If
variable-length logical records are defined to the program, the space occupied
by each physical record in the file will occupy the space described by the longest
record description in the program.

So, if a file contains 1275 characters of data, and a program defines the struc-
ture of that file as containing 100-character records, then the file contents will
consist of twelve (12) 100-character records with a final record containing only
75 characters.

It would appear that it should be possible to locate and process any record in
the file directly simply by calculating its starting character position based upon
the program-defined record size. Even so, however, records must be still be
read or written to these files in a purely sequential manner. The only way to

15 February 2018 Chapter 2 - Cobol Fundamentals



16 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

read (or write) record number 100 would be to have read (or written) records
number 1 through 99 first.

When the file is read, the data is transferred into the program exactly as it
exists in the file. In the event that a short record is read as the very last record,
that record will be padded (to the right) with spaces.

Care must be taken that programs reading such a file describe records whose
length is exactly the same as that used by the program that created the file.
For example, the following shows the contents of a "SEQUENTIAL" file created
by a program that wrote five 6-character records to it. The "A", "B", . . .
values reflect the records that were written to the file:

‘AAAAAABBBBBBCCCCCCDDDDDDEEEEEE’

Now, assume that another program reads this file, but describes 10-character
records rather than 6. Here are the records that program will read:

‘AAAAAABBBB’
‘BBCCCCCCDD’
‘DDDDEEEEEE’

There may be times where this is exactly what you were looking for. More often
than not, however, this is not desirable behaviour. Suggestion: use a copybook
to describe the record layouts of any file; this guarantees that multiple programs
accessing that file will "see" the same record sizes and layouts by coding a
"COPY" statement (see [COPY], page 69) to import the record layout(s) rather
than hand-coding them.

These files can contain exact binary data fields. This is possible because —
since there is no character sequence that constitutes an end-of-record delimiter
— the contents of record fields are irrelevant to the reading process.

"ORGANIZATION RELATIVE"

The contents of these files consist of a series of fixed-length data records prefixed
with a four-byte record header. The record header contains the length of the
data, in bytes. The byte-count does not include the four-byte record header.

Records in this type of file are all the same physical length. If variable-length
logical records are defined to the program, the space occupied by each physical
record in the file will occupy the maximum possible space, and the logical
record length field will contain the number of bytes of data in the record that
are actually in use.

This file organization was defined to accommodate either sequential or ran-
dom processing. With a "RELATIVE" file, it is possible to read or write record
100 directly, without having to have first read or written records 1-99. The
GnuCOBOL runtime system uses the program-defined maximum record size to

Chapter 2 - Cobol Fundamentals 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 17

calculate a relative byte position in the file where the record header and data
begin, and then transfers the necessary data to or from the program.

When the file is written by a GnuCOBOL program, no delimiter sequence is
appended to the data, but a record-length field is added to the beginning of
each physical record.

When the file is read, the data is transferred into the program exactly as it
exists in the file.

Care must be taken that programs reading such a file describe records whose
length is exactly the same as that used by the programs that created the file. It
won’t end well if the GnuCOBOL runtime library interprets a four-byte ASCII
character string as a record length when it transfers data from the file into the
program!

Suggestion: use a copybook to describe the record layouts of any file; this
guarantees that multiple programs accessing that file will "see" the same record
sizes and layouts by coding a "COPY" statement (see [COPY], page 69) to import
the record layout(s) rather than hand-coding them.

These files can contain exact binary data fields. The contents of record fields
are irrelevant to the reading process as there is no end-of-record delimiter.

"ORGANIZATION INDEXED"

This is the most advanced file structure available to GnuCOBOL programs.
It’s not possible to describe the physical structure of such files because that
structure will vary depending upon which advanced file-management facility
was included into the GnuCOBOL build you will be using (Berkeley Database
[BDB], VBISAM, etc.). We will — instead — discuss the logical structure of
the file.

There will be multiple structures stored for an "INDEXED" file. The first will
be a data component, which may be thought of as being similar to the internal
structure of a relative file. Data records may not, however, be directly accessed
by their record number as would be the case with a relative file, nor may they
be processed sequentially by their physical sequence in the file.

The remaining structures will be one or more index components. An index
component is a data structure that (somehow) enables the contents of a field,
called a primary key, within each data record (a customer number, an employee
number, a product code, a name, etc.) to be converted to a record number
so that the data record for any given primary key value can be directly read,
written and/or deleted. Additionally, the index data structure is defined in such
a manner as to allow the file to be processed sequentially, record-by-record, in
ascending sequence of the primary key field values. Whether this index structure
exists as a binary-searchable tree structure (b-tree), an elaborate hash structure
or something else is pretty much irrelevant to the programmer — the behaviour

15 February 2018 Chapter 2 - Cobol Fundamentals



18 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

of the structure will be as it was just described. The actual mechanism used
will depend upon the advanced file-management package was included into your
GnuCOBOL implementation when it was built.

The runtime system will not allow two records to be written to an indexed file
with the same primary key value.

The capability exists for an additional field to be defined as what is known as
an alternate key. Alternate key fields behave just like primary keys, allowing
both direct and sequential access to record data based upon the alternate key
field values, with one exception. That exception is the fact that alternate keys
may be allowed to have duplicate values, depending upon how the alternate key
field is described to the GnuCOBOL compiler.

There may be any number of alternate keys, but each key field comes with
a disk space penalty as well as an execution time penalty. As the number of
alternate key fields increases, it will take longer and longer to write and/or
modify records in the file.

These files can contain exact binary data fields. The contents of record fields
are irrelevant to the reading process as there is no end-of-record delimiter.

All files are initially described to a GnuCOBOL program using a "SELECT" statement (see
[SELECT], page 109). In addition to defining a name by which the file will be referenced
within the program, the "SELECT" statement will specify the name and path by which the
file will be known to the operating system along with its organization, locking and sharing
attributes.

A file description in the "FILE SECTION" (see [FILE SECTION], page 129) will define the
structure of records within the file, including whether or not variable-length records are
possible and — if so — what the minimum and maximum length might be. In addition,
the file description entry can specify file I/O block sizes.

2.1.9. Table Handling

Other programming languages have arrays, COBOL has tables. They’re basically the same
thing. There are two special statements that exist in the COBOL language — "SEARCH"

(see [SEARCH], page 362) and "SEARCH ALL" (see [SEARCH ALL], page 364) — that make
finding data in a table easy.

The first can search a table sequentially, stopping only when either a table entry matching
one of any number of search conditions is found, or when all table entries have been checked
against the search criteria and none matched any of those criteria.

The second can perform an extremely fast search against a table sorted by and searched
against a key field contained in each table entry. The algorithm used for such a search is
a binary search (also known as a half-interval search). This algorithm ensures that only
a small number of entries in the table need to be checked in order to find a desired entry
or to determine that the desired entry doesn’t exist in the table. The larger the table,

Chapter 2 - Cobol Fundamentals 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 19

the more effective this search becomes. For example, a binary search of a table containing
32,768 entries will be able to locate a particular entry or determine the entry doesn’t exist
by looking at no more than fifteen (15) entries! The algorithm is explained in detail in the
documentation of the "SEARCH ALL" statement (see [SEARCH ALL], page 364).

Finally, COBOL has the ability to perform in-place sorts of the data that is found in a
table.

2.1.10. Sorting and Merging Data

The COBOL language includes a powerful "SORT" statement (see [SORT], page 376) that
can sort large amounts of data according to arbitrarily complex key structures. This data
may originate from within the program or may be contained in one or more external files.
The sorted data may be written automatically to one or more output files or may be
processed, record-by-record in the sorted sequence.

A companion statement — "MERGE" (see [MERGE], page 333) — can combine the contents
of multiple files together, provided those files are all pre-sorted in a similar manner according
to the same key structure. The resulting output will consist of the contents of all of the
input files, merged together and sequenced according to the common key structure(s). The
output generated by a "MERGE" statement may be written automatically to one or more
output files or may be processed internally by the program.

A special form of the "SORT" statement also exists just to sort the data that resides in a
table. This is particularly useful if you wish to use "SEARCH ALL" against the table.

2.1.11. String Manipulation Features

There have been programming languages designed specifically for the processing of text
strings, and there have been programming languages designed for the sole purpose of per-
forming high-powered numerical computations. Most programming languages fall some-
where in the middle.

COBOL is no exception, although it does include some very powerful string manipulation ca-
pabilities; GnuCOBOL actually has even more string-manipulation capabilities than many
other COBOL implementations. The following summarizes GnuCOBOL’s string-processing
capabilities:

Concatenate two or more strings:

• "CONCATENATE" intrinsic function (see [CONCATENATE], page 414).

• "STRING" statement (see [STRING], page 386).

Conversion of a numeric time or date to a formatted character string:

• "LOCALE-TIME" intrinsic function (see [LOCALE-TIME], page 446).

• "LOCALE-DATE" intrinsic function (see [LOCALE-DATE], page 445).

15 February 2018 Chapter 2 - Cobol Fundamentals



20 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

Convert a binary value to its corresponding character in the program’s character set:

• "CHAR" intrinsic function (see [CHAR], page 412). Add 1 to argument before invoking
the function; the description of the "CHAR" intrinsic function presents a technique
utilizing the "MOVE" statement that will accomplish the same thing without the need
of adding 1 to the numeric argument value first.

Convert a character string to lower-case:

• "LOWER-CASE" intrinsic function (see [LOWER-CASE], page 450).

• "C$TOLOWER" built-in system subroutine (see [C$TOLOWER], page 530).

• "CBL_TOLOWER" built-in system subroutine (see [CBL TOLOWER], page 571).

Convert a character string to upper-case:

• "UPPER-CASE" intrinsic function (see [UPPER-CASE], page 503).

• "C$TOUPPER" built-in system subroutine (see [C$TOUPPER], page 531).

• "CBL_TOUPPER" built-in system subroutine (see [CBL TOUPPER], page 571).

Convert a character string to only printable characters:

• "C$PRINTABLE" built-in system subroutine (see [C$PRINTABLE], page 528).

Convert a character to its numeric value in the program’s character set:

• "ORD" intrinsic function (see [ORD], page 475). Subtract 1 from the result; the descrip-
tion of the "ORD" intrinsic function presents a technique utilizing the "MOVE" statement
that will accomplish the same thing without the need of adding 1 to the numeric ar-
gument value first.

Count occurrences of sub strings in a larger string:

• "INSPECT" statement (see [INSPECT], page 327) with the "TALLYING" clause.

Decode a formatted numeric string back to a numeric value:

• "NUMVAL" intrinsic function (see [NUMVAL], page 469).

• "NUMVAL-C" intrinsic function (see [NUMVAL-C], page 472).

Determine the length of a string or data-item capable of storing strings:

• "LENGTH" intrinsic function (see [LENGTH], page 442).

• "BYTE-LENGTH" intrinsic function (see [BYTE-LENGTH], page 411).

Chapter 2 - Cobol Fundamentals 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 21

Extract a sub string from a string based on its starting character position and length:

• Use of a reference modifier on the string field - See [Reference Modifiers], page 44.

Format a numeric item for output, including thousands-separators ("," in the USA), cur-
rency symbols ("$" in the USA), decimal points, credit/Debit Symbols, Leading Or Trailing
Sign Characters:

• "MOVE" statement (see [MOVE], page 336) with picture-symbol editing applied to the
receiving field:

Justification (left, right or centred) of a string field:

• "C$JUSTIFY" built-in system subroutine (see [C$JUSTIFY], page 524).

Monoalphabetic substitution of one or more characters in a string with different characters:

• "INSPECT" statement (see [INSPECT], page 327) with the "CONVERTING".

• "TRANSFORM" statement (see [TRANSFORM], page 396).

• "SUBSTITUTE" intrinsic function (see [SUBSTITUTE], page 492).

• "SUBSTITUTE-CASE" intrinsic function (see [SUBSTITUTE-CASE], page 493).

Parse a string, breaking it up into sub strings based upon one or more delimiting character
sequences1:

• "UNSTRING" statement (see [UNSTRING], page 398).

Removal of leading or trailing spaces from a string:

• "TRIM" intrinsic function (see [TRIM], page 502).

Substitution of a single sub string with another of the same length, based upon the sub
strings starting character position and length:

• "MOVE" statement (see [MOVE], page 336) with a reference modifier on the "receiving"
field (see [Reference Modifiers], page 44).

Substitution of one or more sub strings in a string with replacement sub strings of the
same length, regardless of where they occur:

• "INSPECT" statement (see [INSPECT], page 327) with a "REPLACING" clause.

1 These delimiters may be single characters, multiple-character strings or multiple consecutive occurrences of
either

15 February 2018 Chapter 2 - Cobol Fundamentals



22 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

• "SUBSTITUTE" intrinsic function (see [SUBSTITUTE], page 492).

• "SUBSTITUTE-CASE" intrinsic function (see [SUBSTITUTE-CASE], page 493).

Substitution of one or more sub strings in a string with replacement sub strings of a
potentially different length, regardless of where they occur:

• "SUBSTITUTE" intrinsic function (see [SUBSTITUTE], page 492).

• "SUBSTITUTE-CASE" intrinsic function (see [SUBSTITUTE-CASE], page 493).

2.1.12. Screen Formatting Features

The COBOL2002 standard formalizes extensions to the COBOL language that allow for the
definition and processing of text-based screens, as is a typical function on mainframe and
midframe computers as well as on many point-of-sale (i.e. "cash register") systems. Gnu-
COBOL implements virtually all the screen-handling features described by COBOL2002.

These features allow fields to be displayed at specific row/column positions, various colors
and video attributes to be assigned to screen fields and the pressing of specific function keys
(F1, F2, . . . ) to be detectable. All of this takes place through the auspices of the "SCREEN
SECTION" (see [SCREEN SECTION], page 151) and special formats of the "ACCEPT" state-
ment (see [ACCEPT], page 258) and the "DISPLAY" statement (see [DISPLAY], page 292).

The COBOL2002 standard, and therefore GnuCOBOL, only covers textual user interface
(TUI) screens (those comprised of ASCII characters presented using a variety of visual
attributes) and not the more-advanced graphical user interface (GUI) screen design and
processing capabilities built into most modern operating systems. There are subroutine-
based packages available that can do full GUI presentation — most of which may be called
by GnuCOBOL programs, with a moderate research time investment (Tcl/Tk, for example)
— but none are currently included with GnuCOBOL.

Chapter 2 - Cobol Fundamentals 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 23

2.1.12.1. A Sample Screen

A Sample Screen Produced by a GnuCOBOL Program:

The above screen was produced by the GnuCOBOL Interactive Compiler, or GCic. See
Section “GCic” in GnuCOBOL Sample Programs, for the source and cross-reference listing
of this program.

Screens are defined in the screen section of the data division. Once defined, screens are used
at run-time via the "ACCEPT" and "DISPLAY" statements.

2.1.12.2. Color Palette and Video Attributes

GnuCOBOL supports the following visual attribute specifications in the "SCREEN SECTION"

(see [SCREEN SECTION], page 151):

Color

Eight (8) different colors may be specified for both the background (screen)
and foreground (text) color of any row/column position on the screen. Colors
are specified by number, although a copybook supplied with all GnuCOBOL
distributions ("screenio.cpy") defines COB-COLOR-xxxxxx names for the var-
ious colors so they may be specified as a more meaningful name rather than
a number. The eight colors, by number, with the constant names defined in
screenio.cpy, are as follows:

15 February 2018 Chapter 2 - Cobol Fundamentals



24 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

0. Black: COB-COLOR-BLACK

1. Blue: COB-COLOR-BLUE

2. Green: COB-COLOR-GREEN

3. Cyan (Turquoise): COB-COLOR-CYAN

4. Red: COB-COLOR-RED

5. Magenta: COB-COLOR-MAGENTA

6. Yellow: COB-COLOR-YELLOW

7. White: COB-COLOR-WHITE

Text Brightness

There are three possible brightness levels supported for text — lowlight (dim),
normal and highlight (bright). Not all GnuCOBOL implementations will sup-
port all three (some treat lowlight the same as normal). The deciding factor as
to whether two or three levels are supported lies with the version of the "curses"
package that is being used. This is a utility screen-IO package that is included
into the GnuCOBOL run-time library when the GnuCOBOL software is built.

As a general rule of thumb, Windows implementations support two levels while
Unix ones support all three.

Blinking

This too is a video feature that is dependent upon the "curses" package built
into your version of GnuCOBOL. If blinking is enabled in that package, text dis-
played in fields defined in the screen section as being blinking will endlessly cy-
cle between the brightest possible setting (highlight) and an "invisible" setting
where the text color matches that of the field background color. A Windows
build, which generally uses the "pcurses" package, will uses a brighter-than-
normal background color to signify "blinking".

Reverse Video

This video attribute simply swaps the foreground and background colors and
display options.

Field Outlining

It is possible, if supported by the "curses" package being used, to draw borders
on the top, left and/or bottom edges of a field.

Secure Input

If desired, screen fields used as input fields may defined as "secure" fields, where
each input character (regardless of what was actually typed) will appear as an
asterisk (*) character. The actual character whose key was pressed will still be

Chapter 2 - Cobol Fundamentals 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 25

stored into the field in the program, however. This is very useful for password
or account number fields.

Prompt Character

Input fields may have any character used as a fill character. These fill characters
provide a visual indication of the size of the input field, and will automatically
be transformed into spaces when the input field is processed by the program.
If no such character is defined for an input field, an underscore (" ") will be
assumed.

The following is a sample of the GnuCOBOL color Palette, showing all possible combinations
of the various video attributes. This example was prepared on a Macintosh running OSX
Mavericks (10.9). Blinking works — the screen snapshot shows things in mid blink, when
the text and background colors are momentarily the same. Unfortunately, only two screen
intensities are available (like Windows, the "lowlight" setting is the same as the default).

The GnuCOBOL Color Palette and Video Options::

The rows of each block are numbered with the background color while columns are numbered
with the foreground color.

See Section “Colors” in GnuCOBOL Sample Programs, for a source and cross-reference
listing of the program (Colors.cbl) that produced the above screen.

15 February 2018 Chapter 2 - Cobol Fundamentals



26 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

2.1.13. Report Writer Features

GnuCOBOL includes an implementation of the Report Writer Control System, or RWCS.
The reportwriter module is implemented as of version 3.0. If you want to use the reportwriter
module in the meanwhile, please use the feature branch instead and it is currently found at
https://sourceforge.net/p/open-cobol/code/HEAD/tree/branches/reportwriter). This is a
standardized, optional add-on feature to the COBOL language which automates much of
the mechanics involved in the generation of printed reports by:

1. Controlling the pagination of reports, including:

A. The automatic production of a one-time notice on the first page of the report
(report heading).

B. The production of zero or more header lines at the top of every page of the report
(page heading).

C. The production of zero or more footer lines at the bottom of every page of the
report (page footing).

D. The automatic numbering of printed pages.

E. The formatting of those report lines that make up the main body of the report
(detail).

F. Full awareness of where the "pen" is about to "write" on the current page, auto-
matically forcing an eject to a new page, along with the automatic generation of
a page footer to close the old page and/or a page header to begin the new one.

G. The production of a one-time notice at the end of the last page of a report (report
footing).

2. Performing special reporting actions based upon the fact that the data being used to
generate the report has been sorted according to one or more key fields:

A. Automatically suppressing the presentation of one or more fields of data from
the detail group when the value(s) of the field(s) duplicate those of the previously
generated detail group. Fields such as these are referred to as group-indicate fields.

B. Automatically causing suppressed detail group-indicate fields to re-appear should
a detail group be printed on a new page.

C. Recognizing when control fields on the report — fields tied to those that were used
as "SORT" statement (see [SORT], page 376) keys — have changed. This is known
as a control break. The RWCS can automatically perform the following reporting
actions when a control break occurs:

• Producing a footer, known as a control footing after the detail lines that shared
the same old value for the control field.

• Producing a header, known as a control heading before the detail lines that
share the same new value for the control field.

3. Perform data summarise, as follows:

Chapter 2 - Cobol Fundamentals 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 27

A. Automatically generating subtotals in control and/or report footings, summarizing
values of any fields in the detail group.

B. Automatically generating crossfoot totals in detail groups. These would be sums
of two or more values presented in the detail group.

The "REPORT SECTION" (see [REPORT SECTION], page 143) documentation explores the
description of reports and the "PROCEDURE DIVISION" (see [PROCEDURE DIVISION],
page 237) chapter documents the various language statements that actually produce re-
ports. Before reading these, you might find it helpful to read [Report Writer Usage Notes],
page 581, which is dedicated to putting the pieces together for you.

2.1.14. Data Initialization

There are three ways in which data division data gets initialized.

1. When a program or subprogram is first executed, much of the data in it’s data division
will be initialized as follows:

• Alphanumeric and alphabetic (i.e. text) data items will be initialized to "SPACES".

• Numeric data items will be initialized to a value of "ZERO".

• Data items with an explicit "VALUE" (see [VALUE], page 234) clause in their
definition will be initialized to that specific value.

The various sections of the data division each have their own rules as to when the
actions described above will occur — consult the documentation on those sections for
additional information.

These default initialization rules can vary quite substantially from one COBOL imple-
mentation to another. For example, it is quite common for data division storage to be
initialized to all binary zeros except for those data items where "VALUE" clauses are
present. Take care when working with applications originally developed for another
COBOL implementation to ensure that GnuCOBOL’s default initialization rules won’t
prove disruptive.

2. A programmer may use the "INITIALIZE" statement (see [INITIALIZE], page 321) to
initialise any group or elementary data item at any time. This statement provides far
more initialization options than just the simple rules stated above.

3. When the "ALLOCATE" statement (see [ALLOCATE], page 278) statement is used to
allocate a data item or to simply allocate an area of storage of a size specified on
the "ALLOCATE", that allocation may occur with or without initialization, as per the
programmer’s needs.

2.1.15. Syntax Diagram Conventions

Syntax of the GnuCOBOL language will be described in special "syntax diagrams" using
the following syntactical-description techniques:

15 February 2018 Chapter 2 - Cobol Fundamentals



28 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

MANDATORY-RESERVED-WORD

~~~~~~~~~~~~~~~~~~~~~~~

Reserved words of the COBOL language will appear in UPPER-CASE. When
they appear underlined, as this one is, they are required reserved words.

OPTIONAL-RESERVED-WORD

When reserved words appear without underlining, as this one is, they are op-
tional; such reserved words are available in the language syntax merely to im-
prove readability — their presence or absence has no effect upon the program.

ABBREVIATION

~~~~

When only a portion of a reserved word is underlined, it indicates that the word
may either be coded in its full form or may be abbreviated to the portion that
is underlined.

substitutable-items

Generic terms representing user-defined substitutable items will be shown en-
tirely in lower-case in syntax diagrams. When such items are referenced in text,
they will appear as <substitutable-items>.

Complex-Syntax-Clause

Items appearing in Mixed Case within a syntax diagram represent complex
clauses of other syntax elements that may appear in that position. Some
COBOL syntax gets quite complicated, and using a convention such as this
significantly reduces the complexity of a syntax diagram. When such items are
referenced in text, they will appear as <<Complex-Syntax-Clause>>.

[ ]

Square bracket meta characters on syntax diagrams document language syntax
that is optional. The [] characters themselves should not be coded. If a syntax
diagram contains "a [b] c", the "a" and "c" syntax elements are mandatory
but the "b" element is optional.

|

Vertical bar meta characters on syntax diagrams document simple choices. The
| character itself should not be coded. If a syntax diagram contains "a|b|c",
exactly one of the items "a", "b" or "c" must be selected.

{ xxxxxx }

{ yyyyyy }

{ zzzzzz }

A vertical list of items, bounded by multiple brace characters, is another way
of signifying a choice between a series of items where exactly one item must be

Chapter 2 - Cobol Fundamentals 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 29

selected. This form is used to show choices when one or more of the selections
is more complex than just a single word, or when there are too many choices
to present horizontally with "|" meta characters.

| xxxxxx |

| yyyyyy |

| zzzzzz |

A vertical list of items, bounded by multiple vertical bar characters, signifies
a choice between a series of items where one or more of the choices could be
selected.

...

The ... meta character sequence signifies that the syntax element immediately
preceding it may be repeated. The ... sequence itself should not be coded. If
a syntax diagram contains "a b... c", syntax element "a" must be followed
by at least one "b" element (possibly more) and the entire sequence must be
terminated by a "c" syntax element.

{ }

The braces ({}) meta characters may be used to group a sequence of syntax
elements together so that they may be treated as a single entity. The {} char-
acters themselves should not be coded. These are typically used in combination
with the "|" or "..." meta characters.

$*^()-+=:"’<,>./

Any of these characters appearing within a syntax diagram are to be interpreted
literally, and are characters that must be coded — where allowed — in the
statement whose format is being described. Note that a "." character is a
literal character that must be coded on a statement whereas a "..." symbol is
the meta character sequence described above.

2.1.16. Format of Program Source Lines

Prior to the COBOL2002 standard, source statements in COBOL programs were structured
around 80-column punched cards. This means that each source line in a COBOL program
consisted of five different "areas", defined by their column number(s).

As of the COBOL2002 standard, a second mode now exists for COBOL source code state-
ments — in this mode of operation, COBOL statements may each be up to 255 characters
long, with no specific requirements as to what should appear in which columns.

Of course, in keeping with the long-standing COBOL tradition of maintaining backwards
compatibility with older standards, programmers (and, of course, compliant COBOL com-
pilers) are capable of working in either mode. It is even possible to switch back and forth
in the same program. The terms ’Fixed Format Mode’ and ’Free Format Mode’ are used to
refer to these two modes of source code formatting.

15 February 2018 Chapter 2 - Cobol Fundamentals



30 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

The GnuCOBOL compiler (cobc) supports both of these source line format modes, default-
ing to Fixed Format Mode lacking any other information.

The compiler can be instructed to operate in either mode in any of the following four ways:

1. Using a compiler option switch — use the "-fixed" switch to start in Fixed Format
Mode (remember that this is the default) or the "-free" switch to start in Free Format
Mode.

2. You may use the "SOURCEFORMAT AS FIXED" and "SOURCEFORMAT AS FREE" clauses of
the ">>SET" CDF directive (see [>>SET], page 78) within your source code to switch
to Fixed or Free Format Mode, respectively.

3. You may use the ">>FORMAT IS FIXED" and "FORMAT IS FREE" clauses of the
">>DEFINE" CDF directive (see [>>DEFINE], page 74) within your source code to
switch to Fixed or Free Format Mode, respectively.

4. You may use the ">>SOURCE" CDF directive (see [>>SOURCE], page 79) to switch to
Free Format Mode (">>SOURCE FORMAT IS FREE") or Fixed Format Mode (">>SOURCE
FORMAT IS FIXED".

Using methods 2-4 above, you may switch back and forth between the two formats at will.

The last three options above are all equivalent; all three are supported by GnuCOBOL so
that source code compatibility may be maintained with a wide variety of other COBOL
implementations. With all three, if the compiler is currently in Fixed Format Mode, the
">>" must begin in column 8 or beyond, provided no part of the directive extends past
column 72. If the compiler is currently in Free Format Mode, the ">>" may appear in any
column, provided no part of the directive extends past column 255.

Depending upon which source format mode the compiler is in, you will need to follow various
rules for the format mode currently in effect. These rules are presented in the upcoming
paragraphs.

The following discussion presents the various components of every GnuCOBOL source line
record when the compiler is operating in Fixed Format Mode. Remember that this is the
default mode for the GnuCOBOL compiler.

1-6 - Sequence Number Area

Historically, back in the days when punched-cards were used to submit COBOL
program source to a COBOL compiler, this part of a COBOL statement was
reserved for a six-digit sequence number. While the contents of this area are
ignored by COBOL compilers, it existed so that a program actually punched
on 80-character cards could — if the card deck were dropped on the floor —
be run through a card sorter machine and restored to it’s proper sequence. Of
course, this isn’t necessary today; if truth be told, it hasn’t been necessary for
a long time.

Chapter 2 - Cobol Fundamentals 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 31

See [Marking Changes in Programs], page 661, for discussion of a valuable use
to which the sequence number area may be put today.

7 - Indicator Area

Column 7 serves as an indicator in which one of five possible values will appear
— space, "D" (or "d"), "-" (dash), "/" or "*". The meanings of these characters
are as follows:

space

No special meaning — this is the normal character that will appear
in this area.

D/d

The line contains a valid GnuCOBOL statement that is normally
treated as a comment unless the program is being compiled in de-
bugging mode.

*

The line is a comment.

/

The line is a comment that will also force a page eject in the com-
pilation listing. While GnuCOBOL will honour such a line as a
comment, it will not form-feed any generated listing.

-

The line is a continuation of the previous line. These are needed
only when an alphanumeric literal (quoted character string), re-
served word or user-defined word are being split across lines.

8-11 - Area "A"

Language DIVISION, SECTION and paragraph section headers must begin in
Area A, as must the level numbers 01, 77 in data description entries and the
"FD" and "SD" file and SORT description headers.

12-72 - Area "B"

All other COBOL programming language components are coded in these
columns.

73-80 - Program Name Area

This is another obsolete area of COBOL statements. This part of every state-
ment also hails back to the day when programs were punched on cards; it was

15 February 2018 Chapter 2 - Cobol Fundamentals



32 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

expected that the name of the program (or at least the first 8 characters of
it) would be punched here so that — if a dropped COBOL source deck con-
tained more than one program — that handy card sorter machine could be
used to first separate the cards by program name and then sort them by se-
quence number. Today’s COBOL compilers (including GnuCOBOL) simply
ignore anything past column 72.

See [Marking Changes in Programs], page 661, for discussion of a valuable use
to which the program name area may be put today.

Chapter 2 - Cobol Fundamentals 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 33

2.1.17. Program Structure� �
Complete GnuCOBOL Program Syntax
 	

[ IDENTIFICATION DIVISION. ]

~~~~~~~~~~~~~~~~~~~~~~~

PROGRAM-ID|FUNCTION-ID. name-1 [ Program-Options ] .

~~~~~~~~~~ ~~~~~~~~~~~

[ ENVIRONMENT DIVISION. ]

~~~~~~~~~~~ ~~~~~~~~

[ CONFIGURATION SECTION. ]

~~~~~~~~~~~~~ ~~~~~~~

[ SOURCE-COMPUTER. Compilation-Computer-Specification . ]

~~~~~~~~~~~~~~~

[ OBJECT-COMPUTER. Execution-Computer-Specification . ]

~~~~~~~~~~~~~~~

[ REPOSITORY. Function-Specification... . ]

~~~~~~~~~~

[ SPECIAL-NAMES. Program-Configuration-Specification . ]

~~~~~~~~~~~~~

[ INPUT-OUTPUT SECTION. ]

~~~~~~~~~~~~ ~~~~~~~

[ FILE-CONTROL. General-File-Description... . ]

~~~~~~~~~~~~

[ I-O-CONTROL. File-Buffering-Specification... . ]

~~~~~~~~~~~

[ DATA DIVISION. ]

~~~~~~~~~~~~~

[ FILE SECTION. Detailed-File-Description... . ]

~~~~~~~~~~~~

[ WORKING-STORAGE SECTION. Permanent-Data-Definition... . ]

~~~~~~~~~~~~~~~ ~~~~~~~

[ LOCAL-STORAGE SECTION. Temporary-Data-Definition... . ]

~~~~~~~~~~~~~ ~~~~~~~

[ LINKAGE SECTION. Subprogram-Argument-Description... . ]

~~~~~~~ ~~~~~~~

[ REPORT SECTION. Report-Description... . ]

~~~~~~ ~~~~~~~

[ SCREEN SECTION. Screen-Layout-Definition... . ]

~~~~~~ ~~~~~~~

PROCEDURE DIVISION [ { USING Subprogram-Argument... } ]

~~~~~~~~~ ~~~~~~~~ { ~~~~~ }

{ CHAINING Main-Program-Argument... }

~~~~~~~~

15 February 2018 Chapter 2 - Cobol Fundamentals



34 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

[ RETURNING identifier-1 ] .

[ DECLARATIVES. ] ~~~~~~~~~

~~~~~~~~~~~~

[ Event-Handler-Routine... . ]

[ END DECLARATIVES. ]

~~~ ~~~~~~~~~~~~

General-Program-Logic

[ Nested-Subprogram... ]

[ END PROGRAM|FUNCTION name-1 ]

~~~ ~~~~~~~ ~~~~~~~~

————————————————————————————————————————

Each program consists of up to four ’Divisions’ (major groupings of sections, paragraphs and
descriptive or procedural coding that all relate to a common purpose), named Identification,
Environment, Data and Procedure.

1. Not all divisions are needed in every program, but they must be specified in the order
shown when they are used.

2. The following points pertain to the identification division

• The "IDENTIFICATION DIVISION." header is always optional.

3. The following points pertain to the environment division:

• If both optional sections of this division are coded, they must be coded in the
sequence shown.

• Each of these sections consists of a series of specific paragraphs
("SOURCE-COMPUTER" and "OBJECT-COMPUTER", for example). Each of
these paragraphs serves a specific purpose. If no code is required for the purpose
one of the paragraphs serves, the entire paragraph may be omitted.

• If none of the paragraphs within one of the sections are coded, the section header
itself may be omitted.

• The paragraphs within each section may only be coded in that section, but may
be coded in any order.

• If none of the sections within the environment division are coded, the
"ENVIRONMENT DIVISION." header itself may be omitted.

4. The following points pertain to the data division:

• The data division consists of six optional sections — when used, those sections
must be coded in the order shown in the syntax diagram.

• Each of these sections consists of code which serves a specific purpose. If no code is
required for the purpose one of those sections serves, the entire section, including
it’s header, may be omitted.

Chapter 2 - Cobol Fundamentals 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 35

• If none of the sections within the data division are coded (a highly unlikely, but
theoretically possible circumstance), the "DATA DIVISION." header itself may be
omitted.

5. The following points pertain to the procedure division:

• As with the other divisions, the procedure division may consist of sections and
those sections may — in turn — consist of paragraphs. Unlike the other divisions,
however, section and paragraph names are defined by the programmer, and there
may not be any defined at all if the programmer so wishes.

• Each Event-Handler-Routine will be a separate section devoted to trapping a par-
ticular run-time event. If there are no such sections coded, the "DECLARATIVES."
and "END DECLARATIVES." lines may be omitted.

6. A single file of COBOL source code may contain:

• A portion of a program; these files are known as copybooks

• A single program. In this case, the "END PROGRAM" or "END FUNCTION" statement
is optional.

• Multiple programs, separated from one another by "END PROGRAM" or "END

FUNCTION" statements. The final program in such a source code file need not
have an "END PROGRAM" or "END FUNCTION" statement.

7. Subprogram "B" may be nested inside program "A" by including program B’s source
code at the end of program A’s procedure division without an intervening "END

PROGRAM A." or "END FUNCTION A." statement. For now, that’s all that will be said
about nesting. See [Independent vs Contained vs Nested Subprograms], page 641, for
more information.

8. Regardless of how many programs comprise a single GnuCOBOL source file, only a
single output executable program will be generated from that source file when the file
is compiled.

2.1.18. Comments

The following information describes how comments may be embedded into GnuCOBOL
program source to provide documentation.

Comment Type Source Mode — Description
Blank Lines FIXED — Blank lines may be inserted as desired.

FREE — Blank lines may be inserted as desired.

15 February 2018 Chapter 2 - Cobol Fundamentals



36 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

Full-line
comments

FIXED — An entire source line will be treated as a comment
(and will be ignored by the compiler) by coding an asterisk
("*") in column seven (7).

FREE — An entire source line will be treated as a comment
(and will be ignored by the compiler) by coding the sequence
"*>", starting in any column, as the first non-blank characters
on the line.

Full-line
comments with
form-feed

FIXED — An entire source line will be treated as a comment
by coding a slash ("/") in column seven (7). Many COBOL
compilers will also issue a form-feed in the program listing so
that the "/" line is at the top of a new page. The GnuCOBOL
compiler does not support this form-feed behaviour.

The GnuCOBOL Interactive Compiler, or GCic, does support
this form-feed behaviour when it generates program source list-
ings! See Section “GCic” in GnuCOBOL Sample Programs,
for the source and cross-reference listing (produced by GCic) of
this program — you can see the effect of "/" there.

FREE — There is no Free Source Mode equivalent to "/".

Partial-line
comments

FIXED — Any text following the character sequence "*>" on a
source line will be treated as a comment. The "*" must appear
in column seven (7) or beyond.

FREE — Any text following the character sequence "*>" on a
source line will be treated as a comment. The "*" may appear
in any column.

Comments that
may be treated
as code, typi-
cally for debug-
ging purposes

FIXED — By coding a "D" in column 7 (upper- or lower-case),
an otherwise valid GnuCOBOL source line will be treated as a
comment by the compiler.

FREE — By specifying the character sequence ">>D" (upper-
or lower-case) as the first non-blank characters on a source line,
an otherwise valid GnuCOBOL source line will be treated as a
comment by the compiler.

Debugging statements may be compiled either by specify-
ing the "-fdebugging-line" switch on the GnuCOBOL com-
piler or by adding the "WITH DEBUGGING MODE" clause to the
"SOURCE-COMPUTER" paragraph.

2.1.19. Literals

Literals are constant values that will not change during the execution of a program. There
are two fundamental types of literals — numeric and alphanumeric.

Chapter 2 - Cobol Fundamentals 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 37

2.1.19.1. Numeric Literals

A numeric literal is a numeric constant which may be used as an array subscript, as a value
in arithmetic expressions, or in any procedural statement where a numeric value may be
used. Numeric literals may take any of the following forms:

• Integers such as 1, 56, 2192 or -54.

• Non-integer fixed point values such as 1.317 or -2.95.

• Floating-point values using "Enn" notation such as 9.92E25, representing 9.92 x 10^25
(10 raised to the 25th power) or 5.7E-14, representing 5.7 x 10^-14 (10 raised to the
-14th power). Both the mantissa (the number before the E) and the exponent (the
number after the E) may be explicitly specified as positive (with a +), negative (with a
-) or unsigned (and therefore implicitly positive). A floating-point literals value must
be within the range -1.7 x 10^308 to +1.7 x 10^308 with no more than 15 decimal digits
of precision.

• Hexadecimal numeric literals such as H"1F" (31 decimal), h’22’ (34 decimal) or
H’DEAD’ (57005 decimal). The H character may either be upper- or lower-case and
either single quote (’) or double-quote (") characters may be used in a hexadecimal
literal, provided both aren’t used in the same literal. Hexadecimal numeric literals are
limited to a maximum of sixteen hexadecimal digits (a 64-bit value).

2.1.19.2. Alphanumeric Literals

An alphanumeric literal is a character string suitable for display on a computer screen,
printing on a report, transmission through a communications connection or storage in al-
phanumeric or alphabetic data items.

An alphanumeric literal is not valid for use in arithmetic expressions unless it is first con-
verted to it’s numeric computational equivalent; there are three numeric conversion intrin-
sic functions built into GnuCOBOL that can perform this conversion — "NUMVAL" (see
[NUMVAL], page 469), "NUMVAL-C" (see [NUMVAL-C], page 472) and "NUMVAL-F" (see
[NUMVAL-F], page 474).

Alphanumeric literals may take any of the following forms:

• A sequence of characters enclosed by a pair of single-quote (’) or double-quote (")
characters constitutes a string literal. The double-quote character (") may be used as a
data character within an apostrophe-delimited string literal, and an apostrophe may be
used as a data character within a double-quote-delimited string literal. If an apostrophe
character must be included as a data character within an apostrophe-delimited string
literal, express that character as two consecutive apostrophes (”). If a double-quote
character must be included as a data character within a double-quote-delimited string
literal, express that character as two consecutive double-quotes ("").

• A literal formed according to the same rules as for a string literal (above), but prefixed
with the letter "Z" (upper- or lower-case) constitutes a zero-delimited string literal.
These literals differ from ordinary string literals in that they will be explicitly ter-

15 February 2018 Chapter 2 - Cobol Fundamentals



38 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

minated with a byte of hexadecimal value 00. These ’Zero-Delimited Alphanumeric
Literals’ are easily passable to C subprograms, as this is the convention C uses to store
character strings.

• A ’Hexadecimal Alphanumeric Literal ’ such as X"4A4B4C" (4A4B4C16 = the ASCII
string ’JKL’), x’20’ (an ASCII space) or X’30313233’ (3031323316 = the ASCII string
’0123’). The "X" character may either be upper- or lower-case and either single quote
(’) or double-quote (") characters may be used. These hexadecimal alphanumeric lit-
erals should always consist of an even number of hexadecimal digits, because each
character is represented by eight bits worth of data (2 hex digits). Hexadecimal al-
phanumeric literals may be of almost unlimited length.

Alphanumeric literals too long to fit on a single line may be continued to the next line in
one of two ways:

1. If you are using Fixed Format Mode, the alphanumeric literal can be run right up to
and including column 72. The literal may then be continued on the next line anywhere
after column 11 by coding another quote or apostrophe (whichever was used to begin
the literal originally). The continuation line must also have a hyphen (-) coded in the
indicator area (column 7). Here is an example (the scale is just for column number
reference):

1 2 3 4 5 6 7

1234567890123456789012345678901234567890123456789012345678901234567890123

01 LONG-LITERAL-VALUE-DEMO PIC X(60) VALUE "This is a long l

- "ong literal that

- " must be continu

- "ed.".

2. Regardless of whether the compiler is operating in Fixed or Free Format Mode, Gnu-
COBOL allows alphanumeric literals to be broken up into separate fragments. These
fragments have their own beginning and ending quote/apostrophe characters and are
"glued together" at compilation time using "&" characters. No continuation indicator
is needed. Here’s an example:

1 2 3 4 5 6 7

1234567890123456789012345678901234567890123456789012345678901234567890123

01 LONG-LITERAL-VALUE-DEMO PIC X(60) VALUE "This is a" &

" long literal that must " &

"be continued.".

If your program is using Free Format Mode, there’s less need to continue long alphanumeric
literals because statements may be as long as 255 characters.

Numeric literals may be split across lines just as alphanumeric literals are, using either of
the above techniques and both reserved and user-defined words can be split across lines too
(using the first technique). The continuation of numeric literals and user-defined/reserved
words is provided merely to provide compatibility with older COBOL versions and pro-
grams, but should not be used with new programs — it just makes for ugly-looking pro-
grams.

Chapter 2 - Cobol Fundamentals 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 39

2.1.19.3. Figurative Constants

Figurative constants are reserved words that may be used as literals anywhere the figurative
constants value could be interpreted as an arbitrarily long sequence of the characters in
question. When a specific length is required, such as would be the case with an argument
to a subprogram, a figurative constant may not be used. Thus, the following are valid uses
of figurative constants:

05 FILLER PIC 9(10) VALUE ZEROS.

...

MOVE SPACES TO Employee-Name

But this is not:

CALL "SUBPGM" USING SPACES

The following are the GnuCOBOL figurative constants and their respective equivalent val-
ues.

"ZERO"

This figurative constant has a value of numeric 0 (zero). "ZEROS" and "ZEROES"

are both synonyms of "ZERO".

"SPACE"

This figurative constant has a value of one or more space characters. "SPACES"
is a synonym of "SPACE".

"QUOTE"

This figurative constant has a value of one or more double-quote characters (").
"QUOTES" is a synonym of "QUOTE".

"LOW-VALUE"

This figurative constant has a value of one or more of whatever character oc-
cupies the lowest position in the program’s collating sequence as defined in the
"OBJECT-COMPUTER" (see [OBJECT-COMPUTER], page 94) paragraph or —
if no such specification was made — in whatever default character set the pro-
gram is using (typically, this is the ASCII character set). "LOW-VALUES" is a
synonym of "LOW-VALUE".

When the character set in use is ASCII with no collating sequence modifications,
the "LOW-VALUES" figurative constant value is the ASCII "NUL" character.
Because character sets can be redefined, however, you should not rely on this
fact — use the "NULL" figurative constant instead.

15 February 2018 Chapter 2 - Cobol Fundamentals



40 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

"HIGH-VALUE"

This figurative constant has a value of one or more of whatever character occu-
pies the highest position in the program’s collating sequence as defined in the
"OBJECT-COMPUTER" paragraph or — if no such specification was made — in
whatever default character set the program is using (typically, this is the ASCII
character set). "HIGH-VALUES" is a synonym of "HIGH-VALUE".

"NULL"

A character comprised entirely of zero-bits (regardless of the programs collating
sequence).

Programmers may create their own figurative constants via the "SYMBOLIC CHARACTERS"

(see [Symbolic-Characters-Clause], page 105) clause of the "SPECIAL-NAMES" (see
[SPECIAL-NAMES], page 96) paragraph.

2.1.20. Punctuation

A comma (",") or a semicolon (";") may be inserted into a GnuCOBOL program to improve
readability at any spot where white space would be legal, except of course within alphanu-
meric literals (unless you actually mean for those characters to be part of the alphanumeric
literals value). These characters are always optional.

The use of comma characters can cause confusion to a COBOL compiler if the "DECIMAL

POINT IS COMMA" clause is used in the "SPECIAL-NAMES" (see [SPECIAL-NAMES],
page 96) paragraph, as might be the case in Europe. The following statement, which calls
a subroutine passing it two arguments (the numeric constants 1 and 2):

CALL "SUBROUTINE" USING 1,2

Would — with "DECIMAL POINT IS COMMA" in effect — actually be interpreted as a sub-
routine call with 1 argument (the non-integer numeric literal whose value is 1 and 2 tenths).
For this reason, it is best to always follow a comma with a space.

The period character (".") is used to terminate statements in the identification, environment
and data divisions and sentences in the procedure division. Syntax diagrams describing code
in the first three divisions will explicitly show where periods need to occur.

The rules for where and when periods are needed in the procedure division are somewhat
complicated. See [Use of Periods], page 58, for the details.

2.1.21. Interfacing to Other Environments

Through the "CALL" statement, COBOL programs may invoke other COBOL programs
serving as subprograms. This is quite similar to cross-program linkage capabilities provided
by other languages. In GnuCOBOL’s case, the "CALL" facility is powerful enough to be
tailored to the point where a GnuCOBOL program can communicate with operating system,
database management and run-time library APIs, even if they weren’t written in COBOL

Chapter 2 - Cobol Fundamentals 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 41

themselves. See [GnuCOBOL Main Programs CALLing C Subprograms], page 658, for an
example of how a GnuCOBOL program could invoke a C-language subprogram, passing
information back and forth between the two.

The fact that GnuCOBOL supports a full-featured two-way interface with C-language pro-
grams means that — even if you cannot access a library API directly — you could always
do so via a small C "wrapper" program that is "CALL"ed by a GnuCOBOL program.

15 February 2018 Chapter 2 - Cobol Fundamentals



42 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

2.2. The Cobol Language - Advanced Techniques

2.2.1. Table References

COBOL uses parenthesis to specify the subscripts used to reference table entries (tables in
COBOL are what other programming languages refer to as arrays).

For example, observe the following data structure which defines a 4 column by 3 row grid
of characters:

01 GRID.

05 GRID-ROW OCCURS 3 TIMES.

10 GRID-COLUMN OCCURS 4 TIMES.

15 GRID-CHARACTER PIC X(1).

If the structure contains the following grid of characters:

A B C D

E F G H

I J K L

Then "GRID-CHARACTER (2, 3)" references the "G" and "GRID-CHARACTER (3, 2)" ref-
erences the "J".

Subscripts may be specified as numeric (integer) literals, numeric (integer) data items,
data items created with any of the picture-less integer "USAGE" (see [USAGE], page 223)
specifications, "USAGE INDEX" data items or arithmetic expressions resulting in a non-zero
integer value.

In the above examples, a comma is used as a separator character between the two subscript
values; semicolons (";") are also valid subscript separator characters, as are spaces! The
use of a comma or semicolon separator in such a situation is technically optional, but by
convention most COBOL programmers use one or the other. The use of no separator
character (other than a space) is not recommended, even though it is syntactically correct,
as this practice can lead to programmer-unfriendly code. It isn’t too difficult to read
and understand "GRID-CHARACTER(2 3)", but it’s another story entirely when trying to
comprehend "GRID-CHARACTER(I + 1 J / 3)" (instead of "GRID-CHARACTER(I + 1, J /

3)"). The compiler accepts it, but too much of this would make my head hurt.

Chapter 2 - Cobol Fundamentals 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 43

2.2.2. Qualification of Data Names

COBOL allows data names to be duplicated within a program, provided references to those
data names may be made in such a manner as to make those references unique through a
process known as qualification.

To see qualification at work, observe the following segments of two data records defined in
a COBOL program:

01 EMPLOYEE. 01 CUSTOMER.

05 MAILING-ADDRESS. 05 MAILING-ADDRESS.

10 STREET PIC X(35). 10 STREET PIC X(35).

10 CITY PIC X(15). 10 CITY PIC X(15).

10 STATE PIC X(2). 10 STATE PIC X(2).

10 ZIP-CODE. 10 ZIP-CODE.

15 ZIP-CODE-5 PIC 9(5). 15 ZIP-CODE-5 PIC 9(5).

15 FILLER PIC X(4). 15 FILLER PIC X(4).

Now, let’s deal with the problem of setting the CITY portion of an EMPLOYEEs
MAILING-ADDRESS to "Philadelphia". Clearly, "MOVE ’Philadelphia’ TO CITY"

cannot work because the compiler will be unable to determine which of the two CITY
fields you are referring to.

In an attempt to correct the problem, we could qualify the reference to CITY as "MOVE

’Philadelphia’ TO CITY OF MAILING-ADDRESS".

Unfortunately that too is insufficient because it still insufficiently specifies which CITY is
being referenced. To truly identify which specific CITY you want, you’d have to code "MOVE
’Philadelphia’ TO CITY OF MAILING-ADDRESS OF EMPLOYEE".

Now there can be no confusion as to which CITY is being changed. Fortunately, you don’t
need to be quite so specific; COBOL allows intermediate and unnecessary qualification levels
to be omitted. This allows "MOVE ’Philadelphia’ TO CITY OF EMPLOYEE" to do the job
nicely.

If you need to qualify a reference to a table, do so by coding something like "<identifier-
1> OF <identifier-2> ( subscript(s) )".

The reserved word "IN" may be used in lieu of "OF".

15 February 2018 Chapter 2 - Cobol Fundamentals



44 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

2.2.3. Reference Modifiers� �
Reference Modifier (Format 1) Syntax
 	

identifier-1 [ OF|IN identifier-2 ] [ (subscript...) ] (start:[ length ])

~~ ~~

————————————————————————————————————————� �
Reference Modifier (Format 2) Syntax
 	

intrinsic-function-reference (start:[ length ])

————————————————————————————————————————

The COBOL ’85 standard introduced the concept of a reference modifier to facilitate refer-
ences to only a portion of a data item; GnuCOBOL fully supports reference modification.

The <start> value indicates the starting character position being referenced (character posi-
tion values start with 1, not 0 as is the case in some programming languages) and <length>
specifies how many characters are wanted.

If no <length> is specified, a value equivalent to the remaining character positions from
<start> to the end of <identifier-1> or to the end of the value returned by the function will
be assumed.

Both <start> and <length> may be specified as integer numeric literals, integer numeric data
items or arithmetic expressions with an integer value.

Here are a few examples:

"CUSTOMER-LAST-NAME (1:3)"

References the first three characters of CUSTOMER-LAST-NAME.

"CUSTOMER-LAST-NAME (4:)"

References all character positions of CUSTOMER-LAST-NAME from the
fourth onward.

"FUNCTION CURRENT-DATE (5:2)"

References the current month as a 2-digit number in character form. See
[CURRENT-DATE], page 417, for more information.

"Hex-Digits (Nibble + 1:1)"

Assuming that "Nibble" is a numeric data item with a value in the range 0-15,
and Hex-Digits is a "PIC X(16)" item with a value of "0123456789ABCDEF",
this converts that numeric value to a hexadecimal digit.

Chapter 2 - Cobol Fundamentals 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 45

"Table-Entry (6) (7:5)"

References characters 7 through 11 (5 characters in total) in the 6th occurrence
of Table-Entry.

Reference modification may be used anywhere an identifier is legal, including serving as the
receiving field of statements like "MOVE" (see [MOVE], page 336), "STRING" (see [STRING],
page 386) and "ACCEPT" (see [ACCEPT], page 258), to name a few.

15 February 2018 Chapter 2 - Cobol Fundamentals



46 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

2.2.4. Arithmetic Expressions� �
Arithmetic-Expression Syntax
 	

Unary-Expression-1 { **|^ } Unary-Expression-2

{ *|/ }

{ +|- }

————————————————————————————————————————� �
Unary-Expression Syntax
 	

{ [ +|- ] { ( Arithmetic-Expression-1 ) } }

{ { [ LENGTH OF ] { identifier-1 } } }

{ { ~~~~~~ ~~ { literal-1 } } }

{ { { Function-Reference } } }

{ Arithmetic-Expression-2 }

————————————————————————————————————————

Arithmetic expressions are formed using four categories of operations — exponentiation,
multiplication & division, addition & subtraction, and sign specification.

In complex expressions composed of multiple operators and operands, a precedence of op-
eration applies whereby those operations having a higher precedence are computed first
before operations with a lower precedence.

As is the case in almost any other programming language, the programmer is always free
to use pairs of parenthesis to enclose sub-expressions of complex expressions that are to
be evaluated before other sub-expressions rather than let operator precedence dictate the
sequence of evaluation.

In highest to lowest order of precedence, here is a discussion of each category of operation:

Level 1 (Highest) — Unary Sign Specification ("+" and "-" with a single argument)

The unary "minus" (-) operator returns the arithmetic negation of its single
argument, effectively returning as its value the product of its argument and -1.

The unary "plus" (+) operator returns the value of its single argument, effec-
tively returning as its value the product of its argument and +1.

Level 2 — Exponentiation ("**" or "^")

The value of the left argument is raised to the power indicated by the right ar-
gument. Non-integer powers are allowed. The "^" and "**" operators are both
supported to provide compatibility with programs written for other COBOL
implementations.

Chapter 2 - Cobol Fundamentals 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 47

Level 3 — Multiplication ("*") and division ("/")

The "*" operator computes the product of the left and right arguments while
the "/" operator computes the value of the left argument divided by the value
of the right argument. If the right argument has a value of zero, expression
evaluation will be prematurely terminated before a value is generated. This
may cause program failure at run-time.

A sequence of multiple 3rd-level operations ("A * B / C", for example) will
evaluate in strict left-to-right sequence if no parenthesis are used to control the
order of evaluation.

Level 4 — Addition ("+") or subtraction ("+")

The "+" operator calculates the sum of the left and right arguments while the
"-" operator computes the value of the right argument subtracted from that of
the left argument.

A sequence of multiple 4th-level operations ("A - B + C", for example) will
evaluate in strict left-to-right sequence if no parenthesis are used to control the
order of evaluation.

The syntactical rules of COBOL, allowing a dash (-) character in data item names, can lead
to some ambiguity.

01 C PIC 9 VALUE 5.

01 D PIC 9 VALUE 2.

01 C-D PIC 9 VALUE 7.

01 I PIC 9 VALUE 0.

...

COMPUTE I=C-D+1

The "COMPUTE" (see [COMPUTE], page 288) statement will evaluate the arithmetic expres-
sion "C-D+1" and then save that result in "I".

What value will be stored in "I"? The number 4, which is the result of subtracting the
value of "D" (2) from the value of "C" (5) and then adding 1? Or, will it be the number 8,
which is the value of adding 1 to the value of data item "C-D" (7)?

The right answer is 8 — the value of data item "C-D" plus 1! Hopefully, that was the
intended result.

The GnuCOBOL compiler actually went through the following decision-making logic when
generating code for the "COMPUTE" Statement:

1. Is there a data item named "C-D" defined? If so, use its value for the character sequence
"C-D".

15 February 2018 Chapter 2 - Cobol Fundamentals



48 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

2. If there is no "C-D" data item, then are there "C" and "D" data items? If not, the
"COMPUTE" statement is in error. If there are, however, then code will be generated to
subtract the value of "D" from "C" and add 1 to the result.

Had there been at least one space to the left and/or the right of the "-", there would have
been no ambiguity — the compiler would have been forced to use the individual "C" and
"D" data items.

To avoid any possible ambiguity, as well as to improve program readability, it’s considered
good COBOL programming practice to always code at least one space to both the left and
right of every operator in arithmetic expressions as well as the "=" sign on a COMPUTE.

Here are some examples of how the precedence of operations affects the results of arithmetic
expressions (all examples use numeric literals, to simplify the discussion).

Expression Result Notes

3 * 4 + 1 13 * has precedence over +

4 * 2 ^ 3 - 10 22 2^3 is 8 (^ has precedence over *), times 4 is 32,
minus 10 is 22.

(4 * 2) ^ 3 - 10 502 Parenthesis provide for a recursive application of the
arithmetic expression rules, effectively allowing you
to alter the precedence of operations. 4 times 2 is 8
(the use of parenthesis "trumps" the exponentiation
operator, so the multiplication happens first); 8 ^ 3
is 512, minus 10 is 502.

5 / 2.5 + 7 * 2 - 1.15 15.35 Integer and non-integer operands may be freely
intermixed

Of course, arithmetic expression operands may be numeric data items (any USAGE except
POINTER or PROGRAM POINTER) as well as numeric literals.

Chapter 2 - Cobol Fundamentals 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 49

2.2.5. Conditional Expressions

Conditional expressions are expressions which identify the circumstances under which a
program may take an action or cease taking an action. As such, conditional expressions
produce a value of TRUE or FALSE.

There are seven types of conditional expressions, as discussed in the following sections.

2.2.5.1. Condition Names

These are the simplest of all conditions. Observe the following code:

05 SHIRT-SIZE PIC 99V9.

88 TINY VALUE 0 THRU 12.5

88 XS VALUE 13 THRU 13.5.

88 S VALUE 14, 14.5.

88 M VALUE 15, 15.5.

88 L VALUE 16, 16.5.

88 XL VALUE 17, 17.5.

88 XXL VALUE 18, 18.5.

88 XXXL VALUE 19, 19.5.

88 VERY-LARGE VALUE 20 THRU 99.9.

The condition names "TINY", "XS", "S", "M", "L", "XL", "XXL", "XXXL" and "VERY-LARGE"

will have TRUE or FALSE values based upon the values within their parent data item
(SHIRT-SIZE).

A program wanting to test whether or not the current "SHIRT-SIZE" value can be classified
as "XL" could have that decision coded as a combined condition (the most complex type of
conditional expression), as either:

IF SHIRT-SIZE = 17 OR SHIRT-SIZE = 17.5

- or -

IF SHIRT-SIZE = 17 OR 17.5

Or it could simply utilize the condition name XL as follows:

IF XL

15 February 2018 Chapter 2 - Cobol Fundamentals



50 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

2.2.5.2. Class Conditions� �
Class-Condition Syntax
 	

identifier-1 IS [ NOT ] { NUMERIC }

~~~ { ~~~~~~~ }

{ ALPHABETIC }

{ ~~~~~~~~~~ }

{ ALPHABETIC-LOWER }

{ ~~~~~~~~~~~~~~~~ }

{ ALPHABETIC-UPPER }

{ ~~~~~~~~~~~~~~~~ }

{ OMITTED }

{ ~~~~~~~ }

{ class-name-1 }

————————————————————————————————————————

Class conditions evaluate the type of data that is currently stored in a data item.

1. The "NUMERIC" class test considers only the characters "0", "1", . . . , "9" to be
numeric; only a data item containing nothing but digits will pass a "NUMERIC" class
test. Spaces, decimal points, commas, currency signs, plus signs, minus signs and any
other characters except the digit characters will all fail "NUMERIC" class tests.

2. The "ALPHABETIC" class test considers only upper-case letters, lower-case letters and
spaces to be alphabetic in nature.

3. The "ALPHABETIC-LOWER" and "ALPHABETIC-UPPER" class conditions consider only
spaces and the respective type of letters to be acceptable in order to pass such a
class test.

4. The "NOT" option reverses the TRUE/FALSE value of the condition.

5. Note that what constitutes a "letter" (or upper/lower case too, for that manner) may
be influenced through the use of "CHARACTER CLASSIFICATION" specifications in the
"OBJECT-COMPUTER" (see [OBJECT-COMPUTER], page 94) paragraph.

6. Only data items whose "USAGE" (see [USAGE], page 223) is either explicitly or implic-
itly defined as "DISPLAY" may be used in "NUMERIC" or any of the "ALPHABETIC" class
conditions.

7. Some COBOL implementations disallow the use of group items or "PIC A" items with
"NUMERIC" class conditions and the use of "PIC 9" items with "ALPHABETIC" class
conditions. GnuCOBOL has no such restrictions.

8. The "OMITTED" class condition is used when it is necessary for a subprogram to deter-
mine whether or not a particular argument was passed to it. In such class conditions,
<identifier-1> must be a linkage section item defined on the "USING" clause of the sub-

Chapter 2 - Cobol Fundamentals 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 51

programs "PROCEDURE DIVISION" header. See [PROCEDURE DIVISION USING],
page 238, for additional information.

The <class-name-1> option allows you to test for a user-defined class. Here’s an example.
First, assume the following "SPECIAL-NAMES" (see [SPECIAL-NAMES], page 96) definition
of the user-defined class "Hexadecimal":

SPECIAL-NAMES.

CLASS Hexadecimal IS ’0’ THRU ’9’, ’A’ THRU ’F’, ’a’ THRU ’f’.

Now observe the following code, which will execute the "150-Process-Hex-Value" proce-
dure if "Entered-Value" contains nothing but valid hexadecimal digits:

IF Entered-Value IS Hexadecimal

PERFORM 150-Process-Hex-Value

END-IF

15 February 2018 Chapter 2 - Cobol Fundamentals



52 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

2.2.5.3. Sign Conditions� �
Sign-Condition Syntax
 	

identifier-1 IS [ NOT ] { POSITIVE }

~~~ { ~~~~~~~~ }

{ NEGATIVE }

{ ~~~~~~~~ }

{ ZERO }

~~~~

————————————————————————————————————————

Sign conditions evaluate the numeric state of a data item defined with a "PICTURE" (see
[PICTURE], page 198) and/or "USAGE" (see [USAGE], page 223) that supports numeric
values.

1. A "POSITIVE" or "NEGATIVE" class condition will be TRUE only if the value of
<identifier-1> is strictly greater than or less than zero, respectively.

2. A "ZERO" class condition can be passed only if the value of <identifier-1> is exactly
zero.

3. The "NOT" option reverses the TRUE/FALSE value of the condition.

Chapter 2 - Cobol Fundamentals 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 53

2.2.5.4. Switch-Status Conditions

In the "SPECIAL-NAMES" (see [SPECIAL-NAMES], page 96) paragraph, an external switch
name can be associated with one or more condition names. These condition names may
then be used to test the ON/OFF status of the external switch.

Here are the relevant sections of code in a program named "testprog", which is designed to
simply announce if SWITCH-1 is on:

...

ENVIRONMENT DIVISION.

SPECIAL-NAMES.

SWITCH-1 ON STATUS IS Switch-1-Is-ON.

...

PROCEDURE DIVISION.

...

IF Switch-1-Is-ON

DISPLAY "Switch 1 Is On"

END-IF

...

the following are two different command window sessions — the left on a Unix/Cygwin/OSX
system and the right on a windows system — that will set the switch on and then execute
the "testprog" program. Notice how the message indicating that the program detected the
switch was set is displayed in both examples:

$ COB_SWITCH_1=ON C:>SET COB_SWITCH_1=ON

$ export COB_SWITCH_1 C:>testprog

$ ./testprog Switch 1 Is On

Switch 1 Is On C:>

$

15 February 2018 Chapter 2 - Cobol Fundamentals



54 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

2.2.5.5. Relation Conditions� �
Relation-Condition Syntax
 	

{ identifier-1 } IS [ NOT ] RelOp { identifier-2 }

{ literal-1 } ~~~ { literal-2 }

{ arithmetic-expression-1 } { arithmetic-expression-2 }

{ index-name-1 } { index-name-2 }

————————————————————————————————————————� �
RelOp Syntax
 	

{ EQUAL TO }

{ ~~~~~ }

{ EQUALS }

{ ~~~~~~ }

{ GREATER THAN }

{ ~~~~~~~ }

{ GREATER THAN OR EQUAL TO }

{ ~~~~~~~ ~~ ~~~~~ }

{ LESS THAN }

{ ~~~~ }

{ LESS THAN OR EQUAL TO }

{ ~~~~ ~~ ~~~~~ }

{ = }

{ > }

{ >= }

{ < }

{ <= }

————————————————————————————————————————

These conditions evaluate how two different values "relate" to each other.

1. When comparing one numeric value to another, the "USAGE" (see [USAGE], page 223)
and number of significant digits in either value are irrelevant as the comparison is
performed using the actual algebraic values.

2. When comparing strings, the comparison is made based upon the program’s collating
sequence. When the two string arguments are of unequal length, the shorter is assumed
to be padded (on the right) with a sufficient number of spaces as to make the two
strings of equal length. String comparisons take place on a corresponding character-
by-character basis, left to right, until the TRUE/FALSE value for the relation test can
be established. Characters are compared according to their relative position in the
program’s "COLLATING SEQUENCE" (as defined in "SPECIAL-NAMES" (see [SPECIAL-

Chapter 2 - Cobol Fundamentals 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 55

NAMES], page 96)), not according to the bit-pattern values the characters have in
storage.

3. By default, the program’s "COLLATING SEQUENCE" will, however, be based entirely on
the bit-pattern values of the various characters.

4. There is no functional difference between using the wordy version ("IS EQUAL TO", "IS
LESS THAN", . . . ) versus the symbolic version ("=", "<", . . . ) of the actual relation
operators.

15 February 2018 Chapter 2 - Cobol Fundamentals



56 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

2.2.5.6. Combined Conditions� �
Combined Condition Syntax
 	

[ ( ] Condition-1 [ ) ] { AND } [ ( ] Condition-2 [ ) ]

{ ~~~ }

{ OR }

{ ~~ }

————————————————————————————————————————

A combined condition is one that computes a TRUE/FALSE value from the TRUE/FALSE
values of two other conditions (which could themselves be combined conditions).

1. If either condition has a value of TRUE, the result of "OR"ing the two together will
result in a value of TRUE. "OR"ing two FALSE conditions will result in a value of
FALSE.

2. In order for "AND" to yield a value of TRUE, both conditions must have a value of
TRUE. In all other circumstances, "AND" produces a FALSE value.

3. When chaining multiple, similar conditions together with the same operator
(OR/AND), and left or right arguments have common subjects, it is possible to
abbreviate the program code. For example:

IF ACCOUNT-STATUS = 1 OR ACCOUNT-STATUS = 2 OR ACCOUNT-STATUS = 7

Could be abbreviated as:

IF ACCOUNT-STATUS = 1 OR 2 OR 7

4. Just as multiplication takes precedence over addition in arithmetic expressions, so does
"AND" take precedence over "OR" in combined conditions. Use parenthesis to change
this precedence, if necessary. For example:

"FALSE AND FALSE OR TRUE AND TRUE"

Evaluates to TRUE

"(FALSE AND FALSE) OR (TRUE AND TRUE)"

Evaluates to TRUE (since AND has precedence over OR) - this is identical
to the previous example

"(FALSE AND (FALSE OR TRUE)) AND TRUE"

Evaluates to FALSE

Chapter 2 - Cobol Fundamentals 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 57

2.2.5.7. Negated Conditions� �
Negated Condition Syntax
 	

NOT Condition-1

~~~

————————————————————————————————————————

A condition may be negated by prefixing it with the "NOT" operator.

1. The "NOT" operator has the highest precedence of all logical operators, just as a unary
minus sign (which "negates" a numeric value) is the highest precedence arithmetic
operator.

2. Parenthesis must be used to explicitly signify the sequence in which conditions are
evaluated and processed if the default precedence isn’t desired. For example:

"NOT TRUE AND FALSE AND NOT FALSE"

Evaluates to FALSE AND FALSE AND TRUE which evaluates to FALSE

"NOT (TRUE AND FALSE AND NOT FALSE)"

Evaluates to NOT (FALSE) which evaluates to TRUE

"NOT TRUE AND (FALSE AND NOT FALSE)"

Evaluates to FALSE AND (FALSE AND TRUE) which evaluates to
FALSE

15 February 2018 Chapter 2 - Cobol Fundamentals



58 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

2.2.6. Use of Periods

All COBOL implementations distinguish between sentences and statements in the procedure
division. A ’Statement ’ is a single executable COBOL instruction. For example, these are
all statements:

MOVE SPACES TO Employee-Address

ADD 1 TO Record-Counter

DISPLAY "Record-Counter=" Record-Counter

Some COBOL statements have a "scope of applicability" associated with them where one
or more other statements can be considered to be part of or related to the statement in
question. An example of such a situation might be the following, where the interest on a
loan is being calculated and displayed — 4% interest if the loan balance is under $10000
and 4.5% otherwise (WARNING – the following code has an error!):

IF Loan-Balance < 10000

MULTIPLY Loan-Balance BY 0.04 GIVING Interest

ELSE

MULTIPLY Loan-Balance BY 0.045 GIVING Interest

DISPLAY "Interest Amount = " Interest

In this example, the IF statement actually has a scope that can include two sets of associated
statements – one set to be executed when the "IF" (see [IF], page 319) condition is TRUE
and another if it is FALSE.

Unfortunately, there’s a problem with the above. A human being looking at that code
would probably infer that the "DISPLAY" (see [DISPLAY], page 292) statement, because
of its lack of indentation, is to be executed regardless of the TRUE/FALSE value of the
"IF" condition. Unfortunately, the GnuCOBOL compiler (or any other COBOL compiler
for that matter) won’t see it that way because it really couldn’t care less what sort of
indentation, if any, is used. In fact, any COBOL compiler would be just as happy to see
the code written like this:

IF Loan-Balance < 10000 MULTIPLY Loan-balance

BY 0.04 GIVING Interest ELSE MULTIPLY

Loan-Balance BY 0.045 GIVING Interest DISPLAY

"Interest Amount = " Interest

So how then do we inform the compiler that the "DISPLAY" statement is outside the scope
of the "IF"?

That’s where sentences come in.

A COBOL ’Sentence’ is defined as any arbitrarily long sequence of statements, followed
by a period (.) character. The period character is what terminates the scope of a set of
statements. Therefore, our example should have been coded like this:

IF Loan-Balance < 10000

Chapter 2 - Cobol Fundamentals 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 59

MULTIPLY Loan-Balance BY 0.04 GIVING Interest

ELSE

MULTIPLY Loan-Balance BY 0.045 GIVING Interest.

DISPLAY "Interest Amount = " Interest

See the period at the end of the second "MULTIPLY" (see [MULTIPLY], page 338)? That is
what terminates the scope of the "IF", thus making the "DISPLAY" statement’s execution
completely independent of the TRUE/FALSE status of the "IF".

15 February 2018 Chapter 2 - Cobol Fundamentals



60 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

2.2.7. Use of VERB/END-VERB Constructs

Prior to the 1985 COBOL standard, using a period character was the only way to signal
the end of a statement’s scope.

Unfortunately, this caused some problems. Take a look at this code:

IF A = 1

IF B = 1

DISPLAY "A & B = 1"

ELSE *> This ELSE has a problem!

IF B = 1

DISPLAY "A NOT = 1 BUT B = 1"

ELSE

DISPLAY "NEITHER A NOR B = 1".

The problem with this code is that indentation — so critical to improving the human-
readability of a program — can provide an erroneous view of the logical flow. An "ELSE"

is always associated with the most-recently encountered "IF"; this means the emphasized
"ELSE" will be associated with the "IF B = 1" statement, not the "IF A = 1" statement
as the indentation would appear to imply.

This sort of problem led to a band-aid solution — the "NEXT SENTENCE" clause — being
added to the COBOL language.

IF A = 1

IF B = 1

DISPLAY "A & B = 1"

ELSE

NEXT SENTENCE

ELSE

IF B = 1

DISPLAY "A NOT = 1 BUT B = 1"

ELSE

DISPLAY "NEITHER A NOR B = 1".

The "NEXT SENTENCE" clause informs the compiler that if the "B = 1" condition is false,
control should fall into the first statement that follows the next period.

With the 1985 standard for COBOL, a much more elegant solution was introduced. Any
COBOL ’Verb’ (the first reserved word of a statement) that needed such a thing was allowed
to use an "END-verb" construct to end it’s scope without disrupting the scope of any other
statement it might have been in. Any COBOL 85 compiler would have allowed the following
solution to our problem:

IF A = 1

IF B = 1

DISPLAY "A & B = 1"

Chapter 2 - Cobol Fundamentals 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 61

END-IF

ELSE

IF B = 1

DISPLAY "A NOT = 1 BUT B = 1"

ELSE

DISPLAY "NEITHER A NOR B = 1".

This new facility made the period almost obsolete, as our program segment would probably
be coded like this today:

IF A = 1

IF B = 1

DISPLAY "A & B = 1"

END-IF

ELSE

IF B = 1

DISPLAY "A NOT = 1 BUT B = 1"

ELSE

DISPLAY "NEITHER A NOR B = 1"

END-IF

END-IF

COBOL (GnuCOBOL included) still requires that each procedure division paragraph con-
tain at least one sentence if there is any executable code in that paragraph, but a popular
coding style is now to simply code a single period right before the end of each paragraph.

The standard for the COBOL language shows the various "END-verb" clauses are optional
because using a period as a scope-terminator remains legal.

If you will be porting existing code over to GnuCOBOL, you’ll find it an accommodating
facility capable of conforming to whatever language and coding standards that code is likely
to use. If you are creating new GnuCOBOL programs, however, I would strongly counsel
you to use the "END-verb" structures in those programs.

15 February 2018 Chapter 2 - Cobol Fundamentals



62 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

2.2.8. Concurrent Access to Files

The manipulation of data files is one of the COBOL language’s great strengths. There
are features built into COBOL to deal with the possibility that multiple programs may be
attempting to access the same file concurrently. Multiple program concurrent access is dealt
with in two ways — file sharing and record locking.

Not all GnuCOBOL implementations support file sharing and record-locking options.
Whether they do or not depends upon the operating system they were built for and the
build options that were used when the specific GnuCOBOL implementation was generated.

2.2.8.1. File Sharing

GnuCOBOL controls concurrent-file access at the highest level through the concept of file
sharing, enforced when a program attempts to open a file. This is accomplished via a
UNIX operating-system routine called "fcntl()". That module is not currently supported
by Windows and is not present in the MinGW Unix-emulation package. GnuCOBOL builds
created using a MinGW environment will be incapable of supporting file-sharing controls
— files will always be shared in such environments. A GnuCOBOL build created using the
Cygwin environment on Windows would have access to "fcntl()" and therefore will support
file sharing. Of course, actual Unix builds of GnuCOBOL, as well as OSX builds, should
have no issues because "fcntl()" should be available.

Any limitations imposed on a successful "OPEN" (see [OPEN], page 342) will remain in place
until your program either issues a "CLOSE" (see [CLOSE], page 286) against the file or the
program terminates.

File sharing is controlled through the use of a "SHARING" clause:

SHARING WITH { ALL OTHER }

~~~~~~~ { ~~~ }

{ NO OTHER }

{ ~~ }

{ READ ONLY }

~~~~ ~~~~

This clause may be used either in the file’s "SELECT" statement (see [SELECT], page 109),
on the "OPEN" statement (see [OPEN], page 342) which initiates your program’s use of the
file, or both. If a "SHARING" option is specified in both places, the specifications made on
the "OPEN" statement will take precedence over those from the "SELECT" statement.

Here are the meanings of the three options:

"ALL OTHER"

When your program opens a file with this sharing option in effect, no restric-
tions will be placed on other programs attempting to "OPEN" the file after your
program did. This is the default sharing mode.

Chapter 2 - Cobol Fundamentals 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 63

"NO OTHER"

When your program opens a file with this sharing option in effect, your program
announces that it is unwilling to allow any other program to have any access
to the file as long as you are using that file; "OPEN" attempts made in other
programs will fail with a file status of 37 ("PERMISSION DENIED") until
such time as you "CLOSE" (see [CLOSE], page 286) the file.

"READ ONLY"

Opening a file with this sharing option indicates you are willing to allow other
programs to "OPEN" the file for input while you have it open. If they attempt any
other "OPEN", theirs will fail with a file status of 37. Of course, your program
may fail if someone else got to the file first and opened it with a sharing option
that imposed file-sharing limitations.

If the "SELECT" of a file is coded with a "FILE STATUS" clause, "OPEN" failures — including
those induced by sharing failures — will be detectable by the program and a graceful
recovery (or at least a graceful termination) will be possible. If no such clause was coded,
however, a runtime message will be issued and the program will be terminated.

15 February 2018 Chapter 2 - Cobol Fundamentals



64 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

2.2.8.2. Record Locking

Record-locking is supported by advanced file-management software built-in to the Gnu-
COBOL implementation you are using. This software provides a single point-of-control for
access to files — usually "ORGANIZATION INDEXED" (see [ORGANIZATION INDEXED],
page 120) files. One such runtime package capable of doing this is the Berkeley Database
(BDB) package — a package frequently used in GnuCOBOL builds to support indexed files.

The various I/O statements your program can execute are capable of imposing limitations
on access by other concurrently-executing programs to the file record they just accessed.
These limitations are syntactically imposed by placing a lock on the record using a "LOCK"

clause. Other records in the file remain available, assuming that file-sharing limitations
imposed at the time the file was opened didn’t prevent access to the entire file.

1. If the GnuCOBOL build you are using was configured to use the Berkeley Data-
base (BDB) package for indexed file I/O, record locking will be available by using
the "DB_HOME" run-time environment variable (see [Run Time Environment Variables],
page 626).

2. If the "SELECT" (see [SELECT], page 109) statement or file "OPEN" (see [OPEN],
page 342) specifies "SHARING WITH NO OTHER", record locking will be disabled.

3. If the file’s "SELECT" contains a "LOCK MODE IS AUTOMATIC" clause, every time a
record is read from the file, that record is automatically locked. Other programs may
access other records within the file, but not a locked record.

4. If the file’s "SELECT" contains a "LOCK MODE IS MANUAL" clause, locks are placed on
records only when a "READ" statement executed against the file includes a "LOCK"

clause (this clause will be discussed shortly).

5. If the "LOCK ON" clause is specified in the file’s "SELECT", locks (either automatically
or manually acquired) will continue to accumulate as more and more records are read,
until they are explicitly released. This is referred to as ’multiple record locking ’.

Locks acquired vie multiple record locking remain in-effect until the program holding
the lock. . .

• . . . terminates, or . . .

• . . . executes a "CLOSE" statement (see [CLOSE], page 286) against the file, or . . .

• . . . executes an "UNLOCK" statement (see [UNLOCK], page 397) against the file, or
. . .

• . . . executes a "COMMIT" statement (see [COMMIT], page 287) or . . .

• . . . executes a "ROLLBACK" statement (see [ROLLBACK], page 361).

6. If the "LOCK ON" clause is not specified, then the next I/O statement your program
executes, except for "START" (see [START], page 382), will release the lock. This is
referred to as ’single record locking ’.

7. A "LOCK" clause, which may be coded on a "READ" (see [READ], page 350), "REWRITE"

Chapter 2 - Cobol Fundamentals 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 65

(see [REWRITE], page 359) or "WRITE" statement (see [WRITE], page 402) looks like
this:

{ IGNORING LOCK }

{ ~~~~~~~~ ~~~~ }

{ WITH [ NO ] LOCK }

{ ~~ ~~~~ }

{ WITH KEPT LOCK }

{ ~~~~ ~~~~ }

{ WITH IGNORE LOCK }

{ ~~~~~~ ~~~~ }

{ WITH WAIT }

~~~~

The "WITH [ NO ] LOCK" option is the only one available to "REWRITE" or "WRITE"

statements.

The meanings of the various record locking options are as follows:

"IGNORING LOCK"

"WITH IGNORE LOCK"

These options (which are synonymous) inform GnuCOBOL that any locks
held by other programs should be ignored.

"WITH LOCK"

Access to the record by other programs will be denied.

"WITH NO LOCK"

The record will not be locked. This is the default locking option in effect
for all statements.

"WITH KEPT LOCK"

When single record locking is in-effect, as a new record is accessed, locks
held for previous records are released. By using this option, not only is
the newly-accessed record locked (as WITH LOCK would do), but prior
record locks will be retained as well. A subsequent "READ" without the
"KEPT LOCK" option will release all "kept" locks, as will the "UNLOCK"

statement.

"WITH WAIT"

This option informs GnuCOBOL that the program is willing to wait for a
lock held (by another program) on the record being read to be released.

Without this option, an attempt to read a locked record will be immediately
aborted and a file status of 51 will be returned.

With this option, the program will wait for a pre-configured time for the
lock to be released. If the lock is released within the preconfigured wait
time, the read will be successful. If the pre-configured wait time expires

15 February 2018 Chapter 2 - Cobol Fundamentals



66 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

before the lock is released, the read attempt will be aborted and a 51 file
status will be issued.

————————————————————
End of Chapter 2 — Cobol Fundamentals

Chapter 2 - Cobol Fundamentals 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 67

3. CDF - Compiler Directing Facility

The Compiler Directing Facility, or CDF, is a means of controlling the compilation of Gnu-
COBOL programs. CDF provides a mechanism for dynamically setting or resetting certain
compiler switches, introducing new source code from one or more source code libraries,
making dynamic source code modifications and conditionally processing or ignoring source
statements altogether. This is accomplished via a series of special CDF statements and
directives that will appear in the program source code.

When the compiler is operating in Fixed Format Mode, all CDF statements must begin in
column eight (8) or beyond.

There are two types of supported CDF statements in GnuCOBOL — Text Manipulation
Statements and Compiler Directives.

The CDF text manipulation statements "COPY" and "REPLACE" are used to introduce new
code into programs either with or without changes, or may be used to modify existing
statements already in the program. Text manipulation statements are always terminated
with a period.

CDF directives, denoted by the presence of a ">>" character sequence as part of the state-
ment name itself, are used to influence the process of program compilation.

Compiler directives are never terminated with a period.

15 February 2018 Chapter 3 - CDF - Compiler Directing Facility



68 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

3.1. >>CALL-CONVENTION� �
CDF >>CALL-CONVENTION Syntax
 	

>>CALL-CONVENTION { COBOL }

~~~~~~~~~~~~~~~~~ { EXTERN }

{ STDCALL }

{ STATIC }

————————————————————————————————————————

This directive instructs the compiler how to treat references to program names and may be
used to determine other details for interacting with a function or program. There are four
options with COBOL being the default.

1. COBOL (the default) the program name is treated as a COBOL word that maps to
the externalised name program to be called, cancelled or referenced in the program-
address-identifier, applying the same mapping rules as for a program name for which
no AS phrase is specified.

2. EXTERN the program name is treated as an external reference.

3. STDCALL. < more info needed >

4. STATIC the program name is called as a included element and not dynamically which
is the normal default.

Chapter 3 - CDF - Compiler Directing Facility 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 69

3.2. COPY� �
CDF COPY Statement Syntax
 	

COPY copybook-name

~~~~

[ IN|OF library-name ]

~~ ~~

[ SUPPRESS PRINTING ]

~~~~~~~~

[ REPLACING { Phrase-Clause | String-Clause }... ] .

~~~~~~~~~

————————————————————————————————————————� �
CDF COPY Phrase-Clause Syntax
 	

{ ==pseudo-text-1== } BY { ==pseudo-text-2== }

{ identifier-1 } ~~ { identifier-2 }

{ literal-1 } { literal-2 }

{ word-1 } { word-2 }

————————————————————————————————————————� �
CDF COPY String-Clause Syntax
 	

[ LEADING|TRAILING ] ==partial-word-1== BY ==partial-word-2==

~~~~~~~ ~~~~~~~~ ~~

————————————————————————————————————————

1. "COPY" statements are used to import copybooks (see [Copybooks], page 13) into a
program.

2. "COPY" statements may be used anywhere within a COBOL program where the code
contained within the copybook would be syntactically valid.

3. The optional "SUPPRESS" clause (with or without the optional "PRINTING" reserved
word) is valid syntactically but is non-functional. It is supported to facilitate compat-
ibility with source code written for other versions of COBOL.

4. There is no difference between the use of the word "IN" and the word "OF" — use the
one you prefer.

5. A period is absolutely mandatory at the end of every "COPY" statement, even if the
statement occurs within the scope of another one where a period might appear dis-
ruptive, such as within the scope of an "IF" (see [IF], page 319) statement. This

15 February 2018 Chapter 3 - CDF - Compiler Directing Facility



70 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

mandatory period at the end of the statement will not, however, affect the statement
scope in which the "COPY" occurs.

6. Both <pseudo-text-2> and <partial-word-2> may be null.

7. All "COPY" statements are located and the contents of the corresponding copybooks
inserted into the program source code before the actual compilation process begins.
If a copybook contains a "COPY" statement, the copybook insertion process will be
repeated to resolve the embedded "COPY". This will continue until no unresolved
"COPY" statements remain. At that point, actual program compilation will begin.

8. See [Locating Copybooks], page 618, for the specific rules on how copybooks are located
by the compiler.

9. The optional "REPLACING" clause allows for one or more of either of the following kinds
of text replacements to be made:

<<Phrase-Clause>>

Replacement of one or more complete reserved words, user-defined identi-
fiers or literals; the following points apply to this option:

• This option cannot be used to replace part of a word, identifier or
literal.

• Whatever precedes the "BY" will be referred to here as the search
string.

• Single-item search strings can be specified by coding the
"<identifier-1>", "<literal-1>" or "<word-1>" being replaced.

• Multiple-item search strings can be specified using the "==<pseudo-

text-1>==" option. For example, to replace all occurrences of "UPON
PRINTER", you would specify "==UPON PRINTER==".

• The replacement string, which follows the "BY", may be specified using
any of the four options.

• If the replacement string is a multiple-item phrase or is to be deleted
altogether, you must use the "==<pseudo-text-2>==" option. If
"<pseudo-text-2>" is null (in other words, the replacement text is
specified as "===="), all encountered occurrences of the search string
will be deleted.

<<String-Clause>>

Using this, you may replace character sequences that occur at the beginning
("LEADING") or end ("TRAILING") of reserved or user-defined words. For
example, to change all words of the form "0100-xxxxxx" to "020-xxxxxx",
code "LEADING ==0100-== BY ==020-==". To simply remove all "0100-"
prefixes from words, code "LEADING ==0100-== BY ====".

Chapter 3 - CDF - Compiler Directing Facility 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 71

3.3. REPLACE� �
CDF REPLACE Statement (Format 1) Syntax
 	

REPLACE [ ALSO ] { Phrase-Clause | String-Clause }... .

~~~~~~~ ~~~~

————————————————————————————————————————� �
CDF REPLACE Statement (Format 2) Syntax
 	

REPLACE [ LAST ] OFF .

~~~~~~~ ~~~~ ~~~

————————————————————————————————————————� �
CDF REPLACE Phrase-Clause Syntax
 	

{ ==pseudo-text-1== } BY { ==pseudo-text-2== }

~~

————————————————————————————————————————� �
CDF REPLACE String-Clause Syntax
 	

[ LEADING|TRAILING ] ==partial-word-1== BY ==partial-word-2==

~~~~~~~ ~~~~~~~~ ~~

————————————————————————————————————————

1. The "REPLACE" statement provides a mechanism for changing all or part of one or more
GnuCOBOL statements.

2. A period is absolutely mandatory at the end of every "REPLACE" statement (either
format), even if the statement occurs within the scope of another one where a period
might appear disruptive (such as within the scope of an "IF" (see [IF], page 319) state-
ment; the period will not, however, affect the statement scope in which the "REPLACE"
occurs.

3. The following points apply to Format 1 of the "REPLACE" statement:

A. Format 1 of the "REPLACE" statement can be used to make changes to program
source code in much the same way as the "REPLACING" option of the "COPY"

statement can, via these options:

15 February 2018 Chapter 3 - CDF - Compiler Directing Facility



72 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

<<Phrase-Clause>>

Replace one or more complete reserved words, user-defined identifiers
or literals; the following points apply to this option:

• This option cannot be used to replace part of a word, identifier
or literal.

• Whatever precedes the "BY" will be referred to here as the search
string.

• Search strings on "REPLACE" are always specified using the
"==<pseudo-text-1>==" option. For example, to replace all
occurrences of "UPON PRINTER", you would specify "==UPON

PRINTER==".

• The replacement string, which follows the "BY", is specified using
the "==<pseudo-text-2>==" option. If "<pseudo-text-2>" is
null (in other words, the replacement text is specified as "===="),
all encountered occurrences of the search string will be deleted.

<<String-Clause>>

Using this, you may replace character sequences that occur at the be-
ginning ("LEADING") or end ("TRAILING") of reserved or user-defined
words. For example, to change all words of the form "0100-xxxxxx" to
"020-xxxxxx", code "LEADING ==0100-== BY ==020-==". To simply
remove all "0100-" prefixes from words, code "LEADING ==0100-==

BY ====".

B. Once a Format 1 "REPLACE" statement is encountered in the currently-compiling
source file, Replace Mode becomes active, and the change(s) specified by that
statement will be automatically made on all subsequent source statements the
compiler reads from the file.

C. Replace Mode remains in-effect — continuing to make source code changes —
until another Format 1 "REPLACE" is encountered, the end of currently compiling
program source file is reached or a Format 2 "REPLACE" statement is encountered.

D. When a Format 1 "REPLACE" statement with the "ALSO" keyword is encountered
without Replace Mode being currently active, the effect will be as if the "ALSO"

had not been specified. If Replace Mode already was in effect, the effect will be
to "push" the current change specification(s) onto the top of a stack and add the
specification(s) of the new statement to those that were already in effect.

E. When a Format 1 "REPLACE" without the "ALSO" keyword is encountered, any
stacked change specification(s), if any, will be discarded and the currently in-effect
change specification(s), if any, will be replaced by those of the new statement.

F. When the end of the currently-compiling source file is reached, Replace Mode is
deactivated and any stacked replace specifications will be discarded — compilation

Chapter 3 - CDF - Compiler Directing Facility 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 73

of the next source file (if any) will begin with Replace Mode inactive and no change
specification(s) on the stack.

4. The following points apply to Format 2 of the "REPLACE" statement:

A. If Replace Mode is currently inactive, the Format 2 REPLACE statement will be
ignored.

B. If Replace Mode is currently active, a "REPLACE OFF." will deactivate Replace
Mode and discard any replace specification(s) on the stack. The compiler will
henceforth operate as if no "REPLACE" had ever been encountered, until such time
as another Format 1 "REPLACE" is encountered.

C. If Replace Mode is currently active, a "REPLACE LAST OFF." will replace the cur-
rent replace specification(s) with those popped off the top of the stack. If there
were no replace specification(s) on the stack, the effect will be as if a "REPLACE

OFF." had been coded.

15 February 2018 Chapter 3 - CDF - Compiler Directing Facility



74 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

3.4. >>DEFINE� �
CDF >>DEFINE Directive Syntax
 	

>>DEFINE [ CONSTANT ] cdf-variable-1 AS { OFF }

~~~~~~~~ ~~~~~~~~ { ~~~ }

{ literal-1 [ OVERRIDE ] }

{ ~~~~~~~~ }

{ PARAMETER [ OVERRIDE ] }

~~~~~~~~~ ~~~~~~~~

————————————————————————————————————————

Use the ">>DEFINE" CDF directive to create CDF variables and (optionally) assign them
either literal or environment variable values.

1. The reserved word "AS" is optional and may be included, or not, at the discretion of
the programmer. The presence or absence of this word has no effect upon the program.

2. CDF variables defined in this way become undefined once an "END PROGRAM" or "END
FUNCTION" directive is encountered in the input source.

3. The ">>DEFINE" CDF directive is one way to create CDF variables that may be pro-
cessed by other CDF statements such as ">>IF" (see [>>IF], page 75). The ">>SET"

CDF directive (see [>>SET], page 78) provides another way to create them.

4. CDF variable names follow the rules for standard GnuCOBOL user-defined names,
and may not duplicate any CDF reserved word. CDF variable names may duplicate
COBOL reserved words, provided the "CONSTANT" option is not specified, but such
names are not recommended.

5. The "CONSTANT" option is valid only in conjunction with <literal-1>. When "CONSTANT"

is specified, the CDF variable that is created may be used within your regular COBOL
code as if it were a literal value. Without this option, the CDF variable may only be
referenced on other CDF statements. The "OFF" option is used to create a variable
without assigning it any value.

6. The "PARAMETER" option is used to create a variable whose value is that of the environ-
ment variable of the same name. Note that this value assignment occurs at compilation
time, not program execution time.

7. In the absence of the "OVERRIDE" option, <cdf-variable-1> must not yet have been
defined. When the "OVERRIDE" option is specified, <cdf-variable-1> will be created
with the specified value, if it had not yet been defined. If it had already been defined,
it will be redefined with the new value.

Chapter 3 - CDF - Compiler Directing Facility 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 75

3.5. >>IF� �
CDF >>IF Directive Syntax
 	

>>IF CDF-Conditional-Expression-1

~~~~ [ Program-Source-Lines-1 ]

[ >>ELIF CDF-Conditional-Expression-2

~~~~~~ [ Program-Source-Lines-2 ] ]...

[ >>ELSE

~~~~~~ [ Program-Source-Lines-3 ] ]

>>END-IF

~~~~~~~~

————————————————————————————————————————� �
CDF-Conditional-Expression Syntax
 	

{ cdf-variable-1 } IS [ NOT ] { DEFINED }

{ literal-1 } ~~~ { ~~~~~~~ }

{ SET }

{ ~~~ }

{ CDF-RelOp { cdf-variable-2 } }

{ { literal-2 } }

————————————————————————————————————————� �
CDF-RelOp Syntax
 	

>= or GREATER THAN OR EQUAL TO

~~~~~~~ ~~ ~~~~~

> or GREATER THAN

~~~~~~~

<= or LESS THAN OR EQUAL TO

~~~~ ~~ ~~~~~

< or LESS THAN

~~~~

= or EQUAL TO

~~~~~

<> or EQUAL TO (with "NOT")

~~~~~

————————————————————————————————————————

15 February 2018 Chapter 3 - CDF - Compiler Directing Facility



76 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

The ">>IF" CDF directive causes the GnuCOBOL compiler to process or ignore COBOL
source statements, CDF text-manipulation statements and/or CDF directives depending
upon the value of one or more conditional expressions based upon CDF variables.

1. The reserved words "IS", "THAN" and "TO" are optional and may be included, or not,
at the discretion of the programmer. The presence or absence of these words has no
effect upon the program.

2. Each ">>IF" directive must be terminated by an ">>END-IF" directive.

3. There may be any number of ">>ELIF" clauses following an ">>IF", including zero.

4. There may no more than one ">>ELSE" clause following an ">>IF". When ">>ELSE"

is used, it must follow the ">>IF" and all ">>ELIF" clauses.

5. Only one of the <<Program-Source-Lines-n>> block of statements that lie within the
scope of the ">>IF"-">>END-IF" may be processed by the compiler. Which one (if any)
that gets processed will be decided as follows:

A. Each <<CDF-Conditional-Expression-n>> will be evaluated, in turn, in the se-
quence in which they are coded in the >>IF statement and any ">>ELIF" clauses
that may be present until one evaluates to TRUE. Once one of them evaluates
to TRUE, the <<Program-Source-Lines-n>> block of code that corresponds to the
TRUE <<CDF-Conditional-Expression-n>> will be one that is processed. All oth-
ers within the ">>IF"-">>END-IF" scope will be ignored.

B. If no <<CDF-Conditional-Expression>> evaluates to TRUE, and there is an
">>ELSE" clause, the <<Program-Source-Lines-3>> block of statements following
the ">>ELSE" clause will be processed by the compiler and all others within the
">>IF"-">>END-IF" scope will be ignored.

C. If no <<CDF-Conditional-Expression-n>> evaluates to TRUE and there is
no ">>ELSE" clause, then none of the <<Program-Source-Lines-n>> block of
statements within the ">>IF"-">>END-IF" scope will be processed by the
compiler.

D. If the <Program-Source-Lines-n>> statement block selected for processing
is empty, no error results — there will just be no code generated from the
">>IF"-">>END-IF" structure.

6. A <<Program-Source-Lines-n>> block may contain any valid COBOL or CDF code.

7. The following points pertain to any <<CDF-Conditional-Expression-n>>:

A. The "DEFINED" option tests for whether <cdf-variable-1> has been defined, but
not yet assigned a value (">>DEFINE ... OFF"); use the "NOT" option to test for
the variable not being defined.

B. The "SET" option tests for whether <cdf-variable-1> has been given a value, either
via a ">>SET" statement or via a ">>DEFINE" without the "OFF" option.

C. Two CDF variables, two literals or a single CDF variable and a single literal may

Chapter 3 - CDF - Compiler Directing Facility 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 77

be compared against each other using a relational operator. Unlike the standard
GnuCOBOL "IF" statement (see [IF], page 319), multiple comparisons cannot be
"AND"ed or "OR"ed together; you may nest a second ">>IF" inside the first,
however, to simulate an "AND" and an "OR" may be simulated via the ">>ELIF"
option.

D. The "<>" symbol stands for "NOT EQUAL TO".

15 February 2018 Chapter 3 - CDF - Compiler Directing Facility



78 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

3.6. >>SET� �
CDF >>SET Directive Syntax
 	

>>SET { [ CONSTANT ] cdf-variable-1 [ AS literal-1 ] }

~~~~~ { ~~~~~~~~ ~~ }

{ SOURCEFORMAT AS FIXED|FREE }

{ ~~~~~~~~~~~~ ~~~~~ ~~~~ }

{ NOFOLDCOPYNAME }

{ ~~~~~~~~~~~~~~ }

{ FOLDCOPYNAME AS UPPER|LOWER }

~~~~~~~~~~~~ ~~~~~ ~~~~~

————————————————————————————————————————

The ">>SET" CDF directive provides an alternate means of performing the actions of the
">>DEFINE" and ">>SOURCE" directives, as well as a means of controlling the compiler’s
"-free" switch, "-fixed" switch and "-ffold-copy" switch from within program source
code.

1. The reserved word "AS" is optional (only on the "SOURCEFORMAT" and "FOLDCOPYNAME"

clauses) and may be included, or not, at the discretion of the programmer. The presence
or absence of this word has no effect upon the program.

2. CDF variables defined in this way become undefined once an "END PROGRAM" or "END
FUNCTION" directive is encountered in the input source.

3. The "FOLDCOPYNAME" option provides the equivalent of specifying the compiler
"-ffold-copy=xxx" switch, where "xxx" is either "UPPER" or "LOWER".

4. The "NOFOLDCOPYNAME" option turns off the effect of either the ">>SET FOLDCOPYNAME"

statement or the compiler "-ffold-copy=xxx" switch.

5. If the "CONSTANT" option is used, <literal-1> must also be used. This option provides
another means of defining constants that may be used anywhere in the program that
a literal could be specified.

6. The remaining options of the ">>SET" CDF directive provide equivalent functionality
to the ">>DEFINE" and ">>SOURCE" directives, as follows:

A. ">>SET <cdf-variable-1>" ≡ ">>DEFINE <cdf-variable-1> AS OFF"

B. ">>SET <cdf-variable-1> AS <literal-1>" ≡ ">>DEFINE <cdf-variable-1>

AS <literal-1>"

C. ">>SET CONSTANT <cdf-variable-1> AS <literal-1>" ≡ ">>DEFINE

CONSTANT <cdf-variable-1> AS <literal-1>"

D. ">>SET SOURCEFORMAT AS FIXED" ≡ ">>SOURCE FORMAT IS FIXED"

E. ">>SET SOURCEFORMAT AS FREE" ≡ ">>SOURCE FORMAT IS FREE"

Chapter 3 - CDF - Compiler Directing Facility 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 79

3.7. >>SOURCE� �
CDF >>SOURCE Directive Syntax
 	

>>SOURCE FORMAT IS FIXED|FREE|VARIABLE

~~~~~~~~ ~~~~~ ~~~~ ~~~~~~~~

————————————————————————————————————————

The ">>SOURCE" CDF directive puts the compiler into "FIXED" or "FREE" source-code
format mode. This, in effect, provides yet another mechanism for controlling the compiler’s
"-free" switch and "-fixed" switch.

1. The reserved words "FORMAT" and "IS" are optional and may be included, or not, at
the discretion of the programmer. The presence or absence of these words has no effect
upon the program.

2. You may switch between "FIXED" and "FREE" mode as desired.

3. You may also use the ">>SET" CDF directive to perform this function.

4. If the compiler is already in the specified mode, this statement will have no effect.

15 February 2018 Chapter 3 - CDF - Compiler Directing Facility



80 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

3.8. >>TURN� �
CDF >>TURN Directive Syntax
 	

>>TURN { exception-name-1 [ file-name-1 ]... }...

~~~~~~

{ OFF }

{ ~~~ }

{ CHECKING ON [ WITH LOCATION ] }

~~~~~~~~ ~~ ~~~~~~~~

————————————————————————————————————————

The directive will (de-)activating exception checks.

Chapter 3 - CDF - Compiler Directing Facility 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 81

3.9. >>D� �
CDF >>D Directive Syntax
 	

>>D

~~~

————————————————————————————————————————

The directive removes all floating debug lines if debug mode not active. Otherwise will
ignore the directive part of the line.

15 February 2018 Chapter 3 - CDF - Compiler Directing Facility



82 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

3.10. >>DISPLAY� �
CDF >>DISPLAY Directive Syntax
 	

>>DISPLAY source-text [ VCS = version-string ]

~~~~~~~~~ ~~~

————————————————————————————————————————

The directive is a v1.0 extension and will display messages during compilation.

Chapter 3 - CDF - Compiler Directing Facility 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 83

3.11. >>PAGE� �
CDF >>PAGE Directive Syntax
 	

>>PAGE

~~~~~~

————————————————————————————————————————

The directive allows usage of the IBM paging controls namely - EJECT, SKIP1, SKIP2,
SKIP3 and TITLE.

15 February 2018 Chapter 3 - CDF - Compiler Directing Facility



84 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

3.12. >>LISTING� �
CDF >>LISTING Directive Syntax
 	

>>LISTING {ON}

~~~~~~~~~ {OFF}

————————————————————————————————————————

The directive allows the program listing to be de-(activated).

Chapter 3 - CDF - Compiler Directing Facility 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 85

3.13. >>LEAP-SECONDS� �
CDF >>LEAP-SECONDS Directive Syntax
 	

>>LEAP-SECONDS

~~~~~~~~~~~~~~

The ">>LEAP-SECONDS" CDF directive is syntactically recognized but is otherwise non-
functional.

————————————————————————————————————————

Allows for more than 60 seconds per minute.

15 February 2018 Chapter 3 - CDF - Compiler Directing Facility



86 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

3.14. * Directives� �
CDF * Directive Syntax
 	

$ (Dollar) Directives - Active.

These directives are active and have the same function as ones starting with >>:

$DISPLAY ON|OFF

$SET

$IF

$ELIF

$ELSE-IF

$END

$ (Dollar) Directives - Not Active.

These are NOT active and will produce a warning message:

$DISPLAY VCS ...

————————————————————————————————————————

¶Offers support for MF Compiler Directives.

————————————————————
End of Chapter 3 — CDF - Compiler Directing Facility

Chapter 3 - CDF - Compiler Directing Facility 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 87

4. IDENTIFICATION DIVISION

� �
IDENTIFICATION DIVISION Syntax
 	

[{ IDENTIFICATION } DIVISION. ]

{ ~~~~~~~~~~~~~~ } ~~~~~~~~

{ ID }

~~

{ PROGRAM-ID. } program-id [ AS {literal-1 }] [ Type-Clause ] .

{ ~~~~~~~~~~ } {program name }]

{ FUNCTION-ID. } { literal-1 } [ AS literal-2 ].

~~~~~~~~~~~ { function-name }

{ OPTIONS. }

~~~~~~~

[ DEFAULT ROUNDED MODE IS {AWAY-FROM-ZERO }

~~~~~~~ ~~~~~~~ {NEAREST-AWAY-FROM-ZERO }

{NEAREST-EVEN }

{NEAREST-TOWARDS-ZERO }

{PROHIBITED }

{TOWARDS-GREATER }

{TOWARDS-LESSER }

{TRUNCATION }]

[ ENTRY-CONVENTION IS {COBOL }

~~~~~~~~~~~~~~~~ {EXTERN }

{STDCALL }]

[ AUTHOR. comment-1. ]

~~~~~~

[ DATE-COMPILED. comment-2. ]

~~~~~~~~~~~~~

[ DATE-MODIFIED. comment-3. ]

~~~~~~~~~~~~~

[ DATE-WRITTEN. comment-4. ]

~~~~~~~~~~~~

[ INSTALLATION. comment-5. ]

~~~~~~~~~~~~

[ REMARKS. comment-6. ]

~~~~~~~

[ SECURITY. comment-7. ]

~~~~~~~~

The "AUTHOR", "DATE-COMPILED", "DATE-MODIFIED", "DATE-WRITTEN", "INSTALLATION",
"REMARKS" and "SECURITY" paragraphs are supported by GNU COBOL only to provide
compatibility with programs written for the ANS1974 (or earlier) standards. As of the
ANS1985 standard, these clauses have become obsolete and should not be used in new
programs.

15 February 2018 Chapter 4 - IDENTIFICATION DIVISION



88 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

————————————————————————————————————————� �
PROGRAM-ID Type Clause Syntax
 	

IS [ COMMON ] [ INITIAL|RECURSIVE PROGRAM ]

~~~~~~ ~~~~~~~ ~~~~~~~~~

————————————————————————————————————————

The identification division provides basic identification of the program by giving it a name
and optionally defining some high-level characteristics via the eight pre-defined paragraphs
that may be specified.

1. The paragraphs shown above may be coded in any sequence.

2. The reserved words "AS", "IS" and "PROGRAM" are optional and may be included, or
not, at the discretion of the programmer. The presence or absence of these words has
no effect upon the program.

3. A Type Clause may be coded only when "PROGRAM-ID" is specified. If one is coded,
either "COMMON", "COMMON INITIAL" or "COMMON RECURSIVE" must be specified.

4. While the actual "IDENTIFICATION DIVISION" or "ID DIVISION" header is optional,
the "PROGRAM-ID" / "FUNCTION-ID" paragraphs are not; only one or the other, how-
ever, may be coded.

5. The compiler’s "-Wobsolete" switch will cause the GnuCOBOL compiler to issue
warnings messages if these (or any other obsolete syntax) is used in a program.

6. If specified, <literal-1> must be an actual alphanumeric literal and may not be a figu-
rative constant.

7. The "PROGRAM-ID" and "FUNCTION-ID" paragraphs serve to identify the program to
the external (i.e. operating system) environment. If there is no "AS" clause present,
the <program-id> will serve as that external identification. If there is an "AS" clause
specified, that specified literal will serve as the external identification. For the remain-
der of this document, that "external identification" will be referred to as the primary
entry-point name.

8. The "INITIAL", "COMMON" and "RECURSIVE" words are used only within subprograms
serving as subroutines. Their purposes are as follows:

A. "COMMON" should be used only within subprograms that are nested subprograms. A
nested subprogram declared as "COMMON" may be called from any nested program
in the source file being compiled, not just those "above" it in the nesting structure.

B. The "RECURSIVE" clause, if any, will cause the compiler to generate different object
code for the subprogram that will enable it to invoke itself and to properly return
back to the program that invoked it.

User-defined functions (i.e. "FUNCTION-ID") are always recursive.

Chapter 4 - IDENTIFICATION DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 89

C. The "INITIAL" clause, if specified, guarantees the subprogram will be in its initial
(i.e. compiled) state each and every time it is executed, not just the first time.

————————————————————
End of Chapter 4 — IDENTIFICATION DIVISION

15 February 2018 Chapter 4 - IDENTIFICATION DIVISION





GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 91

5. ENVIRONMENT DIVISION� �
ENVIRONMENT DIVISION Syntax
 	

ENVIRONMENT DIVISION.

~~~~~~~~~~~ ~~~~~~~~

[ CONFIGURATION SECTION. ]

~~~~~~~~~~~~~ ~~~~~~~~

[ SOURCE-COMPUTER. Compilation-Computer-Specification . ]

~~~~~~~~~~~~~~~

[ OBJECT-COMPUTER. Execution-Computer-Specification . ]

~~~~~~~~~~~~~~~

[ SPECIAL-NAMES. Program-Configuration-Specification . ]

~~~~~~~~~~~~~

[ REPOSITORY. Function-Specification... . ]

~~~~~~~~~~

[ INPUT-OUTPUT SECTION. ]

~~~~~~~~~~~~ ~~~~~~~

[ FILE-CONTROL. General-File-Description... . ]

~~~~~~~~~~~~

[ I-O-CONTROL. File-Buffering Specification... . ]

~~~~~~~~~~~

————————————————————————————————————————

This division defines the external computer environment in which the program will be
operating. This includes defining any files that the program may be .

• If both optional sections of this division are coded, they must be coded in the sequence
shown.

• The paragraphs within the sections may be coded in any order.

• These sections consist of a series of specific, pre-defined, paragraphs
("SOURCE-COMPUTER" and "OBJECT-COMPUTER", for example), each of which
serves a specific purpose. If no code is required for the purpose one of the paragraphs
serves, the entire paragraph may be omitted.

• If any of the paragraphs within one of the sections are coded, the section header itself
must be coded.

• If none of the paragraphs within one of the sections are coded, the section header itself
may be omitted.

• If none of the sections within the environment division are coded, the "ENVIRONMENT

DIVISION." header itself may be omitted.

15 February 2018 Chapter 5 - ENVIRONMENT DIVISION



92 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

5.1. CONFIGURATION SECTION� �
CONFIGURATION SECTION Syntax
 	

CONFIGURATION SECTION.

~~~~~~~~~~~~~ ~~~~~~~

[ SOURCE-COMPUTER. Compilation-Computer-Specification . ]

~~~~~~~~~~~~~~~

[ OBJECT-COMPUTER. Execution-Computer-Specification . ]

~~~~~~~~~~~~~~~

[ SPECIAL-NAMES. Program-Configuration-Specification . ]

~~~~~~~~~~~~~

[ REPOSITORY. Function-Specification... . ]

~~~~~~~~~~

————————————————————————————————————————

This section defines the computer system upon which the program is being compiled and
executed and also specifies any special environmental configuration or compatibility char-
acteristics.

1. The four paragraphs in this section may be specified in any order but if not in this
order, a warning will be issued.

2. The configuration section is not allowed in a nested subprogram — nested programs
will inherit the configuration section settings of their parent program.

3. If none of the features provided by the configuration section are required by a program,
the entire "CONFIGURATION SECTION." header may be omitted from the program.

Chapter 5 - ENVIRONMENT DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 93

5.1.1. SOURCE-COMPUTER� �
SOURCE-COMPUTER Syntax
 	

SOURCE-COMPUTER. computer-name [ WITH DEBUGGING MODE ] .

~~~~~~~~~~~~~~~ ~~~~~~~~~ ~~~~

————————————————————————————————————————

This paragraph defines the computer upon which the program is being compiled and pro-
vides one way in which debugging code embedded within the program may be activated.

1. The reserved word "WITH" is optional and may be included, or not, at the discretion of
the programmer. The presence or absence of this word has no effect upon the program.

2. This paragraph is not allowed in a nested subprogram — nested programs will inherit
the "SOURCE-COMPUTER" settings of their parent program.

3. The value specified for <computer-name> is irrelevant, provided it is a valid COBOL
word that does not match any GnuCOBOL reserved word. The <computer-name>
value may include spaces. This need not match the <computer-name> used with the
"OBJECT-COMPUTER" paragraph, if any.

4. The "DEBUGGING MODE" clause, if present, will inform the compiler that debugging lines
(those with a "D" in column 7 if Fixed Source Mode is in effect, or those prefixed with
a ">>D" if Free Source Mode is in effect) — normally treated as comments — are to
be compiled.

5. Even without the "DEBUGGING MODE" clause, it is still possible to compile debugging
lines. Debugging lines may also be compiled by specifying the "-fdebugging-line"

switch to the GnuCOBOL compiler.

15 February 2018 Chapter 5 - ENVIRONMENT DIVISION



94 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

5.1.2. OBJECT-COMPUTER� �
OBJECT-COMPUTER Syntax
 	

OBJECT-COMPUTER. [ computer-name ]

~~~~~~~~~~~~~~~

[ MEMORY SIZE IS integer-1 WORDS|CHARACTERS ]

~~~~~~ ~~~~ ~~~~~ ~~~~~~~~~~

[ PROGRAM COLLATING SEQUENCE IS alphabet-name-1 ]

~~~~~~~~~

[ SEGMENT-LIMIT IS integer-2 ]

~~~~~~~~~~~~~

[ CHARACTER CLASSIFICATION IS { locale-name-1 } ]

~~~~~~~~~~~~~~ { LOCALE }

{ ~~~~~~ }

{ USER-DEFAULT }

{ ~~~~~~~~~~~~ }

{ SYSTEM-DEFAULT }

~~~~~~~~~~~~~~

.

The "MEMORY SIZE" and "SEGMENT-LIMIT" clauses are syntactically recognized but are
otherwise non-functional.

————————————————————————————————————————

This paragraph describes the computer upon which the program will execute.

1. The <computer-name>, if specified, must immediately follow the "OBJECT-COMPUTER"

paragraph name. The remaining clauses may be coded in any sequence.

2. The reserved words "CHARACTER", "IS", "PROGRAM" and "SEQUENCE" are optional and
may be included, or not, at the discretion of the programmer. The presence or absence
of these words has no effect upon the program.

3. The value specified for <computer-name>, if any, is irrelevant provided it is a valid
COBOL word that does not match any GnuCOBOL reserved word. The <computer-
name> may include spaces. This need not match the <computer-name> used with the
"SOURCE-COMPUTER" paragraph, if any.

4. The "OBJECT-COMPUTER" paragraph is not allowed in a nested subprogram — nested
programs will inherit the "OBJECT-COMPUTER" settings of their parent program.

5. The "COLLATING SEQUENCE" clause allows you to specify a customized character col-
lating sequence to be used when alphanumeric values are compared to one another.
Data will still be stored in the character set native to the computer, but the logical
sequence in which characters are ordered for comparison purposes can be altered from
that defined by the computer’s native character set. The <alphabet-name-1> you spec-

Chapter 5 - ENVIRONMENT DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 95

ify needs to be defined in the "SPECIAL-NAMES" (see [SPECIAL-NAMES], page 96)
paragraph.

6. If no "COLLATING SEQUENCE" clause is specified, the collating sequence implied by the
character set native to the computer (usually ASCII) will be used.

7. The optional "CLASSIFICATION" clause may be used to specify a locale for the envi-
ronment in which the program will be executing, for the purpose of influencing the
upper-case and lower-case mappings of characters for the "UPPER-CASE" (see [UPPER-
CASE], page 503) and "LOWER-CASE" (see [LOWER-CASE], page 450) intrinsic func-
tions and the classification of characters for the "ALPHABETIC", "ALPHABETIC-LOWER"
and "ALPHABETIC-UPPER" class tests. The definitions of these classes will be taken
from the cultural convention specification ("LC_CTYPE") from the specified locale.

The meanings of the four locale specifications are as follows:

A. <locale-name-1> references a "LOCALE" (see [SPECIAL-NAMES], page 96) defini-
tion.

B. The keyword "LOCALE" refers to the current locale (in effect at the time the pro-
gram is executed)

C. The keyword "USER-DEFAULT" references the default locale specified for the user
currently executing this program.

D. The keyword "SYSTEM-DEFAULT" denotes the default locale specified for the com-
puter upon which the program is executing.

8. Absence of a "CLASSIFICATION" clause will cause character classification to occur ac-
cording to the rules for the computer’s native character set (ASCII, EBCDIC, . . . ).

15 February 2018 Chapter 5 - ENVIRONMENT DIVISION



96 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

5.1.3. SPECIAL-NAMES� �
SPECIAL-NAMES Syntax
 	

SPECIAL-NAMES.

~~~~~~~~~~~~~

[ CALL-CONVENTION integer-1 IS mnemonic-name-1 ]

~~~~~~~~~~~~~~~

[ CONSOLE IS CRT ]

~~~~~~~ ~~~

[ CRT STATUS IS identifier-1 ]

~~~ ~~~~~~

[ CURRENCY SIGN IS literal-1 ]

~~~~~~~~ ~~~~

[ CURSOR IS identifier-2 ]

~~~~~~

[ DECIMAL-POINT IS COMMA ]

~~~~~~~~~~~~~ ~~~~~

[ EVENT STATUS IS identifier-3 ]

~~~~~ ~~~~~~

[ LOCALE locale-name-1 IS literal-2 ]...

~~~~~~

[ NUMERIC SIGN IS TRAILING SEPARATE ]

~~~~~~~ ~~~~ ~~~~~~~~ ~~~~~~~~

[ SCREEN CONTROL IS identifier-4 ]

~~~~~~ ~~~~~~~

[ device-name-1 IS mnemonic-name-2 ]...

[ feature-name-1 IS mnemonic-name-3 ]...

[ Alphabet-Clause ]...

[ Class-Definition-Clause ]...

[ Switch-Definition-Clause ]...

[ Symbolic-Characters-Clause ]...

.

The "EVENT STATUS" and "SCREEN CONTROL" clauses are syntactically recognized but are
otherwise non-functional.

————————————————————————————————————————
<<Alphabet-Name-Clause>>, <<Class-Definition-Clause>>,

<<Switch-Definition-Clause>> and <<Symbolic-Characters-Clause>>
are discussed in detail in the next four sections.

Chapter 5 - ENVIRONMENT DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 97

The "SPECIAL-NAMES" paragraph provides a means for specifying various program and
operating environment configuration options.

1. The various clauses that may be specified within the "SPECIAL-NAMES" paragraph may
be coded in any order.

2. The reserved word "IS" is optional and may be included, or not, at the discretion of
the programmer. The presence or absence of this word has no effect upon the program.

3. The "SPECIAL-NAMES" paragraph is not allowed in a nested subprogram — nested
programs will inherit the "SPECIAL-NAMES" settings of their parent program.

4. Only the final clause specified within this paragraph should be terminated with a
period.

5. The "CALL-CONVENTION" clause allows a decimal integer, representing a series of
ON/OFF switch settings, to be associated with a mnemonic name which may then
be coded on a "CALL" statement (see [CALL], page 281). The switch settings defined
by this mnemonic will then control how the linkage to a subroutine invoked by the
"CALL" statement that references <mnemonic-name-1> will be handled.

6. The "CONSOLE IS CRT" clause, if specified, will cause a "DISPLAY" statement lack-
ing an explicit "UPON" clause to be treated as a "DISPLAY screen-data-item" state-
ment (see [DISPLAY screen-data-item], page 296), and any "ACCEPT" statement lack-
ing a "FROM" clause to be treated as a "ACCEPT screen-data-item" statement (see
[ACCEPT screen-data-item], page 262).

7. If the "CRT STATUS" clause is not specified, an implicit "COB-CRT-STATUS" identifier
(with a "PICTURE 9(4)") will be allocated for the purpose of receiving screen "ACCEPT"

statuses. If "CRT STATUS" is specified, then <identifier-1> must be defined in the
program as a "PICTURE 9(4)" field.

8. The "CURRENCY SIGN" clause may be used to redefine the character to be used as a
currency sign in a "PICTURE" (see [PICTURE], page 198) clause. The default currency
sign is a dollar-sign ($). You may specify any character except "0"-"9", "A"-"Z",
"a"-"z", "+", "-", ",", ".", "*", "/", ";", "(", ")", "=", "\", quote (") or space.

9. The "CURSOR IS" clause allows you to specify a 4- or 6-character data item into which
the cursor screen location at the time a screen "ACCEPT" is satisfied. The value will be
returned as rrcc or rrrccc, depending upon the length of the specified <identifier-2>,
where rr and rrr represent the row number (starting at zero) and cc and ccc represent
the column number (also starting at zero). There is no default data item allocated
for this data if the "CURSOR IS" clause is not specified, and it is the programmer’s
responsibility to define <identifier-2> if the clause is specified.

10. The "DECIMAL POINT IS COMMA" clause reverses the definition of the "," and "." char-
acters when they are used as "PICTURE" editing symbols and within numeric literals.
This can have unwanted side-effects - see [Punctuation], page 40.

11. The "LOCALE" clause may be used to associate external OS-defined locale names
(<literal-2>) with an internal name (<locale-name-1>) that may then be referenced

15 February 2018 Chapter 5 - ENVIRONMENT DIVISION



98 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

within the program. Locale names are defined by the Operating System and/or C
compiler GnuCOBOL will be utilizing on your computer.

12. The following is the list of possible locale codes, for example, that would be available
on a Windows computer running a GnuCOBOL version that was built utilizing the
MinGW Unix-emulator and the GNU C compiler (gcc):

A af ZA, am ET, ar AE, ar BH, ar DZ, ar EG, ar IQ, ar JO, ar KW,
ar LB, ar LY, ar MA, ar OM, ar QA, ar SA, ar SY, ar TN, ar YE,
arn CL, as IN, az Cyrl AZ, az Latn AZ

B ba R, be BY, bg BG, bn IN bo BT, bo CN, br FR, bs Cyrl BA,
bs Latn BA

C ca ES, cs CZ, cy GB

D da DK, de AT, de CH, de DE, de LI, de LU, dsb DE, dv MV

E el GR, en 029, en AU, en BZ, en CA, en GB, en IE, en IN, en JM,
en MY en NZ, en PH, en SG, en TT, en US, en ZA, en ZW, es AR,
es BO, es CL, es CO, es CR, es DO, es EC, es ES, es GT, es HN,
es MX, es NI, es PA, es PE, es PR, es PY, es SV, es US, es UY es VE,
et EE, eu ES

F fa IR, fi FI, fil PH, fo FO, fr BE, fr CA, fr CH, fr FR, fr LU, fr MC,
fy NL

G ga IE, gbz AF, gl ES, gsw FR, gu IN

H ha Latn NG, he IL, hi IN, hr BA, hr HR, hu HU, hy AM

I id ID, ig NG, ii CN, is IS, it CH, it IT, iu Cans CA, iu Latn CA

J ja JP

K ka GE, kh KH, kk KZ, kl GL, kn IN, ko KR, kok IN, ky KG

L lb LU, lo LA, lt LT, lv LV

M mi NZ, mk MK, ml IN, mn Cyrl MN, mn Mong CN moh CA, mr IN,
ms BN, ms MY, mt MT

N nb NO, ne NP, nl BE, nl NL, nn NO, ns ZA

O oc FR, or IN

P pa IN, pl PL, ps AF, pt BR, pt PT

Q qut GT, quz BO, quz EC, quz PE

R rm CH, ro RO, ru RU, rw RW

Chapter 5 - ENVIRONMENT DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 99

S sa IN, sah RU, se FI, se NO se SE, si LK, sk SK, sl SI, sma NO,
sma SE, smj NO, smj SE, smn FI, sms FI, sq AL, sr Cyrl BA,
sr Cyrl CS, sr Latn BA, sr Latn CS, sv FI, sv SE, sw KE syr SY

T ta IN, te IN, tg Cyrl TJ, th TH tk TM, tmz Latn DZ, tn ZA, tr IN,
tr TR, tt RU

U ug CN, uk UA, ur PK, uz Cyrl UZ, uz Latn UZ

V vi VN

W wen DE, wo SN

X xh ZA

Y yo NG

Z zh CN, zh HK, zh MO, zh SG, zh TW, zu ZA

13. The "NUMERIC SIGN TRAILING SEPARATE" specification causes all signed numeric
"USAGE DISPLAY" data items to be created as if the "SIGN IS TRAILING SEPARATE

CHARACTER" clause was included in their definitions.

14. The "<device-name-1> IS <mnemonic-name-2>" clause allows you to specify an al-
ternate name (<device-name-1>) for one of the built-in GnuCOBOL device name
<mnemonic-name-2>. The list of device names built-into GnuCOBOL, and the physi-
cal device associated with that name, are as follows:

"CONSOLE"

This is the (screen-mode) display of the PC or Unix system.

"STDIN"

"SYSIN"

"SYSIPT"

These devices (they are all synonymous) represent standard system input
(pipe 0). On a PC or UNIX system, this is typically the keyboard. The
contents of a file may be delivered to a GnuCOBOL program for access
via one of these device names by adding the sequence "0< filename" to the
end of the programs execution command.

"PRINTER"

"STDOUT"

"SYSLIST"

"SYSLST"

"SYSOUT"

These devices (they are all synonymous) represent standard system output
(pipe 1). On a PC or UNIX system, this is typically the display. Output

15 February 2018 Chapter 5 - ENVIRONMENT DIVISION



100 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

sent to one of these devices by a GnuCOBOL program can be sent to a file
by adding the sequence "1> filename" to the end of the programs execution
command.

"STDERR"

"SYSERR"

These devices (they are synonymous) represent standard system error out-
put (pipe 2). On a PC or UNIX system, this is typically the display.
Output sent to one of these devices by a GnuCOBOL program can be sent
to a file by adding the sequence "2> filename" to the end of the programs
execution command.

15. The "<feature-name-1> IS <mnemonic-name-3>" clause allow for mnemonic names
to be assigned to up to the 13 printer channel (i.e. vertical page positioning) position
feature names "Cnn" (nn=01-12) and "CSP". Once a channel position has been assigned
a mnemonic name, statements of the form "WRITE <record-name> AFTER ADVANCING

<mnemonic-name-3>" may be coded to write the specified print record at the channel
position assigned to <mnemonic-name-3>.

Printers supporting channel positioning are generally mainframe-type line printers.
When writing to printers that do not support channel positioning, a formfeed will be
issued to the printer.

The "CSP" positioning option stands for "No Spacing". Testing on a MinGW build of
GnuCOBOL shows that this too results in a formfeed being issued.

Chapter 5 - ENVIRONMENT DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 101

5.1.3.1. Alphabet-Name-Clause� �
SPECIAL-NAMES Alphabet-Clause Syntax
 	

ALPHABET alphabet-name-1 IS { ASCII }

~~~~~~~~ { ~~~~~ }

{ EBCDIC }

{ ~~~~~~ }

{ NATIVE }

{ ~~~~~~ }

{ STANDARD-1 }

{ ~~~~~~~~~~ }

{ STANDARD-2 }

{ ~~~~~~~~~~ }

{ Literal-Clause... }

————————————————————————————————————————� �
SPECIAL-NAMES ALPHABET Literal-Clause Syntax
 	

literal-1 [ { THRU|THROUGH literal-2 } ]

{ ~~~~ ~~~~~~~ }

{ {ALSO literal-3}... }

~~~~

————————————————————————————————————————

The "ALPHABET" clause provides a means for relating a name to a specified character code
set or collating sequence, including those you define yourself using the <literal-1> option.

1. The reserved word "IS" is optional and may be included, or not, at the discretion of
the programmer. The presence or absence of this word has no effect upon the program.

2. The reserved words "THRU" and "THROUGH" are interchangeable.

3. GnuCOBOL considers "ASCII", "STANDARD-1" and "STANDARD-2" to be interchange-
able.

4. "NATIVE" specifies the system default character set.

5. The following points apply to using the <literal-n> specifications to compose a custom
character set:

A. The <literal-n> values are either integers or alphanumeric quoted characters. These
represent a single character in the "NATIVE" character set, either by it’s actual
text value (alphanumeric quoted character) or by ordinal position in the "NATIVE"
character set (integer),

15 February 2018 Chapter 5 - ENVIRONMENT DIVISION



102 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

B. The sequence in which characters are defined in this clause specifies the relative
order those characters should have when comparisons are made using this alphabet.

C. Character positions in this list do not affect the actual binary storage values used
for the characters — binary values will still be those of the "NATIVE" character
set.

D. You may specify any of the figurative constants "SPACE", "SPACES", "ZERO",
"ZEROS", "ZEROES", "QUOTE", "QUOTES", "HIGH-VALUE", "HIGH-VALUES",
"LOW-VALUE" or "LOW-VALUES" for any of the <literal-1>, <literal-2> or <literal-3>
specifications.

6. Once you have defined an alphabet name, that alphabet name may be used on speci-
fications in "CODE-SET", "COLLATING SEQUENCE", or "SYMBOLIC CHARACTERS" clauses
elsewhere in the program.

Chapter 5 - ENVIRONMENT DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 103

5.1.3.2. Class-Definition-Clause� �
SPECIAL-NAMES Class-Definition-Clause Syntax
 	

CLASS class-name-1 IS { literal-1 [ THRU|THROUGH literal-2 ] }...

~~~~~ ~~~~ ~~~~~~~

————————————————————————————————————————

1. The reserved word "IS" is optional and may be included, or not, at the discretion of
the programmer. The presence or absence of this word has no effect upon the program.

2. The reserved words "THRU" and "THROUGH" are interchangeable.

3. Both <literal-1> and <literal-2> must be alphanumeric literals of length 1.

4. The literal(s) specified on this clause define the possible characters that may be found
in a data item’s value in order to be considered part of the class.

5. For example, the following defines a class called "Hexadecimal", the definition of which
specifies the only characters that may be present in an alphanumeric data item if that
data item is to be part of the "Hexadecimal" class:

CLASS Hexadecimal IS ’0’ THRU ’9’

’A’ THRU ’F’

’a’ THRU ’f’

6. Once class "Hexadecimal" has been defined, program code could then use a statement
such as "IF input-item IS Hexadecimal" to determine if the value of characters in
a data item are valid according to that class.

15 February 2018 Chapter 5 - ENVIRONMENT DIVISION



104 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

5.1.3.3. Switch-Definition-Clause� �
SPECIAL-NAMES Switch-Definition-Clause Syntax
 	

switch-name-1 [ IS mnemonic-name-1 ]

[ ON STATUS IS condition-name-1 ]

~~

[ OFF STATUS IS condition-name-2 ]

~~~

————————————————————————————————————————

The switch-definition clause associates a condition-name with a run-time execution switch
so that the status of that switch may be tested from within a program.

1. The reserved words "IS" and "STATUS" are optional and may be included, or not, at
the discretion of the programmer. The presence or absence of these words has no effect
upon the program.

2. The valid <switch-name-1> names are "SWITCH-n" (n=0-36).

3. If the program is compiled with the "-fsyntax-extension" switch, the switch names
"SWn" (n=0-15) are also valid; they correspond to "SWITCH-0" through "SWITCH-15",
respectively as well as "SWITCH-16" through "SWITCH-36", "SWITCH 0" through
"SWITCH 26" and "SWITCH A" through "SWITCH Z".

4. At execution time, each switch will be associated with a "COB_SWITCH_n" run-time
environment variable (see [Run Time Environment Variables], page 626), where "n"
will have the value "0" through "15". Any of these sixteen environment variables that
have the value "ON" (regardless of upper- or lower-case value) will be considered to be
set "on". Any of these sixteen environment variables having no value at all or a value
other than "ON" will be considered "OFF".

5. Each specified switch must have at least one of a "IS <mnemonic-name-1>", "ON

STATUS" or an "OFF STATUS" option defined for it, otherwise there will be no way
to reference the switch from within a GnuCOBOL program.

6. The "IS <mnemonic-name-1>" syntax provides a means for setting the switch to either
an ON or OFF value via the "SET" statement (see [SET], page 367).

7. The "ON STATUS" and "OFF STATUS" syntax provides a way of associating a condition-
name with either the on or off status of the switch, so that status may be tested at
execution time via the "IF" statement (see [IF], page 319).

Chapter 5 - ENVIRONMENT DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 105

5.1.3.4. Symbolic-Characters-Clause� �
SPECIAL-NAMES-Symbolic-Characters-Clause Syntax
 	

SYMBOLIC CHARACTERS

~~~~~~~~

{ symbolic-character-1... IS|ARE integer-1... }...

[ IN alphabet-name-1 ]

~~

————————————————————————————————————————

This clause may be used to define your own figurative constants.

1. The reserved words "ARE", "CHARACTERS" and "IS" are optional and may be included,
or not, at the discretion of the programmer. The presence or absence of these words
has no effect upon the program.

2. There must be exactly as many <integer-1> values specified as there are <symbolic-
character-1> names.

3. Each symbolic character name will be associated with the corresponding <integer-1>th
character in the alphabet named in the "IN" clause. The integer values are selecting
characters from the alphabet by their ordinal position and not by their numeric value;
thus, an integer of 15 will select the 15th character in the specified alphabet, regardless
of the actual numeric value of the bit pattern that constitutes that character.

4. If no <alphabet-name-1> is specified, the systems native character set will be assumed.

5. The following two code examples define the same set of figurative constant names for
five ASCII control characters (assuming that ASCII is the system’s native character
set). The two examples are identical in their effects, even though the manner in which
the figurative constants are defined is different.

SYMBOLIC CHARACTERS NUL IS 1 SYMBOLIC CHARACTERS NUL SOH BEL DC1 DC2

SOH IS 2 ARE 1 2 8 18 19

BEL IS 8

DC1 IS 18

DC2 IS 19

15 February 2018 Chapter 5 - ENVIRONMENT DIVISION



106 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

5.1.4. REPOSITORY� �
REPOSITORY Syntax
 	

REPOSITORY.

~~~~~~~~~~

FUNCTION { function-prototype-name-1 [ AS literal-1 ] }...

~~~~~~~~ { ~~ }

{ intrinsic-function-name-1 [ AS literal-2 ] }

{ ~~ }

{ intrinsic-function-name-2 INTRINSIC }

{ ALL INTRINSIC ~~~~~~~~~ }

~~~ ~~~~~~~~~

————————————————————————————————————————

The REPOSITORY paragraph provides a way to control access to the various built-in
intrinsic functions and any user defined functions that your program will be using.

1. The "REPOSITORY" paragraph is not allowed in a nested subprogram — nested pro-
grams will inherit the "REPOSITORY" settings of their parent program.

2. The "INTRINSIC" clause allows you to flag one or more (or "ALL") built-in intrinsic
functions as being usable without the need to code the keyword "FUNCTION" in front
of the function names.

3. As an alternative to using the "ALL INTRINSIC" clause, you may instead compile your
GnuCOBOL programs using the "-fintrinsics=ALL" switch.

4. The <function-prototype-name-1> option is required to specify the name of a user-
defined function your program will be using. Optionally, should you desire, you may
specify an alias name by which you will reference that user-defined function. Should
you wish, you may also use the "AS" clause to provide an alias name for a built-in
intrinsic function.

5. The following example enables all intrinsic functions to be specified without
the use of the "FUNCTION" keyword, (2) names two user-defined functions
named "MY-FUNCTION-1" and "MY-FUNCTION-2" that will be used by the
program and (3) specifies the alias names "SIGMA" for the intrinsic function
"STANDARD-DEVIATION" and "MF2" for "MY-FUNCTION-2".

REPOSITORY.

FUNCTION ALL INTRINSIC.

FUNCTION MY-FUNCTION-1.

FUNCTION MY-FUNCTION-2 AS "MF2".

FUNCTION STANDARD-DEVIATION AS "SIGMA".

A special note about user-defined functions — because you must name a user-defined func-

Chapter 5 - ENVIRONMENT DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 107

tion that your program will be using in the "REPOSITORY" paragraph, you may always
reference that function from your program’s procedure division without needing to use the
"FUNCTION" keyword.

15 February 2018 Chapter 5 - ENVIRONMENT DIVISION



108 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

5.2. INPUT-OUTPUT SECTION� �
INPUT-OUTPUT SECTION Syntax
 	

[ INPUT-OUTPUT SECTION. ]

~~~~~~~~~~~~ ~~~~~~~

[ FILE-CONTROL. ]

~~~~~~~~~~~~

[ SELECT-Statement... ]

[ I-O-CONTROL. ]

~~~~~~~~~~~

[ MULTIPLE-FILE-Statement ]

[ SAME-RECORD-Statement ]

————————————————————————————————————————

The "INPUT-OUTPUT" section provides for the definition of any files the program will be
accessing as well as control of the I/O buffering process against those files through the
"FILE-CONTROL" and "I-O-CONTROL" paragraphs, respectively.

1. As the diagram shows, there are three types of statements that may occur in the
two paragraphs of this section. If none of the statements are coded in a particular
paragraph, the paragraph itself may be omitted, otherwise it is required.

2. If neither paragraph is coded, the "INPUT-OUTPUT SECTION." header itself may be
omitted, otherwise it is normally required.

3. If the compiler "config" file you are using has "relaxed-syntax-check" set to "yes",
the "FILE-CONTROL" and "I-O-CONTROL" paragraphs may be specified without the
"INPUT-OUTPUT SECTION." header having been coded.

4. If both statement types are coded in the "I-O-CONTROL" paragraph, the order in which
those statements are coded is irrelevant.

Chapter 5 - ENVIRONMENT DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 109

5.2.1. SELECT� �
SELECT Statement Syntax
 	

SELECT [ [ NOT ] OPTIONAL ] file-name-1

~~~~~~ ~~~ ~~~~~~~~

[ ASSIGN { TO } [{ EXTERNAL }] [{ DISC|DISK }] [{ identifier-1 }] ]

~~~~~~ { USING } { ~~~~~~~~ } { ~~~~ ~~~~ } { word-1 }

{ DYNAMIC } { DISPLAY } { literal-1 }

~~~~~~~ { ~~~~~~~ }

{ KEYBOARD }

{ ~~~~~~~~ }

{ LINE ADVANCING }

{ ~~~~ ~~~~~~~~~ }

{ PRINTER }

{ ~~~~~~~ }

{ RANDOM }

{ ~~~~~~ }

{ TAPE }

~~~~

[ COLLATING SEQUENCE IS alphabet-name-1 ]

~~~~~~~~~

[ FILE|SORT ] STATUS IS identifier-2 [ identifier-3 ] ]

~~~~ ~~~~ ~~~~~~

[ LOCK MODE IS { MANUAL|AUTOMATIC } ]

~~~~ { ~~~~~~ ~~~~~~~~~ }

{ EXCLUSIVE [ WITH { LOCK ON MULTIPLE RECORDS } ] }

~~~~~~~~~ { ~~~~ ~~ ~~~~~~~~ ~~~~~~~ }

{ LOCK ON RECORD }

[ ORGANIZATION-Clause ] { ~~~~ ~~ ~~~~~~ }

{ ROLLBACK }

[ RECORD DELIMITER IS STANDARD-1 ] ~~~~~~~~

~~~~~~ ~~~~~~~~~ ~~~~~~~~~~

[ RESERVE integer-1 AREAS ]

~~~~~~~

[ SHARING WITH { ALL OTHER } ]

~~~~~~~ { ~~~ }

{ NO OTHER }

{ ~~ }

{ READ ONLY }

~~~~ ~~~~

The "COLLATING SEQUENCE", "RECORD DELIMITER", "RESERVE" and "ALL OTHER" clauses
are syntactically recognized but are otherwise non-functional.

————————————————————————————————————————

15 February 2018 Chapter 5 - ENVIRONMENT DIVISION



110 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

The "SELECT" statement creates a definition of a file and links that COBOL definition to
the external operating system environment.

1. The reserved words "AREAS", "IS", "MODE", "OTHER", "SEQUENCE", "TO", "USING" and
"WITH" are optional and may be included, or not, at the discretion of the programmer.
The presence or absence of these words has no effect upon the program.

2. After <file-name-1>, the various clauses may be coded in any sequence.

3. A period must follow the last coded clause.

4. The "OPTIONAL" clause, to be used only for files that will be used to provide input data
to the program, indicates the file may or may not actually be available at run-time.
Attempts to "OPEN" an "OPTIONAL" file when the file does not exist will receive a special
non-fatal file status value (see status 05 in the list of file status values below) indicating
the file is not available; a subsequent attempt to "READ" that file will return an "AT

END" (end-of-file) condition. Optionally, files may be designated as "NOT OPTIONAL",
if desired. This is useful when specifying the compiler’s "-foptional-file" switch,
which automatically makes all files "OPTIONAL" except for those explicitly declared as
"NOT OPTIONAL".

5. The <file-name-1> value that you specify will be the name by which you will reference
the file within your program. This name should be formed according to the rules for
user-defined names (see [User-Defined Words], page 9).

6. The optional "ASSIGN" clause specifies how — at runtime, when <file-name-1> is
opened — either a logical device (STDIN, STDOUT) or a file anywhere in one of
the currently-mounted file systems will be associated with <file-name-1>, as follows:

A. There are three components to the "ASSIGN" clause — a <<Type>> specification
("EXTERNAL", "DYNAMIC" or neither), a <<Device>> (the list of device choices) and
a <<Locator>> (shown as a choice between <identifier-1>, <word-1> and <literal-
1>).

B. "ASSIGN TO DISC ’<file-name-1>’" will be assumed if there is no "ASSIGN"

clause on a "SELECT".

C. If an "ASSIGN" clause is coded without a <<Device>>, the device "DISC" will be
assumed.

D. If a <<Locator>> clause is coded, the COBOL file <file-name-1> will be attached
to a data file within any file system that is mounted and available to the executing
program at the time <file-name-1> is opened. How that file is identified varies,
depending upon the specified <<Locator>>, as follows:

a. If <literal-1> is coded, the value of the literal will serve as the File Location
String that will identify the data file.

b. If <identifier-1> is coded, the value of the identifier will serve as the File
Location String that will identify the data file.

c. If <word-1> (a syntactically valid word not duplicating that of a reserved

Chapter 5 - ENVIRONMENT DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 111

or user-defined word) is coded, and a <<Type>> of "EXTERNAL" is specified,
<word-1> itself will serve as the File Location String that will identify the data
file. If, however, a <<Type>> of "EXTERNAL" was not specified, the compiler
will create a "PIC X(1024)" data item named <word-1> within the program;
the contents of that data item at the time the program opens <file-name-1>
will then serve as the File Location String that will identify the data file.

d. File Location Strings will be discussed shortly.

E. If no <<Locator>> is coded, <file-name-1> will be attached to a logical device or a
file based upon the specified (or implied) <<Device>>, as follows:

a. "DISC" or "DISK" will assume an attachment to a file named <file-name-1>
in whatever directory is current at the time the file is opened.

b. "DISPLAY" will assume an attachment to the "STDOUT" logical device; these
files should only be used for output.

c. "KEYBOARD" will assume an attachment to the "STDIN" logical device; these
files should only be used for input.

d. "PRINTER" will assume an attachment to the "LPT1" logical device/port; these
files should only be used for output.

e. "RANDOM" or "TAPE" will behave exactly as "DISC" does. These two additional
<<Device>>s are provided to facilitate the compilation of COBOL source from
other COBOL implementations.

F. The "LINE ADVANCING" device requires that a <<Locator>> be specified; these files
should only be used for output. A COBOL Line Advancing file will allow carriage-
control characters such as line-feeds and form-feeds to be written to the attached
operating system file, via the "ADVANCING" clause of the "WRITE" statement (see
[WRITE], page 402).

G. File Location Strings are used (at runtime) to identify the path and filename to
the data file that must be attached to <file-name-1> when that file is opened.

H. If the compiler "config" file you used to compile the program with had a "filename-
mapping" value of "yes", the GnuCOBOL runtime system will first attempt to
identify a currently-defined environment variable whose value will serve as the
data file’s path and filename, as follows:

a. If the compiler "config" file (see [Compiler Configuration Files], page 619) you
used to compile the program specified "mf" as the "assign-clause" value, then
the File Locator String will be interpreted according to Microfocus COBOL
rules — namely, everything before the last "-" in the File Locator String
will be ignored; the characters after the last "-" will be treated as the base
of an environment variable name. If there is no "-" character in the File
Locator String then the entire File Locator String will serve as the base of an
environment variable name. This is the default behaviour for every config file
except "ibm".

15 February 2018 Chapter 5 - ENVIRONMENT DIVISION



112 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

b. If, on the other hand, the compiler "config" file you used to compile the
program specified "mf" as the "assign-clause" value, then the File Locator
String will be interpreted according to according to IBM COBOL rules —
namely, the File Locator String is expected to be of the form "S-xxx" or "AS-
xxx", in which case the "xxx" will be treated as the base of an environment
variable name. If there is no "-" character in the File Locator String then the
entire File Locator String will serve as the base of an environment variable
name.

c. Once an environment variable name base (let’s refer to it as "bbbb") has been
determined, the runtime system will look for the first one of the following
environment variables that exists, in this sequence:

DD bbbb
dd bbbb
bbbb

Windows systems are case-insensitive with regard to environment variables,
so there is no difference between the first two when using a GnuCOBOL
implementation built for either Windows/MinGW or native Windows.

If an environment variable was found, it’s value will serve as the path and
filename to the data file.

I. If no environment variable was found, or the "config" file used to compile the
program had a "filename-mapping" value of "no", then the File Locator String
value will serve as the path and filename to the data file.

J. Paths and file names may be specified on an absolute ("C:\Data\datafile.dat",
"/Data/datafile.dat", . . . ) or relative-to-the-current-directory
("Data\datafile.dat", "Data/datafile.dat", . . . ) basis.

There may not even be a path ("datafile.dat"), in which case the file must be
in the current directory.

7. The "FILE STATUS" or "SORT STATUS" clause (they are both equivalent and only one
or the other, if any, should be specified) is used to specify the name of a two-digit
numeric data item into which an I/O status code will be saved after every I/O verb
that is executed against the file. This does not actually allocate the data item — you
must define the item yourself somewhere in the data division.

Possible status codes that can be returned to a "FILE STATUS" data item are as follows:

Code Explanation
00 Success
02 Success (Duplicate Record Key Written)
05 Success (Optional File Not Found)
07 Success (No Unit)

Chapter 5 - ENVIRONMENT DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 113

10 End of file reached if reading forward or beginning-of-file reached if reading
backward

14 Out of key range
21 Key invalid
22 Attempt to duplicate key value
23 Key not found
30 Permanent I/O error
31 Inconsistent filename
34 Boundary violation
35 File not found
37 Permission denied
38 Closed with lock
39 Conflicting attribute
41 File already open
42 File not open
43 Read not done
44 Record overflow
46 Read error
47 "OPEN INPUT" denied (insufficient permissions to read file)
48 "OPEN OUTPUT" denied (insufficient permissions to write to file)
49 "OPEN I-O" denied (insufficient permissions to read and/or write file)
51 Record locked
52 End of page
57 "LINAGE" specifications invalid
61 File sharing failure
91 File not available

8. The "SHARING" clause defines the conditions under which the program will be willing
(or not) to allow other programs executing at the same time to access the file. See [File
Sharing], page 62, for the details.

9. The "LOCK" clause defines how concurrent access to the file will be managed on a
record-by-record basis. See [Record Locking], page 64, for the details.

10. A "SELECT" statement without an "ORGANIZATION" explicitly coded will be handled
as if the following ORGANIZATION clause had been specified:

ORGANIZATION IS SEQUENTIAL

ACCESS MODE IS SEQUENTIAL

15 February 2018 Chapter 5 - ENVIRONMENT DIVISION



114 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

5.2.1.1. ORGANIZATION SEQUENTIAL� �
ORGANIZATION SEQUENTIAL Clause Syntax
 	

[ ORGANIZATION|ORGANISATION IS ] RECORD BINARY SEQUENTIAL

~~~~~~~~~~~~ ~~~~~~~~~~~~ ~~~~~~~~~~

[ ACCESS MODE IS SEQUENTIAL ]

~~~~~~ ~~~~~~~~~~

————————————————————————————————————————

Files declared as "ORGANIZATION SEQUENTIAL" will consist of records with no explicit end-
of-record delimiter character sequences; records in such files are "delineated" by a calculated
byte-offset (based on the maximum record length) into the file.

1. The reserved words "BINARY", "IS", "MODE" and "RECORD" are optional and may be
included, or not, at the discretion of the programmer. The presence or absence of these
words has no effect upon the program.

2. The reserved words "ORGANIZATION" and "ORGANISATION" are interchangeable.

3. The phrase "ORGANIZATION IS" (and it’s internationalized alternative, "ORGANISATION
IS") is optional to provide compatibility with those (few) COBOL implementations
that consider "ORGANIZATION" to be optional. Most COBOL implementations do re-
quire the word "ORGANIZATION", so it should be used in new programs.

4. These files cannot be prepared with any standard text-editing or word processing soft-
ware as all such programs will embed delimiter characters at the end of records (use
"ORGANIZATION IS LINE SEQUENTIAL" instead).

5. These files may contain either "USAGE DISPLAY" or "USAGE COMPUTATIONAL" (of any
variety) data since no binary data sequence can be accidentally interpreted as an end-
of-record delimiter.

6. While records in a "ORGANIZATION SEQUENTIAL" file may be defined as having variable-
length records, the file will be structured in such a manner as to reserve space for each
record equal to the size of the largest possible record, based on the file’s description in
the "FILE SECTION".

7. The "ACCESS MODE SEQUENTIAL" clause is optional because, if absent, it will be as-
sumed anyway for this type of file. The internal structure of these files is such that
they can only be processed in a sequential manner; in order to read the 100th record
in such a file, for example, you first must read records 1 through 99.

8. Sequential files are processed using the following statements:

• "CLOSE" (see [CLOSE], page 286)

• "COMMIT" (see [COMMIT], page 287)

• "DELETE" (see [DELETE], page 291)

Chapter 5 - ENVIRONMENT DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 115

• "MERGE" (see [MERGE], page 333)

• "OPEN" (see [OPEN], page 342)

• "READ" (see [READ], page 350)

• "REWRITE" (see [REWRITE], page 359)

• "SORT" (see [SORT], page 376)

• "UNLOCK" (see [UNLOCK], page 397)

• "WRITE" (see [WRITE], page 402)

15 February 2018 Chapter 5 - ENVIRONMENT DIVISION



116 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

5.2.1.2. ORGANIZATION LINE SEQUENTIAL� �
ORGANIZATION LINE SEQUENTIAL Clause Syntax
 	

[ ORGANIZATION|ORGANISATION IS ] LINE SEQUENTIAL

~~~~~~~~~~~~ ~~~~~~~~~~~~ ~~~~ ~~~~~~~~~~

[ ACCESS MODE IS SEQUENTIAL ]

~~~~~~ ~~~~~~~~~~

[ PADDING CHARACTER IS literal-1 | identifier-1 ]

~~~~~~~

The "PADDING CHARACTER" clause is syntactically recognized but is otherwise
non-functional.

————————————————————————————————————————

Files declared as "ORGANIZATION LINE SEQUENTIAL" will consist of records terminated by
an end-of-record delimiter character or character sequence.

1. The reserved words "CHARACTER", "IS" and "MODE" are optional and may be included,
or not, at the discretion of the programmer. The presence or absence of these words
has no effect upon the program.

2. The reserved words "ORGANIZATION" and "ORGANISATION" are interchangeable.

3. The phrase "ORGANIZATION IS" (and it’s internationalized alternative, "ORGANISATION
IS") is optional to provide compatibility with those (few) COBOL implementations
that consider that word to be optional. Most COBOL implementations do require the
word "ORGANIZATION", so it should be used in new programs.

4. This is the only "ORGANIZATION" valid for files that are assigned to the "PRINTER"

device.

5. These files may be created with any standard text-editing or word processing software
capable of writing text files. Such files should not contain any "USAGE COMPUTATIONAL"

or "BINARY" (of any variety) data since such fields could accidentally contain byte
sequences that could be interpreted as an end-of-record delimiter.

6. Both fixed- and variable-length record formats are supported.

7. The end-of-record delimiter sequence will be X’0A’ (an ASCII line-feed character) or a
X’0D0A’ (an ASCII carriage-return + line-feed sequence). The former is used on Unix
implementations of GnuCOBOL (including Windows/MinGW, Windows/Cygwin and
OSX implementations) while the latter would be used with native Windows implemen-
tations.

8. When reading a "LINE SEQUENTIAL" file, records in excess of the size implied by the
file’s description in the "FILE SECTION" will be truncated while records shorter than
that size will be padded to the right with "SPACES".

Chapter 5 - ENVIRONMENT DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 117

9. The "ACCESS MODE SEQUENTIAL" clause is optional because, if absent, it will be as-
sumed anyway for this type of file. The internal structure of these files is such that the
data can only be processed in a sequential manner; in order to read the 100th record
in such a file, for example, you first must read records 1 through 99.

10. Files assigned to "PRINTER" or "CONSOLE" should be specified as "ORGANIZATION LINE

SEQUENTIAL".

11. Line Sequential files are processed using the following statements:

• "CLOSE" (see [CLOSE], page 286)

• "COMMIT" (see [COMMIT], page 287)

• "DELETE" (see [DELETE], page 291)

• "MERGE" (see [MERGE], page 333)

• "OPEN" (see [OPEN], page 342)

• "READ" (see [READ], page 350)

• "REWRITE" (see [REWRITE], page 359)

• "SORT" (see [SORT], page 376)

• "UNLOCK" (see [UNLOCK], page 397)

• "WRITE" (see [WRITE], page 402)

15 February 2018 Chapter 5 - ENVIRONMENT DIVISION



118 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

5.2.1.3. ORGANIZATION RELATIVE� �
ORGANIZATION RELATIVE Clause Syntax
 	

[ ORGANIZATION|ORGANISATION IS ] RELATIVE

~~~~~~~~~~~~ ~~~~~~~~~~~~ ~~~~~~~~

[ ACCESS MODE IS { SEQUENTIAL } ]

~~~~~~ { ~~~~~~~~~~ }

{ DYNAMIC }

{ ~~~~~~~ }

{ RANDOM }

~~~~~~

[ RELATIVE KEY IS identifier-1 ]

~~~~~~~~

————————————————————————————————————————

These files are files with an internal organization such that records may be processed in a
sequential manner based upon their physical location in the file or in a random manner by
allowing records to be read, written or updated by specifying the relative record number in
the file.

1. The reserved words "IS", "KEY" and "MODE" are optional and may be included, or not,
at the discretion of the programmer. The presence or absence of these words has no
effect upon the program.

2. The reserved words "ORGANIZATION" and "ORGANISATION" are interchangeable.

3. The phrase "ORGANIZATION IS" (and it’s internationalized alternative, "ORGANISATION
IS") is optional to provide compatibility with those (few) COBOL implementations
that consider that word to be optional. Most COBOL implementations do require the
word "ORGANIZATION", so it should be used in new programs.

4. "ORGANIZATION RELATIVE" files cannot be assigned to the "CONSOLE", "DISPLAY",
"LINE ADVANCING" or "PRINTER" devices.

5. The "RELATIVE KEY" clause is optional only if "ACCESS MODE SEQUENTIAL" is specified.

6. While an "ORGANIZATION RELATIVE" file may be defined as having variable-length
records, the file will be structured in such a manner as to reserve space for each record
equal to the size of the largest possible record as defined by the file’s description in the
"FILE SECTION".

7. "ACCESS MODE SEQUENTIAL", the default "ACCESS MODE" if none is specified, indicates
that the records of the file will be processed in a sequential manner, according to their
physical sequence in the file.

8. "ACCESS MODE RANDOM" means that records will be processed in random sequence by
specifying their record number in the file every time the file is read or written.

Chapter 5 - ENVIRONMENT DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 119

9. "ACCESS MODE DYNAMIC" indicates the program may switch back and forth between
"SEQUENTIAL" and "RANDOM" mode during execution. The file starts out initially in
"SEQUENTIAL"mode when first opened but the program may use the "START" statement
(see [START], page 382) to switch between sequential and random access.

10. The "RELATIVE KEY" data item is a numeric data item that cannot be defined as a field
within records of this file. Its purpose is to return the current relative record number
of a relative file that is being processed in "SEQUENTIAL" access mode and to serve as
a key that specifies the relative record number to be read or written when processing
a relative file in "RANDOM" access mode.

11. Relative files are processed using the following statements:

• "CLOSE" (see [CLOSE], page 286)

• "COMMIT" (see [COMMIT], page 287)

• "DELETE" (see [DELETE], page 291)

• "MERGE" (see [MERGE], page 333), "ACCESS MODE RANDOM" not allowed

• "OPEN" (see [OPEN], page 342)

• "READ" (see [READ], page 350)

• "REWRITE" (see [REWRITE], page 359)

• "SORT" (see [SORT], page 376), "ACCESS MODE RANDOM" not allowed

• "START" (see [START], page 382)

• "UNLOCK" (see [UNLOCK], page 397)

• "WRITE" (see [WRITE], page 402)

15 February 2018 Chapter 5 - ENVIRONMENT DIVISION



120 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

5.2.1.4. ORGANIZATION INDEXED� �
ORGANIZATION INDEXED Clause Syntax
 	

[ ORGANIZATION|ORGANISATION IS ] INDEXED

~~~~~~~~~~~~ ~~~~~~~~~~~~ ~~~~~~~

[ ACCESS MODE IS { SEQUENTIAL } ]

~~~~~~ { ~~~~~~~~~ }

{ DYNAMIC }

{ ~~~~~~~ }

{ RANDOM }

~~~~~~

[ RECORD KEY IS { [ data-name-1 ]

~~~~~~

{ [ record-key-name-1 ]

[ =|{SOURCE IS} data-name-2 ] ... ] }

~~~~~~

[ ALTERNATE RECORD KEY IS { [ data-name-3 ]

~~~~~~~~~ ~~~~~~

{ [ record-key-name-2 ]

[ =|{SOURCE IS} data-name-4 ] ... ] }

~~~~~~

[ WITH DUPLICATES ] ]...

~~~~~~~~~~

[ SUPPRESS WHEN ALL literal ]

~~~~~~~~~~~~~~~~~

[ SUPPRESS WHEN SPACES | ZEROES ]

~~~~~~~~~~~~~~~~~~~~ ~~~~~~

————————————————————————————————————————

Indexed files, like relative files, may have their records processed in either a sequential or
random manner. Unlike relative files, however, the actual location of a record in an indexed
file is calculated automatically based upon the value(s) of one or more alphanumeric fields
within records of the file. For example, an indexed file containing product data might use
the product identification code as a record key. This means you may read, write or update
the "A6G4328"th record or the "Z8X7723"th record directly, based upon the product id
value of those records!

1. The reserved words "IS", "KEY" and "MODE" are optional and may be included, or not,
at the discretion of the programmer. The presence or absence of these words has no
effect upon the program.

2. The reserved words "ORGANIZATION" and "ORGANISATION" are interchangeable.

3. The phrase "ORGANIZATION IS" (and it’s internationalized alternative, "ORGANISATION
IS") is optional to provide compatibility with those (few) COBOL implementations

Chapter 5 - ENVIRONMENT DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 121

that consider that word to be optional. Most COBOL implementations do require the
word "ORGANIZATION", so it should be used in new programs.

4. "ORGANIZATION INDEXED" files cannot be assigned to "CONSOLE", "DISPLAY",
"KEYBOARD", "LINE ADVANCING" or "PRINTER".

5. "ACCESS MODE SEQUENTIAL", the default "ACCESS MODE" if none is specified, indicates
that the records of the file will be processed in a sequential manner with respect to the
values of the "RECORD KEY" or the "ALTERNATE RECORD KEY" most-recently referenced
on a "START" statement (see [START], page 382).

6. "ACCESS MODE RANDOM" means that records will be processed in random sequence by
accessing the record with specific record key or alternate record key values.

7. "ACCESS MODE DYNAMIC" allows the file will be processed either in "RANDOM" or
"SEQUENTIAL" mode; the program may switch between the two modes as needed. The
"START" statement is used to make the switch between modes.

8. The "RECORD KEY" clause defines the field within the record used to provide the primary
access to records within the file. No two records in the file will be allowed to have the
same "PRIMARY KEY" field value. The "SOURCE IS" clause is for use with "Split

Keys".

9. The "ALTERNATE RECORD KEY" clause, if used, defines an additional field within the
record that provides an alternate means of directly accessing records or an additional
field by which the file’s contents may be processed sequentially. You have the choice of
allowing records to have duplicate alternate key values, if necessary.

10. There may be multiple "ALTERNATE RECORD KEY" clauses, each defining an additional
alternate key for the file.

11. Usage of the "SUPPRESS WHEN" clause is used when "Sparse Keys" are required which
may take the form for a literal or spaces or zeroes.

12. Indexed files are processed using the following statements:

• "CLOSE" (see [CLOSE], page 286)

• "COMMIT" (see [COMMIT], page 287)

• "DELETE" (see [DELETE], page 291)

• "MERGE" (see [MERGE], page 333), "ACCESS MODE RANDOM" not allowed

• "OPEN" (see [OPEN], page 342)

• "READ" (see [READ], page 350)

• "REWRITE" (see [REWRITE], page 359)

• "SORT" (see [SORT], page 376), "ACCESS MODE RANDOM" not allowed

• "START" (see [START], page 382)

• "UNLOCK" (see [UNLOCK], page 397)

15 February 2018 Chapter 5 - ENVIRONMENT DIVISION



122 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

• "WRITE" (see [WRITE], page 402)

Chapter 5 - ENVIRONMENT DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 123

5.2.2. SAME RECORD AREA� �
I-O-CONTROL SAME AREA Syntax
 	

SAME { SORT-MERGE } AREA FOR file-name-1... .

~~~~ { ~~~~~~~~~~ }

{ SORT }

{ ~~~~ }

{ RECORD }

~~~~~~

The "SAME SORT-MERGE" and "SAME SORT" clauses are syntactically recognized but are
otherwise non-functional.

————————————————————————————————————————

The "SAME RECORD AREA" clause allows you to specify that multiple files should share the
same input and output memory buffers.

1. The reserved words "AREA" and "FOR" are optional and may be included, or not, at
the discretion of the programmer. The presence or absence of these words has no effect
upon the program.

2. This statement must be terminated with a period.

3. While coding only a single file name (the repeated <file-name-1> item) is syntactically
valid, this statement will have no effect upon the program unless at least two files are
specified.

4. The effect of this statement will be to cause the specified files to share the same I/O
buffer in memory. These buffers can sometimes get quite large, and by having multiple
files share the same buffer memory you may significantly cut down the amount of
memory the program is using (thus making "room" for more procedural code or data).
If you do use this feature, take care to ensure that no more than one of the specified
files are ever OPEN simultaneously.

15 February 2018 Chapter 5 - ENVIRONMENT DIVISION



124 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

5.2.3. MULTIPLE FILE� �
I-O-CONTROL MULTIPLE FILE Syntax
 	

MULTIPLE FILE TAPE CONTAINS

~~~~~~~~

{ file-name-1 [ POSITION integer-1 ] }...

~~~~~~~~

.

The "MULTIPLE FILE TAPE" clause is obsolete and is therefore recognized but not func-
tional.

————————————————————————————————————————

————————————————————
End of Chapter 5 — ENVIRONMENT DIVISION

Chapter 5 - ENVIRONMENT DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 125

6. DATA DIVISION

� �
DATA DIVISION Syntax
 	

DATA DIVISION.

~~~~ ~~~~~~~~

[ FILE SECTION.

~~~~ ~~~~~~~

{ File/Sort-Description [ { FILE-SECTION-Data-Item } ]... }... ]

{ { 01-Level-Constant } }

{ { 78-Level-Constant } }

{ 01-Level-Constant }

{ 78-Level-Constant }

[ WORKING-STORAGE SECTION.

~~~~~~~~~~~~~~~ ~~~~~~~

[ { WORKING-STORAGE-SECTION-Data-Item } ]... ]

{ 01-Level-Constant }

{ 78-Level-Constant }

[ LOCAL-STORAGE SECTION.

~~~~~~~~~~~~~ ~~~~~~~

[ { LOCAL-STORAGE-SECTION-Data-Item } ]... ]

{ 01-Level-Constant }

{ 78-Level-Constant }

[ LINKAGE SECTION.

~~~~~~~ ~~~~~~~

[ { LINKAGE-SECTION-Data-Item } ]... ]

{ 01-Level-Constant }

{ 78-Level-Constant }

[ REPORT SECTION.

~~~~~~ ~~~~~~~

{ Report-Description [ { Report-Group-Definition } ]... }... ]

{ { 01-Level-Constant } }

{ { 78-Level-Constant } }

{ 01-Level-Constant }

{ 78-Level-Constant }

[ SCREEN SECTION.

~~~~~~ ~~~~~~~

[ { SCREEN-SECTION-Data-Item } ]... ]

{ 01-Level-Constant }

{ 78-Level-Constant }

————————————————————————————————————————

All data used by any COBOL program must be defined in one of the six sections of the
data division, depending upon the purpose of the data.

15 February 2018 Chapter 6 - DATA DIVISION



126 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

1. If no data will be described in one of the data division sections, that section header
may be omitted.

2. If no data division sections are needed, the "DATA DIVISION." header itself may be
omitted.

3. If more than one section is needed in the data division (a common situation), the
sections must be coded in the sequence they are presented above.

6.1. Data Definition Principles

GnuCOBOL data items, like those of other COBOL implementations, are described in a
hierarchical manner. This accommodates the fact that data items frequently need to be
able to be broken up into subordinate items. Take for example, the following logical layout
of a portion of a data item named "Employee":

The "Employee" data item consists of two subordinate data items — an "Employee-Name"

and an "Employment-Dates" data item (presumably there would be a lot of others too, but
we don’t care about them right now). As the diagram shows, each of those data items are,
in turn, broken down into subordinate data items. This hierarchy of data items can get
rather "deep", and GnuCOBOL, like other COBOL implementations, can handle up to 49
levels of such hierarchical structures.

As was presented earlier (see [Structured Data], page 14), a data item that is broken down
into other data items is referred to as a group item, while one that isn’t broken down is
called an elementary item.

COBOL uses the concept of a "level number" to indicate the level at which a data item
occurs in a data structure such as the example shown above. When these data items are
defined, they are all defined together with a number in the range 1-49 specified in front of
their names. Over the years, a convention has come to exist among COBOL programmers
that level numbers are always coded as two-digit numbers — they don’t have to be specified
as two-digit numbers, but every example you see in this document will take that approach!

Chapter 6 - DATA DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 127

The data item at the top, also referred to as a "record", always has a level number of 01.
After that, you may assign level numbers as you wish (01–02–03–04. . . , 01–05–10–15. . . ,
etc.), as long as you follow these simple rules:

1. Every data item at the same "level" of a hierarchy diagram such as the one you see
here (if you were to make one, which you rarely — if ever — will, once you get used to
this concept) must have the same level number.

2. Every new level uses a level number that is strictly greater than the one used in the
parent (next higher) level.

3. When describing data hierarchies, you may never use a level number greater than 49
(except for 66, 77, 78 and 88 which have very special meanings — see see [Special Data
Items], page 154).

So, the definition of these data items in a GnuCOBOL program would go something like
this:

01 Employee

05 Employee-Name

10 Last-Name

10 First-Name

10 Middle-Initial

05 Employment-Dates

10 From-Date

15 Year

15 Month

15 Day

10 To-Date

15 Year

15 Month

15 Day

The indentation is purely at the discretion of the programmer to make things easier for
humans to read (the compiler couldn’t care less). Historically, COBOL implementations
that required Fixed Format Mode source programs required that the "01" level number
begin in Area A and that everything else begins in Area B. GnuCOBOL only requires that
all data definition syntax occur in columns 8-72. In Free Format Mode, of course, there
aren’t even those limitations.

Did you notice that there are two each of "Year", "Month" and "Day" data names defined?
That’s perfectly legal, provided that each can be uniquely "qualified" so as to be dis-
tinct from the other. Take for example the "Year" items. One is defined as part of the
"From-Date" data item while the other is defined as part of the "To-Date" data item. In
COBOL, we would actually code references to these two data items as either "Year OF

From-Date" and "Year OF To-Date" or "Year IN From-Date" and "Year IN To-Date"

(COBOL allows either "IN" or "OF" to be used). Since these references would clarify any

15 February 2018 Chapter 6 - DATA DIVISION



128 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

confusion to us as to which "Year" might be referenced, the GnuCOBOL compiler won’t
be confused either.

The coding example shown above is incomplete — it only describes the data item names
and their hierarchical relationships to one other. In addition, any valid data item definitions
will also need to describe what type of data is to be contained in a data item (Numeric?
Alphanumeric? Alphabetic?), how much data can be held in the data item and a multitude
of other characteristics.

When group items are being defined, subordinate items may be assigned a "name" of
"FILLER". There may be any number of "FILLER" items defined within a group item.
A data item named "FILLER" cannot be referenced directly; these items are generally used
to specify an unused portion of the total storage allocated to a group item. Note that it is
possible that the name of the group item itself might be specified as "FILLER" if there is
no need to ever refer directly to the group structure itself.

Chapter 6 - DATA DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 129

6.2. FILE SECTION� �
FILE SECTION Syntax
 	

[ FILE SECTION.

~~~~ ~~~~~~~

{ File/Sort-Description [ { FILE-SECTION-Data-Item } ]... }... ]

{ { 01-Level-Constant } }

{ { 78-Level-Constant } }

{ 01-Level-Constant }

{ 78-Level-Constant }

————————————————————————————————————————

Every file that has been referenced by a "SELECT" statement (see [SELECT], page 109)
must also be described in the file section of the data division.

Files destined for use as sort/merge work files must be described with a Sort/Merge File
Description ("SD") while every other file is described with a File Description ("FD"). Each
of these descriptions will almost always be followed with at least one record description.

15 February 2018 Chapter 6 - DATA DIVISION



130 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

6.2.1. File/Sort-Description� �
File/Sort-Description Syntax
 	

FD|SD file-name-1 [ IS EXTERNAL|GLOBAL ]

~~ ~~ ~~~~~~~~ ~~~~~~

[ BLOCK CONTAINS [ integer-1 TO ] integer-2 CHARACTERS|RECORDS ]

~~~~~ ~~ ~~~~~~~~~~ ~~~~~~~

[ CODE-SET IS alphabet-name-1 ]

~~~~~~~~

[ DATA { RECORD IS } identifier-1... ]

~~~~ { ~~~~~~ }

{ RECORDS ARE }

~~~~~~~

[ LABEL { RECORD IS } OMITTED|STANDARD ]

~~~~~ { ~~~~~~ } ~~~~~~~ ~~~~~~~~

{ RECORDS ARE }

~~~~~~~

[ LINAGE IS integer-3 | identifier-2 LINES

~~~~~~

[ LINES AT BOTTOM integer-4 | identifier-3 ]

~~~~~~

[ LINES AT TOP integer-5 | identifier-4 ]

~~~

[ WITH FOOTING AT integer-6 | identifier-5 ] ]

~~~~~~~

[ RECORD { CONTAINS [ integer-7 TO ] integer-8 CHARACTERS } ]

~~~~~~ { ~~ }

{ IS VARYING IN SIZE }

{ ~~~~~~~ }

{ [ FROM [ integer-7 TO ] integer-8 CHARACTERS }

{ ~~ }

{ DEPENDING ON identifier-6 ] }

~~~~~~~~~

[ RECORDING MODE IS recording-mode ]

~~~~~~~~~

[ { REPORT IS } report-name-1... ]

{ ~~~~~~ }

{ REPORTS ARE }

~~~~~~~

[ VALUE OF implementor-name-1 IS literal-1 | identifier-7 ] .

~~~~~ ~~

Chapter 6 - DATA DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 131

The "BLOCK CONTAINS", "DATA RECORD", "LABEL RECORD", "RECORDING MODE" and
"VALUE OF" clauses are syntactically recognized but are obsolete and non-functional.
These clauses should not be coded in new programs.

————————————————————————————————————————

1. The reserved words "ARE", "AT", "CHARACTERS" ("RECORD" clause only), "CONTAINS",
"FROM", "IN", "IS", "ON" and "WITH" are optional and may be included, or not, at
the discretion of the programmer. The presence or absence of these words has no effect
upon the program.

2. The terms "RECORD IS" and "RECORDS ARE" are interchangeable.

3. The terms "REPORT IS" and "REPORTS ARE" are interchangeable.

4. Only files intended for use as work files for either the "SORT" (see [SORT], page 376)
or "MERGE" (see [MERGE], page 333) statements should be coded with an SD — all
others should be defined with a FD.

5. The sequence in which files are defined via "FD" or "SD", as compared to the sequence
in which their "SELECT" statements were coded, is irrelevant.

6. The name specified as <file-name-1> must exactly match the name specified on the
file’s "SELECT" statement.

7. The "CODE-SET" clause allows a custom alphabet, defined in the "SPECIAL-NAMES"

(see [SPECIAL-NAMES], page 96) paragraph, to be associated with a file. This clause
is valid only when used with sequential or line sequential files.

8. The "LINAGE" clause may only be specified in the "FD" of a sequential or line sequential
file. If used with a sequential file, the organization of that file will be implicitly changed
to line sequential. The various components of the "LINAGE" clause define the layout of
printed pages as follows:

• "LINES AT TOP" — the number of unused (i.e. left blank) lines at the top of every
page. The default if this if not specified is zero.

• "LINES AT BOTTOM" — the number of unused (i.e. left blank) lines at the bottom
of every page. The default if this if not specified is zero.

• "LINAGE IS n LINES" — the total number of used/usable lines on the page.

• The sum of the previous three specifications should be the total number of possible
lines available on one printed page.

• "FOOTING AT" — the line number beyond which nothing may be printed except
for any footing that is to appear on every page. The default for this if not specified
is zero, meaning there will be no footings. This value cannot be larger than the
"LINAGE IS n LINES" value.

9. This page structure — once defined — can be automatically enforced by the "WRITE"

statement (see [WRITE], page 402).

15 February 2018 Chapter 6 - DATA DIVISION



132 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

10. Specifying a "LINAGE" clause in an "FD" will cause the "LINAGE-COUNTER" special
register to be created for the file. This automatically-created data item will always
contain the current relative line number on the page being prepared which will serve
as the starting point for a "WRITE" statement.

11. The "RECORD CONTAINS" and "RECORD IS VARYING" clauses are ignored (with a warn-
ing message issued) when used with line sequential files. With other file organizations,
these mutually-exclusive clauses define the length of data records within the file. The
data item specified as <identifier-6> must be defined within one of the record descrip-
tions of <file-name-1>.

12. The "REPORT IS" clause announces to the compiler that the file will be dedicated to
the Report Writer Control System (RWCS); the clause names one or more reports,
each to be described in the report section. The following special rules apply when the
"REPORT" clause is used:

A. The clause may only be specified in the "FD" of a sequential or line sequential file.
If used with a sequential file, the organization of that file will be implicitly changed
to line sequential.

B. The "FD" cannot be followed by record descriptions — detailed descriptions of data
to be printed to the file will be defined in the "REPORT SECTION" (see [REPORT
SECTION], page 143).

C. If a "LINAGE" clause is also specified, Values specified for "LINAGE IS" and
"FOOTING AT" will be ignored. The values of "LINES AT BOTTOM" and "LINES

AT TOP", if any, will be honoured.

13. The following special rules apply only to sort/merge work files:

A. Sort/merge work files should be assigned to "DISK" (or "DISC") on their "SELECT"
statements.

B. Sorts and merges will be performed in memory, if the amount of data being sorted
allows.

C. Should actual disk work files be necessary due to the amount of data being sorted
or merged, they will be automatically allocated to disk in a folder defined by:

• The "TMPDIR" run-time environment variable (see [Run Time Environment
Variables], page 626)

• The "TMP" run-time environment variable

• The "TEMP" run-time environment variable

(in that order)

D. These disk files will be automatically purged upon "SORT" or "MERGE" termination.
They will also be purged if the program terminates abnormally before the "SORT"
or "MERGE" finishes. Should you ever need to know, temporary sort/merge work
files will be named "cob*.tmp".

Chapter 6 - DATA DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 133

E. If you specify a specific filename in the sort/merge work file’s "SELECT", it will be
ignored.

14. See [Data Description Clauses], page 161, for information on the "EXTERNAL" and
"GLOBAL" options.

15 February 2018 Chapter 6 - DATA DIVISION



134 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

6.2.2. FILE-SECTION-Data-Item� �
FILE-SECTION-Data-Item Syntax
 	

level-number [ identifier-1 | FILLER ] [ IS GLOBAL|EXTERNAL ]

~~~~~~ ~~~~~~ ~~~~~~~~

[ BLANK WHEN ZERO ]

~~~~~ ~~~~

[ JUSTIFIED RIGHT ]

~~~~

[ OCCURS [ integer-1 TO ] integer-2 TIMES

~~~~~~ ~~

[ DEPENDING ON identifier-2 ]

~~~~~~~~~

[ ASCENDING|DESCENDING KEY IS identifier-3 ]

~~~~~~~~~ ~~~~~~~~~~

[ INDEXED BY identifier-4 ] ]

~~~~~~~

[ PICTURE IS picture-string ]

~~~

[ REDEFINES identifier-5 ]

~~~~~~~~~

[ SIGN IS LEADING|TRAILING [ SEPARATE [CHARACTER] ] ]

~~~~ ~~~~~~~ ~~~~~~~~ ~~~~~~~~

[ SYNCRONIZED|SYNCHRONISED [ LEFT|RIGHT ] ]

~~~~ ~~~~ ~~~~ ~~~~~

[ USAGE IS data-item-usage ] . [ FILE-SECTION-Data-Item ]...

~~~~~

The "LEFT" and "RIGHT" (SYNCRONIZED) clauses are syntactically recognized but are
otherwise non-functional.

————————————————————————————————————————

Every sort file description ("SD" or "FD") must be followed by at least one 01-level data
item, except for file descriptions containing the "REPORT IS" clause. These 01-level data
items, in turn, may be broken down into subordinate group and elementary items. An
01-level data item defined here in the file section is also known as a ’Record ’, even if it is
an elementary item, provided that elementary item lacks the "CONSTANT" attribute.

1. The reserved words "BY", "IS", "KEY", "ON" and "WHEN" are optional and may be
included, or not, at the discretion of the programmer. The presence or absence of these
words has no effect upon the program.

2. The reserved words "SYNCRONIZED" and "SYNCRONIZED" are interchangeable. Both
may be abbreviated to "SYNC".

Chapter 6 - DATA DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 135

3. The reserved word "PICTURE" may be abbreviated to "PIC".

4. As the syntax diagram shows, the definition of a <<FILE-SECTION-Data-Item>> is a
recursive one in that there may be any number of such specifications coded following
a FD or SD. The first such specification must have a level number of 01, and will
describe a specific format of data record within the file. Specifications that follow
that one may have level numbers greater than 01, in which case they are defining a
hierarchical breakdown of the record. The definition of a record is terminated when
one of the following occurs:

• Another 01-level item is found — this signifies the start of another record layout
for the file.

• Another "FD" or "SD" is found — this marks the completion of the detailed de-
scription of the file and begins another.

• A division or section header is found — this also marks the completion of the
detailed description of the file and signifies the end of the file section as well.

5. Every <<FILE-SECTION-Data-Item>> description must be terminated with a period.

6. If there are multiple record descriptions present for a given "FD" or "SD", the one
with the longest length will define the size of the record buffer into which a "READ"

statement (see [READ], page 350) or a "RETURN" statement (see [RETURN], page 358)
will deliver data read from the file and from which a "WRITE" statement (see [WRITE],
page 402) or "RELEASE" statement (see [RELEASE], page 356) statement will obtain
the data to be written to the file.

7. The various 01-level record descriptions for a file description implicitly share that one
common record buffer (thus, they provide different ways to view the structure of data
that can exist within the file). Record buffers can be shared between files by using the
"SAME RECORD AREA" (see [SAME RECORD AREA], page 123) clause.

8. The only valid level numbers are 01-49, 66, 77, 78 and 88. Level numbers 66, 77, 78
and 88 all have special uses — See [Special Data Items], page 154, for details.

9. Not specifying an <identifier-1> or "FILLER" immediately after the level number has
the same effect as if "FILLER" were specified. A data item named "FILLER" cannot
be referenced directly; these items are generally used to specify an unused portion of
the total storage allocated to a group item or to describe a group item whose contents
which will only be referenced using the names of those items that belong to it.

10. "EXTERNAL" cannot be combined with "GLOBAL" or "REDEFINES".

11. File section data buffers (and therefore all 01-level record layouts defined in the file
section) are initialized to all binary zeros when the program is loaded into storage.

12. See [Data Description Clauses], page 161, for information on the usage of the various
data description clauses.

15 February 2018 Chapter 6 - DATA DIVISION



136 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

6.3. WORKING-STORAGE SECTION� �
WORKING-STORAGE-SECTION-Data-Item Syntax
 	

level-number [ identifier-1 | FILLER ] [ IS GLOBAL | EXTERNAL ]

~~~~~~ ~~~~~~ ~~~~~~~~

[ BASED ]

~~~~~

[ BLANK WHEN ZERO ]

~~~~~ ~~~~

[ JUSTIFIED RIGHT ]

~~~~

[ OCCURS [ integer-1 TO ] integer-2 TIMES

~~~~~~ ~~

[ DEPENDING ON identifier-2 ]

~~~~~~~~~

[ ASCENDING|DESCENDING KEY IS identifier-3 ]

~~~~~~~~~ ~~~~~~~~~~

[ INDEXED BY identifier-4 ] ]

~~~~~~~

[ PICTURE IS picture-string ]

~~~

[ REDEFINES identifier-5 ]

~~~~~~~~~

[ SIGN IS LEADING|TRAILING [ SEPARATE CHARACTER ] ]

~~~~ ~~~~~~~ ~~~~~~~~ ~~~~~~~~

[ SYNCRONIZED|SYNCHRONISED [ LEFT|RIGHT ] ]

~~~~ ~~~~ ~~~~ ~~~~~

[ USAGE IS data-item-usage ]

~~~~~

[ VALUE IS [ ALL ] literal-1 ] . [ WORKING-STORAGE-SECTION-Data-Item ]...

~~~~~ ~~~

The "LEFT" and "RIGHT" (SYNCRONIZED) clauses are syntactically recognized but are
otherwise non-functional.

————————————————————————————————————————

The working-storage section is used to describe data items that are not part of files, screens
or reports and whose data values persist throughout the execution of the program.

1. The reserved words "BY", "CHARACTER", "IS", "KEY", "ON", "RIGHT" (JUSTIFIED),
"TIMES" and "WHEN" are optional and may be included, or not, at the discretion of the
programmer. The presence or absence of these words has no effect upon the program.

2. The reserved words "SYNCRONIZED" and "SYNCHRONISED" are interchangeable. Both
may be abbreviated as "SYNC".

Chapter 6 - DATA DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 137

3. The reserved word "PICTURE" may be abbreviated to "PIC".

4. The reserved word "JUSTIFIED" may be abbreviated to "JUST".

5. As the syntax diagram shows, the definition of a <<WORKING-STORAGE-SECTION-
Data-Item>> is a recursive one in that there may be any number of such specifications
coded following one another. The first such specification must have a level number
of 01. Specifications that follow that one may have level numbers greater than 01, in
which case they are defining a hierarchical breakdown of a record. The definition of a
record is terminated when one of the following occurs:

• Another 01-level item is found — this signifies the end of the definition of one
record and the start of a another.

• A 77-level item is found — this signifies the end of the definition of the record and
begins the definition of a special data item; See [77-Level Data Items], page 158,
for more information.

• A division or section header is found — this also marks the completion of a record
and signifies the end of the working-storage section as well.

6. Every <<WORKING-STORAGE-SECTION-Data-Item>> description must be termi-
nated with a period.

7. The only valid level numbers are 01-49, 66, 77, 78 and 88. Level numbers 01 through
49 are used to define data items that may be part of a hierarchical structure. Level
number 01 can also be used to define a constant — an item with an unchangeable value
specified at compilation time.

8. Level numbers 66, 77, 78 and 88 all have special uses — See [Special Data Items],
page 154, for details.

9. Not specifying an <identifier-1> or "FILLER" immediately after the level number has
the same effect as if "FILLER" were specified. A data item named "FILLER" cannot
be referenced directly; these items are generally used to specify an unused portion of
the total storage allocated to a group item or to describe a group item whose contents
which will only be referenced using the names of those items that belong to it.

10. Data items defined within the working-storage section are automatically initialized once
— as the program in which the data is defined is loaded into memory. Subprograms may
be loaded into memory more than once (see the "CANCEL" statement (see [CANCEL],
page 285)), in which case initialization will happen each time they are loaded. See
[Data Initialization], page 27, for a discussion of the initialization rules.

11. See [Data Description Clauses], page 161, for information on the usage of the various
data description clauses.

15 February 2018 Chapter 6 - DATA DIVISION



138 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

6.4. LOCAL-STORAGE SECTION� �
LOCAL-STORAGE-SECTION-Data-Item Syntax
 	

level-number [ identifier-1 | FILLER ] [ IS GLOBAL|EXTERNAL ]

~~~~~~ ~~~~~~ ~~~~~~~~

[ BASED ]

~~~~~

[ BLANK WHEN ZERO ]

~~~~~ ~~~~

[ JUSTIFIED RIGHT ]

~~~~

[ OCCURS [ integer-1 TO ] integer-2 TIMES

~~~~~~ ~~

[ DEPENDING ON identifier-2 ]

~~~~~~~~~

[ ASCENDING|DESCENDING KEY IS identifier-3 ]

~~~~~~~~~ ~~~~~~~~~~

[ INDEXED BY identifier-4 ] ]

~~~~~~~

[ PICTURE IS picture-string ]

~~~

[ REDEFINES identifier-5 ]

~~~~~~~~~

[ SIGN IS LEADING|TRAILING [ SEPARATE CHARACTER ] ]

~~~~ ~~~~~~~ ~~~~~~~~ ~~~~~~~~

[ SYNCRONIZED|SYNCHRONISED [ LEFT|RIGHT ] ]

~~~~ ~~~~ ~~~~ ~~~~~

[ USAGE IS data-item-usage ]

~~~~~

[ VALUE IS [ ALL ] literal-1 ] . [ LOCAL-STORAGE-SECTION-Data-Item ]...

~~~~~ ~~~

The "LEFT" and "RIGHT" (SYNCRONIZED) clauses are syntactically recognized but are
otherwise non-functional.

————————————————————————————————————————

The local-storage section is similar to working-storage, but describes data within a sub-
program that will be dynamically allocated and initialized (automatically) each time the
subprogram is executed. See [Data Initialization], page 27, for the rules of data initializa-
tion.

1. The reserved words "BY", "CHARACTER" "IS", "KEY", "ON", "RIGHT" (JUSTIFIED),
"TIMES" and "WHEN" are optional and may be included, or not, at the discretion of the
programmer. The presence or absence of these words has no effect upon the program.

Chapter 6 - DATA DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 139

2. The reserved words "SYNCRONIZED" and "SYNCHRONISED" are interchangeable. Both
may be abbreviated as "SYNC".

3. The reserved word "PICTURE" may be abbreviated to "PIC".

4. The reserved word "JUSTIFIED" may be abbreviated to "JUST".

5. As the syntax diagram shows, the definition of a <<LOCAL-STORAGE-SECTION-
Data-Item>> is a recursive one in that there may be any number of such specifications
coded following one another. The first such specification must have a level number
of 01. Specifications that follow that one may have level numbers greater than 01, in
which case they are defining a hierarchical breakdown of a record. The definition of a
record is terminated when one of the following occurs:

• Another 01-level item is found — this signifies the end of the definition of one
record and the start of a another.

• A division or section header is found — this also marks the completion of a record
and signifies the end of the local-storage section as well.

6. Every <<LOCAL-STORAGE-SECTION-Data-Item>> description must be terminated
with a period.

7. The only valid level numbers are 01-49, 66, 77, 78 and 88. Level numbers 01 through
49 are used to define data items that may be part of a hierarchical structure. Level
number 01 can also be used to define a constant — an item with an unchangeable value
specified at compilation time.

8. Level numbers 66, 77, 78 and 88 all have special uses — See [Special Data Items],
page 154, for details.

9. Not specifying an <identifier-1> or "FILLER" immediately after the level number has
the same effect as if "FILLER" were specified. A data item named "FILLER" cannot
be referenced directly; these items are generally used to specify an unused portion of
the total storage allocated to a group item or to describe a group item whose contents
which will only be referenced using the names of those items that belong to it.

10. Local-storage cannot be used in nested subprograms.

11. See [Data Description Clauses], page 161, for information on the usage of the various
data description clauses.

15 February 2018 Chapter 6 - DATA DIVISION



140 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

6.5. LINKAGE SECTION� �
LINKAGE-SECTION-Data-Item Syntax
 	

level-number [ identifier-1 | FILLER ] [ IS GLOBAL|EXTERNAL ]

~~~~~~ ~~~~~~ ~~~~~~~~

[ ANY LENGTH ]

~~~ ~~~~~~

[ BASED ]

~~~~~

[ BLANK WHEN ZERO ]

~~~~~ ~~~~

[ JUSTIFIED RIGHT ]

~~~~

[ OCCURS [ integer-1 TO ] integer-2 TIMES

~~~~~~ ~~

[ DEPENDING ON identifier-3 ]

~~~~~~~~~

[ ASCENDING|DESCENDING KEY IS identifier-4 ]

~~~~~~~~~ ~~~~~~~~~~

[ INDEXED BY identifier-5 ] ]

~~~~~~~

[ PICTURE IS picture-string ]

~~~

[ REDEFINES identifier-6 ]

~~~~~~~~~

[ SIGN IS LEADING|TRAILING [ SEPARATE CHARACTER ] ]

~~~~ ~~~~~~~ ~~~~~~~~ ~~~~~~~~

[ SYNCRONIZED|SYNCHRONISED [ LEFT|RIGHT ] ]

~~~~ ~~~~ ~~~~ ~~~~~

[ USAGE IS data-item-usage ] . [ LINKAGE-SECTION-Data-Item ]...

~~~~~

The "LEFT" and "RIGHT" (SYNCRONIZED) clauses are syntactically recognized but are
otherwise non-functional.

————————————————————————————————————————

The linkage section describes data within a subprogram that serves as either input argu-
ments to or output results from the subprogram.

1. The reserved words "BY", "CHARACTER", "IS", "KEY", "ON" and "WHEN" are optional
and may be included, or not, at the discretion of the programmer. The presence or
absence of these words has no effect upon the program.

2. The reserved words "SYNCRONIZED" and ""SYNCHRONISED"" are interchangeable. Both
may be abbreviated as "SYNC".

Chapter 6 - DATA DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 141

3. The reserved word "PICTURE" may be abbreviated to "PIC".

4. The reserved word "JUSTIFIED" may be abbreviated to "JUST".

5. As the syntax diagram shows, the definition of a <<LINKAGE-SECTION-Data-Item>>

is a recursive one in that there may be any number of such specifications coded following
one another. The first such specification must have a level number of 01. Specifications
that follow that one may have level numbers greater than 01, in which case they are
defining a hierarchical breakdown of a record. The definition of a record is terminated
when one of the following occurs:

• Another 01-level item is found — this signifies the end of the definition of one
record and the start of a another.

• A division or section header is found — this also marks the completion of a record
and signifies the end of the linkage section as well.

6. Every <<LINKAGE-SECTION-Data-Item>> description must be terminated with a
period.

7. The only valid level numbers are 01-49, 66, 77, 78 and 88. Level numbers 01 through
49 are used to define data items that may be part of a hierarchical structure. Level
number 01 can also be used to define a constant — an item with an unchangeable value
specified at compilation time.

8. Level numbers 66, 77, 78 and 88 all have special uses — See [Special Data Items],
page 154, for details.

9. It is expected that:

A. A linkage section should occur only within a subprogram. The compiler will not
prevent its use in a main program, however.

B. All 01-level data items described within a subprogram’s linkage section should ap-
pear in a "PROCEDURE DIVISION USING" (see [PROCEDURE DIVISION USING],
page 238) or as arguments on an "ENTRY" statement.

C. Each 01-level data item described within a subprogram’s linkage section should
correspond to an argument passed on a "CALL" statement (see [CALL], page 281)
or an argument on a function call to the subprogram.

10. Not specifying an <identifier-1> or "FILLER" immediately after the level number has
the same effect as if "FILLER" were specified. A data item named "FILLER" cannot
be referenced directly; these items are generally used to specify an unused portion of
the total storage allocated to a group item or to describe a group item whose contents
which will only be referenced using the names of those items that belong to it. In the
linkage section, 01-level data items cannot be named "FILLER".

11. No storage is allocated for data defined in the linkage section; the data descriptions
there are merely defining storage areas that will be passed to the subprogram by a
calling program. Therefore, any discussion of the default initialization of such data
is irrelevant. It is possible, however, to manually allocate linkage section data items

15 February 2018 Chapter 6 - DATA DIVISION



142 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

that aren’t subprogram arguments via the "ALLOCATE" statement (see [ALLOCATE],
page 278) statement. In such cases, initialization will take place as per the documen-
tation of that statement.

12. See [Data Description Clauses], page 161, for information on the usage of the various
data description clauses.

Chapter 6 - DATA DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 143

6.6. REPORT SECTION� �
REPORT SECTION Syntax
 	

[ REPORT SECTION.

~~~~~~ ~~~~~~~

{ Report-Description [ { Report-Group-Definition } ]... }... ]

{ { 01-Level-Constant } }

{ { 78-Level-Constant } }

{ 01-Level-Constant }

{ 78-Level-Constant }

————————————————————————————————————————� �
Report-Description (RD) Syntax
 	

RD report-name [ IS GLOBAL ]

~~ ~~~~~~

[ CODE IS literal-1 | identifier-1 ]

~~~~

[ { CONTROL IS } { FINAL }... ]

{ ~~~~~~~ } { ~~~~~ }

{ CONTROLS ARE } { identifier-2 }

~~~~~~~~

[ PAGE [ { LIMIT IS } ] [ { literal-2 } LINES ]

~~~~ { ~~~~~ } { identifier-3 } ~~~~

{ LIMITS ARE }

~~~~~~

[ literal-3 | identifier-4 COLUMNS|COLS ]

~~~~~~~ ~~~~

[ HEADING IS literal-4 | identifier-5 ]

~~~~~~~

[ FIRST DE|DETAIL IS literal-5 | identifier-6 ]

~~~~~ ~~ ~~~~~~

[ LAST CH|{CONTROL HEADING} IS literal-6 | identifier-7 ]

~~~~ ~~ ~~~~~~~ ~~~~~~~

[ LAST DE|DETAIL IS literal-7 | identifier-8 ]

~~~~ ~~ ~~~~~~

[ FOOTING IS literal-8 | identifier-9 ] ] .

~~~~~~~

————————————————————————————————————————

This section describes the layout of printed reports as well as many of the functional aspects
of the generation of reports that will be produced via the Report Writer Control System.

15 February 2018 Chapter 6 - DATA DIVISION



144 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

It is important to maintain the order of these clauses and ensure that all fields defined or
referenced with this section are actually defined in the WORKING-STORAGE SECTION
and not elsewhere.

1. The reserved words "ARE" and "IS" are optional and may be included, or not, at the
discretion of the programmer. The presence or absence of these words has no effect
upon the program.

2. The phrases "CONTROL IS" and "CONTROLS ARE" are interchangeable, as are the "PAGE
LIMIT" and "PAGE LIMITS" phrases.

3. The reserved word "LINES" may be abbreviated as "LINE".

4. The reserved word "COLUMNS" may be abbreviated as "COLS".

5. Each report referenced on a "REPORT IS" clause (see [File/Sort-Description], page 130)
must be described with a report description ("RD").

6. See [GLOBAL], page 182, for information on the "GLOBAL" option.

7. Please see [Report Writer Features], page 26, if you have not read it already. This will
familiarize you with the Report Writer terminology that will follow.

8. The following rules pertain to the "PAGE LIMITS" clause:

A. If no "PAGE LIMITS" clause is specified, the entire report will be generated as if it
consists of a single arbitrarily long page.

B. All literals (<literal-2> through <literal-8>) must be numeric with non-zero positive
integer values.

C. All identifiers (<identifier-2> through <identifier-8>) must be numeric, unedited
with non-zero positive integer values.

D. Any value specified for <literal-2>|<identifier-2> will define the total number
of available lines on any report page, not counting any unused margins at the
top and/or bottom of the page (defined by the "LINES AT TOP" and "LINES AT

BOTTOM" values specified on the "LINAGE" clause of the "FD" this "RD" is linked to
— see [File/Sort-Description], page 130).

E. Any value specified for <literal-3>|<identifier-3> will be ignored.

F. The "HEADING" clause defines the first line number at which a report heading or
page heading may be presented.

G. The "FIRST DETAIL" clause defines the first line at which a detail group may be
presented.

H. The "LAST CONTROL" HEADING clause defines the last line at which any line of
a control heading may be presented.

I. The "LAST DETAIL" clause defines the last line at which any line of a detail group
may be presented.

Chapter 6 - DATA DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 145

J. The "FOOTING" clause defines the last line at which any line of a control footing
group may be presented.

K. The following rules establish default values for the various "PAGE LIMIT" clauses,
assuming there is one:

• "HEADING" — the default is one (1)

• "FIRST DETAIL" — the HEADING value is used

• "LAST CONTROL HEADING" — the value from "LAST DETAIL" or, if that is
absent, the value from "FOOTING" or, if that too is absent, the value from
"PAGE LIMIT"

• "LAST DETAIL" — the value from "FOOTING" or, if that is absent, the value
from "PAGE LIMIT"

• "FOOTING" — the value from "LAST DETAIL" or, if that is absent, the value
from "PAGE LIMIT"

L. For the values specified on a "PAGE LIMIT" clause to be valid, all of the following
must be true:

• "HEADING" not > "FIRST DETAIL"

• "FIRST DETAIL" not > "LAST CONTROL HEADING"

• "LAST CONTROL HEADING" not > "LAST DETAIL"

• "LAST DETAIL" not > "FOOTING"

9. The following rules pertain to the "CONTROL" clause:

A. If there is no "CONTROL" clause, the report will contain no control breaks; this
implies that there can be no "CONTROL HEADING" or "CONTROL FOOTING" report
groups defined for this "RD".

B. Include the reserved word "FINAL" if you want to include a special control heading
before the first detail line is generated ("CONTROL HEADING FINAL") or after the
last detail line is generated ("CONTROL FOOTING FINAL").

C. If you specify "FINAL", it must be the first control break named in the "RD".

D. Any <identifier-9> specifications included on the "CONTROL" clause are referencing
data names defined in any data division section except for the report section.

E. There must be a "CONTROL HEADING" and/or "CONTROL FOOTING" report group
defined in the report section for each <identifier-9>.

F. At execution time:

• Each time a "GENERATE" statement (see [GENERATE], page 313) is executed
against a detail report group defined for this "RD", the RWCS will check the
contents of each <identifier-2> data item; whenever an <identifier-9>’s value

15 February 2018 Chapter 6 - DATA DIVISION



146 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

has changed since the previous GENERATE, a control break condition will
be in effect for that <identifier-2>.

• Once the list of control breaks has been determined, the "CONTROL FOOTING"

for each <identifier-2> having a control break (if any such report group is
defined) will be presented.

• Next, the "CONTROL HEADING" for each <identifier-2> having a control break
(if any such report group is defined) will be presented.

• The "CONTROL FOOTING" and "CONTROL HEADING" report groups will be pre-
sented in the sequence in which they are listed on the "CONTROL" clause.

• Only after this processing has occurred will the detail report group specified
on the "GENERATE" be presented.

10. Each "RD" will have the following allocated for it:

A. The "PAGE-COUNTER" special register (see [Special Registers], page 255), which
will contain the current report page number.

• This register will be set to a value of 1 when an "INITIATE" statement (see
[INITIATE], page 326) is executed for the report and will be incremented by
1 each time the RWCS starts a new page of the report.

• References to "PAGE-COUNTER" within the report section will be implicitly
qualified with the name of the report to which the report group referencing
the register belongs.

• References to "PAGE-COUNTER" in the procedure division must be qualified
with the appropriate report name if there are multiple "RD"s defined.

B. The "LINE-COUNTER" special register , which will contain the current line number
on the current page.

11. The "RD" must be followed by at least one 01-level report group definition.

Chapter 6 - DATA DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 147

6.6.1. Report Group Definitions� �
Report-Group-Definition Syntax
 	

01 [ identifier-1 ]

[ LINE NUMBER IS { integer-1 [ [ ON NEXT PAGE ] } ]

~~~~ { ~~~~ ~~~~ }

{ +|PLUS integer-1 }

{ ~~~~ }

{ ON NEXT PAGE }

~~~~ ~~~~

[ NEXT GROUP IS { [ +|PLUS ] integer-2 } ]

~~~~ ~~~~~ { ~~~~ }

{ NEXT|{NEXT PAGE}|PAGE }

~~~~ ~~~~ ~~~~ ~~~~

[ TYPE IS { RH|{REPORT HEADING} } ]

~~~~ { ~~ ~~~~~~ ~~~~~~~ }

{ PH|{PAGE HEADING} }

{ ~~ ~~~~ ~~~~~~~ }

{ CH|{CONTROL HEADING} FINAL|identifier-2 }

{ ~~ ~~~~~~~ ~~~~~~~ ~~~~~ }

{ DE|DETAIL }

{ ~~ ~~~~~~ }

{ CF|{CONTROL FOOTING} FINAL|identifier-2 }

{ ~~ ~~~~~~~ ~~~~~~~ ~~~~~ }

{ PF|{PAGE FOOTING} }

{ ~~ ~~~~ ~~~~~~~ }

{ RF|{REPORT FOOTING} }

~~ ~~~~~~ ~~~~~~~

. [ REPORT-SECTION-Data-Item ]...

————————————————————————————————————————

The syntax shown here documents how a report group is defined to a report. This syntax
is valid only in the report section, and only then after an "RD".

1. The reserved words "IS", "NUMBER" and "ON" are optional and may be included, or
not, at the discretion of the programmer. The presence or absence of these words has
no effect upon the program.

2. The "RH" and "REPORT HEADING" terms are interchangeable, as are "PH" and "PAGE

HEADING", "CH" and "CONTROL HEADING", "DE" and "DETAIL", "CF" and "CONTROL

FOOTING", "PF" and "PAGE FOOTING" as well as "RF" and "REPORT FOOTING".

3. The report group being defined will be a part of the most-recently coded "RD".

15 February 2018 Chapter 6 - DATA DIVISION



148 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

4. The "TYPE" (see [TYPE], page 221) clause specifies the type of report group being
defined.

5. The level number used for a report group definition must be 01.

6. The optional <identifier-1> specification assigns a name to this report group so that
the group may be referenced either by a GENERATE statement or on a "USE BEFORE

REPORTING".

7. No two report groups in the same report ("RD") may named with the same <identifier-
1>. There may, however, be multiple <identifier-1> definitions in different reports. In
such instances, references to <identifier-1> must be qualified by the report name.

8. There may only be one report heading, report footing, final control heading, final
control footing, page heading and page footing defined per report.

9. Report group declarations must be followed by at least one <<REPORT-SECTION-
Data-Item>> with a level number in the range 02-49.

10. See [Data Description Clauses], page 161, for information on the usage of the various
data description clauses.

Chapter 6 - DATA DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 149

6.6.2. REPORT SECTION Data Items� �
REPORT-SECTION-Data-Item Syntax
 	

level-number [ identifier-1 ]

[ BLANK WHEN ZERO ]

~~~~~ ~~~~

[ COLUMN [ { NUMBER IS } ] [ +|PLUS ] integer-1 ]

~~~ { ~~~~~~ } ~~~~

{ NUMBERS ARE }

~~~~~~~

[ GROUP INDICATE ]

~~~~~ ~~~~~~~~

[ JUSTIFIED RIGHT ]

~~~~

[ LINE NUMBER IS { integer-2 [ [ ON NEXT PAGE ] } ]

~~~~ { +|PLUS integer-2 ~~~~ ~~~~ }

{ ~~~~ }

{ ON NEXT PAGE }

~~~~ ~~~~

[ OCCURS [ integer-3 TO ] integer-4 TIMES

~~~~~~ ~~

[ DEPENDING ON identifier-2 ]

~~~~~~~~~

[ STEP integer-5 ]

~~~~

[ VARYING identifier-3 FROM { identifier-4 } BY { identifier-5 } ]

~~~~~~~ ~~~~ { integer-6 } ~~ { integer-7 }

[ PICTURE IS picture-string ]

~~~

[ PRESENT WHEN condition-name ]

~~~~~~~ ~~~~

[ SIGN IS LEADING|TRAILING [ SEPARATE CHARACTER ] ]

~~~~ ~~~~~~~ ~~~~~~~~ ~~~~~~~~

[ { SOURCE IS literal-1|identifier-6 [ ROUNDED ] } ]

{ ~~~~~~ ~~~~~~~ }

{ SUM OF { identifier-7 }... [ { RESET ON FINAL|identifier-8 } ] }

{ ~~~ { literal-2 } { ~~~~~ ~~~~~ } }

{ VALUE IS [ ALL ] literal-3 { UPON identifier-9 } }

~~~~~ ~~~ ~~~~

. [ REPORT-SECTION-Data-Item ]...

————————————————————————————————————————

15 February 2018 Chapter 6 - DATA DIVISION



150 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

Data item descriptions describing the report lines and fields that make up the substance of
a report group immediately follow the definition of that group.

1. The reserved words "IS", "NUMBER", "OF", "ON", "RIGHT", "TIMES" and "WHEN"

(BLANK) are optional and may be included, or not, at the discretion of the
programmer. The presence or absence of these words has no effect upon the program.

2. The reserved word "COLUMN" may be abbreviated as "COL".

3. The reserved word "JUSTIFIED" may be abbreviated as "JUST".

4. The reserved word "PICTURE" may be abbreviated as "PIC".

5. The "SOURCE" (see [SOURCE], page 215), "SUM" (see [SUM], page 494) and "VALUE"

(see [VALUE], page 234) clauses, valid only on an elementary item, are mutually-
exclusive of each other.

6. Group items (those without "PICTURE" clauses) are frequently used to describe entire
lines of a report, while elementary items (those with a picture clause) are frequently
used to describe specific fields of information on the report. When this coding conven-
tion is being used, group items will have "LINE" (see [LINE], page 189) clauses and no
"COLUMN" (see [COLUMN], page 172) clauses while elementary items will be specified
the other way around.

7. See [Data Description Clauses], page 161, for information on the usage of the various
data description clauses.

Chapter 6 - DATA DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 151

6.7. SCREEN SECTION� �
SCREEN-SECTION-Data-Item Syntax
 	

level-number [ identifier-1 | FILLER ]

~~~~~~

[ AUTO | AUTO-SKIP | AUTOTERMINATE ] [ BELL | BEEP ]

~~~~ ~~~~~~~~~ ~~~~~~~~~~~~~ ~~~~ ~~~~

[ BACKGROUND-COLOR|BACKGROUND-COLOUR IS integer-1 | identifier-2 ]

~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~

[ BLANK LINE|SCREEN ] [ ERASE EOL|EOS ]

~~~~~ ~~~~ ~~~~~~ ~~~~~ ~~~ ~~~

[ BLANK WHEN ZERO ] [ JUSTIFIED RIGHT ]

~~~~~ ~~~~ ~~~~

[ BLINK ] [ HIGHLIGHT | LOWLIGHT ] [ REVERSE-VIDEO ]

~~~~~ ~~~~~~~~~ ~~~~~~~~ ~~~~~~~~~~~~~

[ COLUMN NUMBER IS [ +|PLUS ] integer-2 | identifier-3 ]

~~~ ~~~~

[ FOREGROUND-COLOR|FOREGROUND-COLOUR IS integer-3 | identifier-4 ]

~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~

[ { FROM literal-1 | identifier-5 } ]

{ ~~~~ }

{ TO identifier-5 }

{ ~~ }

{ USING identifier-5 }

{ ~~~~~ }

{ VALUE IS [ ALL ] literal-1 }

~~~~~ ~~~

[ FULL | LENGTH-CHECK ] [ REQUIRED | EMPTY-CHECK ] [ SECURE | NO-ECHO ]

~~~~ ~~~~~~~~~~~~ ~~~~~~~~ ~~~~~~~~~~~ ~~~~~~ ~~~~~~~

[ LEFTLINE ] [ OVERLINE ] [ UNDERLINE ]

~~~~~~~~ ~~~~~~~~ ~~~~~~~~~

[ LINE NUMBER IS [ +|PLUS ] integer-4 | identifier-6 ]

~~~~ ~~~~

[ OCCURS integer-5 TIMES ]

~~~~~~

[ PICTURE IS picture-string ]

~~~

[ PROMPT [ CHARACTER IS literal-2 | identifier-7 ]

~~~~~~ ~~~~~~~~~

[ SIGN IS LEADING|TRAILING [ SEPARATE CHARACTER ] ]

~~~~ ~~~~~~~ ~~~~~~~~ ~~~~~~~~

. [ SCREEN-SECTION-Data-Item ]...

————————————————————————————————————————

15 February 2018 Chapter 6 - DATA DIVISION



152 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

The screen section describes the screens to be displayed during terminal/console I-O.

1. The reserved words "CHARACTER" ("SEPARATE" clause), "IS", "NUMBER", "RIGHT",
"TIMES" and "WHEN" are optional and may be included, or not, at the discretion of
the programmer. The presence or absence of these words has no effect upon the pro-
gram.

2. The reserved word "COLUMN" may be abbreviated as "COL".

3. The reserved word "PICTURE" may be abbreviated as "PIC".

4. The following sets of reserved words are interchangeable:

• "AUTO", "AUTO-SKIP" and "AUTOTERMINATE"

• "BACKGROUND-COLOR" and "BACKGROUND-COLOUR"

• "BELL" and "BEEP"

• "FOREGROUND-COLOR" and "FOREGROUND-COLOUR"

• "FULL" and "LENGTH-CHECK"

• "REQUIRED" and "EMPTY-CHECK"

• "SECURE" and "NO-ECHO"

5. Data items defined in the screen section describe input, output or combination screen
layouts to be used with "ACCEPT screen-data-item" statement (see [ACCEPT screen-
data-item], page 262) or "DISPLAY screen-data-item" statement (see [DISPLAY
screen-data-item], page 296) statements. These screen layouts may define the entire
available screen area or any subset of it.

6. The term ’available screen area’ is a nebulous one in those environments where
command-line shell sessions are invoked within a graphical user-interface environment,
as will be the case on Windows, OSX and most Unix/Linux systems — these
environments allow command-line session windows to exist with a variable number of
available screen rows and columns. When you are designing GnuCOBOL screens,
you need to do so with an awareness of the logical screen row/column geometry the
program will be executing within.

7. Data items with level numbers 01 (Constants), 66, 78 and 88 may be used in the screen
section; they have the same syntax, rules and usage as they do in the other data division
sections.

8. Without "LINE" (see [LINE], page 189) or "COLUMN" (see [COLUMN], page 172)
clauses, screen section fields will display on the console window beginning at what-
ever line/column coordinate is stated or implied by the "ACCEPT screen-data-item"

or "DISPLAY screen-data-item" statement that presents the screen item. After a
field is presented to the console window, the next field will be presented immediately
following that field.

9. A "LINE" clause explicitly stated in the definition of a screen section data item will
override any "LINE" clause included on the "ACCEPT screen-data-item" or "DISPLAY

Chapter 6 - DATA DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 153

screen-data-item" statement that presents that data item to the screen. The same
is true of "COLUMN" clauses.

10. The Tab and Back-Tab (Shift-Tab on most keyboards) keys will position the cursor
from field to field in the line/column sequence in which the fields occur on the screen
at execution time, regardless of the sequence in which they were defined in the screen
section.

11. See [Data Description Clauses], page 161, for information on the usage of the various
data description clauses.

15 February 2018 Chapter 6 - DATA DIVISION



154 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

6.8. Special Data Items

6.8.1. 01-Level Constants� �
01-Level-Constant Syntax
 	

01 constant-name-1 CONSTANT [ IS GLOBAL ]

~~~~~~~~ ~~~~~~

{ AS { literal-1 } } .

{ { { BYTE-LENGTH } OF { identifier-1 } } }

{ { { ~~~~~~~~~~~ } { usage-name } } }

{ { { LENGTH } } }

{ ~~~~~~ }

{ FROM CDF-variable-name-1 }

~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

FILE, WORKING-STORAGE, LOCAL-STORAGE, LINKAGE, SCREEN

The 01-level constant is one of four types of compilation-time constants that can be declared
within a program. The other three types are ">>DEFINE" CDF directive (see [>>DEFINE],
page 74) constants, ">>SET" CDF directive (see [>>SET], page 78) constants and 78-level
constants (see [78-Level Data Items], page 159).

1. The reserved words "AS", "IS" and "OF" are optional and may be included, or not, at
the discretion of the programmer. The presence or absence of these words has no effect
upon the program.

2. See [GLOBAL], page 182, for information on the "GLOBAL" option.

3. This particular type of constant declaration provides the ability to determine the length
of a data item or the storage size associated with a particular numeric "USAGE" (see
[USAGE], page 223) type — something not possible with the other types of constants.

4. Constants defined in this way become undefined once an "END PROGRAM" or "END

FUNCTION" is encountered in the input source.

5. Data descriptions of this form do not actually allocate any storage — they merely
define a name (<constant-name-1>) that may be used anywhere a numeric literal
("BYTE-LENGTH" or "LENGTH" options) or a literal of the same type as <literal-1> may
be used.

6. The <constant-name-1> name may not be referenced on a CDF directive.

7. Care must be taken that <constant-name-1> does not duplicate any other data item
name that has been defined in the program as references to that data item name will
refer to the constant and not the data item. The GnuCOBOL compiler will not issue
a warning about this condition.

Chapter 6 - DATA DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 155

8. The value specified for <usage-name> may be any "USAGE" that does not
use a "PICTURE" (see [PICTURE], page 198) clause. These would be any
of "BINARY-C-LONG", "BINARY-CHAR", "BINARY-DOUBLE", "BINARY-LONG",
"BINARY-SHORT", "COMP-1" (or "COMPUTATIONAL-1"), "COMP-2" (or
"COMPUTATIONAL-2"), "FLOAT-DECIMAL-16", "FLOAT-DECIMAL-34", "FLOAT-LONG",
"FLOAT-SHORT", "POINTER", or "PROGRAM-POINTER".

9. The "BYTE-LENGTH" clause will produce a numeric value for <constant-name-1> identi-
cal to that which would be returned by the "BYTE-LENGTH" intrinsic function executed
against <identifier-1> or a data item declared with a "USAGE" of <usage-name>.

10. The "LENGTH" clause will produce a numeric value for <constant-name-1> identical
to that which would be returned by the "LENGTH" intrinsic function executed against
<identifier-1> or a data item declared with a "USAGE" of <usage-name>.

Here is the listing of a GnuCOBOL program that uses 01-level constants to display the
length (in bytes) of the various picture-less usage types.

IDENTIFICATION DIVISION.

PROGRAM-ID. Usage Lengths.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 Len-BINARY-C-LONG CONSTANT AS LENGTH OF BINARY-C-LONG.

01 Len-BINARY-CHAR CONSTANT AS LENGTH OF BINARY-CHAR.

01 Len-BINARY-DOUBLE CONSTANT AS LENGTH OF BINARY-DOUBLE.

01 Len-BINARY-LONG CONSTANT AS LENGTH OF BINARY-LONG.

01 Len-BINARY-SHORT CONSTANT AS LENGTH OF BINARY-SHORT.

01 Len-COMP-1 CONSTANT AS LENGTH OF COMP-1.

01 Len-COMP-2 CONSTANT AS LENGTH OF COMP-2.

01 Len-FLOAT-DECIMAL-16 CONSTANT AS LENGTH OF FLOAT-DECIMAL-16.

01 Len-FLOAT-DECIMAL-34 CONSTANT AS LENGTH OF FLOAT-DECIMAL-34.

01 Len-FLOAT-LONG CONSTANT AS LENGTH OF FLOAT-LONG.

01 Len-FLOAT-SHORT CONSTANT AS LENGTH OF FLOAT-SHORT.

01 Len-POINTER CONSTANT AS LENGTH OF POINTER.

01 Len-PROGRAM-POINTER CONSTANT AS LENGTH OF PROGRAM-POINTER.

PROCEDURE DIVISION.

000-Main.

DISPLAY "On this system, with this build of GnuCOBOL, the"

DISPLAY "PICTURE-less USAGE’s have these lengths (in bytes):"

DISPLAY " "

DISPLAY "BINARY-C-LONG: " Len-BINARY-C-LONG

DISPLAY "BINARY-CHAR: " Len-BINARY-CHAR

DISPLAY "BINARY-DOUBLE: " Len-BINARY-DOUBLE

DISPLAY "BINARY-LONG: " Len-BINARY-LONG

DISPLAY "BINARY-SHORT: " Len-BINARY-SHORT

DISPLAY "COMP-1: " Len-COMP-1

DISPLAY "COMP-2: " Len-COMP-2

15 February 2018 Chapter 6 - DATA DIVISION



156 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

DISPLAY "FLOAT-DECIMAL-16: " Len-FLOAT-DECIMAL-16

DISPLAY "FLOAT-DECIMAL-34: " Len-FLOAT-DECIMAL-34

DISPLAY "FLOAT-LONG: " Len-FLOAT-LONG

DISPLAY "FLOAT-SHORT: " Len-FLOAT-SHORT

DISPLAY "POINTER: " Len-POINTER

DISPLAY "PROGRAM-POINTER: " Len-PROGRAM-POINTER

STOP RUN

.

The output of this program, on a Windows 7 system with a 32-bit MinGW build of Gnu-
COBOL is:

On this system, with this build of GnuCOBOL, the

PICTURE-less USAGE’s have these lengths (in bytes):

BINARY-C-LONG: 4

BINARY-CHAR: 1

BINARY-DOUBLE: 8

BINARY-LONG: 4

BINARY-SHORT: 2

COMP-1: 4

COMP-2: 8

FLOAT-DECIMAL-16: 8

FLOAT-DECIMAL-34: 16

FLOAT-LONG: 8

FLOAT-SHORT: 4

POINTER: 4

PROGRAM-POINTER: 4

Chapter 6 - DATA DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 157

6.8.2. 66-Level Data Items� �
66-Level-Data-Item Syntax
 	

66 identifier-1 RENAMES identifier-2 [ THRU|THROUGH identifier-3 ] .

~~~~~~~ ~~~~ ~~~~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

FILE, WORKING-STORAGE, LOCAL-STORAGE, LINKAGE

A 66-level data item regroups previously defined items by specifying alternative, possibly
overlapping, groupings of elementary data items.

1. The reserved words "THRU" and "THROUGH" are interchangeable.

2. A level-66 data item cannot rename a level-66, level-01, level-77, or level-88 data item.

3. There may be multiple level-66 data items that rename data items contained within
the same 01-level record description.

4. All "RENAMES" entries associated with one logical record must immediately follow that
record’s last data description entry.

15 February 2018 Chapter 6 - DATA DIVISION



158 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

6.8.3. 77-Level Data Items� �
77-Level-Data-Item Syntax
 	

77 identifier-1 [ IS GLOBAL|EXTERNAL ]

~~~~~~ ~~~~~~~~

[ BASED ]

~~~~~

[ BLANK WHEN ZERO ]

~~~~~ ~~~~

[ JUSTIFIED RIGHT ]

~~~~

[ PICTURE IS picture-string ]

~~~

[ REDEFINES identifier-5 ]

~~~~~~~~~

[ SIGN IS LEADING|TRAILING [ SEPARATE CHARACTER ] ]

~~~~ ~~~~~~~ ~~~~~~~~ ~~~~~~~~

[ SYNCRONIZED|SYNCHRONISED [ LEFT|RIGHT ] ]

~~~~ ~~~~ ~~~~ ~~~~~

[ USAGE IS data-item-usage ]

~~~~~

[ VALUE IS [ ALL ] literal-1 ] .

~~~~~ ~~~

The "LEFT" and "RIGHT" (SYNCRONIZED) clauses are syntactically recognized but are
otherwise non-functional.

————————————————————————————————————————
This syntax is valid in the following sections:

WORKING-STORAGE, LOCAL-STORAGE, LINKAGE

The intent of a 77-level item is to be able to create a stand-alone elementary data item.

1. The reserved words "CHARACTER", "IS", "RIGHT" (JUSTIFIED) and "WHEN" are op-
tional and may be included, or not, at the discretion of the programmer. The presence
or absence of these words has no effect upon the program.

2. The reserved word "JUSTIFIED" may be abbreviated as "JUST", the reserved word
"PICTURE" may be abbreviated as "PIC" and the reserved words "SYNCRONIZED" and
"SYNCHRONISED" may be abbreviated as "SYNC".

3. New programs requiring a stand-alone elementary item should be coded to use a level
number of 01 rather than 77.

4. See [Data Description Clauses], page 161, for information on the usage of the various
data description clauses.

Chapter 6 - DATA DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 159

6.8.4. 78-Level Data Items� �
78-Level-Constant Syntax
 	

78 constant-name-1 VALUE IS literal-1 .

~~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

FILE, WORKING-STORAGE, LOCAL-STORAGE, LINKAGE, SCREEN

The 78-level constant is one of four types of compilation-time constants that can be declared
within a program. The other three types are ">>DEFINE" CDF directive (see [>>DEFINE],
page 74) constants, ">>SET" CDF directive (see [>>SET], page 78) constants and 01-level
constants (see [01-Level Constants], page 154).

1. The reserved word "IS" is optional and may be included, or not, at the discretion of
the programmer. The presence or absence of this word has no effect upon the program.

2. Constants defined in this way become undefined once an "END PROGRAM" or "END

FUNCTION" is encountered in the input source.

3. Data descriptions of this form do not actually allocate any storage — they merely
define a name (<constant-name-1>) that may be used anywhere a literal of the same
type as <literal-1> may be used.

4. The <constant-name-1> name may not be referenced on a CDF directive.

5. Care must be taken that <constant-name-1> does not duplicate any other data item
name that has been defined in the program as references to that data item name will
refer to the constant and not the data item. The GnuCOBOL compiler will not issue
a warning about this condition.

15 February 2018 Chapter 6 - DATA DIVISION



160 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

6.8.5. 88-Level Data Items� �
88-Level-Data-Item Syntax
 	

88 condition-name-1 { VALUE IS } {literal-1 [ THRU|THROUGH literal-2 ]}...

{ ~~~~~ } ~~~~ ~~~~~~~

{ VALUES ARE }

~~~~~~

[ WHEN SET TO FALSE IS literal-3 ] .

~~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

FILE, WORKING-STORAGE, LOCAL-STORAGE, LINKAGE, REPORT, SCREEN

Condition names are Boolean (i.e. TRUE / FALSE) data items that receive their TRUE
and FALSE values based upon the values of the non 88-level data item whose definition
they immediately follow.

1. The reserved words "ARE", "IS", "SET" and "TO" are optional and may be included,
or not, at the discretion of the programmer. The presence or absence of these words
has no effect upon the program.

2. The reserved words "THRU" and "THROUGH" are interchangeable.

3. Condition names are always defined subordinate to another (non 88-level) data item.
That data item must be an elementary item. Whenever the parent data item assumes
one of the values specified on the 88-level item’s "VALUE" (see [VALUE], page 234)
clause, <condition-name-1> will take on the value of TRUE.

4. Condition names do not occupy any storage.

5. The optional "THROUGH" clause allows a range of possible TRUE values to be specified.

6. Whenever the parent data item assumes any value except one of the values specified
on <condition-name-1>’s "VALUE" clause, <condition-name-1> will take on the value of
FALSE.

7. Executing the statement "SET <condition-name-1> TO TRUE" will cause <condition-
name-1>’s parent data item to take on the first value specified on <condition-name-1>’s
"VALUE" clause.

8. Executing the statement "SET <condition-name-1> TO FALSE" will cause <condition-
name-1>’s parent data item to take on the value specified on <condition-name-1>’s
"FALSE" clause. If <condition-name-1> does not have a "FALSE" clause, the "SET" (see
[SET], page 367) statement will generate an error message at compilation time.

9. See [Condition Names], page 49, for more information.

Chapter 6 - DATA DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 161

6.9. Data Description Clauses

6.9.1. ANY LENGTH� �
ANY LENGTH Attribute Syntax
 	

ANY LENGTH

~~~ ~~~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

LINKAGE

Data items declared with the "ANY LENGTH" attribute have no fixed compile-time length.
Such items may only be defined in the linkage section of a subprogram as they may only serve
as subroutine argument descriptions. These items must have a "PICTURE" (see [PICTURE],
page 198) clause that specifies exactly one A, X or 9 symbol.

1. The "ANY LENGTH" and "BASED" (see [BASED], page 166) clauses cannot be used to-
gether in the same data item description.

15 February 2018 Chapter 6 - DATA DIVISION



162 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

6.9.2. AUTO� �
AUTO Attribute Syntax
 	

AUTO

~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

SCREEN

A field whose description includes this attribute will cause the cursor to automatically
advance to the next input-enabled field of a screen if the field is completely filled with input
data.

1. The "AUTO", "AUTO-SKIP" (see [AUTO-SKIP], page 163) and "AUTOTERMINATE" (see
[AUTOTERMINATE], page 164) clauses are interchangeable, and may not be used
together in the same data item description.

Chapter 6 - DATA DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 163

6.9.3. AUTO-SKIP� �
AUTO-SKIP Attribute Syntax
 	

AUTO-SKIP

~~~~~~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

SCREEN

A field whose description includes this attribute will cause the cursor to automatically
advance to the next input-enabled field of a screen if the field is completely filled with input
data.

1. The "AUTO" (see [AUTO], page 162), "AUTO-SKIP" and "AUTOTERMINATE" (see
[AUTOTERMINATE], page 164) clauses are interchangeable, and may not be used
together in the same data item description.

15 February 2018 Chapter 6 - DATA DIVISION



164 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

6.9.4. AUTOTERMINATE� �
AUTOTERMINATE Attribute Syntax
 	

AUTOTERMINATE

~~~~~~~~~~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

SCREEN

A field whose description includes this attribute will cause the cursor to automatically
advance to the next input-enabled field of a screen if the field is completely filled with input
data.

1. The "AUTO" (see [AUTO], page 162), "AUTO-SKIP" (see [AUTO-SKIP], page 163) and
"AUTOTERMINATE" clauses are interchangeable, and may not be used together in the
same data item description.

Chapter 6 - DATA DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 165

6.9.5. BACKGROUND-COLOR� �
BACKGROUND-COLOR Attribute Syntax
 	

BACKGROUND-COLOR|BACKGROUND-COLOUR IS integer-1 | identifier-1

~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

SCREEN

This clause is used to specify the screen background color of the screen data item or the
default screen background color of subordinate items if used on a group item.

1. The reserved word "IS" is optional and may be included, or not, at the discretion of
the programmer. The presence or absence of this word has no effect upon the program.

2. The reserved words "BACKGROUND-COLOR" and "BACKGROUND-COLOUR" are interchange-
able.

3. You specify colors by number (0-7), or by using the constant names provided in the
"screenio.cpy" copybook (which is provided with all GnuCOBOL source distributions).

4. Colors may also be specified using a numeric non-edited identifier whose value is in the
range 0-7.

See [Color Palette and Video Attributes], page 23, for more information on screen colors
and video attributes.

15 February 2018 Chapter 6 - DATA DIVISION



166 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

6.9.6. BASED� �
BASED Attribute Syntax
 	

BASED

~~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

WORKING-STORAGE, LOCAL-STORAGE, LINKAGE

Data items declared with "BASED" are allocated no storage at compilation time. At run-
time, the "ALLOCATE" (see [ALLOCATE], page 278) or "SET ADDRESS" (see [SET AD-
DRESS], page 369) statements are used to allocate space for and (optionally) initialize such
items.

1. The "BASED" and "ANY LENGTH" (see [ANY LENGTH], page 161) clauses cannot be
used together in the same data item description.

2. The "BASED" clause may only be used on level 01 and level 77 data items.

Chapter 6 - DATA DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 167

6.9.7. BEEP� �
BEEP Attribute Syntax
 	

BEEP

~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

SCREEN

1. The "BEEP" and "BELL" (see [BELL], page 168) clauses are interchangeable, and may
not be used together in the same data item description.

2. Use this clause to cause an audible tone to occur when the screen item is DISPLAYed.

15 February 2018 Chapter 6 - DATA DIVISION



168 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

6.9.8. BELL� �
BELL Attribute Syntax
 	

BELL

~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

SCREEN

1. The "BEEP" (see [BEEP], page 167) and "BELL" clauses are interchangeable, and may
not be used together in the same data item description.

2. Use this clause to cause an audible tone to occur when the screen item is DISPLAYed.

Chapter 6 - DATA DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 169

6.9.9. BLANK� �
BLANK Attribute Syntax
 	

BLANK LINE|SCREEN

~~~~~ ~~~~ ~~~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

SCREEN

This clause will blank out either the entire screen (BLANK SCREEN) or just the line upon
which data is about to be displayed (BLANK LINE).

1. Blanked-out areas will have their foreground and background colors set to the attributes
of the field containing the "BLANK" clause.

2. This clause is useful when one screen section item is being displayed over the top of a
previously-displayed one.

15 February 2018 Chapter 6 - DATA DIVISION



170 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

6.9.10. BLANK WHEN ZERO� �
BLANK-WHEN-ZERO Attribute Syntax
 	

BLANK WHEN ZERO

~~~~~ ~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

FILE, WORKING-STORAGE, LOCAL-STORAGE, LINKAGE, REPORT, SCREEN

This clause will cause that item’s value to be automatically transformed into spaces if a
value of 0 is ever MOVEd to the item.

1. The reserved word "WHEN" is optional and may be included, or not, at the discretion of
the programmer. The presence or absence of this word has no effect upon the program.

2. This clause may only be used on a PIC 9 data item with a "USAGE" (see [USAGE],
page 223) of "DISPLAY".

Chapter 6 - DATA DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 171

6.9.11. BLINK� �
BLINK Attribute Syntax
 	

BLINK

~~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

SCREEN

The "BLINK" clause modifies the visual appearance of the displayed field by making the
field contents blink.

See [Color Palette and Video Attributes], page 23, for more information on screen colors
and video attributes.

15 February 2018 Chapter 6 - DATA DIVISION



172 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

6.9.12. COLUMN� �
COLUMN (REPORT SECTION) Clause Syntax
 	

COLUMN [ { NUMBER IS } ] [ +|PLUS ] integer-1 ]

~~~ { NUMBERS ARE } ~~~~

————————————————————————————————————————� �
COLUMN (SCREEN SECTION) Clause Syntax
 	

COLUMN NUMBER IS [ +|PLUS ] integer-2 | identifier-3 ]

~~~ ~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

REPORT, SCREEN

The "COLUMN" clause provides the means of stating in which column a field should be
presented on the console window (screen section) or a report (report section).

1. The reserved words "ARE", "IS", "NUMBER" and "NUMBERS" are optional and may be
included, or not, at the discretion of the programmer. The presence or absence of these
words has no effect upon the program.

2. The reserved word "COLUMN" may be abbreviated as "COL".

3. The line location of a report section or screen section field will be determined by the
"LINE" (see [LINE], page 189) clause.

4. The value of <integer-1> must be 1 or greater.

5. If <identifier-1> is used to specify either an absolute or relative column position,
<identifier-1> must be defined as a numeric item of any "USAGE" (see [USAGE],
page 223) other than "COMPUTATIONAL-1" or "COMPUTATIONAL-2", without editing
symbols. The value of <identifier-1> at the time the screen data item is presented must
be 1 or greater. Note that a "COMPUTATIONAL-1" or "COMPUTATIONAL-2" identifier will
be accepted by the compiler, but will produce unpredictable results at run-time.

6. The column coordinate of a field may be stated on an absolute basis (i.e. "COLUMN 5")
or on a relative basis based upon the end of the previously-presented field (i.e. "COLUMN
PLUS 1").

7. The symbol "+" may be used in lieu of the word "PLUS", if desired; if symbol "+" is
used, however, there must be at least one space separating it from <integer-1>. Failure
to include this space will cause the symbol "+" sign to be simply treated as part of
<integer-1> and will treat the "COLUMN" clause as an absolute column specification
rather than a relative one.

Chapter 6 - DATA DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 173

8. Using relative column positioning ("COLUMN PLUS") has slightly different behaviour
depending upon the section in which the clause is used, as follows:

A. When used on a report section data item, "COLUMN PLUS" will position the start
of the new field’s value such that there are <integer-1> blank columns between the
end of the previous field and the beginning of this field.

If a report data item’s description includes the "SOURCE" (see [SOURCE],
page 215), "SUM" (see [SUM], page 494) or "VALUE" (see [VALUE], page 234)
clause but has no "COLUMN" clause, "COLUMN PLUS 1" will be assumed.

B. When used on a screen section data item, "COLUMN PLUS" will position the new
field so that it begins exactly <integer-1> or <identifier-1> characters past the
last character of the previous field. Thus, "COLUMN PLUS 1" will leave no blank
positions between the end of the previous field and the start of this one.

If a screen data item’s description includes the "FROM" (see [FROM], page 180),
"TO" (see [TO], page 220), "USING" (see [USING], page 233) or "VALUE" (see
[VALUE], page 234) clause but has no "COLUMN" clause, the new screen field will
begin at the column coordinate of the last character of the previous field.

15 February 2018 Chapter 6 - DATA DIVISION



174 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

6.9.13. CONSTANT� �
CONSTANT Attribute Syntax
 	

CONSTANT

~~~~~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

FILE, WORKING-STORAGE, LOCAL-STORAGE, LINKAGE, SCREEN

This option signifies that the 01-level data item in whose declaration "CONSTANT" is specified
will be treated as a symbolic name for a literal value, usable wherever a literal of the
appropriate type could be used.

1. The value of a data item defined as a constant cannot be changed at run-time. In fact,
it is not syntactically acceptable to use such a data item as the destination field of any
procedure division statement that stores a value.

2. See [01-Level Constants], page 154, for additional information.

Chapter 6 - DATA DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 175

6.9.14. EMPTY-CHECK� �
EMPTY-CHECK Attribute Syntax
 	

EMPTY-CHECK

~~~~~~~~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

SCREEN

This clause forces the user to enter data into the field it is specified on (or into all subordinate
input-capable fields if "EMPTY-CHECK" is specified on a group item).

1. The "EMPTY-CHECK" and "REQUIRED" (see [REQUIRED], page 211) clauses are inter-
changeable, and may not be used together in the same data item description.

2. In order to take effect, the user must first move the cursor into the field having this
clause in its definition.

3. The "ACCEPT screen-data-item" statement (see [ACCEPT screen-data-item],
page 262) will ignore the Enter key and any other cursor-moving keystrokes that
would cause the cursor to move to another screen item unless data has been entered
into the field. Function keys will still be allowed to terminate the "ACCEPT".

4. In order to be functional, this attribute must be supported by the underlying ’curses’
package your GnuCOBOL implementation was built with. As of this time, the
’PDCurses’ package (used for native Windows or MinGW builds) does not support
"EMPTY-CHECK".

15 February 2018 Chapter 6 - DATA DIVISION



176 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

6.9.15. ERASE� �
ERASE Clause Syntax
 	

ERASE EOL|EOS

~~~~~ ~~~ ~~~

————————————————————————————————————————
This syntax is valid in the following sections:

SCREEN

"ERASE" will blank-out screen contents from the location where the screen data item whose
description contains this clause will be displayed, forward until the end of the screen ("ERASE
EOS") or line ("ERASE EOL") prior to displaying the screen data item.

1. Erased areas will have their foreground and background colors set to the attributes of
the field containing the "ERASE" clause.

2. This clause is useful when one screen section item is being displayed over the top of a
previously-displayed one.

See [Color Palette and Video Attributes], page 23, for more information on screen colors
and video attributes.

Chapter 6 - DATA DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 177

6.9.16. EXTERNAL� �
EXTERNAL Attribute Syntax
 	

EXTERNAL

~~~~~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

FILE, WORKING-STORAGE, LOCAL-STORAGE

This clause marks a data item description, "FD" or "SD" see [File/Sort-Description],
page 130, as being shareable with other programs executed from the same execution
thread.

1. By specifying the "EXTERNAL" clause on either an FD or an SD, the file description is
capable of being shared between all programs executed from the same execution thread,
provided an "EXTERNAL" clause is coded with the file’s description in each program
requiring it. This sharing allows the file to be opened, read and/or written and closed
in different programs. This sharing applies to the record descriptions subordinate to
the file description too.

2. By specifying the "EXTERNAL" clause on the description of a data item, the data item
is capable of being shared between all programs executed from the same execution
thread, provided the data item is coded (with an "EXTERNAL" clause) in each program
requiring it.

3. The following points apply to the specification of "EXTERNAL" in a data item’s definition:

A. The "EXTERNAL" clause may only be specified at the 77 or 01 level.

B. An "EXTERNAL" item must have a data name and that name cannot be "FILLER".

C. "EXTERNAL" cannot be combined with "BASED" (see [BASED], page 166), "GLOBAL"
(see [GLOBAL], page 182) or "REDEFINES" (see [REDEFINES], page 209).

15 February 2018 Chapter 6 - DATA DIVISION



178 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

6.9.17. FALSE� �
FALSE Clause Syntax
 	

WHEN SET TO FALSE IS literal-1

~~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

FILE, WORKING-STORAGE, LOCAL-STORAGE, LINKAGE, REPORT, SCREEN

This clause, which may only appear on the definition of a level-88 condition name, is used
to specify the value of the data item that serves as the parent of the level-88 condition name
that will force the condition name to assume a value of FALSE.

1. The reserved words "IS", "SET", "TO" and "WHEN" are optional and may be included,
or not, at the discretion of the programmer. The presence or absence of these words
has no effect upon the program.

2. See [88-Level Data Items], page 160, or See [Condition Names], page 49, for more
information.

Chapter 6 - DATA DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 179

6.9.18. FOREGROUND-COLOR� �
FOREGROUND-COLOR Attribute Syntax
 	

FOREGROUND-COLOR|FOREGROUND-COLOUR IS integer-1 | identifier-1

~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

SCREEN

This clause is used to specify the color of text within a screen data item or the default text
color of subordinate items if used on a group item.

1. The reserved word "IS" is optional and may be included, or not, at the discretion of
the programmer. The presence or absence of this word has no effect upon the program.

2. The reserved words "FOREGROUND-COLOR" and "FOREGROUND-COLOUR" are interchange-
able.

3. You specify colors by number (0-7), or by using the constant names provided in the
"screenio.cpy" copybook (which is provided with all GnuCOBOL source distributions).

4. Colors may also be specified using a numeric non-edited identifier whose value is in the
range 0-7.

See [Color Palette and Video Attributes], page 23, for more information on screen colors
and video attributes.

15 February 2018 Chapter 6 - DATA DIVISION



180 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

6.9.19. FROM� �
FROM Clause Syntax
 	

FROM literal-1 | identifier-5

~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

SCREEN

This clause is used to specify either the data item a screen section field is to obtain it’s
value from when the screen is displayed, or a literal that will specify the value of that same
field.

1. The "FROM", "TO" (see [TO], page 220), "USING" (see [USING], page 233) and "VALUE"

(see [VALUE], page 234) clauses are mutually-exclusive in any screen section data
item’s definition.

Chapter 6 - DATA DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 181

6.9.20. FULL� �
FULL Attribute Syntax
 	

FULL

~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

SCREEN

The "FULL" clause forces the user to enter data into the field it is specified on (or into all
subordinate input-capable fields if specified on a group item) sufficient to fill every character
position of the field.

1. The "FULL" and "LENGTH-CHECK" (see [LENGTH-CHECK], page 188) clauses are in-
terchangeable, and may not be used together in the same data item description.

2. In order for this clause to take effect at execution time, the user must move the cursor
into the field having this clause in its definition.

3. The "ACCEPT screen-data-item" statement (see [ACCEPT screen-data-item],
page 262) will ignore the Enter key and any other cursor-moving keystrokes that
would cause the cursor to move to another screen item unless the proper amount of
data has been entered into the field. Function keys will still be allowed to terminate
the "ACCEPT", however.

4. In order to be functional, this attribute must be supported by the underlying ’curses’
package your GnuCOBOL implementation was built with. As of this time, the ’PD-
Curses’ package (used for native Windows or MinGW builds) does not support "FULL".

15 February 2018 Chapter 6 - DATA DIVISION



182 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

6.9.21. GLOBAL� �
GLOBAL Attribute Syntax
 	

GLOBAL

~~~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

FILE, WORKING-STORAGE, LOCAL-STORAGE, REPORT

This clause marks a data item, 01-level constant, "FD" (see [File/Sort-Description],
page 130), "SD" (see [File/Sort-Description], page 130) or an "RD" (see [REPORT
SECTION], page 143) as being shareable with any nested subprograms.

1. By specifying the "GLOBAL" clause on the description of a file or a report, that descrip-
tion is capable of being shared between a program and any nested subprograms within
it, provided the "FD", "SD" or "RD" is coded (with a "GLOBAL" clause) in each nested
subprogram requiring it. This sharing allows the file to be opened, read and/or written
and closed or the report to be initiated or terminated in those programs. Separately
compiled programs may not share a "GLOBAL" file description, but they may share
an "EXTERNAL" (see [EXTERNAL], page 177) file description. This sharing applies
to the record descriptions subordinate to the file description and the report groups
subordinate to the "RD" also.

2. By specifying the "GLOBAL" clause on the description of a data item, the data item
is capable of being shared between a program and any nested subprograms within it,
provided the data item is coded (with a "GLOBAL" clause) in each program requiring
it.

3. The following points apply to the specification of "GLOBAL" in a data item’s definition:

A. The "GLOBAL" clause may only be specified at the 77 or 01 level.

B. A "GLOBAL" item must have a data name and that name cannot be "FILLER".

C. "GLOBAL" cannot be combined with "EXTERNAL" (see [EXTERNAL], page 177),
"REDEFINES" (see [REDEFINES], page 209) or "BASED" (see [BASED], page 166).

Chapter 6 - DATA DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 183

6.9.22. GROUP INDICATE� �
GROUP-INDICATE Attribute Syntax
 	

GROUP INDICATE

~~~~~ ~~~~~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

REPORT

The "GROUP INDICATE" clause specifies that the data item in whose definition the clause
appears will be presented only in very limited circumstances.

1. This clause may only appear within a "DETAIL" report group (see [TYPE], page 221).

2. When this clause is present, the data item in question will be presented only under the
following circumstances:

A. On the first presentation of the detail group following the "INITIATE" (see
[INITIATE], page 326) of the report.

B. On the first presentation of the detail group after every new page is started.

C. On the first presentation of the detail group after any control break occurs.

15 February 2018 Chapter 6 - DATA DIVISION



184 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

6.9.23. HIGHLIGHT� �
HIGHLIGHT Attribute Syntax
 	

HIGHLIGHT

~~~~~~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

SCREEN

This clause controls the intensity of text ("FOREGROUND-COLOR" (see [FOREGROUND-
COLOR], page 179)) by setting that intensity to its highest of three possible settings.

1. This clause, along with "LOWLIGHT" (see [LOWLIGHT], page 191), are intended
to provide a three-level intensity scheme ("LOWLIGHT" . . . nothing (Normal) . . .
"HIGHLIGHT").

See [Color Palette and Video Attributes], page 23, for more information on screen colors
and video attributes.

Chapter 6 - DATA DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 185

6.9.24. JUSTIFIED� �
JUSTIFIED Attribute Syntax
 	

JUSTIFIED RIGHT

~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

FILE, WORKING-STORAGE, LOCAL-STORAGE, LINKAGE, REPORT, SCREEN

The presence of a "JUSTIFIED RIGHT" clause in a data item’s definition alters the manner
in which data is stored into the field from the default ’left-justified, space filled’ behaviour
to ’right justified, space filled’.

1. The reserved word "RIGHT" is optional and may be included, or not, at the discretion of
the programmer. The presence or absence of this word has no effect upon the program.

2. The reserved word "JUSTIFIED" may be abbreviated as "JUST".

3. This clause is valid only on alphabetic (PIC A) or alphanumeric (PIC X) data items.

4. The presence or absence of this clause influences the behaviour of the "MOVE" (see
[MOVE], page 336) statement as well as the "FROM" (see [FROM], page 180), "SOURCE"
(see [SOURCE], page 215) and "USING" (see [USING], page 233) data item description
clauses.

5. If the value being stored into the field is the same length as the receiving field, the
presence or absence of the "JUSTIFIED RIGHT" clause on that field’s description is
irrelevant.

6. The following examples illustrate the behaviour of the presence and absence of the
"JUSTIFIED RIGHT" clause when the field size is different than that of the value being
stored. In these examples, the symbol b represents a space.

When the value is shorter than the field size...

Without JUSTIFIED With JUSTIFIED

01 A PIC X(6). 01 A PIC X(6) JUSTIFIED RIGHT.

MOVE "ABC" TO A MOVE "ABC" TO A

Result is ’ABCbbb’ Result is ’bbbABC’

15 February 2018 Chapter 6 - DATA DIVISION



186 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

When the value is longer than the field size...

Without JUSTIFIED With JUSTIFIED

01 A PIC X(6). 01 A PIC X(6) JUSTIFIED RIGHT.

MOVE "ABCDEFGHI" TO A MOVE "ABCDEFGHI" TO A

Result is ’ABCDEF’ Result is ’DEFGHI’

Chapter 6 - DATA DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 187

6.9.25. LEFTLINE� �
LEFTLINE Attribute Syntax
 	

LEFTLINE

~~~~~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

SCREEN

The "LEFTLINE" clause will introduce a vertical line at the left edge of a screen field.

1. The "LEFTLINE", "OVERLINE" (see [OVERLINE], page 197) and "UNDERLINE" (see
[UNDERLINE], page 222) clauses may be used in any combination in a single field’s
description.

2. This clause is essentially non-functional when used within Windows command shell
(cmd.exe) environments and running programs compiled using a GnuCOBOL imple-
mentation built using ’PDCurses’ (such as Windows/MinGW builds).

3. Whether or not this clause operates on Cygwin or UNIX/Linux/OSX systems will
depend upon the video attribute capabilities of the terminal output drivers and ’curses’
software being used.

See [Color Palette and Video Attributes], page 23, for more information on screen colors
and video attributes.

15 February 2018 Chapter 6 - DATA DIVISION



188 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

6.9.26. LENGTH-CHECK� �
LENGTH-CHECK Attribute Syntax
 	

LENGTH-CHECK

~~~~~~~~~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

SCREEN

The "LENGTH-CHECK" clause forces the user to enter data into the field it is specified on (or
into all subordinate input-capable fields if specified on a group item) sufficient to fill every
character position of the field.

1. The "FULL" (see [FULL], page 181) and "LENGTH-CHECK" clauses are interchangeable,
and may not be used together in the same data item description.

2. In order for this clause to take effect at execution time, the user must move the cursor
into the field having this clause in its definition.

3. The "ACCEPT screen-data-item" statement (see [ACCEPT screen-data-item],
page 262) will ignore the Enter key and any other cursor-moving keystrokes that
would cause the cursor to move to another screen item unless the proper amount of
data has been entered into the field. Function keys will still be allowed to terminate
the "ACCEPT", however.

4. In order to be functional, this attribute must be supported by the underlying ’curses’
package your GnuCOBOL implementation was built with. As of this time, the
’PDCurses’ package (used for native Windows or MinGW builds) does not support
"LENGTH-CHECK".

Chapter 6 - DATA DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 189

6.9.27. LINE� �
LINE (REPORT SECTION) Clause Syntax
 	

LINE NUMBER IS { integer-2 [ [ ON NEXT PAGE ] }

~~~~ { ~~~~ ~~~~ }

{ +|PLUS integer-2 }

{ ~~~~ }

{ ON NEXT PAGE }

~~~~ ~~~~

————————————————————————————————————————� �
LINE (SCREEN SECTION) Clause Syntax
 	

[ LINE NUMBER IS [ +|PLUS ] integer-4 | identifier-6 ]

~~~~ ~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

REPORT, SCREEN

This clause provides a means of explicitly stating on which line a field should be presented
on the console window (screen section) or on a report (report section).

1. The reserved words "IS", "NUMBER" and "ON" are optional and may be included, or
not, at the discretion of the programmer. The presence or absence of these words has
no effect upon the program.

2. The following points document the use of format 1 of the "LINE" clause:

A. The column location of a report item will be determined by the "COLUMN" (see
[COLUMN], page 172) clause.

B. The value of <integer-1> must be 1 or greater.

C. The report line number upon which the data item containing this clause along
with any subordinate data items will be presented may be stated on an absolute
basis (i.e. "LINE 5") or on a relative basis based upon the previously-displayed
line (i.e. "LINE PLUS 1").

D. The symbol "+" may be used in lieu of the word "PLUS", if desired; if "+" is used,
however, there must be at least one space separating it from <integer-1>. Failure
to include this space will cause the "+" to be simply treated as part of <integer-
1> and will treat the LINE clause as an absolute line specification rather than a
relative one.

E. The optional "NEXT PAGE" clause specifies that — regardless of whether or not the

15 February 2018 Chapter 6 - DATA DIVISION



190 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

report group containing this clause could fit on the report page being currently
generated, the report group will be forced to appear on a new page.

3. The following points document the use for format 2 of the "LINE" clause:

A. The column location of a screen section field is determined by the "COLUMN" (see
[COLUMN], page 172) clause.

B. The value of <integer-1> must be 1 or greater.

C. If <identifier-1> is used to specify either an absolute or relative column position,
<identifier-1> must be defined as a numeric item of any "USAGE" (see [USAGE],
page 223) other than "COMPUTATIONAL-1" or "COMPUTATIONAL-2", without editing
symbols. The value of <identifier-1> at the time the screen data item is presented
must be 1 or greater. Note that a "COMPUTATIONAL-1" or "COMPUTATIONAL-2"

identifier will be accepted by the compiler, but will produce unpredictable results
at run-time.

D. The screen line number upon which the data item containing this clause along
with any subordinate data items will be displayed may be stated on an absolute
basis (i.e. "LINE 5") or on a relative basis based upon the previously-displayed
line (i.e. "LINE PLUS 1").

E. The symbol "+" may be used in lieu of the word "PLUS", if desired; if "+" is used,
however, there must be at least one space separating it from <integer-1>. Failure
to include this space will cause the "+" to be simply treated as part of <integer-1>
and will treat the "LINE" clause as an absolute line specification rather than a
relative one.

F. If a screen data item’s description includes the "FROM" (see [FROM], page 180),
"TO" (see [TO], page 220), "USING" (see [USING], page 233) or "VALUE" (see
[VALUE], page 234) clause but has no LINE clause, the "current screen line" will
be assumed.

Chapter 6 - DATA DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 191

6.9.28. LOWLIGHT� �
LOWLIGHT Attribute Syntax
 	

LOWLIGHT

~~~~~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

SCREEN

The "LOWLIGHT" clause controls the intensity of text ("FOREGROUND-COLOR") by setting that
intensity to its lowest of three possible settings.

1. This clause, along with "HIGHLIGHT" (see [HIGHLIGHT], page 184), are intended
to provide a three-level intensity scheme ("LOWLIGHT" . . . nothing (Normal) . . .
"HIGHLIGHT"). In environments such as a Windows console where only two levels of
intensity are supported, "LOWLIGHT" is the same as leaving this clause off altogether.

See [Color Palette and Video Attributes], page 23, for more information on screen colors
and video attributes.

15 February 2018 Chapter 6 - DATA DIVISION



192 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

6.9.29. NEXT GROUP� �
NEXT-GROUP Clause Syntax
 	

NEXT GROUP IS { [ +|PLUS ] integer-2 }

~~~~ ~~~~~ { ~~~~ }

{ NEXT|{NEXT PAGE}|PAGE }

~~~~ ~~~~ ~~~~ ~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

REPORT

This clause defines any rules for where the next group to be presented on a report will
begin, line-wise, with respect to the last line of the group in which this clause appears.

1. The reserved word "IS" is optional and may be included, or not, at the discretion of
the programmer. The presence or absence of this word has no effect upon the program.

2. The terms "NEXT", "NEXT PAGE" and "PAGE" are interchangeable.

3. A report group must contain at least one "LINE NUMBER" clause in order to also contain
a "NEXT GROUP" clause.

4. If the "RD" (see [REPORT SECTION], page 143) in which the report group containing
a "NEXT GROUP" clause does not contain a "PAGE LIMITS" clause, only the "PLUS

integer-1" option may be specified.

5. The "NEXT PAGE" option cannot be used in a "PAGE FOOTING".

6. The "NEXT GROUP" option cannot be specified in either a "REPORT HEADING" or a "PAGE
HEADING".

7. The effects of "NEXT GROUP" will be in addition to any line spacing defined by the
next-presented group’s "LINE NUMBER" clause.

Chapter 6 - DATA DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 193

6.9.30. NO-ECHO� �
NO-ECHO Attribute Syntax
 	

NO-ECHO

~~~~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

SCREEN

The "NO-ECHO" clause will cause all data entered into the field to appear on the screen as
asterisks.

1. The "NO-ECHO" and "SECURE" (see [SECURE], page 213) clauses are interchangeable,
and may not be used together in the same data item description.

2. This clause may only be used on a field allowing data entry (a field containing either
the "USING" (see [USING], page 233) or "TO" (see [TO], page 220) clause).

See [Color Palette and Video Attributes], page 23, for more information on screen colors
and video attributes.

15 February 2018 Chapter 6 - DATA DIVISION



194 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

6.9.31. OCCURS� �
OCCURS (REPORT SECTION) Clause Syntax
 	

OCCURS [ integer-1 TO ] integer-2 TIMES

~~~~~~ ~~

[ DEPENDING ON identifier-1 ]

~~~~~~~~~

[ STEP integer-3 ]

~~~~

[ VARYING identifier-2 FROM { identifier-3 } BY { identifier-4 } ]

~~~~~~~ ~~~~ { integer-4 } ~~ { integer-5 }

————————————————————————————————————————� �
OCCURS (SCREEN SECTION) Clause Syntax
 	

OCCURS integer-2 TIMES

~~~~~~

————————————————————————————————————————� �
OCCURS (All Other Sections Clause Syntax
 	

OCCURS [ integer-1 TO ] integer-2 TIMES

~~~~~~ ~~

[ DEPENDING ON identifier-1 ]

~~~~~~~~~

[ ASCENDING|DESCENDING KEY IS identifier-5... ]...

~~~~~~~~~ ~~~~~~~~~~

[ INDEXED BY identifier-6 ]

~~~~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

FILE, WORKING-STORAGE, LOCAL-STORAGE, LINKAGE, REPORT, SCREEN

The "OCCURS" clause is used to create a data structure called a table, where entries in that
structure repeat multiple times.

1. The reserved words "BY" (INDEXED), "IS", "KEY", "ON" and "TIMES" are optional
and may be included, or not, at the discretion of the programmer. The presence or
absence of these words has no effect upon the program.

2. The value of <integer-2> specifies how many entries will be allocated in the table.

3. The following is an example of how a table might be defined:

Chapter 6 - DATA DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 195

05 QUARTERLY-REVENUE OCCURS 4 TIMES PIC 9(7)V99.

This will allocate the following:

QUARTERLY-REVENUE(1)

QUARTERLY-REVENUE(2)

QUARTERLY-REVENUE(3)

QUARTERLY-REVENUE(4)

Each occurrence is referenced using the subscript syntax (a numeric literal, arithmetic
expression or numeric identifier enclosed within parenthesis) shown above.

4. The "OCCURS" clause may be used at the group level too, in which case the entire group
structure repeats, as follows:

05 GRP OCCURS 3 TIMES.

10 A PIC X(1).

10 B PIC X(1).

10 C PIC X(1).

This would allow references to any of the following:

GRP(1) - includes A(1), B(1) and C(1)

GRP(2) - includes A(2), B(2) and C(2)

GRP(3) - includes A(3), B(3) and C(3)

or each A,B,C item could be referenced as follows:

A(1) - Character #1 of GRP(1)

B(1) - Character #2 of GRP(1)

C(1) - Character #3 of GRP(1)

A(2) - Character #1 of GRP(2)

B(2) - Character #2 of GRP(2)

C(2) - Character #3 of GRP(2)

A(3) - Character #1 of GRP(3)

B(3) - Character #2 of GRP(3)

C(3) - Character #3 of GRP(3)

5. The optional "DEPENDING ON" clause can be added to an "OCCURS" to create a variable-
length table. In such cases, the value of <integer-1> specifies what the minimum number
of entries in the table will be while <integer-2> specifies the maximum. Such tables will
be allocated out to the maximum size specified as <integer-2>. At execution time the
value of <identifier-1> will determine how many of the table elements are accessible.

6. See the documentation of the "SEARCH" (see [SEARCH], page 362), "SEARCH ALL"

(see [SEARCH ALL], page 364) and "SORT" (see [SORT], page 376) statements for
explanations of the "KEY" and "INDEXED BY" clauses.

7. The "OCCURS" clause cannot be specified in a data description entry that has a level

15 February 2018 Chapter 6 - DATA DIVISION



196 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

number of 01, 66, 77, or 88, although it is valid in data items described subordinate to
an 01-level data item.

8. The following points apply to an "OCCURS" used in the report section:

A. The optional "STEP" clause defines an incrementation value that will be added
to any absolute "LINE" (see [LINE], page 189) or "COLUMN" (see [COLUMN],
page 172) number specifications that may be part of or subordinate to this data
item’s definition.

B. The optional "VARYING" clause defines an identifier that may be used as a sub-
script for the multiple occurrences of this or any subordinate data item should the
"SOURCE" (see [SOURCE], page 215) or "SUM" (see [SUM], page 494) clause(s) on
this or subordinate data items reference entries within the table. The <identifier-
2> data item is dynamically created as needed and cannot be referenced outside
the scope of the report data item definition.

C. The following two examples illustrate two different ways a report could include
four quarters worth of sales figures in it’s detail lines — one doing things ’the hard
way’ and one using the advanced "OCCURS" capabilities of "STEP" and "VARYING".
Both assume the definition of the following table exists in working-storage:

05 SALES OCCURS 4 TIMES PIC 9(7)V99.

First, the "Hard Way":

10 COL 7 PIC $(7)9.99 SOURCE SALES(1).

10 COL 17 PIC $(7)9.99 SOURCE SALES(2).

10 COL 27 PIC $(7)9.99 SOURCE SALES(3).

10 COL 37 PIC $(7)9.99 SOURCE SALES(4).

And then using "STEP" and "VARYING":

10 COL 7 OCCURS 4 TIMES STEP 10 VARYING QTR FROM 1 BY 1

PIC $(7)9.99 SOURCE SALES(QTR).

Chapter 6 - DATA DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 197

6.9.32. OVERLINE� �
OVERLINE Attribute Syntax
 	

OVERLINE

~~~~~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

SCREEN

The "OVERLINE" clause will introduce a horizontal line at the top edge of a screen field.

1. The "LEFTLINE" (see [LEFTLINE], page 187), "OVERLINE" and "UNDERLINE" (see
[UNDERLINE], page 222) clauses may be used in any combination in a single field’s
description.

2. This clause is essentially non-functional when used within Windows command shell
(cmd.exe) environments and running programs compiled using a GnuCOBOL imple-
mentation built using ’PDCurses’ (such as Windows/MinGW builds).

3. Whether or not this clause operates on Cygwin or UNIX/Linux/OSX systems will
depend upon the video attribute capabilities of the terminal output drivers and ’curses’
software being used.

See [Color Palette and Video Attributes], page 23, for more information on screen colors
and video attributes.

15 February 2018 Chapter 6 - DATA DIVISION



198 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

6.9.33. PICTURE� �
PICTURE Clause Syntax
 	

PICTURE IS picture-string

~~~

————————————————————————————————————————
This syntax is valid in the following sections:

FILE, WORKING-STORAGE, LOCAL-STORAGE, LINKAGE, REPORT, SCREEN

The picture clause defines the class (numeric, alphabetic or alphanumeric), size and format
of the data that may be contained by the data item being defined. Sometimes this role
is assisted by the "USAGE" (see [USAGE], page 223) clause, and in a few instances will be
assumed entirely by that clause.

1. The reserved word "IS" is optional and may be included, or not, at the discretion of
the programmer. The presence or absence of this word has no effect upon the program.

2. The reserved word "PICTURE" may be abbreviated as "PIC". Most programmers prefer
to use the latter.

3. A picture clause may only be specified on an elementary item.

4. A <picture-string> is a sequence of the special symbols "$", "*", "+", ",", "-", ".",
"/", "0" (zero), "9", "A", "B", "CR", "DB", "S", "V", "X" and "Z".

5. In general, each picture symbol represents either a single character in storage or a single
decimal digit. There are a few exceptions, and they will be discussed as needed.

6. When a <picture-string> contains a repeated sequence of symbols — "PIC 9999/99/99"

— for example, the repetition can be specified using a parenthetic repeat count, as in
"PIC 9(4)/9(2)/9(2)". Using repeat counts is optional and their use (or not) is
entirely at the discretion of the programmer. Many programmers use repetition for
small sequences ("PIC XXX") and repeat counts for larger ones ("PIC 9(9)".

7. This first set of picture symbols defines the basic data type of a data item. Each symbol
represents a single character’s worth of storage.

"A" Defines storage reserved for a single alphabetic character ("A"-"Z", "a"-
"z").

"N" Defines storage reserved for a single character in the computer’s ’National
Character set ’. Support for national character sets in GnuCOBOL is
currently only partially implemented, and the compile- and run-time effect
of using the "N" picture symbol is the same as if "X(2)" had been coded,
with the additional effect that such a field will qualify as a "NATIONAL"

or "NATIONAL-EDITED" field on an "INITIALIZE" (see [INITIALIZE],
page 321) statement.

Chapter 6 - DATA DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 199

"X" Defines storage reserved for a single alphanumeric character (any charac-
ter).

"9" Defines storage reserved for a single numeric digit character ("0"-"9").

Typically, only one kind of each of those symbols is used in the same picture clause,
but that isn’t a requirement. Data items that, of the three symbols above, use nothing
but "A" picture symbols are known as ’Alphabetic Data Items’ while those that use
"9" picture symbols without any "A" or "X" symbols (or those that have a "USAGE"

without a "PICTURE") are known as ’Numeric Data Items’. All other data items are
referred to as ’Alphanumeric Data Items’.

If you need to allocate space for a data item whose format is two letters followed by
five digits followed by three letters, you could use the <picture-string> "AA99999AAA",
"A(2)9(5)A(3)" "XXXXXXXXXX" or "X(10)". There is absolutely no functional differ-
ence whatsoever between the four — none of them provide any functionality the others
do not. The first two probably make for better documentation of the expected field
contents, but they don’t provide any run-time enforcement capabilities.

As far as enforcement goes, however, both alphabetic and numeric picture strings do
provide for both compile-time and run-time enforcement capabilities. In the case of
compilation enforcement, the compiler can issue warning messages if you attempt to
specify a non-numeric value for a numeric data item or if you attempt to "MOVE" (see
[MOVE], page 336) a non-numeric data item to one that is numeric. Similar capabilities
exist for alphabetic data items. At run-time, you may use a special class test (see [Class
Conditions], page 50) to determine if the contents of a data item are entirely numeric
or entirely alphabetic.

8. The following picture symbols may be used with numeric data items.

"P" Defines an implied digit position that will be considered to be a zero when
the data item is referenced at run-time. This symbol is used to allow data
items that will contain very large values to be allocated using less storage
by assuming a certain number of trailing zeros (one per "P") to exist at
the end of values.

The "P" symbol is not allowed in conjunction with "N".

The "P" symbol may only be used at the beginning or end of a picture
clause.

"P" is a repeatable symbol.

All computations and "MOVE" (see [MOVE], page 336) operations involving
such a data item will behave as if the zeros were actually there.

For example, let’s say you need to allocate a data item that contains how-
ever many millions of dollars of revenue your company has in gross revenues
this year:

15 February 2018 Chapter 6 - DATA DIVISION



200 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

01 Gross-Revenue PIC 9(9).

In which case 9 characters of storage will be reserved. The values 000000000
through 999999999 will represent the gross-revenues. But, if only the mil-
lions are tracked (meaning the last six digits are always going to be 0), you
could define the field as:

01 Gross-Revenue PIC 9(3)P(6).

Whenever Gross-Revenue is referenced in calculations, or whenever its
value is moved to another data item, the value of Gross-Revenue will be
treated as if it is nnn000000, where ’nnn’ is the actual value in storage.

If you wanted to store the value 128 million into that field, you would do
so as if the "P"s were "9"s:

MOVE 128000000 TO Gross-Revenue

A "DISPLAY" (see [DISPLAY], page 292) of a data item containing "P"

symbols is a little strange. The value displayed will be what is actually
in storage, but the total size of the displayed value will be as if the "P"

symbols had been "9"s. Thus, after the above statement established a value
for Gross-Revenue, a "DISPLAY Gross-Revenue" would produce output of
’000000128’.

"S" This symbol, if used, must be the very first symbol in the "PICTURE" value.
A "S" indicates that the data item is "Signed", meaning that negative
values are possible for this data item. Without an "S", any negative values
stored into this data item via a "MOVE" or arithmetic statement will have
the negative sign stripped from it (in effect becoming the absolute value).

The "S" symbol is not allowed in conjunction with "N".

The "S" symbol may only occur once in a picture string. See [SIGN IS],
page 214, for further discussion of how negative values may be stored in a
numeric data item.

"V" This symbol is used to define where an implied decimal-point (if any) is
located in a numeric item. Just as there may only be a single decimal point
in a number so may there be no more than one "V" in a "PICTURE". Implied
decimal points occupy no space in storage — they just specify how values
are used. For example, if the value "1234" is in storage in a field defined
as PIC 999V9, that value would be treated as 123.4 in any statements that
referenced it.

The "V" symbol is not allowed in conjunction with "N".

The "V" symbol may only occur once in a picture string.

9. Any editing symbols introduced past this point will, if coded in the picture clause of an
otherwise numeric data item, transform that data item from a numeric to a ’Numeric

Chapter 6 - DATA DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 201

Edited ’ data item. Numeric edited data items are treated as alphanumeric and may
not serve either as table subscripts or as source arguments on an arithmetic statement.

10. The following are the fixed insertion editing symbols that may be specified in a picture
string. Each of these editing symbols will insert a special character into the field value
at the position it is specified in the picture string. These editing symbols will each
introduce one extra character into the total field size for each occurrence of the symbol
in the picture string.

"B" The "B" editing symbol introduces a blank into the field value for each
occurrence.

Multiple "B" symbols may be coded.

The following example will format a ten digit number (presumably a tele-
phone number) into a "### ### ####" layout:

...

05 Phone-Number PIC 9(3)B9(3)B9(4).

...

MOVE 5185551212 TO Phone-Number

DISPLAY Phone-Number

This code will display "518 555 1212".

"0" The "0" (zero) editing symbol introduces one "0" character into the field
value for each occurrence in the picture string.

Multiple "0" symbols may be coded.

Here’s an example:

...

05 Output-Item PIC 909090909.

...

MOVE 12345 TO Output-Item

DISPLAY Output-Item

The above will display "102030405".

"/" The "/" editing symbol inserts one "/" character into the field value for
each occurrence in the picture string.

Multiple "/" symbols may be coded.

This editing symbol is most-frequently used to format dates, as follows:

...

05 Year-Month-Day PIC 9(4)/9(2)/9(2).

...

MOVE 20140207 TO Year-Month-Day

15 February 2018 Chapter 6 - DATA DIVISION



202 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

DISPLAY Year-Month-Day

This example displays "2014/02/07".

11. The following are the numeric formatting symbols that may be specified in a picture
string. Each of these editing symbols will insert special characters into the field value to
present numbers in a "friendly" format. These editing symbols will each introduce one
extra character into the total field size for each occurrence of the symbol in the picture
string. Numeric fields whose picture clause contains these characters may neither be
used as source fields in any calculation nor may they serve as source fields for the
transfer of data values to any data item other than an alphanumeric field.

"." The "." symbol inserts a decimal point into a numeric field value. When
the contents of a numeric data item sending field are moved into a receiving
data item whose picture clause contains the "." editing symbol, implied
("V") or actual decimal point in the sending data item or literal, respec-
tively, will be aligned with the "." symbol in the receiving field. Digits are
then transferred from the sending to the receiving field outward from the
sending field’s "V" or ".", truncating sending digits if there aren’t enough
positions in the receiving field. Any digit positions in the receiving field
that don’t receive digits from the sending field, if any, will be set to 0.

The "." symbol is not allowed in conjunction with "N".

An example will probably help:

...

05 Source-Field PIC 9(2)V9 VALUE 7.2.

05 Dest-Field PIC 9(5).9(2).

...

MOVE 1234567.89 TO Dest-Field

DISPLAY Dest-Field

MOVE 19 TO Dest-Field

DISPLAY Dest-Field

MOVE Source-Field TO Dest-Field

DISPLAY Dest-Field

The example will display three results — "34567.89", "00019.00" and
"00007.20".

Both data item definitions appear to have two decimal points in their pic-
ture clauses. They actually don’t, because the last character of every data
item definition is always a period — the period that ends the definition.

"," The "," symbol serves as a thousands separator. Many times, you’ll see
large numbers formatted with these symbols — for example, 123,456,789.
This can be accomplished easily by adding thousands separator symbols
to a picture string. Thousands separator symbols that aren’t needed will
behave as if they were "9"s.

Chapter 6 - DATA DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 203

The "," symbol is not allowed in conjunction with "N".

Here’s an example:

...

05 My-Lottery-Winnings PIC 9(3),9(3),9(3).

...

MOVE 12345 TO My-Lottery-Winnings

DISPLAY My-Lottery-Winnings

The value "0000012,345" (a very disappointing one for my retirement
plans, but a good thousands separator demo) will be displayed. Notice
how, since the first comma wasn’t needed due to the meagre amount I
won, it behaved like another "9".

If desired, you may reverse the roles of the "." and "," editing symbols by speci-
fying "DECIMAL POINT IS COMMA" in the "SPECIAL-NAMES" (see [SPECIAL-NAMES],
page 96) paragraph.

12. The following are insertion symbols. They are used to insert an extra character (two
in the case of "CR" and "DB") to signify the sign (positive or negative) of the numeric
value that is moved into the field whose picture string contains one of these symbols,
or the fact that the data item represents a currency (money) amount. Only one of
the "+", "-", "CR" or "DB" symbols may be used in a picture clause. In this context,
when any of these symbols are used in a <picture-string>, they must be at the end.
The "+", "-" and/or currency symbols may also be used as floating editing symbols
at the beginning of the <picture-string> — a subject that will be covered in the next
numbered paragraph.

"+" If the value of the numeric value moved into the field is positive (0 or
greater), a "+" character will be inserted. If the value is negative (less
than 0), a "-" character is inserted.

The "+" symbol is not allowed in conjunction with "N".

"-" If the value of the numeric value moved into the field is positive (0 or
greater), a space will be inserted. If the value is negative (less than 0), a
"-" character is inserted.

The "-" symbol is not allowed in conjunction with "N".

"CR" This symbol is coded as the two characters "C" and "R". If the value of
the numeric value moved into the field is positive (0 or greater), two spaces
will be inserted. If the value is negative (less than 0), the characters "CR"
(credit) are inserted.

The "CR" symbol is not allowed in conjunction with "N".

15 February 2018 Chapter 6 - DATA DIVISION



204 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

"DB" This symbol is coded as the two characters "D" and "B". If the value of
the numeric value moved into the field is positive (0 or greater), two spaces
will be inserted. If the value is negative (less than 0), the characters "DB"
(debit) are inserted.

The "DB" symbol is not allowed in conjunction with "N".

"$" Regardless of the value moved into the field, this symbol will insert the
currency symbol into the data item’s value in the position where it occurs
in the <picture-string> (see [SPECIAL-NAMES], page 96).

The "$" symbol is not allowed in conjunction with "N".

13. These editing symbols are known as floating replacement symbols. These symbols may
occur in sequences before any "9" editing symbols in the <picture-string> of a numeric
data item. Using these symbols transforms that numeric data item into a numerid
edited data item, which can no longer be used in calculations or subscripts.

14. Each of the following symbols behave like a "9", until such point as all digits in the
numeric value are exhausted and leading zeros are about to be inserted. In effect, these
editing symbols define what should happen to those leading zero.

"$" Of those currency symbols that correspond to character positions in which
leading zeros reside, the right-most will have its "0" value replaced by
the currency symbol in-effect for the program (see [SPECIAL-NAMES],
page 96). Any remaining leading zero values occupying positions described
by this symbol will be replaced by spaces.

The "$" symbol is not allowed in conjunction with "N".

Any currency symbol coded to the right of a "." will be treated exactly
like a "9".

"*" This symbol is referred to as a check protection symbol. All check-
protection symbols that correspond to character positions in which
leading zeros reside will have their "0" values replaced by "*".

The "*" symbol is not allowed in conjunction with "N".

Any check-suppression symbol coded to the right of a "." will be treated
exactly like a "9".

"+" Of those "+" symbols that correspond to character positions in which lead-
ing zeros reside, the right-most will have its "0" value replaced by a "+" if
the value in the data item is zero or greater or a "-" otherwise. Any re-
maining leading zero values occupying positions described by this symbol
will be replaced by spaces. You cannot use both "+" and "-" in the same
<picture-string>.

The "+" symbol is not allowed in conjunction with "N".

Chapter 6 - DATA DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 205

Any "+" symbol coded to the right of a "." will be treated exactly like a
"9".

"-" Of those "-" symbols that correspond to character positions in which lead-
ing zeros reside, the right-most will have its "0" value replaced by a space
if the value in the data item is zero or greater or a "-" otherwise. Any re-
maining leading zero values occupying positions described by this symbol
will be replaced by spaces. You cannot use both "+" and "-" in the same
<picture-string>.

The "-" symbol is not allowed in conjunction with "N".

Any "-" symbol coded to the right of a "." will be treated exactly like a
"9".

"Z" All "Z" symbols that correspond to character positions in which leading
zeros reside will have their "0" values replaced by spaces.

Any zero-suppression symbol coded to the right of a "." will be treated
exactly like a "9".

"Z" and "*" should not be coded in the same <picture-string>

"+" and "-" should not be coded in the same <picture-string>

When multiple floating symbols are coded, even if there is only one of them used they
will all be considered floating and will all be able to assume each other’s properties.
For example, if a data item has a "PIC +$ZZZZ9.99" <picture-string>, and a value
of 1 is moved to that field at run-time, the resulting value will be (the b symbol
represents a space) "bbbb+$1.00". This is not consistent with many other COBOL
implementations, where the result would have been "+$bbbb1.00".

Most other COBOL implementations reject the use of multiple occurrences of multi-
ple floating editing symbols. For example, they would reject <picture-string>s such as
"+++$$$9.99", "$$$ZZZ9.99" and so on. GnuCOBOL accepts these. Programmers
creating GnuCOBOL programs should avoid such <picture-string>s if there is any like-
lihood that those programs may be used with other COBOL implementations.

15 February 2018 Chapter 6 - DATA DIVISION



206 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

6.9.34. PRESENT WHEN� �
PRESENT-WHEN Clause Syntax
 	

PRESENT WHEN condition-name

~~~~~~~ ~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

REPORT

This clause names an existing "Condition Name" (see [Condition Names], page 49) that
will serve as a switch controlling the presentation or suppression of a report group.

1. If the specified condition-name has a value of FALSE when a "GENERATE" statement
(see [GENERATE], page 313) causes a report group to be presented, the presentation
of that group will be suppressed.

2. If the condition-name has a value of TRUE, the group will be presented.

3. See [Condition Names], page 49, for more information.

Chapter 6 - DATA DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 207

6.9.35. PROMPT� �
PROMPT Clause Syntax
 	

PROMPT [ CHARACTER IS literal-1 | identifier-1 ]

~~~~~~ ~~~~~~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

SCREEN

This clause defines the character that will be used as the fill-character for any input fields
on the screen.

1. The reserved word "IS" is optional and may be included, or not, at the discretion of
the programmer. The presence or absence of this word has no effect upon the program.

2. The default prompt character, should no "CHARACTER" specification be coded, or should
the "PROMPT" clause be absent altogether, is an underscore (" ").

3. Prompt characters will be automatically transformed into spaces upon input.

See [Color Palette and Video Attributes], page 23, for more information on screen colors
and video attributes.

15 February 2018 Chapter 6 - DATA DIVISION



208 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

6.9.36. PROTECTED� �
PROTECTED Attribute Syntax
 	

PROTECTED SIZE IS { identifier }

~~~~~~~~ ~~~~ { integer }

————————————————————————————————————————
This syntax is valid in the following sections:

SCREEN

The "PROTECTED" extended clause will effect the specified field to be limited in size,
regardless of the picture size. OR DOES IT?

1. The SIZE phrase specifies the size (length) of the field. After the ACCEPT or DISPLAY
is finished, the cursor is placed immediately after the field defined by this clause, unless
this would place the cursor outside of the current terminal window. In this case, the
cursor is wrapped around to the beginning of the next line (scrolling the window if
necessary).

2. If the SIZE phrase is not used, then the field length defaults to the size of the item
being accepted or displayed. If the CONVERT phrase is used, however, then the size
of the field depends on the data type of the item and the verb being used.

A. If the DISPLAY verb is executing, then the size is the same as if the CONVERT
phrase were not specified except for numeric items. For numeric items, the size is
the number of digits in the item, plus one if it is not an integer, plus one if it is
signed. The remaining cases cover the size when an ACCEPT statement is used.

B. If the item is numeric or numeric edited, then the size is the number of digits in
the item, plus one if it is not an integer, plus one if it is signed.

C. If the item is alphanumeric edited, then the size is set to the number of "A" or
"X" positions specified in its PICTURE clause.

D. For all other data types, the field size is set to the size of the item (same as if
CONVERT were not specified).

3. Note that the OUTPUT phrase changes the way in which the default field size is
computed. See that heading above for details. Also note that the OUTPUT phrase
affects only the way items are displayed on the screen; the internal format of accepted
data is not affected.

4. Note that you cannot supply the CONVERT phrase in the Screen Section. Thus the
size of a Screen Section field is always the size of its screen entry unless the SIZE phrase
is specified.

Chapter 6 - DATA DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 209

6.9.37. REDEFINES� �
REDEFINES Clause Syntax
 	

REDEFINES identifier-1

~~~~~~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

FILE, WORKING-STORAGE, LOCAL-STORAGE, LINKAGE

The "REDEFINES" clause causes the data item in who’s definition the "REDEFINES" clause is
specified (hereafter referred to as the redefines object) to occupy the same physical storage
space as <identifier-1> (hereafter referred to as the redefines subject).

1. The following rules must all be followed in order to use REDEFINES:

A. The level number of both the subject and object data items must be the same.

B. The level numbers of both the subject and object data items cannot be 66, 78 or
88.

C. If "n" represents the level number of the object, then no other data items with
level number "n" may be defined between the subject and object data items unless
they too are "REDEFINES" of the subject.

D. If "n" represents the level number of the object, then no other data items with a
level number numerically less than "n" may be defined between the subject and
object data items.

E. The total allocated size of the subject data item must be the same as the total
allocated size of the object data item.

F. No "OCCURS" (see [OCCURS], page 194) clause may be part of the definition of
either the subject or object data items. Either or both, however, may be group
items that contain data items with "OCCURS" clauses.

G. No "VALUE" (see [VALUE], page 234) clause may be defined on the object data
item, and no data items subordinate to the object data item may have "VALUE"

clauses, with the exception of level-88 condition names.

15 February 2018 Chapter 6 - DATA DIVISION



210 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

6.9.38. RENAMES� �
RENAMES Clause Syntax
 	

RENAMES identifier-1 [ THRU|THROUGH identifier-2

~~~~~~~ ~~~~ ~~~~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

FILE, WORKING-STORAGE, LOCAL-STORAGE, LINKAGE

The "RENAMES" clause regroups previously defined items by specifying alternative, possibly
overlapping, groupings of elementary data items.

1. The reserved words "THRU" and "THROUGH" are interchangeable.

2. You must use the level number 66 for data description entries that contain the
"RENAMES" clause.

3. The <identifier-1> and <identifier-2> data items, along with all data items defined
between those two data items in the program source, must all be contained within the
same 01-level record description.

4. See [66-Level Data Items], page 157, for additional information on the RENAMES
clause.

Chapter 6 - DATA DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 211

6.9.39. REQUIRED� �
REQUIRED Attribute Syntax
 	

REQUIRED

~~~~~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

SCREEN

This clause forces the user to enter data into the field it is specified on (or into all subordinate
input-capable fields if "REQUIRED" is specified on a group item).

1. The "EMPTY-CHECK" (see [EMPTY-CHECK], page 175) and "REQUIRED" clauses are
interchangeable, and may not be used together in the same data item description.

2. In order to take effect, the user must first move the cursor into the field having this
clause in its definition.

3. The "ACCEPT screen-data-item" statement (see [ACCEPT screen-data-item],
page 262) will ignore the Enter key and any other cursor-moving keystrokes that
would cause the cursor to move to another screen item unless data has been entered
into the field. Function keys will still be allowed to terminate the "ACCEPT".

4. In order to be functional, this attribute must be supported by the underlying ’curses’
package your GnuCOBOL implementation was built with. As of this time, the
’PDCurses’ package (used for native Windows or MinGW builds) does not support
"REQUIRED".

15 February 2018 Chapter 6 - DATA DIVISION



212 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

6.9.40. REVERSE-VIDEO� �
REVERSE-VIDEO Attribute Syntax
 	

REVERSE-VIDEO

~~~~~~~~~~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

SCREEN

The "REVERSE-VIDEO" attribute swaps the specified or implied "FOREGROUND-COLOR" (see
[FOREGROUND-COLOR], page 179) and "BACKGROUND-COLOR" (see [BACKGROUND-
COLOR], page 165) attributes for the field whose definition contains this clause (or all
subordinate fields if used on a group item).

See [Color Palette and Video Attributes], page 23, for more information on screen colors
and video attributes.

Chapter 6 - DATA DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 213

6.9.41. SECURE� �
SECURE Attribute Syntax
 	

SECURE

~~~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

SCREEN

This clause will cause all data entered into the field to appear on the screen as asterisks.

1. The "NO-ECHO" (see [NO-ECHO], page 193) and "SECURE" clauses are interchangeable,
and may not be used together in the same data item description.

2. This clause may only be used on a field allowing data entry (a field containing either
the "USING" (see [USING], page 233) or "TO" (see [TO], page 220) clause).

See [Color Palette and Video Attributes], page 23, for more information on screen colors
and video attributes.

15 February 2018 Chapter 6 - DATA DIVISION



214 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

6.9.42. SIGN IS� �
SIGN-IS Clause Syntax
 	

SIGN IS LEADING|TRAILING [ SEPARATE CHARACTER ]

~~~~ ~~~~~~~ ~~~~~~~~ ~~~~~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

FILE, WORKING-STORAGE, LOCAL-STORAGE, LINKAGE, REPORT, SCREEN

This clause, allowable only for "USAGE DISPLAY" numeric data items, specifies how an "S"

symbol will be interpreted in a data item’s picture clause.

1. The reserved words "CHARACTER" and "IS" are optional and may be included, or not,
at the discretion of the programmer. The presence or absence of these words has no
effect upon the program.

2. Without the "SEPARATE CHARACTER" option, the sign of the data item’s value will be
encoded by transforming the last ("TRAILING") or first ("LEADING") digit as follows:

First/Last Digit Value For Positive Value for Negative
0 0 p
1 1 q
2 2 r
3 3 s
4 4 t
5 5 u
6 6 v
7 7 w
8 8 x
9 9 y

3. If the "SEPARATE CHARACTER" clause is used, then an actual "+" or "-" character will
be inserted into the field’s value as the first ("LEADING") or last ("TRAILING") character.
Note that having this character embedded within the data item’s storage does not
prevent the data item from being used as a source field in arithmetic operations.

4. When "SEPARATE CHARACTER" is specified, the "S" symbol in the data item’s
"PICTURE" must be counted when determining the data item’s size.

5. Neither the presence of an encoded digit (see above) nor an actual "+" or "-" character
embedded within the data item’s storage prevents the data item from being used as a
source field in arithmetic operations.

Chapter 6 - DATA DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 215

6.9.43. SOURCE� �
SOURCE Clause Syntax
 	

SOURCE IS literal-1 | identifier-1 [ ROUNDED ]

~~~~~~ ~~~~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

REPORT

This clause logically attaches a report section data item to another data item defined else-
where in the data division.

1. The reserved word "IS" is optional and may be included, or not, at the discretion of
the programmer. The presence or absence of this word has no effect upon the program.

2. When the report group containing this clause is presented, the value of the specified
numeric literal or identifier will be automatically moved to the report data item prior
to presentation.

3. The specified identifier may be defined anywhere in the data division, but if it is defined
in the report section it may only be "PAGE-COUNTER", "LINE-COUNTER" or a "SUM" (see
[SUM], page 494) counter.

4. The "PICTURE" (see [PICTURE], page 198) of the report data item must be such that
it would be legal to "MOVE" (see [MOVE], page 336) the specified literal or identifier to
a data item with that "PICTURE".

5. The "ROUNDED" option comes into play should the number of digits to the right of an
actual or assumed decimal point be different between the specified literal or identifier
value (the "source value") and the "PICTURE" specified for the field in whose definition
the "SOURCE" clause appears (the "target field"). Without "ROUNDED", excess digits in
the source value will simply be truncated to fit the target field. With "ROUNDED", the
source value will be arithmetically rounded to fit the target field. See [ROUNDED],
page 252, for information on the "NEAREST-AWAY-FROM-ZERO" rounding rule, which is
the one that will apply.

15 February 2018 Chapter 6 - DATA DIVISION



216 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

6.9.44. SUM OF� �
SUM-OF Clause Syntax
 	

SUM OF { identifier-7 }... [ { RESET ON FINAL|identifier-8 } ]

~~~ { literal-2 } { ~~~~~ ~~~~~ }

{ UPON identifier-9 }

~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

REPORT

The "SUM" clause establishes a summation counter whose value will be arithmetically cal-
culated whenever the field is presented.

1. The reserved words "OF" and "ON" are optional and may be included, or not, at the
discretion of the programmer. The presence or absence of these words has no effect
upon the program.

2. The "SUM" clause may only appear in a "CONTROL FOOTING" report group.

3. If the data item in which the "SUM" clause appears has been assigned it’s own identifier
name, and that name is not "FILLER", then that data item is referred to as a sum
counter.

4. All <identifier-7> data items must be non-edited numeric in nature.

5. If any <identifier-7> data item is defined in the report section, it must be a sum counter.

6. Any <identifier-7> data items that are sum counters must either be defined in the
same report group as the data item in which this "SUM" clause appears or they must
be defined in a report data item that exists at a lower level in this report’s control
hierarchy. See [Control Hierarchy], page 586, for additional information.

7. The "PICTURE" of the report data item in who’s description this "SUM" clause appears
in must be such that it would be legal to "MOVE" (see [MOVE], page 336) the specified
<identifier-7> or <literal-2> value to a data item with that "PICTURE".

8. The following points apply to the "UPON" option:

A. The data item <identifier-9> must be the name of a detail group specified in the
same report as the control footing group in which this "SUM" clause appears.

B. The presence of an "UPON" clause limits the "SUM" clause to adding the specified
numeric literal or identifier value into the sum counter only when a "GENERATE

<identifier-9>" statement is executed.

C. If there is no "UPON" clause specified, the value of <identifier-7> or <literal-2>
will be added into the sum counter whenever a "GENERATE" (see [GENERATE],
page 313) of any detail report group in the report is executed.

Chapter 6 - DATA DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 217

D. If there is only a single detail group in the report’s definition, the "UPON" clause
is meaningless.

9. The following points apply to the "RESET" option:

A. If the "RESET" option is coded, "FINAL" or <identifier-8> (whichever is coded
on the "RESET") must be one of the report’s control breaks specified on the
"CONTROLS" clause.

B. If there is no "RESET" option coded, the sum counter will be reset back to zero
after each time the control footing containing the "SUM" clause is presented. This
is the typical behaviour that would be expected.

C. If, however, you want to reset the "SUM" counter only when the control footing
for a control break higher in the control hierarchy is presented, specify that higher
control break on the "RESET" option.

15 February 2018 Chapter 6 - DATA DIVISION



218 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

6.9.45. SYNCRONIZED� �
SYNCRONIZED Syntax
 	

SYNCRONIZED|SYNCHRONISED [ LEFT|RIGHT ]

~~~~ ~~~~ ~~~~ ~~~~~

The "LEFT" and "RIGHT" (SYNCRONIZED) clauses are syntactically recognized but are
otherwise non-functional.

————————————————————————————————————————
This syntax is valid in the following sections:

FILE, WORKING-STORAGE, LOCAL-STORAGE, LINKAGE

This optional clause optimizes the storage of binary numeric items to store them in such a
manner as to make it as fast as possible for the CPU to fetch them.

1. The reserved words "SYNCRONIZED" and "SYNCHRONISED" are interchangeable, and may
be abbreviated as "SYNC".

2. If the "SYNCRONIZED" clause is coded on anything but a numeric data item with a
"USAGE" (see [USAGE], page 223) that specifies storage of data in a binary form, the
"SYNCRONIZED" clause will be ignored.

3. Synchronization is performed (by the compiler) as follows:

A. If the binary item occupies one byte of storage, no synchronization is performed.

B. If the binary item occupies two bytes of storage, the binary item is allocated at
the next half-word boundary.

C. If the binary item occupies four bytes of storage, the binary item is allocated at
the next word boundary.

D. If the binary item occupies four bytes of storage, the binary item is allocated at
the next word boundary.

The following illustrates the allocation of a group of data items both without and with the
"SYNCRONIZED" option. The grey blocks represent the unused bytes that are allocated in
the Group-Item-2 structure because of the "SYNC" clauses.

Chapter 6 - DATA DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 219

15 February 2018 Chapter 6 - DATA DIVISION



220 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

6.9.46. TO� �
TO Clause Syntax
 	

TO identifier-5

~~

————————————————————————————————————————
This syntax is valid in the following sections:

SCREEN

This clause logically attaches a screen section data item to another data item defined else-
where in the data division.

1. The "TO" clause is used to define a data-entry field with no initial value; when a value
is entered, it will be saved to the specified identifier.

2. The "FROM" (see [FROM], page 180), "TO", "USING" (see [USING], page 233) and
"VALUE" (see [VALUE], page 234) clauses are mutually-exclusive in any screen section
data item’s definition.

Chapter 6 - DATA DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 221

6.9.47. TYPE� �
TYPE Clause Syntax
 	

[ TYPE IS { RH|{REPORT HEADING} } ]

~~~~ { ~~ ~~~~~~ ~~~~~~~ }

{ PH|{PAGE HEADING} }

{ ~~ ~~~~ ~~~~~~~ }

{ CH|{CONTROL HEADING} FINAL|identifier-2 }

{ ~~ ~~~~~~~ ~~~~~~~ ~~~~~ }

{ DE|DETAIL }

{ ~~ ~~~~~~ }

{ CF|{CONTROL FOOTING} FINAL|identifier-2 }

{ ~~ ~~~~~~~ ~~~~~~~ ~~~~~ }

{ PF|{PAGE FOOTING} }

{ ~~ ~~~~ ~~~~~~~ }

{ RF|{REPORT FOOTING} }

~~ ~~~~~~ ~~~~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

REPORT

This clause defines the type of report group that is being defined for a report.

1. This clause is required on any 01-level data item definitions (other than 01-level con-
stants) in the report section. This clause is invalid on any other report section data
item definitions.

2. There may be a maximum of one (1) report group per "RD" defined with a "TYPE" of
"REPORT HEADING", "PAGE HEADING", "PAGE FOOTING" and "REPORT FOOTING".

3. There must be either a "CONTROL HEADING" or a "CONTROL FOOTING" or both specified
for each entry specified on the "CONTROLS ARE" clause of the "RD".

4. The various report groups that constitute a report may be defined in any order.

5. See [RWCS Lexicon], page 581, for a description of the seven different types of report
groups.

15 February 2018 Chapter 6 - DATA DIVISION



222 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

6.9.48. UNDERLINE� �
UNDERLINE Attribute Syntax
 	

UNDERLINE

~~~~~~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

SCREEN

The "UNDERLINE" clause will introduce a horizontal line at the bottom edge of a screen
field.

1. The "LEFTLINE" (see [LEFTLINE], page 187), "OVERLINE" (see [OVERLINE],
page 197) and "UNDERLINE" clauses may be used in any combination in a single field’s
description.

2. This clause is essentially non-functional when used within Windows command shell
(cmd.exe) environments and running programs compiled using a GnuCOBOL imple-
mentation built using ’PDCurses’ (such as Windows/MinGW builds).

3. Whether or not this clause operates on Cygwin or UNIX/Linux/OSX systems will
depend upon the video attribute capabilities of the terminal output drivers and ’curses’
software being used.

See [Color Palette and Video Attributes], page 23, for more information on screen colors
and video attributes.

Chapter 6 - DATA DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 223

6.9.49. USAGE� �
USAGE Clause Syntax
 	

USAGE IS data-item-usage

~~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

FILE, WORKING-STORAGE, LOCAL-STORAGE, LINKAGE, REPORT

The "USAGE" clause defines the format that will be used to store the value of a data item.

1. The reserved word "IS" is optional and may be included, or not, at the discretion of
the programmer. The presence or absence of this word has no effect upon the program.

2. The following table summarizes the various USAGE specifications available in Gnu-
COBOL.

BINARY

~~~~~~

Range of Values: Defined by the quantity of "9"s and the presence
or absence of an "S" in the "PICTURE"

Storage Format: Compatible Binary Integer

Negative Values Allowed?: If "PICTURE" contains "S"

"PICTURE" Used?: Yes

BINARY-C-LONG [ SIGNED ]

~~~~~~~~~~~~~

Same as "BINARY-DOUBLE SIGNED"

BINARY-C-LONG UNSIGNED

~~~~~~~~~~~~~ ~~~~~~~~

Range of Values: Typically 0 to 4,294,967,295

Storage Format: Native Binary Integer

Negative Values Allowed?: No

"PICTURE" Used?: No

15 February 2018 Chapter 6 - DATA DIVISION



224 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

BINARY-CHAR [ SIGNED ]

~~~~~~~~~~~

Range of Values: -128 to 127

Storage Format: Native Binary Integer

Negative Values Allowed?: Yes

"PICTURE" Used?: No

BINARY-CHAR UNSIGNED

~~~~~~~~~~~ ~~~~~~~~

Range of Values: 0 to 255

Storage Format: Native Binary Integer

Negative Values Allowed?: No

"PICTURE" Used?: No

BINARY-DOUBLE [ SIGNED ]

~~~~~~~~~~~~~

Range of Values: -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

Storage Format: Native Binary Integer

Negative Values Allowed?: Yes

"PICTURE" Used?: No

BINARY-DOUBLE UNSIGNED

~~~~~~~~~~~~~ ~~~~~~~~

Range of Values: 0 to 18,446,744,073,709,551,615

Storage Format: Native Binary Integer

Negative Values Allowed?: No

"PICTURE" Used?: No

Chapter 6 - DATA DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 225

BINARY-INT

~~~~~~~~~~

Same as "BINARY-LONG SIGNED"

BINARY-LONG [ SIGNED ]

~~~~~~~~~~~

Range of Values: -2,147,483,648 2,147,483,647

Storage Format: Native Binary Integer

Negative Values Allowed?: Yes

"PICTURE" Used?: No

BINARY-LONG UNSIGNED

~~~~~~~~~~~ ~~~~~~~~

Range of Values: 0 to 4,294,967,295

Storage Format: Native Binary Integer

Negative Values Allowed?: No

"PICTURE" Used?: No

BINARY-LONG-LONG

~~~~~~~~~~~~~~~~

Same as "BINARY-DOUBLE SIGNED"

BINARY-SHORT [ SIGNED ]

~~~~~~~~~~~~

Range of Values: -32,768 to 32,767

Storage Format: Native Binary Integer

Negative Values Allowed?: Yes

"PICTURE" Used?: No

15 February 2018 Chapter 6 - DATA DIVISION



226 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

BINARY-SHORT UNSIGNED

~~~~~~~~~~~~ ~~~~~~~~

Range of Values: 0 to 65,535

Storage Format: Native Binary Integer

Negative Values Allowed?: No

"PICTURE" Used?: No

COMPUTATIONAL

~~~~

Same as "BINARY"

COMP[UTATIONAL]-1

~~~~ ~~

Same as "FLOAT-SHORT"

COMP[UTATIONAL]-2

~~~~ ~~

Same as "FLOAT-LONG"

COMP[UTATIONAL]-3

~~~~ ~~

Same as "PACKED-DECIMAL"

COMP[UTATIONAL]-4

~~~~ ~~

Same as "BINARY"

COMP[UTATIONAL]-5

~~~~ ~~

Range of Values: Depends on number of "9"s in the "PICTURE"

and the "binary-size" setting of the configu-
ration file used to compile the program

Chapter 6 - DATA DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 227

Storage Format: Native Binary Integer

Negative Values Allowed?: If "PICTURE" contains "S"

"PICTURE" Used?: Yes

COMP[UTATIONAL]-6

~~~~ ~~

Range of Values: Defined by the quantity of "9"s and the presence
or absence of an "S" in the "PICTURE"

Storage Format: Unsigned Packed Decimal

Negative Values Allowed?: No

"PICTURE" Used?: Yes

COMP[UTATIONAL]-X

~~~~ ~~

Range of Values: If used with "PIC X", allocates one byte of stor-
age per "X"; range of values is 0 to max storable
in that many bytes. If used with "PIC 9", range
of values depends on number of "9"s in PIC-
TURE

Storage Format: Native unsigned (X) or signed (9) Binary

Negative Values Allowed?: If "PICTURE" 9 and contains "S"

"PICTURE" Used?: Yes

DISPLAY

~~~~~~~

Range of Values: Depends on "PICTURE" One character per
X, A, 9, period, $, Z, 0, *, S (if "SEPARATE

CHARACTER" specified), +, - or B symbol in
"PICTURE"; Add 2 more bytes if the "DB" or
"CR" editing symbol is used

Storage Format: Characters

15 February 2018 Chapter 6 - DATA DIVISION



228 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

Negative Values Allowed?: If "PICTURE" contains "S"

"PICTURE" Used?: Yes

FLOAT-DECIMAL-16

~~~~~~~~~~~~~~~~

Range of Values: 9.99999999999999910^384 to
9.99999999999999910^384

Storage Format: Native IEEE 754 Decimal64 Floating-point

Negative Values Allowed?: Yes

"PICTURE" Used?: No

FLOAT-DECIMAL-34

~~~~~~~~~~~~~~~~

Range of Values: -9.99999...10^6144 to 9.99999...10^6144

Storage Format: Native IEEE 754 Decimal128 Floating-point

Negative Values Allowed?: Yes

"PICTURE" Used?: No

FLOAT-LONG

~~~~~~~~~~

Range of Values: Approximately -1.79769313486231610^308 to
1.79769313486231610^308

Storage Format: Native IEEE 754 Binary64 Floating-point

Negative Values Allowed?: Yes

"PICTURE" Used?: No

FLOAT-SHORT

~~~~~~~~~~~

Range of Values: Approximately -3.402823510^38 to
3.402823510^38

Chapter 6 - DATA DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 229

Storage Format: Native IEEE 754 Binary32

Negative Values Allowed?: Yes

"PICTURE" Used?: No

INDEX

~~~~~

Range of Values: 0 to maximum address possible (32 or 64 bits)

Storage Format: Native Binary Integer

Negative Values Allowed?: No

"PICTURE" Used?: No

NATIONAL

~~~~~~~~

"USAGE NATIONAL", while syntactically recognized, is not supported by GnuCOBOL

PACKED-DECIMAL

~~~~~~~~~~~~~~

Range of Values: Defined by the quantity of "9"s and the presence
or absence of an "S" in the PICTURE

Storage Format: Signed Packed Decimal

Negative Values Allowed?: If "PICTURE" contains "S"

"PICTURE" Used?: No

POINTER

~~~~~~~

Range of Values: 0 to maximum address possible (32 or 64 bits)

Storage Format: Native Binary Integer

Negative Values Allowed?: No

"PICTURE" Used?: No

15 February 2018 Chapter 6 - DATA DIVISION



230 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

PROCEDURE-POINTER

~~~~~~~~~~~~~~~~~

Same as "PROGRAM-POINTER"

PROGRAM-POINTER

~~~~~~~~~~~~~~~

Range of Values: 0 to maximum address possible (32 or 64 bits)

Storage Format: Native Binary Integer

Negative Values Allowed?: No

"PICTURE" Used?: No

SIGNED-INT

~~~~~~~~~~

Same as "BINARY-LONG SIGNED"

SIGNED-LONG

~~~~~~~~~~~

Same as "BINARY-DOUBLE SIGNED"

SIGNED-SHORT

~~~~~~~~~~~~

Same as "BINARY-SHORT SIGNED"

UNSIGNED-INT

~~~~~~~~~~~~

Same as "BINARY-LONG UNSIGNED"

UNSIGNED-LONG

~~~~~~~~~~~~~

Same as "BINARY-DOUBLE UNSIGNED"

UNSIGNED-SHORT

~~~~~~~~~~~~~~

Chapter 6 - DATA DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 231

Same as "BINARY-SHORT UNSIGNED"

3. Binary data (integer or floating-point) can be stored in either a Big-Endian or Little-
Endian form.

Big-endian data allocation calls for the bytes that comprise a binary item to be allocated
such that the least-significant byte is the right-most byte. For example, a four-byte
binary item having a value of decimal 20 would be big-endian allocated as 00000014
(shown in hexadecimal notation).

Little-endian data allocation calls for the bytes that comprise a binary item to be
allocated such that the least-significant byte is the left-most byte. For example, a
four-byte binary item having a value of decimal 20 would be little-endian allocated as
14000000 (shown in hexadecimal notation).

All CPUs are capable of "understanding" big-endian format, which makes it the
"most-compatible" form of binary storage across computer systems.

Some CPUs such as the Intel/AMD i386/x64 architecture processors used in most
Windows PCs prefer to process binary data stored in a little-endian format. Since
that format is more efficient on those systems, it is referred to as the "native" binary
format.

On a system supporting only one format of binary storage (generally, that would be
big-endian), the terms ’most-efficient’ and ’native format’ are synonymous.

4. Data items that have the "UNSIGNED" attribute explicitly coded, or "DISPLAY",
"PACKED-DECIMAL", "COMP-5", "COMP-X" items that do not have an "S" symbol in
their picture clause cannot preserve negative values that may be stored into them.
Storing a negative value into such a field will actually result in the sign being stripped,
essentially saving the absolute value in the data item.

5. Packed-decimal (i.e. "USAGE PACKED-DECIMAL", "USAGE COMP-3" or "USAGE COMP-6")
data is stored as a series of bytes such that each byte contains two 4-bit fields, referred
to as ’nibbles’ (since they comprise half a "byte", they’re just "nibbles" — don’t groan,
I don’t just make this stuff up!). Each nibble represents a "9" in the "PICTURE" and
each holds a single decimal digit encoded as its binary value (0 = 0000, 1 = 0001, . . .
, 9 = 1001).

The last byte of a "PACKED-DECIMAL" or "COMP-3" data item will always have its left
nibble corresponding to the last "9" in the "PICTURE" and its right nibble reserved as
a sign indicator. This sign indicator is always present regardless of whether or not the
"PICTURE" included an "S" symbol.

The first byte of the data item will contain an unused left nibble if the "PICTURE" had
an even number of "9" symbols in it.

The sign indicator will have a value of a hexadecimal A through F. Traditional packed
decimal encoding rules call for hexadecimal values of F, A, C or E ("FACE") in the

15 February 2018 Chapter 6 - DATA DIVISION



232 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

sign nibble to indicate a positive value and B or D to represent a negative value (hex-
adecimal digits 0-9 are undefined). Testing with a Windows MinGW/GnuCOBOL im-
plementation shows that – in fact – hex digit D represents a negative number and any
other hexadecimal digit denotes a positive number. Therefore, a "PIC S9(3) COMP-3"

packed-decimal field with a value of -15 would be stored internally as a hexadecimal
015D in GnuCOBOL.

If you attempt to store a negative number into a packed decimal field that has no "S"

in its "PICTURE", the absolute value of the negative number will actually be stored.

"USAGE COMP-6" does not allow for negative values, therefore no sign nibble will be
allocated. A "USAGE COMP-6" data item containing an odd number of "9" symbols in
its "PICTURE" will leave its leftmost nibble unused.

6. The "USAGE" specifications "FLOAT-DECIMAL-16" and "FLOAT-DECIMAL-34" will en-
code data using IEEE 754 "Decimal64" and "Decimal128" format, respectively. The
former allows for up to 16 digits of exact precision while the latter offers 34. The
phrase "exact precision" is used because the traditional binary renderings of decimal
real numbers in a floating-point format ("FLOAT-LONG" and "FLOAT-SHORT", for exam-
ple) only yield an approximation of the actual value because many decimal fractions
cannot be precisely rendered in binary. The Decimal64 and Decimal128 renderings,
however, render decimal real numbers in encoded decimal form in much the same way
that "PACKED-DECIMAL" renders a decimal integer in digit-by-digit decimal form. The
exact manner in which this rendering is performed is complex (Wikipedia has an ex-
cellent article on the subject just search for "Decimal64").

7. GnuCOBOL stores "FLOAT-DECIMAL-16" and "FLOAT-DECIMAL-34" data items using
either Big-Endian or Little-Endian form, whichever is native to the system.

8. The "USAGE" specifications "FLOAT-LONG" and "FLOAT-SHORT" use the IEEE 754
"Binary64" and "Binary32" formats, respectively. These are binary encodings of
real decimal numbers, and as such cannot represent every possible value between
the minimum and maximum values in the range for those usages. Wikipedia has
an excellent article on the Binary64 and Binary32 encoding schemes just search on
"Binary32" or "Binary64".

GnuCOBOL stores "FLOAT-LONG" and "FLOAT-SHORT" data items using either Big-
Endian or Little-Endian form, whichever is native to the system.

9. A "USAGE" clause specified at the group item level will apply that "USAGE" to all
subordinate data items, except those that themselves have a "USAGE" clause.

10. The only "USAGE" that is allowed in the report section is "USAGE DISPLAY".

Chapter 6 - DATA DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 233

6.9.50. USING� �
USING Clause Syntax
 	

USING identifier-1

~~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

SCREEN

This clause logically attaches a screen section data item to another data item defined else-
where in the data division.

1. When the screen item whose definition this clause is part of is displayed, the value
currently in <identifier-1> will be automatically moved into the screen item first.

2. When the screen item whose definition this clause is part of (or its parent) is accepted,
the current contents of the screen item will be saved back to <identifier-1> at the
conclusion of the "ACCEPT".

3. The "FROM" (see [FROM], page 180), "TO" (see [TO], page 220), "USING" and "VALUE"

(see [VALUE], page 234) clauses are mutually-exclusive in any screen section data
item’s definition.

15 February 2018 Chapter 6 - DATA DIVISION



234 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

6.9.51. VALUE� �
VALUE (Condition Names) Clause Syntax
 	

{ VALUE IS } {literal-1 [ THRU|THROUGH literal-2 ]}...

{ ~~~~~ } ~~~~ ~~~~~~~

{ VALUES ARE }

~~~~~~

————————————————————————————————————————� �
VALUE (Other Data Items) Syntax
 	

VALUE IS [ ALL ] literal-1

~~~~~ ~~~

————————————————————————————————————————
This syntax is valid in the following sections:

FILE, WORKING-STORAGE, LOCAL-STORAGE, LINKAGE, REPORT, SCREEN

The "VALUE" clause is used to define condition names or to assign values (at compilation
time) to data items.

1. The reserved words "ARE" and "IS" are optional and may be included, or not, at the
discretion of the programmer. The presence or absence of these words has no effect
upon the program.

2. This clause cannot be specified on the same data item as a "FROM" (see [FROM],
page 180), "TO" (see [TO], page 220) or "USING" (see [USING], page 233) clause.

3. The following points apply to using the "VALUE" clause in the definition of a condition
name:

A. The clauses "VALUE IS" and "VALUES ARE" are interchangeable.

B. The reserved words "THRU" and "THROUGH" are interchangeable.

C. See [88-Level Data Items], page 160, for a discussion of how this format of "VALUE"
is used to create condition names.

D. See [Condition Names], page 49, for a discussion of how condition names are used.

4. The following points apply to using the "VALUE" clause in the definition of any other
data item:

A. In this context, "VALUE" specifies an initial compilation-time value that will be
assigned to the storage occupied by the data item in the program object code
generated by the compiler.

Chapter 6 - DATA DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 235

B. The "VALUE" clause is ignored on "EXTERNAL" (see [EXTERNAL], page 177) data
items or on any data items defines as subordinate to an "EXTERNAL" data item.

C. This format of the "VALUE" clause may not be used anywhere in the description
of an 01 item (or any of it’s subordinate items) serving as an "FD" or "SD" record
description.

D. If the optional "ALL" clause is used, it may only be used with an alphanumeric
literal value; the value will be repeated as needed to completely fill the data item.
Here are some examples with and without "ALL" (the symbol b denotes a space):

PIC X(5) VALUE "A" *> Abbbb

PIC X(5) VALUE ALL "A" *> AAAAA

PIC 9(3) VALUE 1 *> 001

PIC 9(3) VALUE ALL "1" *> 111

E. When used in the definition of a screen data item:

a. A figurative constant may not be supplied as <literal-1>.

b. Any "FROM" (see [FROM], page 180), "TO" (see [TO], page 220) or "USING"
(see [USING], page 233) clause in the same data item’s definition will be
ignored.

c. If there is no picture clause specified, the size of the screen data item will be
the length of the <literal-1> value.

d. If there is no picture clause and the "ALL" option is specified, the "ALL" option
will be ignored.

F. Giving a table an initial, compile-time value is one of the trickier aspects of COBOL
data definition. There are basically three standard techniques and a fourth that
people familiar with other COBOL implementations but new to GnuCOBOL may
find interesting. So, here are the three standard approaches:

a. Don’t bother worrying about it at compile-time. Use the "INITIALIZE" (see
[INITIALIZE], page 321) to initialize all data item occurrences in a table (at
run-time) to their data-type-specific default values (numerics: 0, alphabetic
and alphanumerics: spaces).

b. Initialize small tables at compile time by including a "VALUE" clause on the
group item that serves as a parent to the table, as follows:

05 SHIRT-SIZES VALUE "S 14M 15L 16XL17".

10 SHIRT-SIZE-TBL OCCURS 4 TIMES.

15 SST-SIZE PIC X(2).

15 SST-NECK PIC 9(2).

c. Initialize tables of almost any size at compilation time by utilizing the
"REDEFINES" (see [REDEFINES], page 209) clause:

05 SHIRT-SIZE-VALUES.

10 PIC X(4) VALUE "S 14".

15 February 2018 Chapter 6 - DATA DIVISION



236 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

10 PIC X(4) VALUE "M 15".

10 PIC X(4) VALUE "L 16".

10 PIC X(4) VALUE "XL17".

05 SHIRT-SIZES REDEFINES SHIRT-SIZE-VALUES.

10 SHIRT-SIZE-TBL OCCURS 4 TIMES.

15 SST-SIZE PIC X(2).

15 SST-NECK PIC 9(2).

Admittedly, this table is much more verbose than the one shown with a group
"VALUE". What is good about this initialization technique, however, is that
you can have as many "FILLER" and "VALUE" items as you need for a larger
table, and those values can be as long as necessary!

G. Many COBOL compilers do not allow the use of "VALUE" and "OCCURS" (see
[OCCURS], page 194) on the same data item; additionally, they don’t allow a
"VALUE" clause on a data item subordinate to an "OCCURS". GnuCOBOL, however,
has neither of these restrictions!

Observe the following example, which illustrates a fourth manner in which tables
may be initialized in GnuCOBOL:

05 X OCCURS 6 TIMES.

10 A PIC X(1) VALUE ’?’.

10 B PIC X(1) VALUE ’%’.

10 N PIC 9(2) VALUE 10.

In this example, all six "A" items will be initialized to "?", all six "B" items will
be initialized to "%" and all six "N" items will be initialized to 10. It’s not clear
exactly how many times this sort of initialization will be useful, but it’s there if
you need it.

5. The "FROM" (see [FROM], page 180), "TO" (see [TO], page 220), "USING" (see [USING],
page 233) and "VALUE" clauses are mutually-exclusive in any screen section data item’s
definition.

————————————————————
End of Chapter 6 — DATA DIVISION

Chapter 6 - DATA DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 237

7. PROCEDURE DIVISION� �
PROCEDURE DIVISION Syntax
 	

PROCEDURE DIVISION [ { USING Subprogram-Argument ... } ]

~~~~~~~~~ ~~~~~~~~ { ~~~~~ }

{ CHAINING Main-Program-Argument...}

~~~~~~~~

[ RETURNING identifier-1 ] .

[ DECLARATIVES. ] ~~~~~~~~~

~~~~~~~~~~~~

[ Event-Handler-Routine... . ]

[ END DECLARATIVES. ]

~~~ ~~~~~~~~~~~~

General-Program-Logic

[ Nested-Subprogram... ]

[ END PROGRAM|FUNCTION name-1 ]

~~~ ~~~~~~~ ~~~~~~~~

————————————————————————————————————————

The PROCEDURE DIVISION of any GnuCOBOL program marks the point where all
executable code is written.

15 February 2018 Chapter 7 - PROCEDURE DIVISION



238 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

7.1. PROCEDURE DIVISION USING� �
PROCEDURE DIVISION Subprogram-Argument Syntax
 	

[ BY { REFERENCE [ OPTIONAL ] } ] identifier-1

{ ~~~~~~~~~ ~~~~~~~~ }

{ VALUE [ [ UNSIGNED ] SIZE IS { AUTO } ] }

~~~~~ ~~~~~~~~ ~~~~ { ~~~~ }

{ DEFAULT }

{ ~~~~~~~ }

{ integer-1 }

————————————————————————————————————————

The "USING" clause defines the arguments that will be passed to a GnuCOBOL program
which is serving as a subprogram.

1. The reserved words "BY" and "IS" are optional and may be included, or not, at the
discretion of the programmer. The presence or absence of these words have no effect
upon the program.

2. The "USING" clause should only be used on the procedure division header of subpro-
grams (subroutines or user-defined functions).

3. The calling program will pass zero or more data items, known as arguments, to this
subprogram — there must be exactly as many <identifier-1> data items specified on
the USING clause as the maximum number of arguments the subprogram will ever be
passed.

4. If a subprogram does not expect any arguments, it should not have a "USING" clause
specified on it’s procedure division header.

5. The order in which arguments are defined on the "USING" clause must correspond to
the order in which those arguments will be passed to the subprogram by the calling
program.

6. The identifiers specified on the "USING" clause must be defined in the linkage section of
the subprogram. No storage is actually allocated for those identifiers in the subprogram
as the actual storage for them will exist in the calling program.

7. A GnuCOBOL subprogram expects that all arguments to it will be one of two things:

• The memory address of the actual data item (allocated in the calling program)
that is being passed to the subprogram.

• A numeric, full-word, binary value (i.e. "USAGE BINARY-LONG" (see [USAGE],
page 223)) which is the actual argument being passed to the subprogram.

In the case of the former, the "USING" clause on the procedure division header should
describe the argument via the "BY REFERENCE" clause — in the latter case, a "BY

Chapter 7 - PROCEDURE DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 239

VALUE" specification should be coded. This allows the code generated by the compiler
to properly reference the subprogram arguments at run-time.

8. "BY REFERENCE" is the assumed default for the first "USING" argument should no "BY"
clause be specified for it. Subsequent arguments will assume the "BY" specification of
the argument prior to them should they lack a "BY" clause of their own.

9. Changes made by a subprogram to the value of an argument specified on the "USING"
clause will "be visible" to the calling program only if "BY REFERENCE" was explicitly
specified or implicitly assumed for the argument on the subprogram’s procedure division
header and the argument was passed to the subprogram "BY REFERENCE" by the calling
program. See [Subprogram Arguments], page 649, for additional information on the
mechanics of how arguments are passed to subprograms.

10. The optional "SIZE" clause allows you to specify the number of bytes a "BY VALUE"

argument will occupy, with "SIZE DEFAULT" specifying 4 bytes (this is the default if no
"SIZE" clause is used), "SIZE AUTO" specifying the size of the argument in the calling
program and "SIZE <integer-1>" specifying a specific byte count.

11. The optional "UNSIGNED" keyword, legal only if "SIZE AUTO" or "SIZE <integer-1>"

are coded, will add the "unsigned" attribute to the argument’s specification in the C-
language function header code generated for the subprogram. While not of any benefit
when the calling program is a GnuCOBOL program, this can improve compatibility
with a C-language calling program.

12. The "OPTIONAL" keyword, legal only on "BY REFERENCE" arguments, allows calling
programs to code "OMITTED" for that corresponding argument when they call this
subprogram. See [CALL], page 281. for additional information on this feature.

15 February 2018 Chapter 7 - PROCEDURE DIVISION



240 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

7.2. PROCEDURE DIVISION CHAINING� �
PROCEDURE DIVISION Main-Program-Argument Syntax
 	

[ BY REFERENCE ] [ OPTIONAL ] identifier-1

~~~~~~~~~ ~~~~~~~~

————————————————————————————————————————

The "CHAINING" term provides one mechanism a programmer may use to retrieve command-
line arguments passed to a program at execution time.

1. "PROCEDURE DIVISION CHAINING" may only be coded in a main program (that is, the
first program executed when a compiled GnuCOBOL compilation unit is executed). It
cannot be used in any form of subprogram.

2. The "CHAINING" clause defines arguments that will be passed to a main program from
the operating system. The argument identifiers specified on the CHAINING clause will
be populated by character strings comprised of the parameters specified to the program
on the command line that executed it, as follows:

A. When a GnuCOBOL program is executed from a command-line, the complete
command line text will be broken into a series of "tokens", where each token is
identified as being a word separated from the others in the command text by
at least one space. For example, if the command line was /usr/local/myprog

THIS IS A TEST, there will be five tokens identified by the operating system —
"/usr/local/myprog", "THIS", "IS", "A" and "TEST".

B. Multiple space-delimited tokens may be treated as a single token by enclosing them
in quotes. For example, there are only three tokens generated from the command
line C:\Pgms\myprog.exe "THIS IS A" TEST — "C:\Pgms\myprog.exe", "THIS
IS A" and "TEST". When quote characters are used to create multi-word tokens,
the quote characters themselves are stripped from the token’s value.

C. Once tokens have been identified, the first (the command) will be discarded; the
rest will be stored into the "CHAINING" arguments when the program begins
execution, with the 2nd token going to the 1st argument, the 3rd token going to
the 2nd argument and so forth.

D. If there are more tokens than there are arguments, the excess tokens will be dis-
carded.

E. If there are fewer tokens than there are arguments, the excess arguments will be
initialized as if the "INITIALIZE <identifier-1>" (see [INITIALIZE], page 321)
statement were executed.

F. All identifiers specified on the CHAINING clause should be defined as PIC X,
PIC A, group items (which are treated implicitly as PIC X) or as PIC 9 USAGE
DISPLAY. The use of USAGE BINARY (or the like) data items as CHAINING

Chapter 7 - PROCEDURE DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 241

arguments is not recommended as all command-line tokens will be retained in their
original character form as they are moved into the argument data items.

G. If an argument identifier is smaller in storage size than the token value to be stored
in it, the right-most excess characters of the token value will be truncated as the
value is moved in. Any JUSTIFIED RIGHT clause on such an argument identifier
will be ignored.

H. If an argument is larger in storage size than the token value to be stored in it, the
token value will be moved into the argument identifier in a left-justified manner.
unmodified-modified byte positions in the identifier will be space filled, unless the
argument identifier is defined as PIC 9 USAGE DISPLAY, in which case unmod-
ified bytes will be filled with "0" characters from the systems native character
set.

This behaviour when the argument is defined as "PIC 9" may be unacceptable, as
an argument defined as "PIC 9(3)" but passed in a value of "1" from the command
line will receive a value of "100", not "001". Consider defining "numeric" command
line arguments as "PIC X" and then using the "NUMVAL" intrinsic function (see
[NUMVAL], page 469) function to determine the proper numeric value.

15 February 2018 Chapter 7 - PROCEDURE DIVISION



242 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

7.3. PROCEDURE DIVISION RETURNING� �
PROCEDURE DIVISION RETURNING Syntax
 	

RETURNING identifier-1

~~~~~~~~~

————————————————————————————————————————

The RETURNING clause on the PROCEDURE DIVISION header documents that the
subprogram in which the clause appears will be returning a numeric value back to the
program that called it.

1. The "RETURNING" clause is optional within a subroutine, as not all subroutines return
a value to their caller.

2. The "RETURNING" clause is mandatory within a user-defined function, as all such must
return a numeric result.

3. The <identifier-1> data item should be defined as a USAGE BINARY-LONG data
item.

4. Main programs that wish to "pass back" a return code value to the operating system
when they exit do not use RETURNING - they do so simply by MOVEing a value to
the "RETURN-CODE" special register.

5. This is not the only mechanism that a subprogram may use to pass a value back to it’s
caller. Other possibilities are:

A. The subprogram may modify any argument that is specified as "BY REFER-
ENCE" on it’s PROCEDURE DIVISION header. Whether the calling program
can actually "see" any modifications depends upon how the calling program passed
the argument to the subprogram. See [CALL], page 281, for more information.

B. A data item with the "GLOBAL" (see [GLOBAL], page 182) attribute specified in
it’s description in the calling program is automatically visible to and updatable by
a subprogram nested with the calling program. See [Independent vs Contained vs
Nested Subprograms], page 641, for more information on subprogram nesting.

C. A data item defined with the "EXTERNAL" (see [EXTERNAL], page 177) attribute
in a subprogram and the calling program (same name in both programs) is auto-
matically visible to and updatable by both programs, even if those programs are
compiled separately from one another.

Chapter 7 - PROCEDURE DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 243

7.4. PROCEDURE DIVISION Sections and Paragraphs

The procedure division is the only one of the COBOL divisions that allows you to create
your own sections and paragraphs. These are collectively referred to as ’Procedures’, and
the names you create for those sections and paragraphs are called ’Procedure Names’.

Procedure names are optional in the procedure division and — when used — are named
entirely according to the needs and whims of the programmer.

Procedure names may be up to thirty one (31) characters long and may consist of letters,
numbers, dashes and underscores. A procedure name may neither begin nor end with a
dash (-) or underscore ( ) character. This means that "Main", "0100-Read-Transaction"
and "17" are all perfectly valid procedure names.

There are three circumstances under which the use of certain GnuCOBOL statements or
options will require the specification of procedures. These situations are:

1. When "DECLARATIVES" (see [DECLARATIVES], page 244) are specified.

2. When the "ENTRY" statement (see [ENTRY], page 304) is being used.

3. When any procedure division statement that references procedures is used. These
statements are:

• "ALTER <procedure-name>"

• "GO TO <procedure-name>"

• "MERGE ... OUTPUT PROCEDURE <procedure-name>"

• "PERFORM <procedure-name>"

• "SORT ... INPUT PROCEDURE <procedure-name>" and/or "SORT ... INPUT

PROCEDURE <procedure-name>"

15 February 2018 Chapter 7 - PROCEDURE DIVISION



244 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

7.5. DECLARATIVES� �
DECLARATIVES Syntax
 	

section-name-1 SECTION.

USE { [ GLOBAL ] AFTER STANDARD { EXCEPTION } PROCEDURE ON { INPUT } }

~~~ { ~~~~~~ { ~~~~~~~~~ } { ~~~~~ } }

{ { ERROR } { OUTPUT } }

{ ~~~~~ { ~~~~~~ } }

{ { I-O } }

{ FOR DEBUGGING ON { procedure-name-1 } { ~~~ } }

{ ~~~~~~~~~ { ALL PROCEDURES } { EXTEND } }

{ { ~~~ ~~~~~~~~~~ } { ~~~~~~ } }

{ { REFERENCES OF identifier-1 } { file-name-1 } }

{ }

{ [ GLOBAL ] BEFORE REPORTING identifier-2 }

{ ~~~~~~ ~~~~~~ ~~~~~~~~~ }

{ }

{ AFTER EC|{EXCEPTION CONDITION} }

~~ ~~~~~~~~~ ~~~~~~~~~

The "AFTER EXCEPTION CONDITION" and "AFTER EC" clauses are syntactically recognized
but are otherwise non-functional.

————————————————————————————————————————

The "DECLARATIVES" area of the procedure division allows the programmer to define a
series of "trap" procedures (referred to as declarative procedures) capable of intercepting
certain events that may occur at program execution time. The syntax diagram above shows
the format of a single such procedure.

1. The reserved words "AFTER", "FOR", "ON", "PROCEDURE" and "STANDARD" are optional
and may be included, or not, at the discretion of the programmer. The presence or
absence of these words has no effect upon the program.

2. "EC" and "EXCEPTION CONDITION" are interchangeable.

3. The declaratives area may contain any number of declarative procedures, but no two
declarative procedures should be coded to trap the same event.

4. The following points apply to the "USE BEFORE REPORTING" clause:

A. <identifier-2> must be a report group.

B. At run-time, the declaratives procedure will be executed prior to the processing
of the specified report group’s presentation; within the procedure you may take
either of the following actions:

Chapter 7 - PROCEDURE DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 245

• You may adjust the value(s) of any items referenced in "SUM" (see [SUM],
page 494) or "SOURCE" (see [SOURCE], page 215) clauses in the report group.

• You may execute the "SUPPRESS" (see [SUPPRESS], page 394) statement to
squelch the presentation of the specified report group altogether. Note that
you will be suppressing this one specific instance of that group’s presentation
and not all of them.

5. The following points apply to the "USE FOR DEBUGGING" clause:

A. This clause allows you to define a declarative procedure that will be invoked
whenever. . .

• . . .<identifier-1> is referenced on any statement.

• . . .<procedure-name-1> is executed.

• . . . any procedure is executed ("ALL PROCEDURES").

B. A "USE FOR DEBUGGING" declarative procedure will be ignored at compilation
time unless "WITH DEBUGGING MODE" is specified in the "SOURCE-COMPUTER"

(see [SOURCE-COMPUTER], page 93) paragraph. Neither the compiler’s
"-fdebugging-line" switch nor "-debug" switch will activate this feature.

C. Any "USE FOR DEBUGGING" declarative procedures will be ignored at execution
time unless the "COB_SET_DEBUG" run-time environment variable (see [Run Time
Environment Variables], page 626) has been set to a value of "Y", "y" or "1".

D. The typical use of a "USE FOR DEBUGGING" declarative procedure is to display the
"DEBUG-ITEM" special register , which will be implicitly and automatically created
in your program for you if "WITH DEBUGGING MODE" is active.

The structure of DEBUG-ITEM will be as follows:

01 DEBUG-ITEM.

05 DEBUG-LINE PIC X(6).

05 FILLER PIC X(1) VALUE SPACE.

05 DEBUG-NAME PIC X(31).

05 FILLER PIC X(1) VALUE SPACE.

05 DEBUG-SUB-1 PIC S9(4) SIGN LEADING SEPARATE.

05 FILLER PIC X(1) VALUE SPACE.

05 DEBUG-SUB-2 PIC S9(4) SIGN LEADING SEPARATE.

05 FILLER PIC X(1) VALUE SPACE.

05 DEBUG-SUB-3 PIC S9(4) SIGN LEADING SEPARATE.

05 FILLER PIC X(1) VALUE SPACE.

05 DEBUG-CONTENTS PIC X(31).

where. . .

15 February 2018 Chapter 7 - PROCEDURE DIVISION



246 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

"DEBUG-LINE"

. . . is the program line number of the statement that triggered the
declaratives procedure.

"DEBUG-NAME"

. . . is the procedure name or identifier name that triggered the declar-
atives procedure.

"DEBUG-SUB-1"

. . . is the first subscript value (if any) for the reference of the identifier
that triggered the declaratives procedure.

"DEBUG-SUB-2"

. . . is the second subscript value (if any) for the reference of the iden-
tifier that triggered the declaratives procedure.

"DEBUG-SUB-3"

. . . is the third subscript value (if any) for the reference of the identifier
that triggered the declaratives procedure.

"DEBUG-CONTENTS"

. . . is a (brief) statement of the manner in which the procedure that
triggered the declaratives procedure was executed or the first 31 char-
acters of the value of the identifier whose reference triggered the declar-
atives procedure (the value after the statement was executed).

6. The "USE AFTER STANDARD ERROR PROCEDURE" clause defines a declarative procedure
invoked any time a failure is encountered with the specified I/O type (or against the
specified file(s)).

7. The "GLOBAL" (see [GLOBAL], page 182) option, if used, allows a declarative procedure
to be used across the program containing the "USE" statement and any subprograms
nested within that program.

8. Declarative procedures may not reference any other procedures defined outside the
scope of DECLARATIVES.

7.6. Common Clauses on Executable Statements

7.6.1. AT END + NOT AT END� �
AT END Syntax
 	

[ AT END imperative-statement-1 ]

~~~

[ NOT AT END imperative-statement-2 ]

~~~ ~~~

Chapter 7 - PROCEDURE DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 247

————————————————————————————————————————

"AT END" clauses may be specified on "READ" (see [READ], page 350), "RETURN" (see
[RETURN], page 358), "SEARCH" (see [SEARCH], page 362) and "SEARCH ALL" (see
[SEARCH ALL], page 364) statements.

1. The following points pertain to the use of these clauses on "READ" (see [READ],
page 350) and "RETURN" (see [RETURN], page 358) statements:

A. The "AT END" clause will — if present — cause <imperative-statement-1> (see
[Imperative Statement], page 675) to be executed if the statement fails due to a
file status of 10 (end-of-file). See [File Status Codes], page 112, for a list of possible
File Status codes.

An "AT END" clause will not detect other non-zero file-status values.

Use a "DECLARATIVES" (see [DECLARATIVES], page 244) routine or an explicitly-
declared file status field tested after the "READ" or "RETURN" to detect error con-
ditions other than end-of-file.

B. A "NOT AT END" clause will cause <imperative-statement-2> to be executed if the
"READ" or "RETURN" attempt is successful.

2. The following points pertain to the use of these clauses on "SEARCH" (see [SEARCH],
page 362) and "SEARCH ALL" (see [SEARCH ALL], page 364) statements:

A. An "AT END" clause detects and handles the case where either form of table search
has failed to locate an entry that satisfies the search conditions being used.

B. The "NOT AT END" clause is not allowed on either form of table search.

15 February 2018 Chapter 7 - PROCEDURE DIVISION



248 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

7.6.2. CORRESPONDING

Three GnuCOBOL statements — "ADD" (see [ADD CORRESPONDING], page 276),
"MOVE" (see [MOVE CORRESPONDING], page 337) and "SUBTRACT" (see [SUBTRACT
CORRESPONDING], page 392) support the use of a "CORRESPONDING" option:

ADD CORRESPONDING group-item-1 TO group-item-2

MOVE CORRESPONDING group-item-1 TO group-item-2

SUBTRACT CORRESPONDING group-item-1 FROM group-item-2

This option allows one or more data items within one group item (<group-item-1> — the
first named on the statement) to be paired with correspondingly-named (hence the name) in
a second group item (<group-item-2> — the second named on the statement). The contents
of <group-item-1> will remain unaffected by the statement while one or more data items
within <group-item-2> will be changed.

In order for <data-item-1>, defined subordinate to group item <group-item-1> to be a
"corresponding" match to <data-item-2> which is subordinate to <group-item-2>, each of
the following must be true:

1. Both <data-item-1> and <data-item-2> must have the same name, and that name may
not explicitly or implicitly be "FILLER".

2. Both <data-item-1> and <data-item-2>. . .

A. . . .must exist at the same relative structural "depth" of definition within <group-
item-1> and <group-item-2>, respectively

B. . . . and all "parent" data items defined within each group item must have identical
(but non-"FILLER") names.

3. When used with a "MOVE" verb. . .

A. . . . one of <data-item-1> or <data-item-2> (but not both) is allowed to be a group
item

B. . . . and it must be valid to move <data-item-1> TO <data-item-2>.

4. When used with "ADD" or "SUBTRACT" verbs, both <data-item-1> and <data-item-2>
must be numeric, elementary, unedited items.

5. Neither <data-item-1> nor <data-item-2> may be a "REDEFINES" (see [REDEFINES],
page 209) or "RENAMES" (see [RENAMES], page 210) of another data item.

6. Neither <data-item-1> nor <data-item-2> may have an "OCCURS" (see [OCCURS],
page 194) clause, although either may contain subordinate data items that do have
an "OCCURS" clause (assuming rule 3a applies)

Observe the definitions of data items "Q" and "Y". . .

01 Q. 01 Y.

03 X. 02 A PIC X(1).

05 A PIC 9(1). 02 G1.

Chapter 7 - PROCEDURE DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 249

05 G1. 03 G2.

10 G2. 04 B PIC X(1).

15 B PIC X(1). 02 C PIC X(1).

05 C. 02 G3.

10 FILLER PIC X(1). 03 G5.

05 G3. 04 D PIC X(1).

10 G4. 03 G6 PIC X(1).

15 D PIC X(1). 02 E PIC 9(1).

05 E PIC X(1). 02 F PIC X(1).

05 F REDEFINES V1 02 G PIC X(4).

PIC X(1). 02 H OCCURS 4 TIMES

05 G. PIC X(1).

10 G6 OCCURS 4 TIMES 66 I RENAMES E.

PIC X(1). 02 J.

05 H PIC X(4). 03 K.

05 I PIC 9(1). 04 L.

05 J. 05 M.

10 K.

15 M PIC X(1).

The following are the valid CORRESPONDING matches, assuming the statement "MOVE

CORRESPONDING X TO Y" is being executed (there are no valid corresponding matches for
"ADD CORRESPONDING" or "SUBTRACT CORRESPONDING" because every potential match up
violates rule #4):

A, B, C, G

The following are the CORRESPONDING match ups that passed rule #1 (but failed on
another rule), and the reasons why they failed.

Data
Item

Failure Reason

"D" Fails due to rule #2b
"E" Fails due to rule #3b
"F" Fails due to rule #5
"G1" Fails due to rule #3a
"G2" Fails due to rule #3a
"G3" Fails due to rule #3a
"G4" Fails due to rule #1
"G5" Fails due to rule #1
"G6" Fails due to rule #6
"H" Fails due to rule #6
"I" Fails due to rule #5
"J" Fails due to rule #3a
"K" Fails due to rule #3a
"L" Fails due to rule #1

15 February 2018 Chapter 7 - PROCEDURE DIVISION



250 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

"M" Fails due to rule #2a

7.6.3. INVALID KEY + NOT INVALID KEY� �
INVALID KEY Syntax
 	

[ INVALID KEY imperative-statement-1 ]

~~~~~~~

[ NOT INVALID KEY imperative-statement-2 ]

~~~ ~~~~~~~

————————————————————————————————————————

"INVALID KEY" clauses may be specified on "DELETE" (see [DELETE], page 291), "READ"
(see [Random READ], page 352), "REWRITE" (see [REWRITE], page 359), "START" (see
[START], page 382) and "WRITE" (see [WRITE], page 402) statements.

Specification of an "INVALID KEY" clause will allow your program to trap an I/O failure
condition (with an I/O error code in the file’s "FILE-STATUS" (see [SELECT], page 109)
field) that has occurred due to a record-not-found condition and handle it gracefully by
executing <imperative-statement-1> (see [Imperative Statement], page 675).

An optional "NOT INVALID KEY" clause will cause <imperative-statement-2> to be executed
if the statement’s execution was successful.

7.6.4. ON EXCEPTION + NOT ON EXCEPTION� �
ON EXCEPTION Syntax
 	

[ ON EXCEPTION imperative-statement-1 ]

~~~~~~~~~

[ NOT ON EXCEPTION imperative-statement-2 ]

~~~ ~~~~~~~~~

————————————————————————————————————————

"EXCEPTION" clauses may be specified on "ACCEPT" (see [ACCEPT], page 258), "CALL" (see
[CALL], page 281) and "DISPLAY" (see [DISPLAY], page 292) statements.

Specification of an exception clause will allow your program to trap a failure condition
that has occurred and handle it gracefully by executing <imperative-statement-1> (see
[Imperative Statement], page 675). If such a condition occurs at runtime without hav-
ing one of these clauses specified, an error message will be generated (by the GnuCOBOL
runtime library) to the SYSERR device (pipe 2). The program may also be terminated,
depending upon the type and severity of the error.

Chapter 7 - PROCEDURE DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 251

An optional "NOT ON EXCEPTION" clause will cause <imperative-statement-2> to be exe-
cuted if the statement’s execution was successful.

7.6.5. ON OVERFLOW + NOT ON OVERFLOW� �
ON OVERFLOW Syntax
 	

[ ON OVERFLOW imperative-statement-1 ]

~~~~~~~~

[ NOT ON OVERFLOW imperative-statement-2 ]

~~~ ~~~~~~~~

————————————————————————————————————————

"OVERFLOW" clauses may be specified on "CALL" (see [CALL], page 281), "STRING" (see
[STRING], page 386) and "UNSTRING" (see [UNSTRING], page 398) statements.

An "ON OVERFLOW" clause will allow your program to trap a failure condition that has
occurred and handle it gracefully by executing <imperative-statement-1> (see [Imperative
Statement], page 675). If such a condition occurs at runtime without having one of these
clauses specified, an error message will be generated (by the GnuCOBOL runtime library)
to the SYSERR device (pipe 2). The program may also be terminated, depending upon the
type and severity of the error.

An optional "NOT ON OVERFLOW" clause will cause <imperative-statement-2> to be executed
if the statement’s execution was successful.

7.6.6. ON SIZE ERROR + NOT ON SIZE ERROR� �
ON SIZE ERROR Syntax
 	

[ ON SIZE ERROR imperative-statement-1 ]

~~~~ ~~~~~

[ NOT ON SIZE ERROR imperative-statement-2 ]

~~~ ~~~~ ~~~~~

————————————————————————————————————————

"SIZE ERROR" clauses may be included on "ADD" (see [ADD], page 272), "COMPUTE"

(see [COMPUTE], page 288), "DIVIDE" (see [DIVIDE], page 298), "MULTIPLY" (see
[MULTIPLY], page 338) and "SUBTRACT" (see [SUBTRACT], page 388) statements.

Including an "ON SIZE ERROR" clause on an arithmetic statement will allow your program to
trap a failure of an arithmetic statement (either generating a result too large for the receiving
field, or attempting to divide by zero) and handle it gracefully by executing <imperative-
statement-1> (see [Imperative Statement], page 675). Field size overflow conditions occur

15 February 2018 Chapter 7 - PROCEDURE DIVISION



252 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

silently, usually without any runtime messages being generated, even though such events
rarely lend themselves to generating correct results. Division by zero errors, when no "ON

SIZE ERROR" clause exists, will produce an error message (by the GnuCOBOL runtime
library) to the SYSERR device (pipe 2) and will also abort the program.

An optional "NOT ON SIZE ERROR" clause will cause <imperative-statement-2> to be exe-
cuted if the arithmetic statement’s execution was successful.

7.6.7. ROUNDED� �
ROUNDED Syntax
 	

ROUNDED [ MODE IS { AWAY-FROM-ZERO }

~~~~~~~ ~~~~ { ~~~~~~~~~~~~~~ }

{ NEAREST-AWAY-FROM-ZERO }

{ ~~~~~~~~~~~~~~~~~~~~~~ }

{ NEAREST-EVEN }

{ ~~~~~~~~~~~~ }

{ NEAREST-TOWARD-ZERO }

{ ~~~~~~~~~~~~~~~~~~~ }

{ PROHIBITED }

{ ~~~~~~~~~~ }

{ TOWARD-GREATER }

{ ~~~~~~~~~~~~~~ }

{ TOWARD-LESSER }

{ ~~~~~~~~~~~~~ }

{ TRUNCATION }

~~~~~~~~~~

————————————————————————————————————————

GnuCOBOL provides for control over the final rounding process applied to the receiv-
ing fields on all arithmetic verbs. Each of the arithmetic statements ("ADD" (see [ADD],
page 272), "COMPUTE" (see [COMPUTE], page 288), "DIVIDE" (see [DIVIDE], page 298),
"MULTIPLY" (see [MULTIPLY], page 338) and "SUBTRACT" (see [SUBTRACT], page 388))
statements allow an optional "ROUNDED" clause to be applied to each receiving data item.

The following rules apply to the rounding behaviour induced by this clause.

1. Rounding only applies when the result being saved to a receiving field with a "ROUNDED"
clause is a non-integer value.

2. Absence of a "ROUNDED" clause is the same as specifying "ROUNDED MODE IS

TRUNCATION".

3. Use of a "ROUNDED" clause without a "MODE" specification is the same as specifying
"ROUNDED MODE IS NEAREST-AWAY-FROM-ZERO".

Chapter 7 - PROCEDURE DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 253

The behaviour of the eight different rounding modes is defined in the following table. Note
that a ". . ." indicates the last digit repeats. The examples assume an integer receiving
field.

"AWAY-FROM-ZERO"

Rounding is to the nearest value of larger magnitude.

-3.510 ⇒ -4 +3.510 ⇒ +4
-3.500 ⇒ -4 +3.500 ⇒ +4
-3.499. . . ⇒ -4 +3.499. . . ⇒ +4
-2.500 ⇒ -3 +2.500 ⇒ +3
-2.499. . . ⇒ -3 +2.499. . . ⇒ +3

"NEAREST-AWAY-FROM-ZERO"

Rounding is to the nearest value (larger or smaller). If two values are equally
near, the value with the larger absolute value is selected.

-3.510 ⇒ -4 +3.510 ⇒ +4
-3.500 ⇒ -4 +3.500 ⇒ +4
-3.499. . . ⇒ -3 +3.499. . . ⇒ +3
-2.500 ⇒ -3 +2.500 ⇒ +3
-2.499. . . ⇒ -2 +2.499. . . ⇒ +2

"NEAREST-EVEN"

Rounding is to the nearest value (larger or smaller). If two values are equally
near, the value whose rightmost digit is even is selected. This mode is sometimes
called "Banker’s rounding".

-3.510 ⇒ -4 +3.510 ⇒ +4
-3.500 ⇒ -4 +3.500 ⇒ +4
-3.499. . . ⇒ -3 +3.499. . . ⇒ +3
-2.500 ⇒ -2 +2.500 ⇒ +2
-2.499. . . ⇒ -2 +2.499. . . ⇒ +2

"NEAREST-TOWARD-ZERO"

Rounding is to the nearest value (larger or smaller). If two values are equally
near, the value with the smaller absolute value is selected.

-3.510 ⇒ -4 +3.510 ⇒ +4
-3.500 ⇒ -3 +3.500 ⇒ +3
-3.499. . . ⇒ -3 +3.499. . . ⇒ +3
-2.500 ⇒ -2 +2.500 ⇒ +2
-2.499. . . ⇒ -2 +2.499. . . ⇒ +2

"PROHIBITED"

No rounding is performed. If the value cannot be represented exactly in the
desired format, the EC-SIZE-TRUNCATION condition (exception code 1005)

15 February 2018 Chapter 7 - PROCEDURE DIVISION



254 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

is set (and may be retrieved via the "ACCEPT" (see [ACCEPT FROM Runtime-
Info], page 269) statement) and the results of the operation are undefined.

-3.510 ⇒ Undefined +3.510 ⇒ Undefined
-3.500 ⇒ Undefined +3.500 ⇒ Undefined
-3.499. . . ⇒ Undefined +3.499. . . ⇒ Undefined
-2.500 ⇒ Undefined +2.500 ⇒ Undefined
-2.499. . . ⇒ Undefined +2.499. . . ⇒ Undefined

"TOWARD-GREATER"

Rounding is toward the nearest value whose algebraic value is larger.

-3.510 ⇒ -3 +3.510 ⇒ +4
-3.500 ⇒ -3 +3.500 ⇒ +4
-3.499. . . ⇒ -3 +3.499. . . ⇒ +4
-2.500 ⇒ -2 +2.500 ⇒ +3
-2.499. . . ⇒ -2 +2.499. . . ⇒ +3

"TOWARD-LESSER"

Rounding is toward the nearest value whose algebraic value is smaller.

-3.510 ⇒ -4 +3.510 ⇒ +3
-3.500 ⇒ -4 +3.500 ⇒ +3
-3.499. . . ⇒ -4 +3.499. . . ⇒ +3
-2.500 ⇒ -3 +2.500 ⇒ +2
-2.499. . . ⇒ -3 +2.499. . . ⇒ +2

"TRUNCATION"

Rounding is to the nearest value whose magnitude is smaller.

-3.510 ⇒ -3 +3.510 ⇒ +3
-3.500 ⇒ -3 +3.500 ⇒ +3
-3.499. . . ⇒ -3 +3.499. . . ⇒ +3
-2.500 ⇒ -2 +2.500 ⇒ +2
-2.499. . . ⇒ -2 +2.499. . . ⇒ +2

Chapter 7 - PROCEDURE DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 255

7.7. Special Registers

GnuCOBOL, like other COBOL dialects, includes a number of data items that are auto-
matically available to a programmer without the need to actually define them in the data
division. COBOL refers to such items as registers or special registers. The special registers
available to a GnuCOBOL program are as follows:

"COB-CRT-STATUS"

PIC 9(4) — This is the default data item allocated for use by the "ACCEPT

<screen-data-item>" statement (see [ACCEPT screen-data-item], page 262),
if no "CRT STATUS" (see [SPECIAL-NAMES], page 96) clause was specified..

"DEBUG-ITEM"

Group Item — A group item in which debugging information generated by a
"USE FOR DEBUGGING" section in the declaratives area of the procedure division
will place information documenting why the "USE FOR DEBUGGING" procedure
was invoked. Consult the "DECLARATIVES" (see [DECLARATIVES], page 244)
documentation for information on the structure of this register.

"LINAGE-COUNTER"

BINARY-LONG SIGNED — An occurrence of this register exists for each
selected file having a "LINAGE" (see [File/Sort-Description], page 130) clause.
If there are multiple files whose file descriptions have "LINAGE" clauses,
any explicit references to this register will require qualification (using "OF

file-name"). The value of this register will be the current logical line number
within the page body. The value of this register cannot be modified.

"LINE-COUNTER"

BINARY-LONG SIGNED — An occurrence of this register exists for each re-
port defined in the program (via an "RD" (see [REPORT SECTION], page 143)).
If there are multiple reports, any explicit references to this register not made
in the report section will require qualification ("OF report-name"). The value
of this register will be the current logical line number on the current page. The
value of this register cannot be modified.

"NUMBER-OF-CALL-PARAMETERS"

BINARY-LONG SIGNED — This register contains the number of arguments
passed to a subroutine — the same value that would be returned by the
"C$NARG" built-in system subroutine (see [C$NARG], page 526). Its value will
be zero when referenced in a main program. This register, when referenced
from within a user-defined function, returns a value of one (1) if the function
has any number of arguments and a zero if it has no arguments.

15 February 2018 Chapter 7 - PROCEDURE DIVISION



256 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

"PAGE-COUNTER"

BINARY-LONG SIGNED — An occurrence of this register exists for each re-
port having an "RD" (see [REPORT SECTION], page 143). If there are multiple
such reports, any explicit references to this register not made in the report sec-
tion will require qualification ( "OF report-name"). The value of this register
will be the current report page number. The value of this register cannot be
modified.

"RETURN-CODE"

BINARY-LONG SIGNED — This register provides a numeric data item into
which a subroutine may "MOVE" (see [MOVE], page 336) a value (which will
then be available to the calling program) prior to transferring control back to
the program that called it, or into which a main program may "MOVE" a value
before returning control to the operating system. Many built-in subroutines will
return a value using this register. These values are — by convention — used
to signify success (usually with a value of 0) or failure (usually with a non-zero
value) of the process the program was attempting to perform. This register
may also be modified by a subprogram as a result of that subprogram’s use
of the "RETURNING" (see [PROCEDURE DIVISION RETURNING], page 242)
clause.

"SORT-RETURN"

BINARY-LONG SIGNED — This register is used to report the success/fail
status of a "RELEASE" (see [RELEASE], page 356) or "RETURN" (see [RETURN],
page 358) statement. A value of 0 is reported on success. A value of 16 denotes
failure. An "AT END" (see [AT END + NOT AT END], page 246) condition on
a "RETURN" is not considered a failure.

"WHEN-COMPILED"

PIC X(16) — This register contains the date and time the program was com-
piled in the format "mm/dd/yyhh.mm.ss". Note that only a two-digit year is
provided.

Chapter 7 - PROCEDURE DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 257

� �
LENGTH OF Syntax
 	

LENGTH OF numeric-literal-1 | identifier-1

~~~~~~

————————————————————————————————————————

Alphanumeric literals and identifiers may optionally be prefixed with the
"LENGTH OF" clause. The compile-time value generated by this clause will be
the number of bytes in the alphanumeric literal or the defined size (in bytes)
of the identifier.

1. The reserved word "OF" is optional and may be included, or not, at the
discretion of the programmer. The presence or absence of this word has no
effect upon the program.

Here is an example. The following two GnuCOBOL statements both dis-
play the same result (27):

01 Demo-Identifier PIC X(27).

...

DISPLAY LENGTH OF "This is a LENGTH OF Example"

DISPLAY LENGTH OF Demo-Identifier

2. The "LENGTH OF" clause on a literal or identifier reference may generally
be used anywhere a numeric literal might be specified, with the following
exceptions:

• As part of the "FROM" clause of a "WRITE" (see [WRITE], page 402)
or "RELEASE" statement (see [RELEASE], page 356).

• As part of the "TIMES" clause of a "PERFORM" statement (see
[PERFORM], page 344).

15 February 2018 Chapter 7 - PROCEDURE DIVISION



258 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

7.8. GnuCOBOL Statements

7.8.1. ACCEPT

7.8.1.1. ACCEPT FROM CONSOLE� �
ACCEPT FROM CONSOLE Syntax
 	

ACCEPT { identifier-1 } [ FROM mnemonic-name-1 ]

~~~~~~ ~~~~

{ OMITTED }

~~~~~~~

[ END-ACCEPT ]

~~~~~~~~~~

————————————————————————————————————————

This format of the "ACCEPT" statement is used to read a value from the console window or
the standard input device and store it into a data item (<identifier-1>).

1. If no "FROM" clause is specified, "FROM CONSOLE" is assumed.

2. The specified <mnemonic-name-1> must either be one of the built-in device names
"CONSOLE", "STDIN", "SYSIN" or "SYSIPT", or a user-defined (see [SPECIAL-NAMES],
page 96) mnemonic name attached to one of those four device names.

3. Input will be read either from the console window ("CONSOLE") or from the
system-standard input (pipe 0 = "STDIN", "SYSIN" or "SYSIPT") and will be saved in
<identifier-1>.

4. If <identifier-1> is a numeric data item, the character value read from the console or
standard-input device will be parsed according to the rules for input to the "NUMVAL"

intrinsic function (see [NUMVAL], page 469), except that none of the trailing sign
formats are honoured.

Chapter 7 - PROCEDURE DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 259

7.8.1.2. ACCEPT FROM COMMAND-LINE� �
ACCEPT FROM COMMAND-LINE Syntax
 	

ACCEPT identifier-1

~~~~~~

FROM { COMMAND-LINE }

~~~~ { ~~~~~~~~~~~~ }

{ ARGUMENT-NUMBER }

{ ~~~~~~~~~~~~~~~ }

{ ARGUMENT-VALUE }

{ ~~~~~~~~~~~~~~ }

{ [ ON EXCEPTION imperative-statement-1 ] }

{ ~~~~~~~~~ }

{ [ NOT ON EXCEPTION imperative-statement-2 ] }

[ END-ACCEPT ] ~~~ ~~~~~~~~~

~~~~~~~~~~

————————————————————————————————————————

This format of the "ACCEPT" statement is used to retrieve information from the programs
command-line.

1. The reserved word "ON" is optional and may be included, or not, at the discretion of
the programmer. The presence or absence of this word has no effect upon the program.

2. When you accept from the "COMMAND-LINE" option, you will retrieve the entire set of
arguments entered on the command line that executed the program, exactly as they
were specified. Parsing that returned data into its meaningful information will be your
responsibility.

3. By accepting from "ARGUMENT-NUMBER", you will be asking the GnuCOBOL run-time
system to parse the arguments from the command-line and return the number of ar-
guments found. Parsing will be conducted according to the following rules:

A. Arguments will be separated by treating spaces and/or tab characters as the delim-
iters between arguments. The number of such delimiters separating two non-blank
argument values is irrelevant.

B. Strings enclosed in double-quote characters (") will be treated as a single argument,
regardless of how many spaces or tab characters (if any) might be embedded within
those quotation characters.

C. On Windows systems, single-quote, or apostrophe characters (’) will be treated
just like any other data character and will NOT delineate argument strings.

4. By accepting from "ARGUMENT-VALUE", you will be asking the GnuCOBOL
run-time system to parse the arguments from the command-line and return the
"current" argument. You specify which argument number is "current" via the

15 February 2018 Chapter 7 - PROCEDURE DIVISION



260 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

"ARGUMENT-NUMBER" option on the "DISPLAY" statement (see [DISPLAY UPON
COMMAND-LINE], page 294). Parsing of arguments will be conducted according to
the rules set forth above.

5. The optional "ON EXCEPTION" and "NOT ON EXCEPTION" clauses may be used to de-
tect and react to the failure or success, respectively, of an attempt to retrieve an
"ARGUMENT-VALUE". See [ON EXCEPTION + NOT ON EXCEPTION], page 250, for
additional information.

Chapter 7 - PROCEDURE DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 261

7.8.1.3. ACCEPT FROM ENVIRONMENT� �
ACCEPT FROM ENVIRONMENT Syntax
 	

ACCEPT identifier-1

~~~~~~

FROM { ENVIRONMENT-VALUE }

~~~~ { ~~~~~~~~~~~~~~~~~ }

{ ENVIRONMENT { literal-1 } }

{ ~~~~~~~~~~~ { identifier-1 } }

[ ON EXCEPTION imperative-statement-1 ]

~~~~~~~~~

[ NOT ON EXCEPTION imperative-statement-2 ]

~~~ ~~~~~~~~~

[ END-ACCEPT ]

~~~~~~~~~~

————————————————————————————————————————

This format of the "ACCEPT" statement is used to retrieve environment variable values.

1. The reserved word "ON" is optional and may be included, or not, at the discretion of
the programmer. The presence or absence of this word has no effect upon the program.

2. By accepting from "ENVIRONMENT-VALUE", you will be asking the GnuCOBOL
run-time system to retrieve the value of the environment variable whose name
is currently in the "ENVIRONMENT-NAME" register. A value may be placed into
the "ENVIRONMENT-NAME" register using the "ENVIRONMENT-NAME" option of the
"DISPLAY" statement (see [DISPLAY UPON ENVIRONMENT-NAME], page 295).

3. A simpler approach to retrieving an environment variables value is to use the
"ENVIRONMENT" option, where you specify the environment variable whose value is to
be retrieved right on the "ACCEPT" statement itself.

4. The optional "ON EXCEPTION" and "NOT ON EXCEPTION" clauses may be used to detect
and react to an attempt to retrieve the value of a non-existent environment variable
or the successful retrieval of an environment variable’s value, respectively. See [ON
EXCEPTION + NOT ON EXCEPTION], page 250, for additional information.

15 February 2018 Chapter 7 - PROCEDURE DIVISION



262 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

7.8.1.4. ACCEPT screen-data-item� �
ACCEPT screen-data-item Syntax
 	

ACCEPT { identifier-1 }

~~~~~~

{ OMITTED }

~~~~~~~

[{ FROM EXCEPTION-STATUS }]

~~~~ ~~~~~~~~~~~~~~~~

[{ FROM CRT ] [ MODE IS BLOCK ]}

~~~~ ~~~ ~~~~ ~~~~~

[ AT { | LINE NUMBER { integer-1 } | } ]

~~ { | ~~~~ { identifier-2 } | }

{ | COLUMN|COL|POSITION NUMBER { integer-2 } | }

{ | ~~~~~~ ~~~ ~~~~~~~~ { identifier-3 } | }

{ }

{ { integer-3 } }

{ { identifier-4 } }

[ WITH [ Attribute-Specification ]...

~~~~

[ LOWER|UPPER ]

~~~~~ ~~~~~

[ SCROLL { UP } [ { integer-4 } LINE|LINES ] ]

~~~~~~ { ~~ } { identifier-5 }

{ DOWN }

~~~~

[ TIMEOUT|TIME-OUT AFTER { integer-5 } ]

~~~~~~~ ~~~~~~~~ { identifier-6 }

[ CONVERSION ]

~~~~~~~~~~

[ UPDATE ] ]

~~~~~~

[ ON EXCEPTION imperative-statement-1 ]

~~~~~~~~~

[ NOT ON EXCEPTION imperative-statement-2 ]

~~~ ~~~~~~~~~

[ END-ACCEPT ]

~~~~~~~~~~

The "FROM CRT", "MODE IS BLOCK", "CONVERSION" and "UPDATE" clauses are syntactically
recognized but are otherwise non-functional.

————————————————————————————————————————

Chapter 7 - PROCEDURE DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 263

This format of the "ACCEPT" statement is used to retrieve data from a formatted console
window screen.

1. The reserved words "AFTER", "IS", "NUMBER" and "ON" are optional and may be in-
cluded, or not, at the discretion of the programmer. The presence or absence of these
words has no effect upon the program.

2. The reserved words "COLUMN", "COL" and "POSITION" are interchangeable.

3. The reserved words "TIMEOUT" and "TIME-OUT" are interchangeable.

4. If <identifier-1> is defined in the "SCREEN SECTION" (see [SCREEN SECTION],
page 151), any "AT", <Attribute-Specification>, "LOWER", "UPPER" or "SCROLL"

clauses will be ignored. In these cases, an implied "DISPLAY" (see [DISPLAY
screen-data-item], page 296) of <identifier-1> will occur before input is accepted.
Coding an explicit "DISPLAY identifier-1" before an "ACCEPT identifier-1" is
redundant and will incur the performance penalty of painting the screen contents
twice.

5. The various "AT" clauses provide a means of positioning the cursor to a specific spot
on the screen before the screen is read. One or the other (but not both) may be used,
as follows:

A. The "LINE" and "COLUMN" clauses provide one mechanism for specifying the line
and column position to which the cursor will be positioned before allowing the user
to enter data. In the absence of one or the other, a value of 1 will be assumed for
the one that is missing. The author’s personal preference, however, is to explicitly
code both.

B. The <literal-3> or <identifier-4> value, if specified, must be a four- or six-digit
value with the 1st half of the number indicating the line where the cursor should
be positioned and the second half indicating the column. You may code only one
of each clause on any "ACCEPT".

6. "WITH" options (including the various individual <Attribute-Specifications>) should be
coded only once.

7. The following <Attribute-Specification> clauses are allowed on the "ACCEPT" statement
— these are the same as those allowed for "SCREEN SECTION" data items. A particular
<Attribute-Specification> may be used only once in any "ACCEPT":

• "AUTO" (see [AUTO], page 162), "AUTO-SKIP" (see [AUTO-SKIP], page 163),
"AUTOTERMINATE" (see [AUTOTERMINATE], page 164), "TAB"

• "BACKGROUND-COLOR" (see [BACKGROUND-COLOR], page 165)

• "BEEP" (see [BEEP], page 167), "BELL" (see [BELL], page 168)

• "BLINK" (see [BLINK], page 171)

• "FOREGROUND-COLOR" (see [FOREGROUND-COLOR], page 179)

• "FULL" (see [FULL], page 181), "LENGTH-CHECK" (see [LENGTH-CHECK],

15 February 2018 Chapter 7 - PROCEDURE DIVISION



264 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

page 188)

• "HIGHLIGHT" (see [HIGHLIGHT], page 184)

• "LEFTLINE" (see [LEFTLINE], page 187)

• "LOWLIGHT" (see [LOWLIGHT], page 191)

• "OVERLINE" (see [OVERLINE], page 197)

• "PROMPT" (see [PROMPT], page 207)

• "PROTECTED" (see [PROTECTED], page 208)

• "REQUIRED" (see [REQUIRED], page 211), "EMPTY-CHECK" (see [EMPTY-
CHECK], page 175)

• "REVERSE-VIDEO" (see [REVERSE-VIDEO], page 212)

• "SECURE" (see [SECURE], page 213), "NO-ECHO" (see [NO-ECHO], page 193)

• "UNDERLINE" (see [UNDERLINE], page 222)

8. The "SCROLL" option will cause the entire contents of the screen to be scrolled "UP" or
"DOWN" by the specified number of lines before any value is displayed on the screen. It
is syntactically allowable to specify a "SCROLL UP" clause as well as a "SCROLL DOWN"

clause. In such an instance, it is the last one specified that will be honoured. If no
"LINES" specification is made, "1 LINE" will be assumed.

9. The "TIMEOUT" option will cause the "ACCEPT" to wait no more than the specified
number of seconds for input. The wait count may be specified as a positive integer or
a numeric data item with a positive value.

10. This format of the "ACCEPT" statement will be terminated by any of the following
events:

A. When the ’Enter’ key is pressed.

B. Expiration of the "TIMEOUT" timer — this will be treated as if the Enter key had
been pressed with no data being entered.

C. When a function key (Fn) is pressed.

D. The pressing of the PgUp or PgDn keys, if the "COB_SCREEN_EXCEPTIONS" run-
time environment variable (see [Run Time Environment Variables], page 626) is
set to any non-blank value.

E. The pressing of the Esc key if both the "COB_SCREEN_ESC" run-time environment
variable as well as "COB_SCREEN_EXCEPTIONS" run-time environment variable are
set to any non-blank value.

F. The pressing of the Up-arrow, Down-Arrow or PrtSc (Print Screen) keys. These
keys are not detectable on Windows systems, however.

11. The following apply when <identifier-1> is defined in the "SCREEN SECTION":

Chapter 7 - PROCEDURE DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 265

A. Alphanumeric data entered into <identifier-1> or any screen data item subordinate
to it must be consistent with the "PICTURE" (see [PICTURE], page 198) clause of
that item. This will be enforced at runtime by the "ACCEPT" statement.

B. If <identifier-1> or any screen data item subordinate to it are defined as numeric,
entered data must be acceptable as "NUMVAL" intrinsic function (see [NUMVAL],
page 469) input (no decimal points are allowed, however). The value stored into
the screen data item will be as if the input were passed to that function.

C. If <identifier-1> or any screen data item subordinate to it are defined as numeric
edited, entered data must be acceptable as "NUMVAL-C" intrinsic function (see
[NUMVAL-C], page 472) input (again, no decimal points are allowed). The value
stored into the screen data item will be as if the input were passed to that function.

12. The following apply when <identifier-1> is not defined in the "SCREEN SECTION":

A. Alphanumeric data entered into <identifier-1> should be consistent with the
"PICTURE" (see [PICTURE], page 198) clause of that item, although that will not
be enforced by the "ACCEPT" statement. You may use "Class Conditions" (see
[Class Conditions], page 50) after the data is accepted to enforce the data type.

B. If <identifier-1> is defined as numeric, entered data must be acceptable as
"NUMVAL" intrinsic function (see [NUMVAL], page 469) input (no decimal points
are allowed, however). The value stored into <identifier-1> will be as if the input
were passed to that function.

C. If <identifier-1> is defined as numeric edited, entered data must be acceptable
as "NUMVAL-C" intrinsic function (see [NUMVAL-C], page 472) input (again, no
decimal points are allowed). The value stored into <identifier-1> will be as if the
input were passed to that function.

13. The optional "ON EXCEPTION" and "NOT ON EXCEPTION" clauses may be used to detect
and react to the failure or success, respectively, of the screen I/O attempt. See [ON
EXCEPTION + NOT ON EXCEPTION], page 250, for additional information.

After this format of the "ACCEPT" statement is executed, the program’s "CRT STATUS"

(see [SPECIAL-NAMES], page 96) identifier will be populated with one of the following:

Code Meaning
0000 ENTER key pressed
1001–1064 F1–F64, respectively, were pressed
2001 PgUp was pressed
2002 PgDn,was pressed
2003 Up Arrow was pressed
2004 Down-Arrow was pressed
2006 PrtSc (Print Screen) was pressed
2005 Esc was pressed
8000 No data is available on screen ACCEPT
9000 Fatal screen I/O error

15 February 2018 Chapter 7 - PROCEDURE DIVISION



266 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

14. The actual key pressed to generate a function key (Fn) will depend on the type of
terminal device you’re using (PC, Macintosh, VT100, etc.) and what type of enhanced
display driver was configured with the version of GnuCOBOL you’re using. For exam-
ple, on a GnuCOBOL build for a Windows PC using MinGW and PDCurses, F1-F12
are the actual F-keys on the PC keyboard, F13-F24 are entered by shifting the F-keys,
F25-F36 are entered by holding Ctrl while pressing an F-key and F37-F48 are entered
by holding Alt while pressing an F-key. On the other hand, a GnuCOBOL implemen-
tation built for Windows using Cygwin and NCurses treats the PCs F1-F12 keys as the
actual F1-F12, while shifted F-keys will enter F11-F20. With Cygwin/NCurses, Ctrl-
and Alt-modified F-keys aren’t recognized. Neither are Shift-F11 or Shift-F12.

15. Numeric keypad keys are not recognizable on Windows MinGW/PDCurses builds of
GnuCOBOL, regardless of the number lock settings. Windows Cygwin/NCurses builds
recognize numeric keypad inputs properly. Although not tested during the preparation
of this documentation, I would expect native Windows builds using PDCurses to behave
as MinGW builds do and native Unix builds using NCurses to behave as do Cygwin
builds.

16. The optional "EXCEPTION-STATUS" clause may be used to detect exceptions from a
prior arithmetic verb such as COMPUTE to recover any errors produced. These are
recovered using the function "EXCEPTION-STATUS".

Chapter 7 - PROCEDURE DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 267

7.8.1.5. ACCEPT FROM DATE/TIME� �
ACCEPT FROM DATE/TIME Syntax
 	

ACCEPT identifier-1 FROM { DATE [ YYYYMMDD ] }

~~~~~~ ~~~~ { ~~~~ ~~~~~~~~ }

{ DAY [ YYYYDDD ] }

{ ~~~ ~~~~~~~ }

{ DAY-OF-WEEK }

{ ~~~~~~~~~~~ }

[ END-ACCEPT ] { TIME }

~~~~~~~~~~

————————————————————————————————————————

This format of the "ACCEPT" statement is used to retrieve the current system date, time or
current day of the week and store it into a data item.

1. The data retrieved from the system and the format in which it is structured will vary,
as follows:

Syntax Data Retrieved Format
"DATE" Current date in Gregorian form yymmdd
"DATE YYYYMMDD" Current date in Gregorian form yyyymmdd
"DAY" Current date in Julian form yyddd
"DAY YYYYDDD" Current date in Julian form yyyyddd
"TIME" Time, including hundredths of a second

(nn)
hhmmssnn

15 February 2018 Chapter 7 - PROCEDURE DIVISION



268 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

7.8.1.6. ACCEPT FROM Screen-Info� �
ACCEPT FROM Screen-Info Syntax
 	

ACCEPT identifier-1

~~~~~~

FROM { LINES|LINE-NUMBER }

~~~~ { ~~~~~ ~~~~~~~~~~~ }

{ COLS|COLUMNS }

{ ~~~~ ~~~~~~~ }

{ ESCAPE KEY }

~~~~~~ ~~~

[ END-ACCEPT ]

~~~~~~~~~~

————————————————————————————————————————

This format of the "ACCEPT" statement is used to retrieve information about the console
window or about the user’s interactions with it.

1. The reserved words "LINES" and "LINE-NUMBER" are interchangeable.

2. The reserved words "COLS" and "COLUMNS" are interchangeable.

3. The following points pertain to the use of the "LINES" and "COLUMNS" options:

A. The "LINES" and "COLUMNS" options will retrieve the respective components of
the size of the console display.

B. When the console is running in a windowed environment, this will be the sizing of
the window in which the program is executing, in terms of horizontal ("COLUMNS")
or vertical ("LINES") character counts — not pixels.

C. When the system is not running a windowing environment, the physical console
screen attributes will be returned.

D. Values of 0 will be returned if GnuCOBOL was not generated to include screen
I/O.

E. See the documentation on the "CBL_GET_SCR_SIZE" built-in system subroutine
(see [CBL GET SCR SIZE], page 560) for another way to retrieve this informa-
tion.

4. The "ESCAPE KEY" option may be used after the "ACCEPT FROM Screen-Info" state-
ment (see [ACCEPT FROM Screen-Info], page 268) has executed. The result returned
will be the four-digit "CRT STATUS" (see [SPECIAL-NAMES], page 96) identifier value.
See [CRT STATUS Codes], page 265, for the specific code values.

Chapter 7 - PROCEDURE DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 269

7.8.1.7. ACCEPT FROM Runtime-Info� �
ACCEPT FROM Runtime-Info Syntax
 	

ACCEPT identifier-1

~~~~~~

FROM { EXCEPTION STATUS }

~~~~ { ~~~~~~~~~ ~~~~~~ }

{ USER NAME }

~~~~ ~~~~

[ END-ACCEPT ]

~~~~~~~~~~

————————————————————————————————————————

This format of the "ACCEPT" statement is used to retrieve run-time information such as the
most-recent error exception code and the current user’s user name.

1. The following points pertain to the use of the "EXCEPTION STATUS" option:

A. <identifier-1> must be defined as a "PIC X(4)" item.

B. See [Error Exception Codes], page 426, for a complete list of the exception codes
and their meanings.

C. An alternative to the use of "ACCEPT FROM Runtime-Info" is to use the
"EXCEPTION-STATUS" intrinsic function (see [EXCEPTION-STATUS], page 426).

2. The following points pertain to the use of the "USER NAME" option:

A. The returned result is the userid that was used to login to the system with, and
not any actual first and/or last name of the user in question (unless, of course,
that is the information used as a logon id).

B. <identifier-1> should be defined large enough to receive the longest user-name on
the system.

C. If insufficient space is allocated, the returned value will be truncated.

D. If excess space is allocated, the returned value will be padded with spaces (to the
right).

15 February 2018 Chapter 7 - PROCEDURE DIVISION



270 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

7.8.1.8. ACCEPT OMITTED� �
ACCEPT OMITTED Syntax
 	

ACCEPT OMITTED

~~~~~~

1. For console : See 6.17.1.1 (ACCEPT FROM CONSOLE Syntax)

2. For Screen : See 6.17.1.4 (ACCEPT screen-data-item Syntax)

[ END-ACCEPT ]

~~~~~~~~~~

————————————————————————————————————————

This format of the "ACCEPT" statement will wait for a keyboard event that terminates
input; function keys, or Enter/Return, among others. CRT STATUS (COB-CRT-STATUS
"CRT STATUS" (see [SPECIAL-NAMES], page 96) if not explicitly defined) is set with the
keycode, listed in copy/screenio.cpy. It also handles a few other keycode terminations not
normally used to complete an extended accept.

1. The following are examples of keycodes that can be used:

COB-SCR-INSERT

COB-SCR-DELETE

COB-SCR-BACKSPACE

COB-SCR-KEY-HOME

COB-SCR-KEY-END

2. You can used extended attributes, useful for setting timeouts or positioning.

Chapter 7 - PROCEDURE DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 271

7.8.1.9. ACCEPT FROM EXCEPTION-STATUS� �
ACCEPT FROM EXCEPTION-STATUS Syntax
 	

ACCEPT exception-status-pic-9-4 FROM EXCEPTION-STATUS

~~~~~~ ~~~~ ~~~~~~~~~~~~~~~~

[ END-ACCEPT ]

~~~~~~~~~~

————————————————————————————————————————

This format of the "ACCEPT" statement will receive the status for any exceptions resulting
from a previous valid verb.

1. The following is an example of usage:

In WS:

01 exception-status pic 9(4).

..

In PD:

ACCEPT unexpected-rounding FROM EXCEPTION-STATUS

IF unexpected-rounding NOT EQUAL "0000" THEN

DISPLAY "Unexpected rounding. Code " unexpected-rounding

UPON SYSERR

END-IF

15 February 2018 Chapter 7 - PROCEDURE DIVISION



272 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

7.8.2. ADD

7.8.2.1. ADD TO� �
ADD TO Syntax
 	

ADD { literal-1 }...

~~~ { identifier-1 }

TO { identifier-2

~~

[ ROUNDED [ MODE IS { AWAY-FROM-ZERO } ] ] }...

~~~~~~~ ~~~~ { ~~~~~~~~~~~~~~ }

{ NEAREST-AWAY-FROM-ZERO }

{ ~~~~~~~~~~~~~~~~~~~~~~ }

{ NEAREST-EVEN }

{ ~~~~~~~~~~~~ }

{ NEAREST-TOWARD-ZERO }

{ ~~~~~~~~~~~~~~~~~~~ }

{ PROHIBITED }

{ ~~~~~~~~~~ }

{ TOWARD-GREATER }

{ ~~~~~~~~~~~~~~ }

{ TOWARD-LESSER }

{ ~~~~~~~~~~~~~ }

{ TRUNCATION }

~~~~~~~~~~

[ ON SIZE ERROR imperative-statement-1 ]

~~~~ ~~~~~

[ NOT ON SIZE ERROR imperative-statement-2 ]

~~~ ~~~~ ~~~~~

[ END-ADD ]

~~~~~~~

————————————————————————————————————————

This format of the "ADD" statement generates an intermediate arithmetic sum of the values
of all <identifier-1> and <literal-1>) items. The value of each <identifier-2> will be replaced,
in turn, by the sum of that <identifier-2>s value and the intermediate sum.

1. The reserved words "IS" and "ON" are optional and may be included, or not, at the
discretion of the programmer. The presence or absence of these words has no effect
upon the program.

2. Both <identifier-1> and <identifier-2> must be numeric unedited data items while
<literal-1> must be a numeric literal.

Chapter 7 - PROCEDURE DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 273

3. An <identifier-1> data item may also be coded as an <identifier-2> — note, however,
that the value of such a data item will therefore be included twice in the result.

4. The contents of each <identifier-1> will remain unchanged by this statement.

5. The optional "ROUNDED" (see [ROUNDED], page 252) clause available to each
<identifier-2> will control how non-integer results will be saved.

6. The optional "ON SIZE ERROR" and "NOT ON SIZE ERROR" clauses may be used to
detect and react to the failure or success, respectively, of an attempt to perform a
calculation. In this case, failure is defined as being an <identifier-2> with an insufficient
number of digit positions available to the left of any implied decimal point. See [ON
SIZE ERROR + NOT ON SIZE ERROR], page 251, for additional information.

15 February 2018 Chapter 7 - PROCEDURE DIVISION



274 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

7.8.2.2. ADD GIVING� �
ADD GIVING Syntax
 	

ADD { literal-1 }...

~~~ { identifier-1 }

[ TO identifier-2 ]

~~

GIVING { identifier-3

~~~~~~

[ ROUNDED [ MODE IS { AWAY-FROM-ZERO } ] ] }...

~~~~~~~ ~~~~ { ~~~~~~~~~~~~~~ }

{ NEAREST-AWAY-FROM-ZERO }

{ ~~~~~~~~~~~~~~~~~~~~~~ }

{ NEAREST-EVEN }

{ ~~~~~~~~~~~~ }

{ NEAREST-TOWARD-ZERO }

{ ~~~~~~~~~~~~~~~~~~~ }

{ PROHIBITED }

{ ~~~~~~~~~~ }

{ TOWARD-GREATER }

{ ~~~~~~~~~~~~~~ }

{ TOWARD-LESSER }

{ ~~~~~~~~~~~~~ }

{ TRUNCATION }

~~~~~~~~~~

[ ON SIZE ERROR imperative-statement-1 ]

~~~~ ~~~~~

[ NOT ON SIZE ERROR imperative-statement-2 ]

~~~ ~~~~ ~~~~~

[ END-ADD ]

~~~~~~~

————————————————————————————————————————

This format of the "ADD" statement generates the arithmetic sum of the values of all
<identifier-1>, <literal-1>) and <identifier-2> (if any) items and then saves that sum to
each <identifier-3>.

1. The reserved words "IS" and "ON" are optional and may be included, or not, at the
discretion of the programmer. The presence or absence of these words has no effect
upon the program.

2. Both <identifier-1> and <identifier-2> must be numeric unedited data items while

Chapter 7 - PROCEDURE DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 275

<literal-1> must be a numeric literal; <identifier-3> may be either a numeric or numeric
edited data item.

3. An <identifier-1> or <identifier-2> data item may be used as an <identifier-3>, if
desired.

4. The contents of each <identifier-1> and <identifier-2> will remain unchanged by this
statement, unless they happen to also be specified as an <identifier-3>.

5. The current value in each <identifier-3> at the start of the statement’s execution is
irrelevant, since the contents of each <identifier-3> will simply be replaced with the
computed sum.

6. The optional "ROUNDED" (see [ROUNDED], page 252) clause available to each
<identifier-3> will control how non-integer results will be saved.

7. The optional "ON SIZE ERROR" and "NOT ON SIZE ERROR" clauses may be used to
detect and react to the failure or success, respectively, of an attempt to perform a
calculation. In this case, failure is defined as being an <identifier-3> with an insufficient
number of digit positions available to the left of any implied decimal point. See [ON
SIZE ERROR + NOT ON SIZE ERROR], page 251, for additional information.

15 February 2018 Chapter 7 - PROCEDURE DIVISION



276 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

7.8.2.3. ADD CORRESPONDING� �
ADD CORRESPONDING Syntax
 	

ADD CORRESPONDING identifier-1

~~~

TO identifier-2

~~

[ ROUNDED [ MODE IS { AWAY-FROM-ZERO } ] ]

~~~~~~~ ~~~~ { ~~~~~~~~~~~~~~ }

{ NEAREST-AWAY-FROM-ZERO }

{ ~~~~~~~~~~~~~~~~~~~~~~ }

{ NEAREST-EVEN }

{ ~~~~~~~~~~~~ }

{ NEAREST-TOWARD-ZERO }

{ ~~~~~~~~~~~~~~~~~~~ }

{ PROHIBITED }

{ ~~~~~~~~~~ }

{ TOWARD-GREATER }

{ ~~~~~~~~~~~~~~ }

{ TOWARD-LESSER }

{ ~~~~~~~~~~~~~ }

{ TRUNCATION }

~~~~~~~~~~

[ ON SIZE ERROR imperative-statement-1 ]

~~~~ ~~~~~

[ NOT ON SIZE ERROR imperative-statement-2 ]

~~~ ~~~~ ~~~~~

[ END-ADD ]

~~~~~~~

————————————————————————————————————————

This format of the "ADD" statement generates code equivalent to individual "ADD TO" (see
[ADD TO], page 272) statements for corresponding matches of data items found subordinate
to the two identifiers.

1. The reserved words "IS" and "ON" are optional and may be included, or not, at the
discretion of the programmer. The presence or absence of these words has no effect
upon the program.

2. Both <identifier-1> and <identifier-2> must be group items.

3. See [CORRESPONDING], page 248, for information on how corresponding matches
will be found between <identifier-1> and <identifier-2>.

4. The optional "ROUNDED" (see [ROUNDED], page 252) clause available to each
<identifier-3> will control how non-integer results will be saved.

Chapter 7 - PROCEDURE DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 277

5. The optional "ON SIZE ERROR" and "NOT ON SIZE ERROR" clauses may be used to
detect and react to the failure or success, respectively, of an attempt to perform a
calculation. In this case, failure is defined as being an <identifier-3> with an insufficient
number of digit positions available to the left of any implied decimal point. See [ON
SIZE ERROR + NOT ON SIZE ERROR], page 251, for additional information.

15 February 2018 Chapter 7 - PROCEDURE DIVISION



278 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

7.8.3. ALLOCATE� �
ALLOCATE Syntax
 	

ALLOCATE { expression-1 CHARACTERS } [ { INITIALIZED } ]

~~~~~~~~ { identifier-1 ~~~~~~~~~~ } { ~~~~~~~~~~~ }

{ INITIALISED }

[ RETURNING identifier-2 ] ~~~~~~~~~~~

~~~~~~~~~

————————————————————————————————————————

The "ALLOCATE" statement is used to dynamically allocate memory at run-time.

1. The reserved words "INITIALIZED" and "INITIALISED" are interchangeable.

2. Both <identifier-1> and "RETURNING <identifier-2>" may not be specified in the
same statement.

3. If used, <expression-1> must be an arithmetic expression with a non-zero positive
integer value.

4. If used, <identifier-1> should be an 01-level item defined in working-storage or local-
storage with the "BASED" (see [BASED], page 166) attribute. It may be an 01 item
defined in the linkage section without the "BASED" attribute, but using such a data
item is not recommended.

5. If used, <identifier-2> should be a "POINTER" (see [USAGE], page 223) data item.

6. The optional "RETURNING" clause will return the address of the allocated memory
block into the specified "USAGE POINTER" <identifier-2> data item. When this option
is used, knowledge of the originally-requested size of the allocated memory block will
be retained by the program in case a "FREE" (see [FREE], page 312) statement is ever
issued against <identifier-2>.

7. When the <identifier-1> option is used in conjunction with "INITIALIZED" (or it’s
internationalized alternative "INITIALISED"), the allocated memory block will be ini-
tialized as if an "INITIALIZE <identifier-1> WITH FILLER ALL TO VALUE THEN TO

DEFAULT" (see [INITIALIZE], page 321) were executed.

8. When the "<expression-1> CHARACTERS" option is used, "INITIALIZED" will initial-
ize the allocated memory block to binary zeros. If "INITIALIZED" is not used, the
initial contents of allocated memory will be left to whatever rules of memory allocation
are in effect for the operating system the program is running under.

9. There are two basic ways in which this statement is used. The simplest is:

ALLOCATE My-01-Item

With this form, a block of storage equal in size to the defined size of My-01-Item (which

Chapter 7 - PROCEDURE DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 279

must have been defined with the "BASED" attribute) will be allocated. The address of
that block of storage will become the base address of My-01-Item so that it and its
subordinate data items become usable within the program.

A second (and equivalent) approach is:

ALLOCATE LENGTH OF My-01-Item CHARACTERS RETURNING The-Pointer

SET ADDRESS OF My-01-Item TO The-Pointer

10. Referencing a "BASED" data item either before its storage has been allocated or after
its storage has been released (via the "FREE" statement) will lead to "unpredictable
results". That’s how reference manuals and standards specifications talk about this
situation. In the author’s experience, the results are all too predictable — the program
aborts from an attempt to reference an unallocated area of memory.

15 February 2018 Chapter 7 - PROCEDURE DIVISION



280 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

7.8.4. ALTER� �
ALTER Syntax
 	

ALTER procedure-name-1 TO PROCEED TO procedure-name-2

~~~~~ ~~

————————————————————————————————————————

The "ALTER" statement was used in the early years of the COBOL language to edit the
object code of a program at execution time, changing a "GO TO" (see [Simple GO TO],
page 316) statement to branch to a spot in the program different than where the "GO TO"

statement was originally compiled for.

1. The reserved words "PROCEED" and "TO" (the one after "PROCEED") are optional and
may be included, or not, at the discretion of the programmer. The presence or absence
of these words has no effect upon the program.

2. <procedure-name-1> must contain only a single statement, and that statement must be
a simple "GO TO".

3. The effect of this statement will be as if the generated machine-language code for the
"GO TO" statement in <procedure-name-1> is changed so that the "GO TO" statement
now transfers control to <procedure-name-2>, rather than to whatever procedure name
was specified in the program source code.

4. Support for the "ALTER" verb has been added to GnuCOBOL for the purpose of
enabling GnuCOBOL to pass those National Institute of Standards and Technology
(NIST) tests for the COBOL programming language that require support for "ALTER".

5. Because of the catastrophic effect this statement has on program readability and there-
fore the programmer’s ability to debug problems with program logic, the use of "ALTER"
in new programs is STRONGLY discouraged.

Chapter 7 - PROCEDURE DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 281

7.8.5. CALL� �
CALL Syntax
 	

CALL [ { STDCALL } ] { literal-1 }

~~~~ { ~~~~~~~ } { identifier-1 }

{ STATIC }

{ ~~~~~~ }

{ mnemonic-name-1 }

[ USING CALL-Argument... ]

~~~~~

[ RETURNING|GIVING identifier-2 ]

~~~~~~~~~ ~~~~~~

[ ON OVERFLOW|EXCEPTION imperative-statement-1 ]

~~~~~~~~ ~~~~~~~~~

[ NOT ON OVERFLOW|EXCEPTION imperative-statement-2 ]

~~~ ~~~~~~~~ ~~~~~~~~~

[ END-CALL ]

~~~~~~~~

————————————————————————————————————————� �
CALL Argument Syntax
 	

[ BY { REFERENCE } ]

{ ~~~~~~~~~ }

{ CONTENT }

{ ~~~~~~~ }

{ VALUE }

~~~~~

{ OMITTED }

{ ~~~~~~~ }

{ [ UNSIGNED ] [ SIZE IS { AUTO } ] [ { literal-2 } }

~~~~~~~~ ~~~~ { ~~~~ } { identifier-2 }

{ DEFAULT }

{ ~~~~~~~ }

{ integer-1 }

————————————————————————————————————————

The "CALL" statement is used to transfer control to a subroutine. See [Sub-Programming],
page 641, for the specifics of using subprograms with GnuCOBOL programs.

1. The reserved words "BY", "IS" and "ON" are optional and may be included, or not, at

15 February 2018 Chapter 7 - PROCEDURE DIVISION



282 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

the discretion of the programmer. The presence or absence of these words has no effect
upon the program.

2. The reserved words "EXCEPTION" and "OVERFLOW" are interchangeable.

3. The reserved words "GIVING" and "RETURNING" are interchangeable.

4. The expectation is that the subroutine will eventually return control back to the calling
program, at which point the CALLing program will resume execution starting with the
statement immediately following the "CALL". Subprograms are not required to return
to their callers, however, and are free to halt program execution if they wish.

5. The <mnemonic-name-1> / "STATIC" / "STDCALL" option, if used, affects the linkage
conventions that will be used to the subroutine being called, as follows:

A. The "STATIC" option will cause the linkage to the subroutine to be performed in
such a way as to require the subroutine to be statically-linked with the calling
program. Note that this enables static-linking to be used on a subroutine-by-
subroutine selective basis.

B. The "STDCALL" option allows system-standard calling conventions (as opposed
to GnuCOBOL calling conventions) to be used when calling a subroutine. The
definition of what constitutes "system standard" may vary from operating system
to operating system. Use of this requires special knowledge about the linkage
requirements of subroutines you are intending to "CALL". Subroutines written in
GnuCOBOL do not need this option.

C. The <mnemonic-name-1> option allows a custom-defined calling convention to
be used. Such mnemonic names are defined using the "CALL-CONVENTION" (see
[SPECIAL-NAMES], page 96) clause. That clause associates a decimal integer
value with <mnemonic-name-1> such that the individual bits set on or off in the
binary equivalent of the integer affect linkage to the subroutine as described in the
following chart. Those rows of the chart marked with a "No" in the "Supported"
column represent bit positions (switch settings) in the integer value that are cur-
rently accepted (to provide compatibility to other COBOL implementations) if
coded, but are otherwise unsupported.

Note that bit 0 is the right-most bit in the binary value.

Bit Supported Meaning if 0 Meaning if 1
0 No Arguments will be passed in right-

to-left sequence
Arguments will be passed in left-
to-right sequence.

1 No The calling program will flush pro-
cessed arguments from the argu-
ment stack.

The called program (subroutine)
will flush processed arguments
from the argument stack.

Chapter 7 - PROCEDURE DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 283

2 Yes The "RETURN-CODE" special reg-
ister (see [Special Registers],
page 255) will be updated in ad-
dition to any "RETURNING" or
"GIVING" data item.

The "RETURN-CODE" special regis-
ter will not be updated (but any
"RETURNING" or "GIVING" data
item still will).

3 Yes If CALL "literal" is used, the sub-
routine will be located and linked
in with the calling program at
compile time or may be dynami-
cally located and loaded at execu-
tion time, depending on compiler
switch settings and operating sys-
tem capabilities.

If CALL "literal" is used, the sub-
routine can only be located and
linked with the calling program at
compilation time.

4 No OS/2 "OPTLINK" conventions
will not be used to CALL the
subprogram.

OS/2 "OPTLINK" conventions
will be used to CALL the
subprogram.

5 No Windows 16-bit "thunking" will
not be in effect.

Windows 16-bit "thunking" will
be used to call the subroutine as a
DLL.

6 Yes The STDCALL convention will
not be used.

The STDCALL convention, re-
quired to use the Microsoft Win32
API, will be used.

Using the "STDCALL" option on a "CALL" statement is equivalent to using
"CALL-CONVENTION 8" (only bit 3 set).

Using the "STATIC" option on a "CALL" statement is equivalent to using "CALL

CONVENTION 64" (only bit 6 set).

6. The value of <literal-1> or <identifier-1> is the entry-point of the subprogram you wish
to call.

7. When you call a subroutine using <identifier-1>, you are forcing the runtime system
to call a dynamically-loadable subprogram. The contents of <identifier-1> will be the
entry-point name within that module. If this is the first call to any entry-point within
the module being made at run-time, the contents of <identifier-1> must be the primary
entry-point name of the module (which must also match the filename, minus any OS-
mandated extension) of the executable file comprising the module).

8. You can force the GnuCOBOL runtime system to pre-load all dynamically-loaded mod-
ules that could ever be called by the program, at the time the program starts executing.
This is accomplished through the use of the "COB_PRE_LOAD" run-time environment
variable (see [Run Time Environment Variables], page 626). If used, this will only
pre-load those modules invoked via "CALL <literal-1>", as the runtime contents of
<identifier-1> cannot be predicted.

9. If the subprogram being called is a GnuCOBOL program, and if that program had
the "INITIAL" (see [IDENTIFICATION DIVISION], page 87) attribute specified on

15 February 2018 Chapter 7 - PROCEDURE DIVISION



284 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

its "PROGRAM-ID" clause, all of the subprogram’s data division data will be restored to
its initial state each time the subprogram is executed, regardless of which entry-point
within the subprogram is being referenced.

This [re]-initialization behaviour will always apply to any subprogram’s local-storage
(if any), regardless of the use (or not) of "INITIAL".

10. The "USING" clause defines a list of arguments that may be passed from the calling
program to the subprogram. The manner in which any given argument is passed to the
subroutine depends upon the "BY" clause (if any) coded (or implied) for that argument,
as follows:

A. "BY REFERENCE" passes the address of the argument to the subprogram. If the
subprogram changes the contents of that argument, the change will be "visible"
to the calling program.

B. "BY CONTENT" passes the address of a copy of the argument to the subprogram.
If the subprogram changes the value of such an argument, the change only affects
the copy back in the calling program, not the original version.

C. "BY VALUE" passes the actual numeric value of the literal or identifiers contents as
the argument. This feature exists to provide compatibility with C, C++ and other
languages and would not normally be used when calling GnuCOBOL subprograms.
Only numeric literals or numeric data items should be passed in this manner.

D. If an argument lacks a "BY" clause, the most-recently encountered "BY" specifica-
tion on that "CALL" statement will be assumed. If the first argument specified on
a "CALL" lacks a "BY" clause, "BY REFERENCE" will be assumed.

11. No more than 36 arguments may be passed to a subroutine, unless the GnuCOBOL
compiler was built with a specifically different argument limit specified for it. If you
have access to the GnuCOBOL source code, you may adjust this limit by changing the
value of the "COB_MAX_FIELD_PARAMS" in the "common.h" file (found in the "libcob"
folder) before you run "make" to build the compiler and run-time library.

12. The "RETURNING" clause allows you to specify a numeric data item into which the
subroutine should return a numeric value. If you use this clause on the "CALL", the
subroutine should include a "RETURNING" (see [PROCEDURE DIVISION RETURN-
ING], page 242) clause on its procedure division header. Of course, a subroutine may
pass a value of any kind back in any argument passed "BY REFERENCE".

13. The optional "ON OVERFLOW" and "NOT ON OVERFLOW" clauses (or "ON EXCEPTION"

and "NOT ON EXCEPTION" — they are interchangeable) may be used to detect and
react to the failure or success, respectively, of an attempt to "CALL" the subroutine.
Failure, in this context, is defined as the inability to either locate or load the object code
of the subroutine at execution time. See [ON OVERFLOW + NOT ON OVERFLOW],
page 251, for additional information.

Chapter 7 - PROCEDURE DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 285

7.8.6. CANCEL� �
CANCEL Syntax
 	

CANCEL { literal-1 }...

~~~~~~ { identifier-1 }

————————————————————————————————————————

The "CANCEL" statement unloads the dynamically-loadable subprogram module containing
the entry-point specified as <literal-1> or <identifier-1> from memory.

1. If a dynamically-loadable module unloaded by the "CANCEL" statement is subsequently
re-executed, all data division storage for that module will once again be in it’s initial
state.

2. Whether the "CANCEL" statement actually physically unloads a dynamically-loaded
module or simply marks it as logically-unloaded depends on the use and value of the
"COB_PHYSICAL_CANCEL" run-time environment variable (see [Run Time Environment
Variables], page 626).

15 February 2018 Chapter 7 - PROCEDURE DIVISION



286 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

7.8.7. CLOSE� �
CLOSE Syntax
 	

CLOSE { file-name-1 [ { REEL|UNIT [ FOR REMOVAL ] } ] }...

~~~~~ { ~~~~ ~~~~ ~~~~~~~ }

{ WITH LOCK }

{ ~~~~ }

{ WITH NO REWIND }

~~ ~~~~~~

The "REEL", "LOCK" and "NO REWIND" clauses are syntactically recognized but are otherwise
non-functional, except for the "CLOSE...NO REWIND" statement, which will generate a file
status of 07 rather than the usual 00 (but take no other action).

————————————————————————————————————————

The "CLOSE" statement terminates the program’s access to the specified file(s).

1. The reserved words "FOR" and "WITH" are optional and may be included, or not, at
the discretion of the programmer. The presence or absence of these words has no effect
upon the program.

2. The reserved words "REEL" and "UNIT" are interchangeable.

3. The "CLOSE" statement may only be executed against files that have been successfully
opened.

4. A successful "CLOSE" will write any remaining unwritten record buffers to the file
(similar to an "UNLOCK" statement (see [UNLOCK], page 397)) and release any file
locks for the file, regardless of open mode. A closed file will then be no longer available
for subsequent I/O statements until it is once again OPENED.

5. When a "ORGANIZATION LINE SEQUENTIAL" (see [ORGANIZATION LINE SEQUEN-
TIAL], page 116) or "LINE ADVANCING" (see [LINE ADVANCING], page 15) file is
closed, a final delimiter sequence will be written to the file to signal the termination
point of the final data record in the file. This will only be necessary if the final record
written to the file was written with the "AFTER ADVANCING" (see [WRITE], page 402)
option.

Chapter 7 - PROCEDURE DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 287

7.8.8. COMMIT� �
COMMIT Syntax
 	

COMMIT

~~~~~~

————————————————————————————————————————

The "COMMIT" statement performs an "UNLOCK" against every currently-open file, but does
not close any of the files.

See the "UNLOCK" statement (see [UNLOCK], page 397) for additional details.

15 February 2018 Chapter 7 - PROCEDURE DIVISION



288 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

7.8.9. COMPUTE� �
COMPUTE Syntax
 	

COMPUTE { identifier-1

~~~~~~~

[ ROUNDED [ MODE IS { AWAY-FROM-ZERO } ] }...

~~~~~~~ ~~~~ { ~~~~~~~~~~~~~~ }

{ NEAREST-AWAY-FROM-ZERO }

{ ~~~~~~~~~~~~~~~~~~~~~~ }

{ NEAREST-EVEN }

{ ~~~~~~~~~~~~ }

{ NEAREST-TOWARD-ZERO }

{ ~~~~~~~~~~~~~~~~~~~ }

{ PROHIBITED }

{ ~~~~~~~~~~ }

{ TOWARD-GREATER }

{ ~~~~~~~~~~~~~~ }

{ TOWARD-LESSER }

{ ~~~~~~~~~~~~~ }

{ TRUNCATION }

~~~~~~~~~~

=|EQUAL arithmetic-expression-1

~~~~~

[ ON SIZE ERROR imperative-statement-1 ]

~~~~ ~~~~~

[ NOT ON SIZE ERROR imperative-statement-2 ]

~~~ ~~~~ ~~~~~

[ END-COMPUTE ]

~~~~~~~~~~~

————————————————————————————————————————

The "COMPUTE" statement provides a means of easily performing complex arithmetic opera-
tions with a single statement, instead of using cumbersome and possibly confusing sequences
of "ADD", "SUBTRACT", "MULTIPLY" and "DIVIDE" statements. "COMPUTE" also allows the
use of exponentiation — an arithmetic operation for which no other statement exists in
COBOL.

1. The reserved words "IS" and "ON" are optional and may be included, or not, at the
discretion of the programmer. The presence or absence of these words has no effect
upon the program.

2. The reserved word "EQUAL" is interchangeable with the use of "=".

3. Each <identifier-1> must be a numeric or numeric-edited data item.

Chapter 7 - PROCEDURE DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 289

4. The optional "ROUNDED" (see [ROUNDED], page 252) clause available to each
<identifier-1> will control how non-integer results will be saved.

5. See [Arithmetic Expressions], page 46, for more information on arithmetic expressions.

6. The optional "ON SIZE ERROR" and "NOT ON SIZE ERROR" clauses may be used to
detect and react to the failure or success, respectively, of an attempt to perform a
calculation. In this case, failure is defined either as having an <identifier-3> with an
insufficient number of digit positions available to the left of any implied decimal point
or attempting to divide by zero. See [ON SIZE ERROR + NOT ON SIZE ERROR],
page 251, for additional information.

15 February 2018 Chapter 7 - PROCEDURE DIVISION



290 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

7.8.10. CONTINUE� �
CONTINUE Syntax
 	

CONTINUE

~~~~~~~~

————————————————————————————————————————

The "CONTINUE" statement is a no-operation statement that may be coded anywhere an
imperative statement (see [Imperative Statement], page 675) may be coded.

1. The "CONTINUE" statement has no effect on the execution of the program.

2. This statement (perhaps in combination with an appropriate comment or two) makes a
convenient "place holder" — particularly in "ELSE" (see [IF], page 319) or "WHEN" (see
[EVALUATE], page 305) clauses where no code is currently expected to be needed, but
a place for code to handle the conditions in question is to be reserved in case it’s ever
needed.

Chapter 7 - PROCEDURE DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 291

7.8.11. DELETE� �
DELETE Syntax
 	

DELETE file-name-1 RECORD

~~~~~~

[ INVALID KEY imperative-statement-1 ]

~~~~~~~

[ NOT INVALID KEY imperative-statement-2 ]

~~~ ~~~~~~~

[ END-DELETE ]

~~~~~~~~~~

————————————————————————————————————————

The "DELETE" statement logically deletes a record from a COBOL file.

1. The reserved words "KEY" and "RECORD" are optional and may be included, or not, at
the discretion of the programmer. The presence or absence of these words has no effect
upon the program.

2. The "ORGANIZATION" of <file-name-1> cannot be "ORGANIZATION LINE SEQUENTIAL"

(see [ORGANIZATION LINE SEQUENTIAL], page 116).

3. The <file-name-1> file cannot be a sort/merge work file (a file described using a "SD"

(see [File/Sort-Description], page 130)).

4. For files in the "SEQUENTIAL" access mode, the last input-output statement executed
against <file-name-1> prior to the execution of the "DELETE" statement must have been
a successfully executed sequential-format "READ" statement (see [Sequential READ],
page 350). That "READ" will therefore identify the record to be deleted.

5. If <file-name-1> is a "RELATIVE" file whose "ACCESS MODE" (see [ORGANIZATION
RELATIVE], page 118) is either "RANDOM" or "DYNAMIC", the record to be deleted is
the one whose relative record number is currently the value of the field specified as the
files "RELATIVE KEY" in it’s "SELECT" statement.

6. If <file-name-1> is an "INDEXED" file whose "ACCESS MODE" (see [ORGANIZATION
INDEXED], page 120) is "RANDOM" or "DYNAMIC", the record to be deleted is the one
whose primary key is currently the value of the field specified as the "RECORD KEY" in
the file’s "SELECT" statement.

7. The optional "INVALID KEY" and "NOT INVALID KEY" clauses may be used to detect
and react to the failure or success, respectively, of an attempt to delete a record. See
[INVALID KEY + NOT INVALID KEY], page 250, for additional information.

8. No "INVALID KEY" or "NOT INVALID KEY" clause may be specified for a file who’s
"ACCESS MODE IS SEQUENTIAL".

15 February 2018 Chapter 7 - PROCEDURE DIVISION



292 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

7.8.12. DISPLAY

7.8.12.1. DISPLAY UPON device� �
DISPLAY UPON device Syntax
 	

DISPLAY { literal-1 }...

~~~~~~~ { identifier-1 }

[ UPON mnemonic-name-1 ]

~~~~

[ WITH NO ADVANCING ]

~~ ~~~~~~~~~

[ ON EXCEPTION imperative-statement-1 ]

~~~~~~~~~

[ NOT ON EXCEPTION imperative-statement-2 ]

~~~ ~~~~~~~~~

[ END-DISPLAY ]

~~~~~~~~~~~

————————————————————————————————————————

This format of the "DISPLAY" statement displays the specified identifier contents and/or
literal values on the system output device specified via the "UPON" clause.

1. The reserved words "ON" and "WITH" are optional and may be included, or not, at the
discretion of the programmer. The presence or absence of these words has no effect
upon the program.

2. If no "UPON" clause is specified, "UPON CONSOLE" will be assumed. If the "UPON"

clause is specified, <mnemonic-name-1> must be one of the built-in output
device names "CONSOLE", "PRINTER", "STDERR", "STDOUT", "SYSERR", "SYSLIST",
"SYSLST" or "SYSOUT" or a mnemonic name assigned to one of those devices via the
"SPECIAL-NAMES" (see [SPECIAL-NAMES], page 96) paragraph.

When displaying upon the "STDERR" or "SYSERR" devices or to a <mnemonic-name-1>
attached to one of those two devices, the output will be written to output pipe #2,
which will normally cause the output to appear in the console output window. You
may, if desired, redirect that output to a file by appending "2> filename" to the end
of the command that executes the program. This applies to both Windows (any type)
or Unix versions of GnuCOBOL.

When displaying upon the "CONSOLE", "PRINTER", "STDOUT", "SYSLIST", "SYSLST"
or "SYSOUT" devices or to a <mnemonic-name-1> attached to one of them, the output
will be written to output pipe #1, which will normally cause the output to appear
in the console output window. You may, if desired, redirect that output to a file by
appending "1> filename" or simply "> filename" to the end of the command that

Chapter 7 - PROCEDURE DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 293

executes the program. This applies to both Windows (any type) or Unix versions of
GnuCOBOL.

3. The "NO ADVANCING" clause, if used, will suppress the carriage-return / line-feed se-
quence that is normally added to the end of any console display.

4. The optional "ON EXCEPTION" and "NOT ON EXCEPTION" clauses may be used to detect
and react to the failure or success, respectively, of an attempt to display output to the
specified device. See [ON EXCEPTION + NOT ON EXCEPTION], page 250, for
additional information.

15 February 2018 Chapter 7 - PROCEDURE DIVISION



294 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

7.8.12.2. DISPLAY UPON COMMAND-LINE� �
DISPLAY UPON COMMAND-LINE Syntax
 	

DISPLAY { literal-1 }...

~~~~~~~ { identifier-1 }

UPON { ARGUMENT-NUMBER|COMMAND-LINE }

~~~~ { ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ }

[ ON EXCEPTION imperative-statement-1 ]

~~~~~~~~~

[ NOT ON EXCEPTION imperative-statement-2 ]

~~~ ~~~~~~~~~

[ END-DISPLAY ]

~~~~~~~~~~~

————————————————————————————————————————

This form of the "DISPLAY" statement may be used to specify the command-line argu-
ment number to be retrieved by a subsequent "ACCEPT FROM ARGUMENT-VALUE" statement
(see [ACCEPT FROM COMMAND-LINE], page 259) or to specify a new value for the
command-line arguments themselves.

1. The reserved word "ON" is optional and may be included, or not, at the discretion of
the programmer. The presence or absence of this word has no effect upon the program.

2. By displaying a numeric integer value UPON "ARGUMENT-NUMBER", you will specify
which argument (by its relative number) will be retrieved by a subsequent "ACCEPT

FROM ARGUMENT-VALUE" statement.

3. Executing a "DISPLAY UPON COMMAND-LINE" will influence subsequent "ACCEPT FROM

COMMAND-LINE" statements (which will then return the value you displayed), but will
not influence subsequent "ACCEPT FROM ARGUMENT-VALUE" statements — these will
continue to return the original program execution parameters.

4. The optional "ON EXCEPTION" and "NOT ON EXCEPTION" clauses may be used to detect
and react to the failure or success, respectively, of an attempt to display output to
the specified item. See [ON EXCEPTION + NOT ON EXCEPTION], page 250, for
additional information.

Chapter 7 - PROCEDURE DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 295

7.8.12.3. DISPLAY UPON ENVIRONMENT-NAME� �
DISPLAY UPON ENVIRONMENT-NAME Syntax
 	

DISPLAY { literal-1 }... UPON { ENVIRONMENT-VALUE }

~~~~~~~ { identifier-1 } ~~~~ { ~~~~~~~~~~~~~~~~~ }

{ ENVIRONMENT-NAME }

~~~~~~~~~~~~~~~~

[ ON EXCEPTION imperative-statement-1 ]

~~~~~~~~~

[ NOT ON EXCEPTION imperative-statement-2 ]

~~~ ~~~~~~~~~

[ END-DISPLAY ]

~~~~~~~~~~~

————————————————————————————————————————

This form of the "DISPLAY" statement can be used to create or modify environment vari-
ables.

1. The reserved word "ON" is optional and may be included, or not, at the discretion of
the programmer. The presence or absence of this word has no effect upon the program.

2. To create or change an environment variable will require two "DISPLAY" statements.
The following example sets the environment variable "MY ENV VAR" to a value of
"Demonstration Value":

DISPLAY "MY_ENV_VAR" UPON ENVIRONMENT-NAME

DISPLAY "Demonstration Value" UPON ENVIRONMENT-VALUE

3. Environment variables created or changed from within GnuCOBOL programs will be
available to any sub-shell processes spawned by that program (i.e. "CALL ’SYSTEM’"

(see [SYSTEM], page 574)) but will not be known to the shell or console window that
started the GnuCOBOL program.

4. Consider using "SET ENVIRONMENT" (see [SET ENVIRONMENT], page 367) in lieu of
"DISPLAY" to set environment variables as it is much simpler.

5. The optional "ON EXCEPTION" and "NOT ON EXCEPTION" clauses may be used to detect
and react to the failure or success, respectively, of an attempt to display output to
the specified item. See [ON EXCEPTION + NOT ON EXCEPTION], page 250, for
additional information.

15 February 2018 Chapter 7 - PROCEDURE DIVISION



296 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

7.8.12.4. DISPLAY screen-data-item� �
DISPLAY screen-data-item Syntax
 	

DISPLAY identifier-1 [ UPON CRT|CRT-UNDER ]

~~~~~~~ ~~~~ ~~~ ~~~~~~~~~

[ AT { | LINE NUMBER { integer-1 } | } ]

~~ { | ~~~~ { identifier-2 } | }

{ | | }

{ | COLUMN|POSITION NUMBER { integer-2 } | }

{ | ~~~~~~ ~~~~~~~~ { identifier-3 } | }

{ }

{ { integer-3 } }

{ { identifier-4 } }

[ WITH [ DISPLAY-Attribute ]...

~~~~

[ SCROLL { UP } [ { integer-4 } LINE|LINES ] ]

~~~~~~ { ~~ } { identifier-5 }

{ DOWN }

~~~~

[ TIMEOUT|TIME-OUT AFTER { integer-5 } ]

~~~~~~~ ~~~~~~~~ { identifier-6 }

[ CONVERSION ] ]

~~~~~~~~~~

[ ON EXCEPTION imperative-statement-1 ]

~~~~~~~~~

[ NOT ON EXCEPTION imperative-statement-2 ]

~~~ ~~~~~~~~~

[ END-DISPLAY ]

~~~~~~~~~~~

The "UPON CRT", "UPON CRT-UNDER" and "CONVERSION" clauses are syntactically recog-
nized but are otherwise non-functional. They are supported to provide compatibility with
COBOL source written for other COBOL implementations.

————————————————————————————————————————

This format of the "DISPLAY" statement presents data onto a formatted screen.

1. The reserved words "AFTER", "LINE", "LINES", "NUMBER" and "ON" are optional and
may be included, or not, at the discretion of the programmer. The presence or absence
of these words has no effect upon the program.

2. The reserved words "COLUMN" and "POSITION" are interchangeable.

3. The reserved words "LINE" and "LINES" are interchangeable.

Chapter 7 - PROCEDURE DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 297

4. The reserved words "TIMEOUT" and "TIME-OUT" are interchangeable.

5. If <identifier-1> is defined in the "SCREEN SECTION" (see [SCREEN SECTION],
page 151), any "AT", <Attribute-Specification> and "WITH" clauses will be ignored.
All field definition, cursor positioning and screen control will occur as a result of the
screen section definition of <identifier-1>.

6. The following points apply if <identifier-1> is not defined in the screen section:

A. The purpose of the "AT" clause is to define where on the screen <identifier-1>
should be displayed. See [ACCEPT screen-data-item], page 262, for additional
information.

B. The purpose of the "WITH" clause is to define the visual attributes that should
be applied to <identifier-1> when it is displayed on the screen as well as other
presentation-control characteristics.

C. The following <Attribute-Specification> clauses are allowed on the "DISPLAY" state-
ment — these are the same as those allowed for "SCREEN SECTION" data items. A
particular <Attribute-Specification> may be used only once in any "DISPLAY":

• "BACKGROUND-COLOR" (see [BACKGROUND-COLOR], page 165)

• "BEEP" (see [BEEP], page 167), "BELL" (see [BELL], page 168)

• "BLANK" (see [BLANK], page 169)

• "BLINK" (see [BLINK], page 171)

• "ERASE" (see [ERASE], page 176)

• "FOREGROUND-COLOR" (see [FOREGROUND-COLOR], page 179)

• "HIGHLIGHT" (see [HIGHLIGHT], page 184)

• "LOWLIGHT" (see [LOWLIGHT], page 191)

• "OVERLINE" (see [OVERLINE], page 197)

• "REVERSE-VIDEO" (see [REVERSE-VIDEO], page 212)

• "UNDERLINE" (see [UNDERLINE], page 222)

D. See [ACCEPT screen-data-item], page 262, for additional information on the other
"WITH" clause options.

7. The optional "ON EXCEPTION" and "NOT ON EXCEPTION" clauses may be used to detect
and react to the failure or success, respectively, of the screen I/O attempt. See [ON
EXCEPTION + NOT ON EXCEPTION], page 250, for additional information.

15 February 2018 Chapter 7 - PROCEDURE DIVISION



298 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

7.8.13. DIVIDE

7.8.13.1. DIVIDE INTO� �
DIVIDE INTO Syntax
 	

DIVIDE { literal-1 } INTO { identifier-2

~~~~~~ { identifier-1 } ~~~~

[ ROUNDED [ MODE IS { AWAY-FROM-ZERO } ] ] }...

~~~~~~~ ~~~~ { ~~~~~~~~~~~~~~ }

{ NEAREST-AWAY-FROM-ZERO }

{ ~~~~~~~~~~~~~~~~~~~~~~ }

{ NEAREST-EVEN }

{ ~~~~~~~~~~~~ }

{ NEAREST-TOWARD-ZERO }

{ ~~~~~~~~~~~~~~~~~~~ }

{ PROHIBITED }

{ ~~~~~~~~~~ }

{ TOWARD-GREATER }

{ ~~~~~~~~~~~~~~ }

{ TOWARD-LESSER }

{ ~~~~~~~~~~~~~ }

{ TRUNCATION }

~~~~~~~~~~

[ ON SIZE ERROR imperative-statement-1 ]

~~~~ ~~~~~

[ NOT ON SIZE ERROR imperative-statement-2 ]

~~~ ~~~~ ~~~~~

[ END-DIVIDE ]

~~~~~~~~~~

————————————————————————————————————————

This format of the "DIVIDE" statement will divide a numeric value (specified as a literal
or numeric data item) into one or more numeric data items, replacing the value in each of
those data items with the result(s).

1. The reserved words "IS" and "ON" are optional and may be included, or not, at the
discretion of the programmer. The presence or absence of these words has no effect
upon the program.

2. Both <identifier-1> and <identifier-2> must be numeric unedited data items and
<literal-1> must be a numeric literal.

3. A division operation will be performed for each <identifier-2>, in turn. Each of the
results of those divisions will be saved to the corresponding <identifier-2> data item(s).

Chapter 7 - PROCEDURE DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 299

4. Should any <identifier-2> be an integer numeric data item, the result computed when
that <identifier-2> is divided by <literal-1> or <identifier-1> will also be an integer —
any remainder from that division will be discarded.

5. The optional "ROUNDED" (see [ROUNDED], page 252) clause available to each
<identifier-2> will control how non-integer results will be saved.

6. The optional "ON SIZE ERROR" and "NOT ON SIZE ERROR" clauses may be used to
detect and react to the failure or success, respectively, of an attempt to perform a
calculation. In this case, failure is defined as being numeric truncation caused by an
<identifier-2> with an insufficient number of digit positions available to the left of any
implied decimal point, or an attempt to divide by zero. See [ON SIZE ERROR + NOT
ON SIZE ERROR], page 251, for additional information.

15 February 2018 Chapter 7 - PROCEDURE DIVISION



300 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

7.8.13.2. DIVIDE INTO GIVING� �
DIVIDE INTO GIVING Syntax
 	

DIVIDE { literal-1 } INTO { literal-2 } GIVING { identifier-3

~~~~~~ { identifier-1 } ~~~~ { identifier-2 } ~~~~~~

[ ROUNDED [ MODE IS { AWAY-FROM-ZERO } ] ] }...

~~~~~~~ ~~~~ { ~~~~~~~~~~~~~~ }

{ NEAREST-AWAY-FROM-ZERO }

{ ~~~~~~~~~~~~~~~~~~~~~~ }

{ NEAREST-EVEN }

{ ~~~~~~~~~~~~ }

{ NEAREST-TOWARD-ZERO }

{ ~~~~~~~~~~~~~~~~~~~ }

{ PROHIBITED }

{ ~~~~~~~~~~ }

{ TOWARD-GREATER }

{ ~~~~~~~~~~~~~~ }

{ TOWARD-LESSER }

{ ~~~~~~~~~~~~~ }

{ TRUNCATION }

[ REMAINDER identifier-4 ] ~~~~~~~~~~

~~~~~~~~~

[ ON SIZE ERROR imperative-statement-1 ]

~~~~ ~~~~~

[ NOT ON SIZE ERROR imperative-statement-2 ]

~~~ ~~~~ ~~~~~

[ END-DIVIDE ]

~~~~~~~~~~

————————————————————————————————————————

This format of the "DIVIDE" statement will divide one numeric value (specified as a literal
or numeric data item) into another numeric value (also specified as a literal or numeric data
item) and will then replace the contents of one or more receiving data items with the results
of that division.

1. The reserved words "IS" and "ON" are optional and may be included, or not, at the
discretion of the programmer. The presence or absence of these words has no effect
upon the program.

2. Both <identifier-1> and <identifier-2> must be numeric unedited data items while both
<identifier-3> and <identifier-4> must be numeric (edited or unedited) data items.

3. Both <literal-1> and <literal-2> must be numeric literals.

Chapter 7 - PROCEDURE DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 301

4. If the "REMAINDER" clause is coded, there may be only one <identifier-3> specified.

5. The result obtained when the value of <literal-2> or <identifier-2> is divided by the
value of <literal-1> or <identifier-1> is computed; this result is then moved into each
<identifier-3>, in turn, applying the rules defined by the "ROUNDED" (see [ROUNDED],
page 252) clause (if any) for that <identifier-3> to the move.

6. If a "REMAINDER" clause is specified, the value of the one and only <identifier-3> (as
stated earlier, if "REMAINDER" is specified there may only be a single <identifier-3>
coded on the statement) after it was assigned a value according to the previous rule
will be multiplied by the value of <literal-1> or <identifier-1>; that result is then
subtracted from the value of <literal-2> or <identifier-2> and that result is the value
which is moved to <identifier-4>.

7. The optional "ON SIZE ERROR" and "NOT ON SIZE ERROR" clauses may be used to
detect and react to the failure or success, respectively, of an attempt to perform a
calculation. In this case, failure is defined as being an <identifier-2> with an insufficient
number of digit positions available to the left of any implied decimal point, or an
attempt to divide by zero. See [ON SIZE ERROR + NOT ON SIZE ERROR], page 251,
for additional information.

15 February 2018 Chapter 7 - PROCEDURE DIVISION



302 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

7.8.13.3. DIVIDE BY GIVING� �
DIVIDE BY GIVING Syntax
 	

DIVIDE { literal-1 } BY { literal-2 } GIVING { identifier-3

~~~~~~ { identifier-1 } ~~ { identifier-2 } ~~~~~~

[ ROUNDED [ MODE IS { AWAY-FROM-ZERO } ] ] }...

~~~~~~~ ~~~~ { ~~~~~~~~~~~~~~ }

{ NEAREST-AWAY-FROM-ZERO }

{ ~~~~~~~~~~~~~~~~~~~~~~ }

{ NEAREST-EVEN }

{ ~~~~~~~~~~~~ }

{ NEAREST-TOWARD-ZERO }

{ ~~~~~~~~~~~~~~~~~~~ }

{ PROHIBITED }

{ ~~~~~~~~~~ }

{ TOWARD-GREATER }

{ ~~~~~~~~~~~~~~ }

{ TOWARD-LESSER }

{ ~~~~~~~~~~~~~ }

{ TRUNCATION }

[ REMAINDER identifier-4 ] ~~~~~~~~~~

~~~~~~~~~

[ ON SIZE ERROR imperative-statement-1 ]

~~~~ ~~~~~

[ NOT ON SIZE ERROR imperative-statement-2 ]

~~~ ~~~~ ~~~~~

[ END-DIVIDE ]

~~~~~~~~~~

————————————————————————————————————————

This format of the "DIVIDE" statement will divide one numeric value (specified as a literal
or numeric data item) into another numeric value (also specified as a literal or numeric data
item) and will then replace the contents of one or more receiving data items with the results
of that division.

1. The reserved words "IS" and "ON" are optional and may be included, or not, at the
discretion of the programmer. The presence or absence of these words has no effect
upon the program.

2. Both <identifier-1> and <identifier-2> must be numeric unedited data items while both
<identifier-3> and <identifier-4> must be numeric (edited or unedited) data items.

3. Both <literal-1> and <literal-2> must be numeric literals.

Chapter 7 - PROCEDURE DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 303

4. If the "REMAINDER" clause is coded, there may be only one <identifier-3> specified.

5. The result obtained when the value of <literal-1> or <identifier-1> is divided by the
value of <literal-2> or <identifier-2> is computed; this result is then moved into each
<identifier-3>, in turn, applying the rules defined by the "ROUNDED" (see [ROUNDED],
page 252) clause (if any) for that <identifier-3> to the move.

6. If a "REMAINDER" clause is specified, the value of the one and only <identifier-3> (as
stated earlier, if "REMAINDER" is specified there may only be a single <identifier-3>
coded on the statement) after it was assigned a value according to the previous rule
will be multiplied by the value of <literal-2> or <identifier-2>; that result is then
subtracted from the value of <literal-1> or <identifier-1> and that result is the value
which is moved to <identifier-4>.

7. The optional "ON SIZE ERROR" and "NOT ON SIZE ERROR" clauses may be used to
detect and react to the failure or success, respectively, of an attempt to perform a
calculation. In this case, failure is defined as being an <identifier-2> with an insufficient
number of digit positions available to the left of any implied decimal point, or an
attempt to divide by zero. See [ON SIZE ERROR + NOT ON SIZE ERROR], page 251,
for additional information.

15 February 2018 Chapter 7 - PROCEDURE DIVISION



304 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

7.8.14. ENTRY� �
ENTRY Syntax
 	

ENTRY literal-1 [ USING ENTRY-Argument... ]

~~~~~ ~~~~~

————————————————————————————————————————� �
ENTRY-Argument Syntax
 	

[ BY { REFERENCE } ] identifier-1

{ ~~~~~~~~~ }

{ CONTENT }

{ ~~~~~~~ }

{ VALUE }

~~~~~

————————————————————————————————————————

The "ENTRY" statement is used to define an alternate entry-point into a subroutine, along
with the arguments that subroutine will be expecting.

1. The reserved word "BY" is optional and may be included, or not, at the discretion of
the programmer. The presence or absence of this word has no effect upon the program.

2. You may not use an "ENTRY" statement in a nested subprogram, nor may you use it in
any form of user-defined function.

3. The "USING" clause defines the arguments the subroutine entry-point supports. This
list of arguments must match up against the "USING" clause of any "CALL" statement
that will be invoking the subroutine using this entry-point.

4. Each <ENTRY-Argument> specified on the "ENTRY" statement must be defined in the
linkage section of the subroutine in which the "ENTRY" statement exists.

5. The <literal-1> value will specify the entry-point name of the subroutine. It must be
specified exactly on "CALL" statements (with regard to the use of upper- and lower-case
letters) as it is specified on the "ENTRY" statement.

6. The meaning of "REFERENCE", "CONTENT" and "VALUE" are the same as the equivalent
specifications on the "CALL" statement (see [CALL], page 281). Whatever specification
will be used for an argument on the "CALL" to this entry-point should match the
specification used in the corresponding <ENTRY-Argument>. The same rules regarding
the presence or absence of a "BY" clause on a "CALL" statement apply to the presence
or absence of a "BY" clause on the corresponding argument of the "ENTRY" statement.

Chapter 7 - PROCEDURE DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 305

7.8.15. EVALUATE� �
EVALUATE Syntax
 	

EVALUATE Selection-Subject-1 [ ALSO Selection-Subject-2 ]...

~~~~~~~~ ~~~~

{ { WHEN Selection-Object-1 [ ALSO Selection-Object-2 ] }...

~~~~ ~~~~

[ imperative-statement-1 ] }...

[ WHEN OTHER

~~~~ ~~~~~

imperative-statement-other ]

[ END-EVALUATE ]

~~~~~~~~~~~~

————————————————————————————————————————� �
EVALUATE Selection Subject Syntax
 	

{ TRUE }

{ ~~~~ }

{ FALSE }

{ ~~~~~ }

{ expression-1 }

{ identifier-1 }

{ literal-1 }

————————————————————————————————————————� �
EVALUATE Selection Object Syntax
 	

{ ANY }

{ ~~~ }

{ TRUE }

{ ~~~~ }

{ FALSE }

{ ~~~~~ }

{ partial-expression-1 }

{ }

{ { expression-2 } [ THRU|THROUGH { expression-3 } ] }

{ { identifier-2 } ~~~~ ~~~~~~~ { identifier-3 } }

{ { literal-2 } { literal-3 } }

————————————————————————————————————————

15 February 2018 Chapter 7 - PROCEDURE DIVISION



306 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

The "EVALUATE" statement provides a means of defining processing that should take place
under any number of mutually-exclusive conditions.

1. The reserved words "THRU" and "THROUGH" are interchangeable.

2. There must be at least one "WHEN" clause (in addition to any "WHEN OTHER" clause)
specified on any "EVALUATE" statement.

3. There must be at least one <Selection-Subject> specified on the "EVALUATE" state-
ment. Any number of additional <Selection-Subject> clauses may be specified, using
the "ALSO" reserved word to separate each from the prior.

4. Each "WHEN" clause (other than the "WHEN OTHER" clause, if any) must have the same
number of <Selection-Object> clauses as there are <Selection-Subject> clauses.

5. When using "THRU", the values on both sides of the "THRU" must be the same class
(both numeric, both alphanumeric, etc.).

6. A <partial-expression> is one of the following:

A. A Class Condition without a leading <identifier-1> (see [Class Conditions],
page 50).

B. A Sign Condition without a leading <identifier-1> (see [Sign Conditions], page 52).

C. A Relation Condition with nothing to the left of the relational operator (see
[Relation Conditions], page 54).

7. At execution time, each <Selection-Subject> on the "EVALUATE" statement will have
its value matched against that of the corresponding <Selection-Object> on a "WHEN"

clause, in turn, until:

A. A "WHEN" clause has each of its <Selection-Object>(s) successfully matched by the
corresponding <Selection-Subject>; this will be referred to as the ’Selected WHEN
clause’.

B. The complete list of "WHEN" clauses (except for the "WHEN OTHER" clause, if any)
has been exhausted. In this case, there is no ’Selected WHEN Clause’.

8. If a ’Selected WHEN Clause’ was identified:

A. The <imperative-statement-1> (see [Imperative Statement], page 675) immediately
following the ’Selected WHEN Clause’ will be executed. If the ’Selected WHEN
Clause’ is lacking an <imperative-statement-1>, the first <imperative-statement-1>
found after any following "WHEN" clause will be executed.

B. Once the <imperative-statement-1> has been executed, or no <imperative-
statement-1> was found anywhere after the ’Selected WHEN Clause’, control
will proceed to the statement following the "END-EVALUATE" or, if there is no
"END-EVALUATE", the first statement that follows the next period. If, however,
the <imperative-statement-1> included a "GO TO" statement, and that "GO TO"

was executed, then control will transfer to the procedure named on the "GO TO"

instead.

Chapter 7 - PROCEDURE DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 307

9. If no ’Selected WHEN Clause’ was identified:

A. The "WHEN OTHER" clause’s <imperative-statement-other> will be executed, if such
a clause was coded.

B. Control will then proceed to the statement following the "END-EVALUATE" or
the first statement that follows the next period if there is no "END-EVALUATE".
If,however, the <imperative-statement-other> included a "GO TO" statement, and
that "GO TO" was executed, then control will transfer to the procedure named on
the "GO TO" instead.

10. In order for a <Selection-Subject> to match the corresponding <Selection-Object> on a
"WHEN" clause, at least one of the following must be true:

A. The <Selection-Object> is "ANY"

B. The implied Relation Condition "<Selection-Subject> = <Selection

Object>" is TRUE — See [Relation Conditions], page 54, for the rules on how
the comparison will be made.

C. The value of the <Selection-Subject> falls within the range of values specified by
the "THRU" clause of the <Selection-Object>

D. If the <Selection-Object> is a <partial-expression>, then the conditional expres-
sion that would be represented by coding "<Selection-Subject> <Selection-

Object>" evaluates to TRUE

11. Here is a sample program that illustrates the EVALUATE statement.

IDENTIFICATION DIVISION.

PROGRAM-ID. DEMOEVALUATE.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 Test-Digit PIC 9(1).

88 Digit-Is-Odd VALUE 1, 3, 5, 7, 9.

88 Digit-Is-Prime VALUE 1, 3, 5, 7.

PROCEDURE DIVISION.

P1. PERFORM UNTIL EXIT

DISPLAY "Enter a digit (0 Quits): "

WITH NO ADVANCING

ACCEPT Test-Digit

IF Test-Digit = 0

EXIT PERFORM

END-IF

EVALUATE Digit-Is-Odd ALSO Digit-Is-Prime

WHEN TRUE ALSO FALSE

DISPLAY Test-Digit " is ODD"

WITH NO ADVANCING

WHEN TRUE ALSO TRUE

DISPLAY Test-Digit " is PRIME"

15 February 2018 Chapter 7 - PROCEDURE DIVISION



308 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

WITH NO ADVANCING

WHEN FALSE ALSO ANY

DISPLAY Test-Digit " is EVEN"

WITH NO ADVANCING

END-EVALUATE

EVALUATE Test-Digit

WHEN < 5

DISPLAY " and it’s small too"

WHEN < 8

DISPLAY " and it’s medium too"

WHEN OTHER

DISPLAY " and it’s large too"

END-EVALUATE

END-PERFORM

DISPLAY "Bye!"

STOP RUN

.

Console output when run (user input follows the colons on the prompts for input):

Enter a digit (0 Quits): 1

1 is PRIME and it’s small too

Enter a digit (0 Quits): 2

2 is EVEN and it’s small too

Enter a digit (0 Quits): 3

3 is PRIME and it’s small too

Enter a digit (0 Quits): 4

4 is EVEN and it’s small too

Enter a digit (0 Quits): 5

5 is PRIME and it’s medium too

Enter a digit (0 Quits): 6

6 is EVEN and it’s medium too

Enter a digit (0 Quits): 7

7 is PRIME and it’s medium too

Enter a digit (0 Quits): 8

8 is EVEN and it’s large too

Enter a digit (0 Quits): 9

9 is ODD and it’s large too

Enter a digit (0 Quits): 0

Bye!

Chapter 7 - PROCEDURE DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 309

7.8.16. EXIT� �
EXIT Syntax
 	

EXIT [ { PROGRAM } ]

~~~~ { ~~~~~~~ }

{ FUNCTION }

{ ~~~~~~~~ }

{ PERFORM [ CYCLE ] }

{ ~~~~~~~ ~~~~~ }

{ SECTION }

{ ~~~~~~~ }

{ PARAGRAPH }

~~~~~~~~~

————————————————————————————————————————

The "EXIT" statement is a multi-purpose statement; it may provide a common end point
for a series of procedures, exit an in-line PERFORM, paragraph or section or it may mark
the logical end of a subprogram, returning control back to the calling program.

1. The "EXIT PROGRAM" statement is not legal anywhere within a user-defined function.

2. The "EXIT FUNCTION" statement cannot be used anywhere within a subroutine.

3. Neither "EXIT PROGRAM" nor "EXIT FUNCTION" may be used within a "USE GLOBAL"

routine in "DECLARATIVES" (see [DECLARATIVES], page 244).

4. The following points describe the "EXIT" statement with none of the optional clauses:

A. When this form of an "EXIT" statement is used, it must be the only statement in
the procedure (paragraph or section) in which it occurs.

B. This usage of the "EXIT" statement simply provides a common "GO TO" end
point for a series of procedures, as may be seen in the following example:

01 Switches.

05 Input-File-Switch PIC X(1).

88 EOF-On-Input-File VALUE Y FALSE N.

...

SET EOF-On-Input-File TO FALSE.

PERFORM 100-Process-A-Transaction THRU 199-Exit

UNTIL EOF-On-Input-File.

...

100-Process-A-Transaction.

READ Input-File AT END

SET EOF-On-Input-File TO TRUE

GO TO 199-Exit

END-READ.

15 February 2018 Chapter 7 - PROCEDURE DIVISION



310 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

IF Input-Rec of Input-File = SPACES

GO TO 199-Exit *> IGNORE BLANK RECORDS!

END-IF.

<<<process the record just read>>>

199-Exit.

EXIT.

C. In this case, the "EXIT" statement takes no other run-time action.

5. The following points apply to the "EXIT PARAGRAPH" and "EXIT SECTION" statements:

A. If an "EXIT PARAGRAPH" statement or "EXIT SECTION" statement resides in a
paragraph within the scope of a procedural "PERFORM" (see [Procedural PER-
FORM], page 344), control will be returned back to the "PERFORM" for evaluation
of any "TIMES", "VARYING" and/or "UNTIL" clauses.

B. If an "EXIT PARAGRAPH" statement or "EXIT SECTION" statement resides outside
the scope of a procedural "PERFORM", control simply transfers to the first exe-
cutable statement in the next paragraph ("EXIT PARAGRAPH") or section ("EXIT
SECTION").

C. The following shows how the previous example could have been coded without a
"GO TO" by utilizing an "EXIT PARAGRAPH" statement.

01 Switches.

05 Input-File-Switch PIC X(1).

88 EOF-On-Input-File VALUE Y FALSE N.

...

SET EOF-On-Input-File TO FALSE.

PERFORM 100-Process-A-Transaction

UNTIL EOF-On-Input-File.

...

100-Process-A-Transaction.

READ Input-File AT END

SET EOF-On-Input-File TO TRUE

EXIT PARAGRAPH

END-READ.

IF Input-Rec of Input-File = SPACES

EXIT PARAGRAPH *> IGNORE BLANK RECORDS!

END-IF.

<<<process the record just read>>>

6. The following points apply to the "EXIT PERFORM" and "EXIT PERFORM CYCLE" state-
ments:

A. The "EXIT PERFORM" and "EXIT PERFORM CYCLE" statements are intended to be
used in conjunction with an in-line "PERFORM" statement (see [Inline PERFORM],
page 346).

B. An "EXIT PERFORM CYCLE" statement will terminate the current iteration of the

Chapter 7 - PROCEDURE DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 311

in-line "PERFORM", giving control to any "TIMES", "VARYING" and/or "UNTIL"

clauses for them to determine if another cycle needs to be performed.

C. An "EXIT PERFORM" statement will terminate the in-line PERFORM outright,
transferring control to the first statement following the "END-PERFORM" (if there is
one) or to the next sentence following the "PERFORM" if there is no "END-PERFORM".

D. This last example shows the final modification to the previous examples by using
an in-line "PERFORM" along with "EXIT PERFORM" and "EXIT PERFORM CYCLE"

statements:

PERFORM FOREVER

READ Input-File AT END

EXIT PERFORM

END-READ

IF Input-Rec of Input-File = SPACES

EXIT PERFORM CYCLE *> IGNORE BLANK RECORDS!

END-IF

<<<process the record just read>>>

END PERFORM

7. The following points apply to the "EXIT PROGRAM" and "EXIT FUNCTION" statements:

A. The "EXIT PROGRAM" and "EXIT FUNCTION" statements terminate the execution
of a subroutine (i.e. a program that has been CALLed by another) or user-defined
function, respectively, returning control back to the calling program.

B. An "EXIT PROGRAM" statement returns control back to the statement following
the "CALL" (see [CALL], page 281) of the subprogram. An "EXIT FUNCTION"

statement returns control back to the processing of the statement in the calling
program that invoked the user-defined function.

C. If executed by a main program, neither the "EXIT PROGRAM" nor "EXIT FUNCTION"

statements will take any action.

D. The COBOL2002 standard has made a common extension to the COBOL language
— the "GOBACK" statement (see [GOBACK], page 315) — a standard language
element; the "GOBACK" statement should be strongly considered as the preferred
alternative to both "EXIT PROGRAM" and "EXIT FUNCTION" for new subprograms.

15 February 2018 Chapter 7 - PROCEDURE DIVISION



312 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

7.8.17. FREE� �
FREE Syntax
 	

FREE { [ ADDRESS OF ] identifier-1 }...

~~~~ ~~~~~~~

————————————————————————————————————————

The "FREE" statement releases memory previously allocated to the program by the
"ALLOCATE" statement (see [ALLOCATE], page 278).

1. The "ADDRESS OF" clause is optional and may be included, or not, at the discretion
of the programmer. The presence or absence of this clause has no effect upon the
program.

2. <identifier-1> must have a "USAGE" (see [USAGE], page 223) of "POINTER", or it must
be an 01-level data item with the "BASED" (see [BASED], page 166) attribute.

3. If <identifier-1> is a "USAGE POINTER" data item and it contains a valid address, the
"FREE" statement will release the memory block the pointer references. In addition,
any "BASED" data items that the pointer was used to provide an address for will become
un-based and therefore un-usable. If <identifier-1> did not contain a valid address, no
action will be taken.

4. If <identifier-1> is a "BASED" data item and that data item is currently based (meaning
it currently has memory allocated to it), its memory is released and <identifier-1> will
become un-based and therefore un-usable. If <identifier-1> was not based, no action
will be taken.

Chapter 7 - PROCEDURE DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 313

7.8.18. GENERATE� �
GENERATE Syntax
 	

GENERATE { report-name-1 }

~~~~~~~~ { identifier-1 }

————————————————————————————————————————

The "GENERATE" statement presents data to a report.

1. The following points apply when <identifier-1> is specified:

A. <identifier-1> must be the name of a "DETAIL" (see [RWCS Lexicon], page 581)
report group.

B. If necessary, <identifier-1> may be qualified with a report name.

C. The file in whose "FD" a "REPORT" clause exists for the report in which <identifier-
1> is a detail group must be opened for "OUTPUT" or "EXTEND" at the time the
"GENERATE" is executed. See [OPEN], page 342, for information on file open modes.

D. The report in which <identifier-1> is a "DETAIL" group must have been successfully
initiated via the "INITIATE" statement (see [INITIATE], page 326) and not yet
terminated via the "TERMINATE" statement (see [TERMINATE], page 395) at the
time the "GENERATE" is executed.

E. If at least one "GENERATE" statement of this form is executed against a report, the
report is said to be a ’detail report ’. If no "GENERATE" statements of this form are
executed against a report, the report is said to be a ’summary report ’.

2. The following points apply when <report-name-1> is specified:

A. <report-name-1> must be the name of a report having an "RD" defined for it in
the report section.

B. There must be at least one "CONTROL" (see [RWCS Lexicon], page 581) group
defined for <report-name-1>.

C. There cannot be more than one "DETAIL" group defined for <report-name-1>.

D. The file in whose "FD" a "REPORT <report-name-1>" clause exists must be open
for "OUTPUT" or "EXTEND" at the time the GENERATE is executed.

E. <report-name-1> must have been successfully initiated (via "INITIATE <report-
name-1>") and not yet terminated (via TERMINATE) at the time the "GENERATE"
is executed. See [OPEN], page 342, for information on file open modes.

F. The "DETAIL" group which is defined for <report-name-1> will be processed but
will not actually be presented to any report page. This will allow summary pro-
cessing to take place. If all "GENERATE" statements are of this form, the report

15 February 2018 Chapter 7 - PROCEDURE DIVISION



314 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

is said to be a ’summary report ’. If at least one "GENERATE <identifier-1>" is
executed, the report is considered to be a ’detail report ’.

3. When the first "GENERATE" statement for a report is executed, the contents of all
control fields are saved so they may be referenced during the processing of subsequent
"GENERATE" statements.

4. When, during the processing of a subsequent "GENERATE", it is determined that a
control field has changed value (ie. a control break has occurred), the appropriate
control footing and control heading processing will take place and a snapshot of the
current values of all control fields will again be saved.

Chapter 7 - PROCEDURE DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 315

7.8.19. GOBACK� �
GOBACK Syntax
 	

GOBACK

~~~~~~

————————————————————————————————————————

The "GOBACK" statement is used to logically terminate an executing program.

1. If executed within a subprogram (i.e. a subroutine or user-defined function), "GOBACK"
behaves like an "EXIT PROGRAM" or "EXIT FUNCTION" statement, respectively.

2. If executed within a main program, "GOBACK" will act as a "STOP RUN" statement.

15 February 2018 Chapter 7 - PROCEDURE DIVISION



316 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

7.8.20. GO TO

7.8.20.1. Simple GO TO� �
Simple GO TO Syntax
 	

GO TO procedure-name-1

~~

————————————————————————————————————————

This form of the "GO TO" statement unconditionally transfers control in a program to the
first executable statement within the specified <procedure-name-1>.

1. The reserved word "TO" is optional and may be included, or not, at the discretion of
the programmer. The presence or absence of this word has no effect upon the program.

2. If this format of the "GO TO" statement appears in a consecutive sequence of imperative
statements (see [Imperative Statement], page 675) within a sentence, it must be the
final statement in the sentence.

3. If a "GO TO" is executed within the scope of. . .

A. ...an in-line "PERFORM" (see [PERFORM], page 344), the "PERFORM" is terminated
as control of execution transfers to <procedure-name-1>.

B. ...a procedural "PERFORM" (see [PERFORM], page 344), and <procedure-name-1>
lies outside the scope of that "PERFORM", the "PERFORM" is terminated as control
of execution transfers to <procedure-name-1>.

C. ...a "MERGE" statement (see [MERGE], page 333) "OUTPUT PROCEDURE" or within
the scope of either an "INPUT PROCEDURE" or "OUTPUT PROCEDURE" of a "SORT"

statement (see [File-Based SORT], page 376), and <procedure-name-1> lies outside
the scope of that procedure, the "SORT" or "MERGE" operation is terminated as
control of execution transfers to <procedure-name-1>. Any sorted or merged data
accumulated to that point is lost.

Chapter 7 - PROCEDURE DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 317

7.8.20.2. GO TO DEPENDING ON� �
GO TO DEPENDING ON Syntax
 	

GO TO procedure-name-1...

~~

DEPENDING ON identifier-1

~~~~~~~~~

————————————————————————————————————————

This form of the "GO TO" statement will transfer control to any one of a number of specified
procedure names depending on the numeric value of the identifier specified on the statement.

1. The reserved word "TO" is optional and may be included, or not, at the discretion of
the programmer. The presence or absence of this word has no effect upon the program.

2. The "PICTURE" (see [PICTURE], page 198) and/or "USAGE" (see [USAGE], page 223)
of the specified <identifier-1> must be such as to define it as a numeric, unedited,
preferably unsigned integer data item.

3. If the value of <identifier-1> has the value 1, control will be transferred to the 1st
specified procedure name. If the value is 2, control will transfer to the 2nd procedure
name, and so on.

If control of execution is transferred to a procedure named on the statement, and the
"GO TO" is executed within the scope of. . .

A. ...an in-line "PERFORM" (see [PERFORM], page 344), the "PERFORM" is terminated
as control of execution transfers to the procedure named on the statement.

B. ...a procedural "PERFORM" (see [PERFORM], page 344), and <procedure-name-1>
lies outside the scope of that "PERFORM", the "PERFORM" is terminated as control
of execution transfers to the procedure named on the statement.

C. ...a "MERGE" statement (see [MERGE], page 333) "OUTPUT PROCEDURE" or within
the scope of either an "INPUT PROCEDURE" or "OUTPUT PROCEDURE" of a "SORT"

statement (see [File-Based SORT], page 376), and <procedure-name-1> lies outside
the scope of that procedure, the "SORT" or "MERGE" operation is terminated as
control of execution transfers to the procedure named on the statement. Any
sorted or merged data accumulated to that point is lost.

4. If the value of <identifier-1> is less than 1 or exceeds the total number of procedure
names specified on the statement, control will simply fall through into the next state-
ment following the "GO TO".

5. The following example shows how "GO TO ... DEPENDING ON" may be used in a
real application situation, and compares it against an alternative — "EVALUATE" (see
[EVALUATE], page 305).

GO TO DEPENDING ON Example Equivalent EVALUATE Example

15 February 2018 Chapter 7 - PROCEDURE DIVISION



318 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

================================= =================================

GO TO EVALUATE Acct-Type

ACCT-TYPE-1 WHEN 1

ACCT-TYPE-2 <<< Handle Acct Type 1 >>>

ACCT-TYPE-3 WHEN 2

DEPENDING ON Acct-Type. <<< Handle Acct Type 2 >>>

<<< Invalid Acct Type >>> WHEN 3

GO TO All-Done. <<< Handle Acct Type 3 >>>

Acct-Type-1. WHEN OTHER

<<< Handle Acct Type 1 >>> <<< Invalid Acct Type >>>

GO TO All-Done. END-EVALUATE.

Acct-Type-2.

<<< Handle Acct Type 2 >>>

GO TO All-Done.

Acct-Type-3.

<<< Handle Acct Type 3 >>>

All-Done.

6. Current programming philosophy would prefer the use of the "EVALUATE" statement
to that of this form of the "GO TO" statement.

Chapter 7 - PROCEDURE DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 319

7.8.21. IF� �
IF Syntax
 	

IF conditional-expression

~~

THEN { imperative-statement-1 }

{ NEXT SENTENCE }

~~~~ ~~~~~~~~

[ ELSE { imperative-statement-2 } ]

~~~~ { NEXT SENTENCE }

~~~~ ~~~~~~~~

[ END-IF ]

~~~~~~

————————————————————————————————————————

The "IF" statement is used to conditionally execute an imperative statement (see
[Imperative Statement], page 675) or to select one of two different imperative statements
to execute based upon the TRUE/FALSE value of a conditional expression.

1. The reserved word "THEN" is optional and may be included, or not, at the discretion of
the programmer. The presence or absence of this word has no effect upon the program.

2. You cannot use both "NEXT SENTENCE" and the "END-IF" scope terminator in the same
"IF" statement.

3. If <conditional-expression> evaluates to TRUE, <imperative-statement-1> will be ex-
ecuted regardless of whether or not an "ELSE" clause is present. Once <imperative-
statement-1> has been executed, control falls into the first statement following the
"END-IF" or to the first statement of the next sentence if there is no "END-IF" clause.

4. If the optional "ELSE" clause is present and conditional-expression evaluates to false,
then (and only then) <imperative-statement-2> will be executed. Once <imperative-
statement-2> has been executed, control falls into the first statement following the
"END-IF" or to the first statement of the next sentence if there is no "END-IF" clause.

5. The clause "NEXT SENTENCE" may be substituted for either imperative-statement, but
not both. If control reaches a "NEXT SENTENCE" clause due to the truth or falsehood of
<conditional-expression>, control will be transferred to the first statement of the next
sentence found in the program (the first statement after the next period).

"NEXT SENTENCE" was needed for COBOL programs that were coded according to
pre-1985 standards that wish to nest one "IF" statement inside another. See [Use of
VERB/END-VERB Constructs], page 60, for an explanation of why "NEXT SENTENCE"

was necessary.

Programs coded for 1985 (and beyond) standards don’t need it, instead using the ex-
plicit scope-terminator "END-IF" to inform the compiler where <imperative-statement-

15 February 2018 Chapter 7 - PROCEDURE DIVISION



320 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

2> (or <imperative-statement-1> if there is no "ELSE" clause coded) ends. New Gnu-
COBOL programs should be coded to use the "END-IF" scope terminator for "IF"

statements. See [Use of VERB/END-VERB Constructs], page 60, for additional infor-
mation.

Chapter 7 - PROCEDURE DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 321

7.8.22. INITIALIZE� �
INITIALIZE Syntax
 	

INITIALIZE|INITIALISE identifier-1...

~~~~~~~~~~ ~~~~~~~~~~

[ WITH FILLER ]

~~~~~~

[ { category-name-1 } TO VALUE ]

{ ALL } ~~~~~

~~~

[ THEN REPLACING { category-name-2 DATA BY

~~~~~~~~~ ~~

[ LENGTH OF ] { literal-1 } }... ]

~~~~~~ { identifier-1 }

[ THEN TO DEFAULT ]

~~~~~~~

————————————————————————————————————————

The "INITIALIZE" statement initializes each <identifier-1> with certain specific values,
depending upon the options specified.

1. The reserved words "DATA", "OF", "THEN", "TO" and "WITH" are optional and may be
included, or not, at the discretion of the programmer. The presence or absence of these
words has no effect upon the program.

2. The reserved words "INITIALIZE" and "INITIALISE" are interchangeable.

3. The "WITH FILLER", "REPLACING" and "DEFAULT" clauses are meaningful only if
<identifier-1> is a group item. They are accepted if it’s an elementary item, but will
serve no purpose. The "VALUE" clause is meaningful in both cases.

4. A <category-name-1> and/or <category-name-2> may be any of the following:

"ALPHABETIC"

The "PICTURE" (see [PICTURE], page 198) of the data item only contains
"A" symbols.

"ALPHANUMERIC"

The "PICTURE" of the data item contains only "X" or a combination of "A"
and "9" symbols.

"ALPHANUMERIC-EDITED"

The "PICTURE" of the data item contains only "X" or a combination of "A"
and "9" symbols plus at least one "B", "0" (zero) or "/" symbol.

15 February 2018 Chapter 7 - PROCEDURE DIVISION



322 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

"NUMERIC"

The data item is one that is described with a picture less "USAGE" (see
[USAGE], page 223) or has a "PICTURE" composed of nothing but "P",
"9", "S" and "V" symbols.

"NUMERIC-EDITED"

The "PICTURE" of the data item contains nothing but the symbol "9" and
at least one of the editing symbols "$", "+", "-", "CR", "DB", ".", ",",
"*" or "Z".

"NATIONAL"

The data item is one containing nothing but the "N" symbol.

"NATIONAL-EDITED"

The data item contains nothing but "N", "B", "/" and "0" symbols.

5. From the sequence of <identifier-1> data items specified on the "INITIALIZE" state-
ment, a list of initialized fields referred to as the field list in the remainder of this
section, will include:

A. Every <identifier-1> that is an elementary item, including any that may have the
"REDEFINES" (see [REDEFINES], page 209) clause in their descriptions.

B. Every non-FILLER elementary item subordinate to <identifier-1>, provided that
elementary item neither contains a "REDEFINES" clause in its definition nor belongs
to a group item subordinate to <identifier-1> which contains a "REDEFINES" clause
in its definition.

C. If the optional "WITH FILLER" clause is included on the "INITIALIZE" statement,
then every FILLER elementary item subordinate to each <identifier-1> will be
included as well, provided that elementary item neither contains a "REDEFINES"

clause in its definition nor belongs to a group item subordinate to <identifier-1>
which contains a "REDEFINES" clause in its definition..

6. Once a field list has been determined, each item in that field list will be initialized as if
an individual "MOVE" (see [MOVE], page 336) statement to that effect had been coded.
The rules for initialization are as follows:

7. If no "VALUE", "REPLACING" or "DEFAULT" clauses are coded, each member of the field
list will be initialized as if the figurative constant "ZERO" (if the field list item is numeric
or numeric-edited) or "SPACES" (otherwise) were being moved to it.

8. If a "VALUE" clause is specified on the "INITIALIZE" statement, each qualifying member
of the field list having a compile-time "VALUE" (see [VALUE], page 234) specified in
it’s definition will be initialized to that value. Field list members with "VALUE" clauses
will qualify for this treatment as follows:

A. If the "ALL" keyword was specified on the "VALUE" clause, all members of the field
list with "VALUE" clauses will qualify.

Chapter 7 - PROCEDURE DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 323

B. If <category-name-1> is specified instead of "ALL", only those members of the field
list with "VALUE" clauses that also meet the criteria set down for the specified
<category-name> (see the list above) will qualify.

C. If you need to apply "VALUE" initialization to multiple <category-name-1> values,
you will need to use multiple "INITIALIZE" statements.

9. If a "REPLACING" clause is specified on the "INITIALIZE" statement, each qualifying
member of the field list that was not already initialized by a "VALUE" clause, if any,
will be initialized to the specified <literal-1> or <identifier-1> value.

Only those as-yet uninitialized list members meeting the criteria set forth for the spec-
ified <category-name-2> will qualify for this initialization.

If you need to apply "REPLACING" initialization to multiple <category-name-2> values,
you may repeat the syntax after the reserved word "REPLACING", as necessary.

10. If a "DEFAULT" clause is specified, any remaining uninitialized members of the field list
will be initialized according to the default for their class (numeric and numeric-edited
are initialized to ZERO, all others are initialized to SPACES).

11. The following example may help your understanding of how the "INITIALIZE" state-
ment works. The sample code makes use of the COBDUMP program to dump the
storage that is (or is not) being initialized. See Section “COBDUMP” in GnuCOBOL
Sample Programs, for a source and cross-reference listing of the COBDUMP program.

IDENTIFICATION DIVISION.

PROGRAM-ID. DemoInitialize.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 Item-1.

05 I1-A VALUE ALL ’*’.

10 FILLER PIC X(1).

10 I1-A-1 PIC 9(1) VALUE 9.

05 I1-B USAGE BINARY-CHAR.

05 I1-C PIC A(1) VALUE ’C’.

05 I1-D PIC X/X VALUE ’ZZ’.

05 I1-E OCCURS 2 TIMES PIC 9.

PROCEDURE DIVISION.

000-Main.

DISPLAY "MOVE HIGH-VALUES TO Item-1"

PERFORM 100-Init-Item-1

CALL "COBDUMP" USING Item-1

DISPLAY " "

DISPLAY "INITIALIZE Item-1"

INITIALIZE Item-1

CALL "COBDUMP" USING Item-1

PERFORM 100-Init-Item-1

15 February 2018 Chapter 7 - PROCEDURE DIVISION



324 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

DISPLAY " "

DISPLAY "INITIALIZE Item-1 WITH "FILLER""

MOVE HIGH-VALUES TO Item-1

INITIALIZE Item-1 WITH "FILLER"

CALL "COBDUMP" USING Item-1

PERFORM 100-Init-Item-1

DISPLAY " "

DISPLAY "INITIALIZE Item-1 ALL TO VALUE"

MOVE HIGH-VALUES TO Item-1

INITIALIZE Item-1 ALPHANUMERIC TO VALUE

CALL "COBDUMP" USING Item-1

PERFORM 100-Init-Item-1

DISPLAY " "

DISPLAY "INITIALIZE Item-1 REPLACING NUMERIC BY 1"

MOVE HIGH-VALUES TO Item-1

INITIALIZE Item-1 REPLACING NUMERIC BY 1

CALL "COBDUMP" USING Item-1

PERFORM 100-Init-Item-1

DISPLAY " "

STOP RUN

.

100-Init-Item-1.

MOVE HIGH-VALUES TO Item-1

.

When executed, this program produces the following output:

MOVE HIGH-VALUES TO Item-1

<-Addr-> Byte <---------------- Hexadecimal ----------------> <---- Char ---->

======== ==== =============================================== ================

00404058 1 FF FF FF FF FF FF FF FF FF .........

INITIALIZE Item-1

<-Addr-> Byte <---------------- Hexadecimal ----------------> <---- Char ---->

======== ==== =============================================== ================

00404058 1 FF 30 00 20 20 2F 20 30 30 .0. / 00

INITIALIZE Item-1 WITH "FILLER"

<-Addr-> Byte <---------------- Hexadecimal ----------------> <---- Char ---->

======== ==== =============================================== ================

00404058 1 20 30 00 20 20 2F 20 30 30 0. / 00

INITIALIZE Item-1 ALL TO VALUE

<-Addr-> Byte <---------------- Hexadecimal ----------------> <---- Char ---->

======== ==== =============================================== ================

Chapter 7 - PROCEDURE DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 325

00404058 1 2A 2A FF 43 5A 5A 20 FF FF **.CZZ ..

INITIALIZE Item-1 REPLACING NUMERIC BY 1

<-Addr-> Byte <---------------- Hexadecimal ----------------> <---- Char ---->

======== ==== =============================================== ================

00404058 1 FF 31 01 FF FF FF FF 31 31 .1.....11

15 February 2018 Chapter 7 - PROCEDURE DIVISION



326 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

7.8.23. INITIATE� �
INITIATE Syntax
 	

INITIATE report-name-1

~~~~~~~~

————————————————————————————————————————

The "INITIATE" statement starts Report-Writer Control System (RWCS) processing for a
report.

1. Each <report-name-1> must be the name of a report having an "RD" (see [REPORT
SECTION], page 143) defined for it.

2. The file in whose "FD" (see [File/Sort-Description], page 130) a "REPORT <report-

name-1>" clause exists must be open for "OUTPUT" or "EXTEND" at the time the
"INITIATE" statement is executed. See [OPEN], page 342, for more information on file
open modes.

3. The "INITIATE" statement will initialize all of the following for each report named on
the statement:

• All sum counters, if any, will be set to 0

• The report’s "LINE-COUNTER" special register (see [Special Registers], page 255)
will be set to 0

• The report’s "PAGE-COUNTER" special register will be set to 1

4. No report content will actually presented to the report file as a result of a successful
"INITIATE" statement — that will not occur until the first "GENERATE" statement (see
[GENERATE], page 313) is executed.

Chapter 7 - PROCEDURE DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 327

7.8.24. INSPECT� �
INSPECT Syntax
 	

INSPECT { literal-1 }

~~~~~~~ { identifier-1 }

{ function-reference-1 }

[ TALLYING { identifier-2 FOR { ALL|LEADING|TRAILING { literal-2 } }

~~~~~~~~ ~~~ { ~~~ ~~~~~~~ ~~~~~~~~ { identifier-3 } }

{ CHARACTERS }

~~~~~~~~~~

[ | { AFTER|BEFORE } INITIAL { literal-3 } | ] }... ]

| ~~~~~ ~~~~~~ { identifier-4 } |

[ REPLACING { { { ALL|FIRST|LEADING|TRAILING { literal-4 } }

~~~~~~~~~ { { ~~~ ~~~~~ ~~~~~~~ ~~~~~~~~ { identifier-5 } }

{ CHARACTERS }

{ ~~~~~~~~~~ }

BY { [ ALL ] literal-5 }

~~ { ~~~ }

{ identifier-6 }

[ | { AFTER|BEFORE } INITIAL { literal-6 } | ] }... ]

| ~~~~~ ~~~~~~ { identifier-7 } |

[ CONVERTING { { literal-7 } TO { literal-8 }

~~~~~~~~~~ { identifier-8 } ~~ { identifier-9 }

[ | { AFTER|BEFORE } INITIAL { literal-9 } | ] ]

| ~~~~~ ~~~~~~ { identifier-10 } |

————————————————————————————————————————

The "INSPECT" statement is used to perform various counting and/or data-alteration op-
erations against strings.

1. The reserved word "INITIAL" is optional and may be included, or not, at the discretion
of the programmer. The presence or absence of this words has no effect upon the
program.

2. If a "CONVERTING" clause is specified, neither the "TALLYING" nor "REPLACING" clauses
may be used.

3. If either the "TALLYING" or "REPLACING" clauses are specified, the "CONVERTING" clause
cannot be used.

15 February 2018 Chapter 7 - PROCEDURE DIVISION



328 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

4. If both the "TALLYING" and "REPLACING" clauses are specified, they must be specified
in the order shown.

5. All literals and identifiers must be explicitly or implicitly defined as alphanumeric or
alphabetic.

6. If <function-reference-1> is specified, it must be an invocation of an intrinsic function
that returns a string result. Additionally, only the "TALLYING" clause may be specified.

7. If <literal-1> is specified, only the "TALLYING" clause may be specified.

8. Whichever is specified — <literal-1>, <identifier-1> or <function-reference-1> — that
item will be referred to in the discussions that follows as the ’inspect subject ’.

9. The three optional clauses control the operation of this statement as follows:

A. The "CONVERTING" clause replaces one or more individual characters found in the
inspect subject with a different character in much the same manner as is possible
with the "TRANSFORM" statement (see [TRANSFORM], page 396).

B. The "REPLACING" clause replaces one or more sub strings located in the inspect
subject with a different, but equally-sized replacement sub string. If you need
to replace a sub string with another of a different length, consider using ei-
ther the "SUBSTITUTE" intrinsic function (see [SUBSTITUTE], page 492) or the
"SUBSTITUTE-CASE" intrinsic function (see [SUBSTITUTE-CASE], page 493).

C. The "TALLYING" clause counts the number of occurrences of one or more strings
of characters in the inspect subject.

10. The optional "INITIAL" clauses may be used to limit the range of characters in the
inspect subject that the "CONVERTING", "REPLACING" or "TALLYING" instruction in
which they occur will apply. We call this the ’target range’ of the inspect subject. The
target range is defined as follows:

A. If there is no "INITIAL" clause specified, the target range is the entire inspect
subject.

B. Either a "BEFORE" phrase, an "AFTER" phrase or both may be specified. They may
be specified in any order.

C. The starting point of the target range will be the first character following the
sub string identified by the "AFTER" specification. The ending point will be the
last character immediately preceding the sub string identified by the "BEFORE"

specification.

D. If no "AFTER" is specified, the first character position of the target range will be
character position #1 of the inspect subject.

E. If no "BEFORE" is specified, the last character position of the target range will be
the last character position of the inspect subject.

11. The following points apply to the use of the "TALLYING" clause:

A. While there will typically be only be a single set of counting instructions on an

Chapter 7 - PROCEDURE DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 329

"INSPECT":

INSPECT Character-String

TALLYING C-ABC FOR ALL "ABC"

There could be multiple counting instructions specified:

INSPECT Character-String

TALLYING C-ABC FOR ALL "ABC"

C-BCDE FOR ALL "BCDE"

When there are multiple instructions, the one specified first will take priority over
the one specified second, (and so forth) as the "INSPECT" proceeds forward through
the inspect subject, character-by-character.

With the above example, if the inspect subject were "--ABCDEF----BCDEF--",
the final result of the counting would be that C-ABC would be incremented by 1
while C-BCDE would be incremented only once; although the human eye clearly
sees two "BCDE" sequences, the "INSPECT ... TALLYING" would only "see" the
second — the first would have been processed by the first (higher-priority) counting
instruction.

B. Each set of counting instructions contains the following information:

a. A target range, specified by the presence of an "AFTER INITIAL" and/or
"BEFORE INITIAL" clause; the rules for specifying target ranges were covered
previously.

b. A Target Sub string — this is a sequence of characters to be located somewhere
in the inspect subject and counted. Target sub strings may be defined as
a literal value (figurative constants are allowed) or by the contents of an
identifier. If the target sub string is specified as a figurative constant, it will
be assumed to have a length of one (1) character. The keywords before the
literal or identifier control how many target sub strings could be identified
from that replacement instruction, as follows:

"ALL" — identifies every possible target sub string that occurs within
the target range. There are three occurrences of "ALL ’XX’" found in
"aXXabbXXccXXdd".

"LEADING"— identifies only an occurrence of the target sub string found either
at the first character position of the target range or immediately following a
previously-found occurrence. There are no occurrences of "LEADING ’XX’"

found in "aXXabbXXccXXdd", but there is one occurrence of "LEADING ’a’"

(the first character).

"TRAILING" — identifies only an occurrence of the target sub string found
either at the very end of the target range or toward the end, followed by
nothing but other occurrences. There are no occurrences of "LEADING ’XX’"

15 February 2018 Chapter 7 - PROCEDURE DIVISION



330 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

found in "aXXabbXXccXXdd", but there are two occurrences of "TRAILING

’d’".

The "CHARACTERS" option will match any one single character, regardless of
what that character is.

C. <identifier-2> will be incremented by 1 each time the target sub string is found
within the target range of the inspect subject. The "INSPECT" statement will not
zero-out <identifier-2> at the start of execution of the "INSPECT" — it is the pro-
grammer’s responsibility to ensure that all <identifier-2> data items are properly
initialized to the desired starting values prior to execution of the "INSPECT".

12. The following points apply to the use of the "REPLACING" clause:

A. While there will typically be only be a single set of replacement instructions on an
"INSPECT":

INSPECT Character-String

REPLACING ALL "ABC" BY "DEF"

There could be multiple replacement instructions:

INSPECT Character-String

REPLACING ALL "ABC" BY "DEF"

ALL "BCDE" BY "WXYZ"

When there are multiple replacement instructions, the one specified first will take
priority over the one specified second, (and so forth) as the "INSPECT" proceeds
forward through the inspect subject, character-by-character.

With the above example, if the inspect subject were "--ABCDEF----BCDEF--", the
final result of the replacement would be "--DEFDEF----WXYZF--".

B. Each set of replacement instructions contains the following information:

a. A target range, specified by the presence of an "AFTER INITIAL" and/or
"BEFORE INITIAL" clause; the rules for specifying target ranges were covered
previously.

b. A Target Sub string — this is a sequence of characters to be located somewhere
in the inspect subject and subsequently replaced with a new value. Target
sub strings, which are specified before the "BY" keyword, may be defined
as a literal value (figurative constants are allowed) or by the contents of an
identifier. If the target sub string is specified as a figurative constant, it will
be assumed to have a length of one (1) character. The keywords before the
literal or identifier control how many target sub strings could be identified
from that replacement instruction, as follows:

"ALL" — identifies every possible target sub string that occurs within
the target range. There are three occurrences of "ALL ’XX’" found in
"aXXabbXXccXXdd".

Chapter 7 - PROCEDURE DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 331

"FIRST" — the first occurrence of the target sub string found within the
target range. The "FIRST ’XX’" found in "aXXabbXXccXXdd" would be the
one found between the "a" and "b" characters.

"LEADING" — an occurrence of the target sub string found either at the first
character position of the target range or immediately following a previously-
found occurrence. There are no occurrences of "LEADING ’XX’" found in
"aXXabbXXccXXdd", but there is one occurrence of "LEADING ’a’" (the first
character).

"TRAILING" — an occurrence of the target sub string found either at the
very end of the target range or toward the end, followed by nothing but
other occurrences. There are no occurrences of "LEADING ’XX’" found in
"aXXabbXXccXXdd", but there are two occurrences of "TRAILING ’d’".

The "CHARACTERS" option will match any one single character. When you use
this option, the replacement sub string (see the next item) must be exactly
one character in length.

c. A Replacement Sub string — this is the sequence of characters that should
replace the target sub string. Replacement sub strings are specified after the
"BY" keyword. They too may be specified as a literal, either with or without
an "ALL" prefix (again, figurative constants are allowed) or the value of an
identifier. If a figurative constant is coded, the "ALL" keyword will be assumed,
even if it wasn’t specified. Literals without "ALL" will either be truncated or
padded with spaces on the right to match the length of the target sub string.
Literals with "ALL" or figurative constants will be repeated as necessary to
match the length of the target sub string. Identifiers specified as replacement
sub strings must be defined with a length equal to that of the target sub
string.

13. When both "REPLACING" and "TALLYING" are specified:

A. The "INSPECT" statement will make a single pass through the sequence of charac-
ters comprising the inspect subject. As the pointer to the current inspect target
character reaches a point where it falls within the explicit or implicit target ranges
specified on the operational instructions of the two clauses, the actions specified
by those instructions will become eligible to be taken. As the character pointer
reaches a point where it falls past the end of target ranges, the instructions be-
longing to those target ranges will become disabled.

B. At any point in time, there may well be multiple"REPLACING" and/or "TALLYING"
operational instructions active. Only one of the "TALLYING" and one of the
"REPLACING" instructions (if any) can be executed for any one character pointer
position. In each case, it will be the first of the instructions in each category that
produces a match with it’s target string specification.

C. When both a "TALLYING" and a "REPLACING" instruction have been selected for
execution, the "TALLYING" instruction will be executed first. This guarantees that

15 February 2018 Chapter 7 - PROCEDURE DIVISION



332 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

"TALLYING" will compute occurrences based upon the initial value of the inspect
subject before any replacements occur.

14. The following points apply to the use of the "CONVERTING" clause:

A. A "CONVERTING" clause performs a series of single-character substitutions against a
data item in much the same manner as is possible with the "TRANSFORM" statement
(see [TRANSFORM], page 396).

B. Unlike the "TALLYING" and "REPLACING" clauses, both of which may have mul-
tiple operations specified, there may be only one "CONVERTING" operation per
"INSPECT".

C. If the length of <literal-7> or <identifier-8> (the "from" string) exceeds the length
of <literal-8> or <identifier-9> (the "to" string), then the "to" string will be as-
sumed to be padded to the right with enough spaces to make it the same length
as the "from" string.

D. If the length of the "from" string is less than the length of the "to" string, then
the "to" string will be truncated to the length of the "from" string.

E. Each character, in turn, within the "from" string will be searched for in the target
range of the inspect subject. Each located occurrence will be replaced by the
corresponding character of the "to" string.

Chapter 7 - PROCEDURE DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 333

7.8.25. MERGE� �
MERGE Syntax
 	

MERGE sort-file-1

~~~~~

{ ON { ASCENDING } KEY identifier-1... }...

{ ~~~~~~~~~ }

{ DESCENDING }

~~~~~~~~~~

[ WITH DUPLICATES IN ORDER ]

~~~~~~~~~~

[ COLLATING SEQUENCE IS alphabet-name-1 ]

~~~~~~~~~

USING file-name-1 file-name-2...

~~~~~

{ OUTPUT PROCEDURE IS procedure-name-1 }

{ ~~~~~~ ~~~~~~~~~ }

{ [ THRU|THROUGH procedure-name-2 ] }

{ ~~~~ ~~~~~~~ }

{ GIVING file-name-3... }

{ ~~~~~~ }

The "DUPLICATES" clause is syntactically recognized but is otherwise non-functional.

————————————————————————————————————————

The "MERGE" statement merges the contents of two or more files that have each been pre-
sorted on a set of specified identical keys.

1. The reserved words "IN", "IS", "KEY", "ON", "ORDER", "SEQUENCE" and "WITH" are
optional and may be included, or not, at the discretion of the programmer. The
presence or absence of these words has no effect upon the program.

2. The reserved words "THRU" and "THROUGH" are interchangeable.

3. GnuCOBOL always behaves as if the "WITH DUPLICATES IN ORDER" clause is specified,
even if it isn’t.

While any COBOL implementation’s sort or merge facilities guarantee that records
with duplicate key values will be in proper sequence with regard to other records
with different key values, they generally make no promises as to the resulting relative
sequence of records having duplicate key values with one another.

Some COBOL implementations provide this optional clause to force their sort and
merge facilities to retain duplicate key-value records in their original input sequence,
relative to one another.

15 February 2018 Chapter 7 - PROCEDURE DIVISION



334 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

4. The <sort-file-1> named on the "MERGE" statement must be defined using a sort de-
scription ("SD" (see [File/Sort-Description], page 130)). This file is referred to in the
remainder of this discussion as the "merge work file".

5. Each <file-name-1>, <file-name-2> and <file-name-3> (if specified) must reference
"ORGANIZATION LINE SEQUENTIAL" (see [ORGANIZATION LINE SEQUENTIAL],
page 116) or "ORGANIZATION SEQUENTIAL" (see [ORGANIZATION SEQUENTIAL],
page 114) files. These files must be defined using a file description ("FD" (see
[File/Sort-Description], page 130)).

6. The <identifier-1> . . . field(s) must be defined as field(s) within a record of <sort-file-
1>.

7. The record descriptions of <file-name-1>, <file-name-2>, <file-name-3> (if any) and
<sort-file-1> are assumed to be identical in layout and size. While the actual data names
used for fields in these files’ records may differ, the structure of records, "PICTURE" (see
[PICTURE], page 198) of fields, "USAGE" (see [USAGE], page 223) of fields, size of fields
and location of fields within the records should match field-by-field across all files, at
least as far as the "KEY" fields are concerned.

8. A common programming technique when using the "MERGE" statement is to define the
records of all files involved as simple elementary items of the form "01 record-name

PIC X(n)." where n is the record size. The only file where records are actually de-
scribed in detail would then be <sort-file-1>.

9. The following rules apply to the files named on the "USING" clause:

A. None of them may be open at the time the "MERGE" is executed.

B. Each of those files is assumed to be already sorted according to the specifications
set forth on the "MERGE" statement’s "KEY" clause.

C. No two of those files may be referenced on a "SAME RECORD AREA" (see [SAME
RECORD AREA], page 123), "SAME SORT AREA" or "SAME SORT-MERGE AREA"

statement.

10. The merging process is as follows:

A. As the "MERGE" statement begins execution, the first record in each of the "USING"
files is read automatically.

B. As the "MERGE" statement executes, the current record from each of the "USING"

files is examined and compared to each other according to the rules set forth by the
"KEY" clause and the alphabet (see [Alphabet-Name-Clause], page 101) specified
on the "COLLATING SEQUENCE" clause. The record that should be next in sequence
will be written to the merge work file and the "USING" file from which that record
came will be read so that its next record is available. As end-of-file conditions are
reached on "USING" files, those files will be excluded from further processing —
processing continues with the remaining files until all the contents of all of them
have been exhausted.

C. After the merge work file has been populated, the merged data will be written to

Chapter 7 - PROCEDURE DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 335

each <file-name-3> if the "GIVING" clause was specified, or will be processed by
utilizing an "OUTPUT PROCEDURE".

D. When "GIVING" is specified, none of the <file-name-3> files can be open at the
time the "MERGE" statement is executed.

E. When an output procedure is used, the procedure(s) specified on the "OUTPUT

PROCEDURE" clause will be invoked as if by a procedural "PERFORM" (see [Procedural
PERFORM], page 344) statement with no "VARYING", "TIMES" or "UNTIL" options
specified. Merged records may be read from the merge work file — one at a time
— within the output procedure using the "RETURN" (see [RETURN], page 358)
statement.

A "GO TO" statement (see [GO TO], page 316) that transfers control out of the
output procedure will terminate the "MERGE" statement but allows the program
to continue executing from the point where the "GO TO" statement transferred
control to. Once an output procedure has been "aborted" using a "GO TO"

it cannot be resumed, and the contents of the merge work file are lost. You
may, however, re-execute the "MERGE" statement itself. USING A "GO TO"

statement TO PREMATURELY TERMINATE A MERGE, OR RE-STARTING
A PREVIOUSLY-CANCELLED MERGE IS NOT CONSIDERED GOOD
PROGRAMMING STYLE AND SHOULD BE AVOIDED.

An output procedure should be terminated in the same way a procedural
"PERFORM" statement would be. Usually, this action will be taken once the
"RETURN" statement indicates that all records in the merge work file have been
processed, but termination could occur at any time — via an "EXIT" statement
(see [EXIT], page 309) — if required.

Neither a file-based "SORT" statement (see [File-Based SORT], page 376) nor an-
other "MERGE" statement may be executed within the scope of the procedures
comprising the output procedure unless those statements utilize a different sort or
merge work file.

F. Once the output procedure terminates, or the last <file-name-3> file has been
populated with merged data, the output phase — and the "MERGE" statement
itself — is complete.

15 February 2018 Chapter 7 - PROCEDURE DIVISION



336 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

7.8.26. MOVE

7.8.26.1. Simple MOVE� �
Simple MOVE Syntax
 	

MOVE { literal-1 } TO identifier-2...

~~~~ { identifier-1 } ~~

————————————————————————————————————————

The Simple "MOVE" statement moves a specific value to one or more receiving data items.

1. The "MOVE" statement will replace the contents of one or more receiving data items
(<identifier-2>) with a new value — the one specified by <literal-1> or <identifier-1>.

2. Only numeric data can be moved to a numeric or numeric-edited <identifier-2>. A
"MOVE" involving numeric data will perform any necessary format conversions that
might be necessary due to differing "USAGE" (see [USAGE], page 223) specifications.

3. The contents of the <identifier-1> data item will not be changed, unless that same
data item appears as an <identifier-2>. Note that such situations will cause a warning
message to be issued by the compiler, if warning messages are enabled.

Chapter 7 - PROCEDURE DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 337

7.8.26.2. MOVE CORRESPONDING� �
MOVE CORRESPONDING Syntax
 	

MOVE CORRESPONDING identifier-1 TO identifier-2...

~~~~ ~~~~ ~~

————————————————————————————————————————

The "MOVE CORRESPONDING" statement similarly-named items from one group item to an-
other.

1. The reserved word "CORRESPONDING" may be abbreviated as "CORR".

2. Both <identifier-1> and <identifier-2> must be group items.

3. See [CORRESPONDING], page 248, for a discussion of how corresponding matches
between two group items are established.

4. When corresponding matches are established, the effect of a "MOVE CORRESPONDING"

on those matches will be as if a series of individual "MOVE"s were done — one for each
match.

15 February 2018 Chapter 7 - PROCEDURE DIVISION



338 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

7.8.27. MULTIPLY

7.8.27.1. MULTIPLY BY� �
MULTIPLY BY Syntax
 	

MULTIPLY { literal-1 } BY { identifier-2

~~~~~~~~ { identifier-1 } ~~

[ ROUNDED [ MODE IS { AWAY-FROM-ZERO } ] ] }...

~~~~~~~ ~~~~ { ~~~~~~~~~~~~~~ }

{ NEAREST-AWAY-FROM-ZERO }

{ ~~~~~~~~~~~~~~~~~~~~~~ }

{ NEAREST-EVEN }

{ ~~~~~~~~~~~~ }

{ NEAREST-TOWARD-ZERO }

{ ~~~~~~~~~~~~~~~~~~~ }

{ PROHIBITED }

{ ~~~~~~~~~~ }

{ TOWARD-GREATER }

{ ~~~~~~~~~~~~~~ }

{ TOWARD-LESSER }

{ ~~~~~~~~~~~~~ }

{ TRUNCATION }

~~~~~~~~~~

[ ON SIZE ERROR imperative-statement-1 ]

~~~~ ~~~~~

[ NOT ON SIZE ERROR imperative-statement-2 ]

~~~ ~~~~ ~~~~~

[ END-DIVIDE ]

~~~~~~~~~~

————————————————————————————————————————

The "MULTIPLY BY" statement computes the product of one or more data items (<identifier-
2>) and either a numeric literal or another data item.

1. The reserved words "IS" and "ON" are optional and may be included, or not, at the
discretion of the programmer. The presence or absence of these words has no effect
upon the program.

2. Both <identifier-1> and <identifier-2> must be numeric un-edited data items; <literal-
1> must be a numeric literal.

3. The product of <identifier-1> or <literal-1> and each <identifier-2>, in turn, will be
computed and moved to each of the <identifier-2> data items, replacing the prior
contents.

Chapter 7 - PROCEDURE DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 339

4. The value of <identifier-1> is not altered, unless that same data item appears as an
<identifier-2>.

5. The optional "ROUNDED" (see [ROUNDED], page 252) clause available to each
<identifier-2> will control how non-integer results will be saved.

6. The optional "ON SIZE ERROR" and "NOT ON SIZE ERROR" clauses may be used to
detect and react to the failure or success, respectively, of an attempt to perform a
calculation. In this case, failure is defined as being an <identifier-2> with an insufficient
number of digit positions available to the left of any implied decimal point. See [ON
SIZE ERROR + NOT ON SIZE ERROR], page 251, for additional information.

15 February 2018 Chapter 7 - PROCEDURE DIVISION



340 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

7.8.27.2. MULTIPLY GIVING� �
MULTIPLY GIVING Syntax
 	

MULTIPLY { literal-1 } BY { literal-2 } GIVING { identifier-3

~~~~~~~~ { identifier-1 } ~~ { identifier-2 } ~~~~~~

[ ROUNDED [ MODE IS { AWAY-FROM-ZERO } ] ] }...

~~~~~~~ ~~~~ { ~~~~~~~~~~~~~~ }

{ NEAREST-AWAY-FROM-ZERO }

{ ~~~~~~~~~~~~~~~~~~~~~~ }

{ NEAREST-EVEN }

{ ~~~~~~~~~~~~ }

{ NEAREST-TOWARD-ZERO }

{ ~~~~~~~~~~~~~~~~~~~ }

{ PROHIBITED }

{ ~~~~~~~~~~ }

{ TOWARD-GREATER }

{ ~~~~~~~~~~~~~~ }

{ TOWARD-LESSER }

{ ~~~~~~~~~~~~~ }

{ TRUNCATION }

~~~~~~~~~~

[ ON SIZE ERROR imperative-statement-1 ]

~~~~ ~~~~~

[ NOT ON SIZE ERROR imperative-statement-2 ]

~~~ ~~~~ ~~~~~

[ END-DIVIDE ]

~~~~~~~~~~

————————————————————————————————————————

The "MULTIPLY GIVING" statement computes the product of two literals and/or data items
and saves that result in one or more other data items.

1. The reserved words "IS" and "ON" are optional and may be included, or not, at the
discretion of the programmer. The presence or absence of these words has no effect
upon the program.

2. Both <identifier-1> and <identifier-2> must be numeric un-edited data items; <literal-
1> and <literal-2> must be numeric literals.

3. The product of <identifier-1> or <literal-1> and <identifier-2> or <literal-2> will be
computed and moved to each of the <identifier-3> data items, replacing their old
contents.

4. Neither the value of <identifier-1> nor <identifier-2> will be altered, unless either

Chapter 7 - PROCEDURE DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 341

appears as an <identifier-3>.

5. The optional "ROUNDED" (see [ROUNDED], page 252) clause available to each
<identifier-2> will control how non-integer results will be saved.

6. The optional "ON SIZE ERROR" and "NOT ON SIZE ERROR" clauses may be used to
detect and react to the failure or success, respectively, of an attempt to perform a
calculation. In this case, failure is defined as being an <identifier-2> with an insufficient
number of digit positions available to the left of any implied decimal point. See [ON
SIZE ERROR + NOT ON SIZE ERROR], page 251, for additional information.

15 February 2018 Chapter 7 - PROCEDURE DIVISION



342 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

7.8.28. OPEN� �
OPEN Syntax
 	

OPEN { { INPUT } [ SHARING WITH { ALL OTHER } ] file-name-1

~~~~ { ~~~~~ } ~~~~~~~ { ~~~ }

{ OUTPUT } { NO OTHER }

{ ~~~~~~ } { ~~ }

{ I-O } { READ ONLY }

{ ~~~ } ~~~~ ~~~~

{ EXTEND }

~~~~~~

[ { REVERSED } ] }...

{ ~~~~~~~~ }

{ WITH { NO REWIND } }

{ { ~~ ~~~~~~ } }

{ { LOCK } }

~~~~

The "NO REWIND", and "REVERSED" clauses are syntactically recognized but are otherwise
non-functional.

————————————————————————————————————————

The "OPEN" statement makes one or more files described in your program available for use.

1. The reserved words "OTHER" and "WITH" are optional and may be included, or not, at
the discretion of the programmer. The presence or absence of these words has no effect
upon the program.

2. The "SHARING" and "WITH LOCK" clauses may not both be specified in the same "OPEN"
statement.

3. Any file defined in a GnuCOBOL program must be successfully opened before it or any
of it’s record descriptions may be referenced on:

A "CLOSE" statement (see [CLOSE], page 286)

A "DELETE" statement (see [DELETE], page 291)

A "READ" statement (see [READ], page 350)

A "REWRITE" statement (see [REWRITE], page 359)

A "START" statement (see [START], page 382)

An "UNLOCK" statement (see [UNLOCK], page 397)

A "WRITE" statement (see [WRITE], page 402)

Chapter 7 - PROCEDURE DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 343

4. Any attempt to open a file that is already open will fail with a file status of 41 (see
[File Status Codes], page 112).

5. Any open failure (including status 41) may be trapped using "DECLARATIVES"

(see [DECLARATIVES], page 244) or an error procedure established using the
"CBL_ERROR_PROC" built-in system subroutine (see [CBL ERROR PROC], page 542)
built-in subroutine or even just checking the status field defined. It is up to the
programmer to check for bad statuses and respond accordingly such as issue a CLOSE
before dealing with the problem.

6. The "INPUT", "OUTPUT", "I-O" and "EXTEND" open modes inform GnuCOBOL of the
manner in which you wish to use the file, as follows:

"INPUT"

You may only read the existing contents of the file — only the "CLOSE",
"READ", "START" and "UNLOCK" statements will be allowed. This enforce-
ment takes place at execution time, not compilation time.

"OUTPUT"

You may only write new content (which will completely replace any previ-
ous file contents) to the file — only the "CLOSE", "UNLOCK" and "WRITE"

statements will be allowed. This enforcement takes place at execution time,
not compilation time.

"I-O"

You may perform any operation you wish against the file — all file I/O
statements will be allowed.

"EXTEND"

You may only write new content (which will be appended after the pre-
viously existing file contents) to the file — only the "CLOSE", "UNLOCK"
and "WRITE" statements will be allowed. This enforcement takes place at
execution time, not compilation time. You cannot extend an empty file;
this will not generate a runtime error, but no output will appear in the file.

7. The "SHARING" clause informs the GnuCOBOL file runtime modules how you are
willing to co-exist with any other GnuCOBOL programs that may attempt to open
the same file after your program does. See [File Sharing], page 62, for an explanation
of the "SHARING" clause.

8. The "WITH LOCK" option will be functional only if your GnuCOBOL build can support
it. GnuCOBOL built for MinGW or native Windows will not, because the Unix "fcntl()
primitive doesn’t exist in those environments. GnuCOBOL built for Cygwin or Unix
will.

15 February 2018 Chapter 7 - PROCEDURE DIVISION



344 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

7.8.29. PERFORM

7.8.29.1. Procedural PERFORM� �
Procedural PERFORM Syntax
 	

PERFORM procedure-name-1 [ THRU|THROUGH procedure-name-2 ]

~~~~~~~ ~~~~ ~~~~~~~

[ { [ WITH TEST { BEFORE } ] { VARYING-Clause } } ]

{ ~~~~ { ~~~~~~ } { UNTIL conditional-expression-1 } }

{ { AFTER } ~~~~~ }

{ ~~~~~ }

{ UNTIL EXIT|FOREVER }

{ ~~~~~ ~~~~ ~~~~~~~ }

{ { literal-1 } TIMES }

{ { identifier-1 } ~~~~~ }

————————————————————————————————————————

This format of the "PERFORM" statement is used to transfer control to one or more proce-
dures, which will return control back when complete. Execution of the procedure(s) can be
done a single time, multiple times, repeatedly until a condition becomes TRUE or forever
(with some way of breaking out of the control of the "PERFORM" or of halting program
execution within the procedure(s)).

1. The reserved word "WITH" is optional and may be included, or not, at the discretion of
the programmer. The presence or absence of this word has no effect upon the program.

2. The reserved words "THRU" and "THROUGH" are interchangeable.

3. The reserved word and phrase "FOREVER" and "UNTIL EXIT" are interchangeable.

4. Both <procedure-name-1> and <procedure-name-2> must be procedure division sections
or paragraphs defined in the same program as the "PERFORM" statement. If <procedure-
name-2> is specified, it must follow <procedure-name-1> in the program’s source code.

5. The ’perform scope’ is defined as being the statements within <procedure-name-1>,
the statements within <procedure-name-2> and all statements in all procedures defined
between them.

6. <literal-1> must be a numeric literal or a reference to a function that returns a numeric
value. The value must be an integer greater than zero.

7. <identifier-1>must be an elementary un-edited numeric data item with an integer value
greater than zero.

8. Without the "UNTIL", "UNTIL EXIT", "TIMES", <VARYING-Clause> (see [VARYING],
page 347) or "FOREVER" clauses, the code within the perform scope will be executed
once, after which control will return to the statement following the "PERFORM".

Chapter 7 - PROCEDURE DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 345

9. The "FOREVER" option will repeatedly execute the code within the perform scope with
no conditions defined for termination of the repetition — it will be up to the pro-
grammer to include an "EXIT SECTION" statement (see [EXIT], page 309) or "EXIT

PARAGRAPH" statement within the procedure(s) being performed that will break out of
the loop.

10. The "TIMES" option will repeat the execution of the code within the perform scope a
fixed number of times. When the "PERFORM" statement begins execution, an internal
repeat counter (not accessible to the programmer) will be set to the value of <literal-1>
or the value within <identifier-1>.

If the counter has a value greater than zero, the statement(s) within the "PERFORM"

scope will be executed, after which the counter will be decremented by 1 with each
repetition. Once that counter reaches zero, repetition will cease and control will fall
into the next statement following the "PERFORM".

If the <identifier-1> option was used, altering the value of that data item within the
perform scope will not affect the repetition count.

11. The "UNTIL <conditional-expression-1>" option will repeat the code within the
perform scope until the specified conditional expression evaluates to a TRUE value.

12. The optional "WITH TEST" clause will control whether "UNTIL" testing occurs "BEFORE"
the statements within the perform scope are executed on each iteration (creating the
possibility — if <conditional-expression-1> is initially TRUE — that the statements
within the perform scope will never be executed) or "AFTER" (guaranteeing the state-
ments within the perform scope will be executed at least once).

The default, if this clause is absent, is "WITH TEST BEFORE".

This clause may not be coded when the "TIMES" clause is used.

13. The optional <VARYING-Clause> is a mechanism that creates an advanced loop-
management mechanism complete with one or more numeric data items being automat-
ically incremented (or decremented) on each loop iteration as well as the termination
control of an "UNTIL" clause. See [VARYING], page 347, for the details.

15 February 2018 Chapter 7 - PROCEDURE DIVISION



346 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

7.8.29.2. Inline PERFORM� �
Inline PERFORM Syntax
 	

PERFORM

~~~~~~~

[ { [ WITH TEST { BEFORE } ] { VARYING-Clause } } ]

{ ~~~~ { ~~~~~~ } { UNTIL conditional-expression-1 } }

{ { AFTER } ~~~~~ }

{ ~~~~~ }

{ UNTIL EXIT|FOREVER }

{ ~~~~~ ~~~~ ~~~~~~~ }

{ { literal-1 } TIMES }

{ { identifier-1 } ~~~~~ }

imperative-statement-1

[ END-PERFORM ]

~~~~~~~~~~~

————————————————————————————————————————

This format of the "PERFORM" statement is identical in operation to the procedural
"PERFORM", except for the fact that the statement(s) comprising the perform scope
(<imperative-statement-1>) (see [Imperative Statement], page 675) are now specified in-line
with the "PERFORM" code rather than in procedures located elsewhere within the program.

Chapter 7 - PROCEDURE DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 347

7.8.29.3. VARYING� �
VARYING Syntax
 	

VARYING identifier-2 FROM { literal-2 } [ BY { literal-3 } ]

~~~~~~~ ~~~~ { identifier-3 } ~~ { identifier-4 }

[ UNTIL conditional-expression-1 ]

~~~~~

[ AFTER identifier-5 FROM { literal-4 } [ BY { literal-5 } ]

~~~~~ ~~~~ { identifier-6 } ~~ { identifier-7 }

[ UNTIL conditional-expression-2 ] ]...

~~~~~

————————————————————————————————————————

The "VARYING" clause, available on both formats of the "PERFORM" statement, is a looping
mechanism that allows for the specification of one or more numeric data items that will
be initialized to a programmer-specified value and automatically incremented by another
programmer-specified value after each loop iteration.

1. All identifiers used in a <VARYING-Clause> must be elementary, un-edited numeric
data items. All literals must be numeric literals.

2. The following points describe the sequence of events that take place as a result of the
"VARYING" portion of the clause:

A. When the "PERFORM" begins execution, the "FROM" value will be moved to <iden-
tifier>.

B. If the "PERFORM" specifies or implies "WITH TEST BEFORE", <conditional-
expression-1> will be evaluated and processing of the "PERFORM" will halt if the
expression evaluates to TRUE. If "WITH TEST BEFORE" was not specified or
implied, or if the conditional expression evaluated to FALSE, processing proceeds
with step (C).

C. The statements within the perform scope will be executed. If a "GO TO" executed
within the perform scope transfers control to a point outside the perform scope,
processing of the "PERFORM" will halt.

D. When the statements within the perform scope terminate the loop iteration, by. . .

• . . . allowing the flow of execution to attempt to fall past the last statement in
the perform scope, or. . .

• . . . executing an "EXIT PERFORM CYCLE" statement (see [EXIT], page 309),
or. . .

• . . . executing an "EXIT PARAGRAPH" statement or "EXIT SECTION" statement
when there is only one paragraph (or section) in the perform scope ( this
option only applies to a procedural "PERFORM")

15 February 2018 Chapter 7 - PROCEDURE DIVISION



348 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

Control will return back to the "PERFORM", where — if "WITH TEST AFTER" was
specified — <conditional-expression-1> will be evaluated and processing of the
"PERFORM" will halt if the expression evaluates to TRUE. If "WITH TEST AFTER"

was not specified, or if the conditional expression evaluated to FALSE, processing
continues with the next step.

E. The "BY" value, if any, will be added to <identifier-2>. If no "BY" is speci-
fied, <identifier-2> will be unaffected. You are always free to modify the value
of <identifier-2> yourself within the perform scope.

F. Return to step (C).

3. Most <VARYING-Clause>s have no "AFTER" specified. Those that do, however, are es-
tablishing a loop-within-a-loop situation where the process described above in steps (A)
through (F) will take place from the "AFTER", and those six processing steps actually
replace step (C) of the "VARYING". This "nesting" process can continue indefinitely,
with each additional "AFTER".

This is the point where an example should really help you see this at work. Observe the
following code which defines a two-dimensional (3 row by 4 column) table and a pair of
numeric data items to be used to subscript references to each element of the table:

01 PERFORM-DEMO.

05 PD-ROW OCCURS 3 TIMES.

10 PD-COL OCCURS 4 TIMES

15 PD PIC X(1).

01 PD-Col-No PIC 9 COMP.

01 PD-Row-No PIC 9 COMP.

Let’s say the 3x4 "grid" defined by the above structure has these values:

A B C D

E F G H

I J K L

This code will display "ABCDEFGHIJKL" on the console output window:

PERFORM WITH TEST AFTER

VARYING PD-Row-No FROM 1 BY 1 UNTIL PD-Row-No = 3

AFTER PD-Col-No FROM 1 BY 1 UNTIL PD-Col-No = 4

DISPLAY PD (PD-Row-No, PD-Col-No) WITH NO ADVANCING

END-PERFORM

While this code will display "AEIBFJCGKDHL" on the console output window:

PERFORM WITH TEST AFTER

VARYING PD-Col-No FROM 1 BY 1 UNTIL PD-Col-No = 4

AFTER PD-Row-No FROM 1 BY 1 UNTIL PD-Row-No = 3

Chapter 7 - PROCEDURE DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 349

DISPLAY PD (PD-Row-No, PD-Col-No) WITH NO ADVANCING

END-PERFORM

While we’re looking at sample code, this code displays "ABCEFG":

PERFORM

VARYING PD-Row-No FROM 1 BY 1 UNTIL PD-Row-No = 3

AFTER PD-Col-No FROM 1 BY 1 UNTIL PD-Col-No = 4

DISPLAY PD (PD-Row-No, PD-Col-No) WITH NO ADVANCING

END-PERFORM

By removing the "WITH TEST" clause, the statement is now assuming "WITH TEST BEFORE".
Since testing now happens before the "DISPLAY" statement gets executed, when PD-Row-No
is 3 and PD-Col-No is 4 the "DISPLAY" statement won’t be executed.

Most COBOL programmers, when using "WITH TEST BEFORE" explicitly or implicitly have
developed the habit of using ">" rather than "=" on "UNTIL" clauses. This would make
the sample code:

PERFORM

VARYING PD-Row-No FROM 1 BY 1 UNTIL PD-Row-No > 3

AFTER PD-Col-No FROM 1 BY 1 UNTIL PD-Col-No > 4

DISPLAY PD (PD-Row-No, PD-Col-No) WITH NO ADVANCING

END-PERFORM

With this change, "ABCDEFGHIJKL" is once again displayed.

15 February 2018 Chapter 7 - PROCEDURE DIVISION



350 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

7.8.30. READ

7.8.30.1. Sequential READ� �
Sequential READ Syntax
 	

READ file-name-1 [ { NEXT|PREVIOUS } ] RECORD [ INTO identifier-1 ]

~~~~ { ~~~~ ~~~~~~~~ } ~~~~

[ { IGNORING LOCK } ]

{ ~~~~~~~~ ~~~~ }

{ WITH [ NO ] LOCK }

{ ~~ ~~~~ }

{ WITH KEPT LOCK }

{ ~~~~ ~~~~ }

{ WITH IGNORE LOCK }

{ ~~~~~~ ~~~~ }

{ WITH WAIT }

~~~~

[ AT END imperative-statement-1 ]

~~~

[ NOT AT END imperative-statement-2 ]

~~~ ~~~

[ END-READ ]

~~~~~~~~

————————————————————————————————————————

This form of the "READ" statement retrieves the next (or previous) record from a file.

1. The reserved words "AT", "RECORD" and "WITH" are optional and may be included, or
not, at the discretion of the programmer. The presence or absence of these words has
no effect upon the program.

2. The <file-name-1> file must have been defined via an "FD" (see [File/Sort-Description],
page 130), not an "SD".

3. The <file-name-1> file must currently be open for "INPUT" (see [File OPEN Modes],
page 343) or "I-O".

4. If <file-name-1> is an "ORGANIZATION RELATIVE" (see [ORGANIZATION RELA-
TIVE], page 118) or "ORGANIZATION INDEXED" (see [ORGANIZATION INDEXED],
page 120) file with an "ACCESS MODE RANDOM", this statement cannot be used.

5. If <file-name-1> was specified as "ACCESS MODE SEQUENTIAL", this is the only format
of the "READ" statement that is available.

6. If <file-name-1> is an "ORGANIZATION RELATIVE" (see [ORGANIZATION RELA-
TIVE], page 118) or "ORGANIZATION INDEXED" (see [ORGANIZATION INDEXED],

Chapter 7 - PROCEDURE DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 351

page 120) file with "ACCESS MODE DYNAMIC", this statement as well as a random
"READ" (see [Random READ], page 352) may be used.

7. The keywords "NEXT" and "PREVIOUS" specify what direction of "travel" the reading
process will take through the file. If neither is specified, "NEXT" is assumed.

8. The "PREVIOUS" option is available only for "ORGANIZATION INDEXED" files.

9. When reading any sequential (any organization) or relative file, the "next" direction
refers to the physical sequence of records in the file. When reading an indexed file, the
"next" and "previous" directions refer to the sequence of primary or alternate record
key values in the file’s records, regardless of where the records physically occur within
the file.

10. The minimal statement "READ <file-name-1>" is perfectly legal according to both
READ formats. For that reason, when "ACCESS MODE DYNAMIC" has been specified
and you want to tell the GnuCOBOL compiler that this minimal statement should
be treated as a sequential "READ", you must add either "NEXT" or "PREVIOUS" to the
statement (otherwise it will be treated as a random "READ").

11. A successful sequential READ will retrieve the next available record from <file-name-
1>, in either a "next" or "previous" direction from the most-recently-read record,
depending upon the use of the "NEXT" or "PREVIOUS" option. The newly-retrieved
record data will be saved into the 01-level record structure(s) that immediately follow
the file’s "FD". If the optional "INTO" clause is present, a copy of the just-retrieved
record will be automatically moved to <identifier-1>.

12. When an "ORGANIZATION RELATIVE" file has been successfully read, the file’s
"RELATIVE KEY" (see [ORGANIZATION RELATIVE], page 118) field will be
automatically populated with the relative record number (ordinal occurrence number)
of the record in the file.

13. The optional "LOCK" options may be used to manually control access to the retrieved
record by other programs while this program is running. See [Record Locking], page 64,
to review the various record locking behaviours.

14. The optional "AT END" clause, if coded, is used to detect and react to the failure of
an attempt to retrieve another record from the file due to an end-of-file (i.e. no more
records) condition.

15. The optional "NOT AT END" clause, if coded, will check checking for a file status value
of 00. See [File Status Codes], page 112, for additional information.

15 February 2018 Chapter 7 - PROCEDURE DIVISION



352 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

7.8.30.2. Random READ� �
Random READ Syntax
 	

READ file-name-1 RECORD [ INTO identifier-1 ]

~~~~ ~~~~

[ { IGNORING LOCK } ]

{ ~~~~~~~~ ~~~~ }

{ WITH [ NO ] LOCK }

{ ~~ ~~~~ }

{ WITH KEPT LOCK }

{ ~~~~ ~~~~ }

{ WITH IGNORE LOCK }

{ ~~~~~~ ~~~~ }

{ WITH WAIT }

~~~~

[ KEY IS identifier-2 ]

~~~

[ INVALID KEY imperative-statement-1 ]

~~~~~~~

[ NOT INVALID KEY imperative-statement-2 ]

~~~ ~~~~~~~

[ END-READ ]

~~~~~~~~

————————————————————————————————————————

This form of the "READ" statement retrieves an arbitrary record from an "ORGANIZATION

RELATIVE" (see [ORGANIZATION RELATIVE], page 118) or "ORGANIZATION INDEXED"

(see [ORGANIZATION INDEXED], page 120) file.

1. The reserved words "IS", "KEY" (on the "INVALID" and "NOT INVALID" clauses),
"RECORD" and "WITH" are optional and may be included, or not, at the discretion
of the programmer. The presence or absence of these words has no effect upon the
program.

2. The <file-name-1> file must have been defined via an "FD" (see [File/Sort-Description],
page 130), not an "SD".

3. The <file-name-1> file must currently be open for "INPUT" (see [File OPEN Modes],
page 343) or "I-O".

4. If the "ACCESS MODE" of <file-name-1> is "SEQUENTIAL", or the "ORGANIZATION" of
the file is any form of sequential, this format of the "READ" statement cannot be used.

5. If the "ACCESS MODE" of <file-name-1> is "RANDOM", this is the only format of the
"READ" statement that is available.

Chapter 7 - PROCEDURE DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 353

6. If <file-name-1> is an "ORGANIZATION RELATIVE" (see [ORGANIZATION RELA-
TIVE], page 118) or "ORGANIZATION INDEXED" (see [ORGANIZATION INDEXED],
page 120) file with "ACCESS MODE DYNAMIC", this statement as well as a sequential
"READ" (see [Sequential READ], page 350) may be used.

7. The minimal statement "READ <file-name-1>" is perfectly legal according to both
READ formats. For that reason, when "ACCESS MODE DYNAMIC" has been specified
and you want to tell the GnuCOBOL compiler that this minimal statement should be
treated as a random "READ", you must omit the "NEXT" or "PREVIOUS" available to
the sequential format of the "READ" statement to ensure the statement will be treated
as a random "READ".

8. The optional "KEY" clause tells the compiler how a record is to be located in the file.
If the clause is absent, and. . .

A. . . . if the file is an "ORGANIZATION RELATIVE" file, the contents of the field declared
as the file’s "RELATIVE KEY" will be used to identify a record, otherwise. . .

B. . . . if the file is an "ORGANIZATION INDEXED" file, the contents of the field declared
as the file’s "RECORD KEY" will be used to identify a record.

9. But, if the "KEY" clause is specified, and. . .

A. . . . if the file is an "ORGANIZATION RELATIVE" file, the contents of <identifier-
2> will be used as the relative record number of the record to be accessed —
<identifier-2> need not be the "RELATIVE KEY" (see [ORGANIZATION RELA-
TIVE], page 118) field of the file (although it could be if you wish).

B. . . . if the file is an "ORGANIZATION INDEXED" file, <identifier-2> must be the
"RECORD KEY" (see [ORGANIZATION INDEXED], page 120) or one of the file’s
"ALTERNATE RECORD KEY" fields (if any) — the current contents of that field will
identify the record to be accessed. If an alternate record key is used, and that key
allows duplicate values, the record accessed will be the first one having that key
value.

10. Once read from the file, the newly-retrieved record data will be saved into the 01-level
record structure(s) that immediately follow the file’s "FD". If the optional "INTO"
clause is present, a copy of the just-retrieved record will be automatically moved to
<identifier-1>.

11. When an "ORGANIZATION RELATIVE" file has been successfully read, the file’s
"RELATIVE KEY" (see [ORGANIZATION RELATIVE], page 118) field will be
automatically populated with the relative record number (ordinal occurrence number)
of the record in the file.

12. The optional "LOCK" options may be used to manually control access to the retrieved
record by other programs while this program is running. See [Record Locking], page 64,
to review the various record locking behaviours.

13. The optional "INVALID KEY" and "NOT INVALID KEY" clauses may be used to detect
and react to the failure or success, respectively, by detecting non-zero (typically 23

15 February 2018 Chapter 7 - PROCEDURE DIVISION



354 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

= key not found = record not found) and 00 file status codes, respectively. See [File
Status Codes], page 112, for additional information.

Chapter 7 - PROCEDURE DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 355

7.8.31. READY TRACE� �
READY TRACE Syntax
 	

READY TRACE

~~~~~ ~~~~~

————————————————————————————————————————

The "READY TRACE" statement turns procedure or procedure-and-statement tracing on.

1. In order for this statement to be functional, tracing code must have been generated
into the compiled program using either the "-ftrace" switch (procedures only) or
"-ftraceall" switch (procedures and statements).

2. Tracing may be turned off at any point by executing the "RESET TRACE" statement
(see [RESET TRACE], page 357).

3. The "COB_SET_TRACE" run-time environment variable (see [Run Time Environment
Variables], page 626) provides another way to control tracing. If this environment
variable is set to a value of "Y" prior to the start of program execution, tracing starts
at the point the program begins execution, as if "READY TRACE" were the first executed
statement.

15 February 2018 Chapter 7 - PROCEDURE DIVISION



356 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

7.8.32. RELEASE� �
RELEASE Syntax
 	

RELEASE record-name-1 [ FROM { literal-1 } ]

~~~~~~~ ~~~~ { identifier-1 }

————————————————————————————————————————

The "RELEASE" statement adds a new record to a sort work file.

1. This statement is valid only within the "INPUT PROCEDURE" of a file-based "SORT"

statement (see [File-Based SORT], page 376).

2. The specified <record-name-1> must be a record defined to the sort description ("SD"
(see [File/Sort-Description], page 130)) of the sort work file being processed by the
current sort.

3. The optional "FROM" clause will cause <literal-1> or <identifier-1> to be automatically
moved into <record-name-1> prior to writing <record-name-1>’s contents to the <file-
name-1>. If this clause is not specified, it is the programmer’s responsibility to populate
<record-name-1> with the desired data prior to executing the "RELEASE".

Chapter 7 - PROCEDURE DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 357

7.8.33. RESET TRACE� �
RESET TRACE Syntax
 	

RESET TRACE

~~~~~ ~~~~~

————————————————————————————————————————

The "RESET TRACE" statement turns procedure or procedure-and-statement tracing off.

1. By default, procedure and procedure-and-statement tracing is off as programs begin
execution. The "READY TRACE" statement (see [READY TRACE], page 355) can be
used to turn tracing on.

2. In order for this statement to be functional, tracing code must have been generated
into the compiled program using either the "-ftrace" switch (procedures only) or
"-ftraceall" switch (procedures and statements).

3. The "COB_SET_TRACE" run-time environment variable (see [Run Time Environment
Variables], page 626) provides another way to control tracing. If this environment
variable is set to a value of "Y" prior to the start of program execution, tracing started
at the point the program begins execution, as if "READY TRACE" were the first executed
statement. The "RESET TRACE" statement, if executed, will then turn off tracing.

15 February 2018 Chapter 7 - PROCEDURE DIVISION



358 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

7.8.34. RETURN� �
RETURN Syntax
 	

RETURN sort-file-name-1 RECORD

~~~~~~

[ INTO identifier-1 ]

~~~~

AT END imperative-statement-1

~~~

[ NOT AT END imperative-statement-2 ]

~~~ ~~~

[ END-RETURN ]

~~~~~~~~~~

————————————————————————————————————————

The "RETURN" statement reads a record from a sort- or merge work file.

1. The reserved words "AT" and "RECORD" are optional and may be included, or not, at
the discretion of the programmer. The presence or absence of these words has no effect
upon the program.

2. The "RETURN" statement is valid only within the "OUTPUT PROCEDURE" of a file-based
"SORT" (see [File-Based SORT], page 376) or a "MERGE" statement (see [MERGE],
page 333) statement.

3. The <sort-file-name-1> file must be a sort- or merge work file defined with a "SD" (see
[File/Sort-Description], page 130), not an "FD".

4. A successful "RETURN" will retrieve the next available record from <sort-file-name-1>.
The newly-retrieved record data will be saved into the 01-level record structure(s) that
immediately follow the file’s SD. If the optional "INTO" clause is present, a copy of the
just-retrieved record will be automatically moved to <identifier-1>.

5. The mandatory "AT END" clause is used to detect and react to the failure of an attempt
to retrieve another record from the file due to an end-of-file (i.e. no more records)
condition.

6. The optional "NOT AT END" clause, if coded, will check checking for a file status value
of 00. See [File Status Codes], page 112, for additional information.

Chapter 7 - PROCEDURE DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 359

7.8.35. REWRITE� �
REWRITE Syntax
 	

REWRITE record-name-1

~~~~~~~

[ FROM { literal-1 } ]

~~~~ { identifier-1 }

[ WITH [ NO ] LOCK ]

~~ ~~~~

[ INVALID KEY imperative-statement-1 ]

~~~~~~~

[ NOT INVALID KEY imperative-statement-2 ]

~~~ ~~~~~~~

[ END-REWRITE ]

~~~~~~~~~~~

————————————————————————————————————————

The "REWRITE" statement replaces a logical record on a disk file.

1. The reserved words "KEY" and "WITH" are optional and may be included, or not, at
the discretion of the programmer. The presence or absence of these words has no effect
upon the program.

2. The <record-name-1> specified on the statement must be defined as an 01-level record
subordinate to the File Description ("FD" (see [File/Sort-Description], page 130)) of a
file that is currently open for "I-O" (see [File OPEN Modes], page 343).

3. The optional "FROM" clause will cause <literal-1> or <identifier-1> to be automatically
moved into <record-name-1> prior to writing <record-name-1>’s contents to the <file-
name-1>. If this clause is not specified, it is the programmer’s responsibility to populate
<record-name-1> with the desired data prior to executing the "REWRITE".

4. This statement may not be used with "ORGANIZATION LINE SEQUENTIAL" (see
[ORGANIZATION LINE SEQUENTIAL], page 116) files.

5. Rewriting a record does not cause the contents of the file to be physically updated until
the next block of the file is read, a "COMMIT" (see [COMMIT], page 287) or "UNLOCK"
statement (see [UNLOCK], page 397) is issued or that file is closed.

6. If the file has "ORGANIZATION SEQUENTIAL" (see [ORGANIZATION SEQUENTIAL],
page 114):

A. The record to be rewritten will be the one retrieved by the most-recently executed
"READ" (see [READ], page 350) of the file.

B. If the "FD" of the file contains the "RECORD CONTAINS" or "RECORD IS VARYING"

15 February 2018 Chapter 7 - PROCEDURE DIVISION



360 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

clause, and that clause allows the record size to vary, the size of <record-name-1>
cannot be altered.

7. If the file has "ORGANIZATION RELATIVE" (see [ORGANIZATION RELATIVE],
page 118) or "ORGANIZATION INDEXED" (see [ORGANIZATION INDEXED],
page 120):

A. If the file has "ACCESS MODE SEQUENTIAL", the record to be rewritten will be
the one retrieved by the most-recently executed "READ" of the file. If the file has
"ACCESS MODE RANDOM" or "ACCESS MODE DYNAMIC", no "READ" is required before
a record may be rewritten — the "RELATIVE KEY" or "RECORD KEY" definition for
the file, respectively, will specify the record to be updated.

B. If the "FD" of the file contains the "RECORD CONTAINS" or "RECORD IS VARYING"

clause, and that clause allows the record size to vary, the size can be altered.

8. The optional "LOCK" options may be used to manually control access to the re-written
record by other programs while this program is running. See [Record Locking], page 64,
to review the various record locking behaviours.

9. The optional "INVALID KEY" and "NOT INVALID KEY" clauses may be used to detect
and react to the failure or success, respectively, by detecting non-zero (typically 23
= key not found = record not found) and 00 file status codes, respectively. See [File
Status Codes], page 112, for additional information.

Chapter 7 - PROCEDURE DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 361

7.8.36. ROLLBACK� �
ROLLBACK Syntax
 	

ROLLBACK

~~~~~~~~

————————————————————————————————————————

The "ROLLBACK" statement has the same effect as if an "UNLOCK" statement (see [UNLOCK],
page 397) were executed against every open file in the program.

1. All locks currently being held for all open files will be released.

2. See [Record Locking], page 64, to review the various record locking behaviours.

15 February 2018 Chapter 7 - PROCEDURE DIVISION



362 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

7.8.37. SEARCH� �
SEARCH Syntax
 	

SEARCH table-name-1

~~~~~~

[ VARYING index-name-1 ]

~~~~~~~

[ AT END imperative-statement-1 ]

~~~

{ WHEN conditional-expression-1 imperative-statement-2 }...

~~~~

[ END-SEARCH ]

~~~~~~~~~~

————————————————————————————————————————

The "SEARCH" statement is used to sequentially search a table, stopping either once a specific
value is located within the table or when the table has been completely searched.

1. The reserved word "AT" is optional and may be included, or not, at the discretion of
the programmer. The presence or absence of this word has no effect upon the program.

2. The searching process will be controlled through a ’Search Index ’ — a data item with
a "USAGE" (see [USAGE], page 223) of "INDEX". The search index is either the <index-
name-1> identifier specified on the "VARYING" clause or — if no "VARYING" is spec-
ified — the "USAGE INDEX" data item implicitly created by an "INDEXED BY" (see
[OCCURS], page 194) clause in the table’s definition.

3. At the time the "SEARCH" statement is executed, the current value of the search index
data item will define the starting position in the table where the searching process will
begin. Typically, one initializes that index to a value of 1 before starting the "SEARCH"
via "SET <search-index> TO 1".

4. Each of the <conditional-expression-n>s on the "WHEN" clause(s) should involve a data
element within the table, subscripted using the search index.

5. The searching process is as follows:

A. Each <conditional-expression-n> will be evaluated, in turn, until either one evalu-
ates to a value of TRUE or all have evaluated to FALSE.

B. The <imperative-statement-n> (see [Imperative Statement], page 675) specified on
the "WHEN" clause whose <conditional-expression-n> evaluated to TRUE will be
executed; after that, the search will be considered complete and control will fall
into the first executable statement following the "SEARCH".

C. If all <conditional-expression-n>s evaluated to FALSE:

• The search index will be incremented by 1

Chapter 7 - PROCEDURE DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 363

• If the search index now has a value greater than the number of entries in the
table, the search is considered to have failed and the <imperative-statement-1>
on the optional "AT END" clause, if any, will be executed. After that, control
will fall into the first executable statement following the "SEARCH".

• If the search index now has a value less than or equal to the number of entries
in the table, search processing returns back to step (A).

15 February 2018 Chapter 7 - PROCEDURE DIVISION



364 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

7.8.38. SEARCH ALL� �
SEARCH ALL Syntax
 	

SEARCH ALL table-name-1

~~~~~~ ~~~

[ AT END imperative-statement-1 ]

~~~

WHEN conditional-expression-1 imperative-statement-2

~~~~

[ END-SEARCH ]

~~~~~~~~~~

————————————————————————————————————————

The "SEARCH ALL" statement performs a binary, or half-interval, search against a sorted
table. This is generally significantly faster than performing a sequential "SEARCH" of a
table, especially if the table contains a large number of entries.

1. The reserved word "AT" is optional and may be included, or not, at the discretion of
the programmer. The presence or absence of this word has no effect upon the program.

2. To be eligible for searching via "SEARCH ALL":

A. The "OCCURS" clause of <table-name-1> must contain the following elements:

• An "INDEXED BY" entry to define an implicit search index data item with a
"USAGE" (see [USAGE], page 223) of "INDEX".

• An "ASCENDING KEY" or "DESCENDING KEY" clause to specify the field within
the table by which all entries in the table are sorted.

B. Just because the table has one or more "KEY" clauses doesn’t mean the data is
actually in that sequence in the table — the actual sequence of the data must agree
with the KEY clause(s)! A table-based "SORT" (see [Table SORT], page 380) can
prove very useful in this regard.

C. No two records in the table may have the same "KEY" field values. If the table has
multiple "KEY" definitions, then no two records in the table may have the same
combination of "KEY" field values.

3. If rule (A) is violated, the compiler will reject the "SEARCH ALL". If rules (B) and/or
(C) are violated, there will be no message issued by the compiler, but the run-time
results of a "SEARCH ALL" against the table will probably be incorrect.

4. The <conditional-expression-1> should involve the "KEY" field(s), using the search index
(the table’s "INDEXED BY" index name) as a subscript.

5. The function of the single, mandatory, "WHEN" clause is to compare the key field(s) of
the table, as indexed by the search index data item, against whatever literal and/or
identifier values you are comparing the key field(s) to in the <conditional-expression-1>

Chapter 7 - PROCEDURE DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 365

in order to locate the desired entry in the table. The search index will be automatically
varied in a manner designed to require the minimum number of tests.

6. The internal processing of the SEARCH ALL statement begins by setting internal
"first" and "last" pointers to the 1st and last entry locations of the table. Processing
then proceeds as follows:

A. The entry half-way between "first" and "last" is identified. We’ll call this the
"current" entry, and will set its table entry location into <index-name-1>.

B. The <conditional-expression-1> is evaluated. This comparison of the key(s) against
the target literal/identifier values will have one of three possible outcomes:

• If the key(s) and value(s) match, <imperative-statement-2> (see [Imperative
Statement], page 675) is executed, after which control falls through into the
next statement following the "SEARCH ALL".

• If the key(s) are LESS THAN the value(s), then the table entry being searched
for can only occur in the "current" to "last" range of the table, so a new "first"
pointer value is set (it will be set to the "current" pointer).

• If the key(s) are GREATER THAN the value(s), then the table entry being
searched for can only occur in the "first" to "current" range of the table, so
a new "last" pointer value is set (it will be set to the "current" pointer).

C. If the new "first" and "last" pointers are different than the old "first" and "last"
pointers, there’s more left to be searched, so return to step (A) and continue.

D. If the new "first" and "last" pointers are the same as the old "first" and "last"
pointers, the table has been exhausted and the entry being searched for cannot be
found; <imperative-statement-1> is executed, after which control falls through into
the next statement following the "SEARCH ALL". If there is no "AT END" clause
coded, control simply falls into the next statement following the "SEARCH ALL".

7. The net effect of the above algorithm is that only a fraction of the number of elements
in the table need ever be tested in order to decide whether or not a particular entry
exists. This is because the half the remaining entries in the table are discarded each
time an entry is checked.

8. Computer scientists will compare the two techniques implemented by the "SEARCH"

and "SEARCH ALL" statements as follows:

9. When searching a table with "n" entries, a sequential search will need an average of
n/2 tests and a worst case of n tests in order to find an entry and n tests to identify
that an entry doesn’t exist.

10. When searching a table with "n" entries, a binary search will need a worst-case of
log2(n) tests in order to find an entry and log2(n) tests to identify that an entry doesn’t
exist (n = the number of entries in the table), where "log2" is the base-2 logarithm
function.

Here’s a more practical view of the difference. Let’s say that a table has 1,000 entries in it.

15 February 2018 Chapter 7 - PROCEDURE DIVISION



366 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

With a sequential search, on average, you’ll have to check 500 of them to find an entry and
you’ll have to look at all 1,000 of them to find that an entry doesn’t exist.

With a binary search, express the number of entries as a binary number (1,000 =
1111101000), count the number of digits in the result (which is, essentially, what a
logarithm is, when rounded up to the next integer — the number of digits a decimal
number would have if expressed in the logarithm’s number base). In this case, we end up
with 10 — THAT is the worst-case number of tests required to find an entry or to identify
that it doesn’t exist. That’s quite an improvement!

Chapter 7 - PROCEDURE DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 367

7.8.39. SET

7.8.39.1. SET ENVIRONMENT� �
SET ENVIRONMENT Syntax
 	

SET ENVIRONMENT { literal-1 } TO { literal-2 }

~~~ ~~~~~~~~~~~ { identifier-1 } ~~ { identifier-2 }

————————————————————————————————————————

The "SET ENVIRONMENT" statement provides a straight-forward means of setting environ-
ment values from within a program.

1. The value of <literal-1> or <identifier-1> specifies the name of the environment variable
to set.

2. The value of <literal-2> or <identifier-2> specifies the value to be assigned to the
environment variable.

3. Environment variables created or changed from within GnuCOBOL programs will be
available to any sub-shell processes spawned by that program (i.e. CALL "SYSTEM")
but will not be known to the shell or console window that started the GnuCOBOL
program.

This is a much simpler and more readable means of setting environment variables than
by using the "DISPLAY UPON ENVIRONMENT-NAME" statement (see [DISPLAY UPON
ENVIRONMENT-NAME], page 295). For example, these two code sequences produce
identical results:

DISPLAY "VARNAME" UPON ENVIRONMENT-NAME

DISPLAY "VALUE" UPON ENVIRONMENT-VALUE

SET ENVIRONMENT "VARNAME" TO "VALUE"

15 February 2018 Chapter 7 - PROCEDURE DIVISION



368 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

7.8.39.2. SET Program-Pointer� �
SET Program-Pointer Syntax
 	

SET program-pointer-1 TO ENTRY { literal-1 }

~~~ ~~ ~~~~~ { identifier-1 }

————————————————————————————————————————

The "SET <Program-Pointer>" statement allows you to retrieve the address of a procedure
division code module — specifically the "PROGRAM-ID", "FUNCTION-ID" or an entry-point
established via the "ENTRY" statement (see [ENTRY], page 304).

1. If you have used other versions of COBOL before (particularly mainframe implemen-
tations), you’ve possibly seen subroutine calls made passing a procedure name as an
argument — that is not possible in GnuCOBOL; instead, you need to know how to use
this form of the "SET" statement.

2. The "USAGE" (see [USAGE], page 223) of <program-pointer-1> must be
"PROGRAM-POINTER".

3. The <literal-1> or <identifier-1> value specified must name a primary entry-point name
("PROGRAM-ID" of a subroutine or "FUNCTION-ID" of a user-defined function) or an
alternate entry-point defined via an "ENTRY" statement within a subprogram.

4. Once the address of a procedure division code area has been acquired in this way, the
address could be passed to a subroutine (usually written in C) for whatever use it
needs it for. For examples of "PROGRAM-POINTER"s at work, see the discussions of the
"CBL_ERROR_PROC" built-in system subroutine (see [CBL ERROR PROC], page 542)
and "CBL_EXIT_PROC" built-in system subroutine (see [CBL EXIT PROC], page 544).

Chapter 7 - PROCEDURE DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 369

7.8.39.3. SET ADDRESS� �
SET ADDRESS Syntax
 	

SET [ ADDRESS OF ] { pointer-name-1 }...

~~~ ~~~~~~~ ~~ { identifier-1 }

TO [ ADDRESS OF ] { pointer-name-2 }

~~ ~~~~~~~ ~~ { identifier-2 }

————————————————————————————————————————

The "SET ADDRESS" statement can be used to work with the addresses of data items rather
than their contents.

1. When the "ADDRESS OF" clause is used before the "TO" you will be using this statement
to alter the address of a linkage section or "BASED" (see [BASED], page 166) data item.
Without that clause you will be assigning an address to one or more data items whose
"USAGE" (see [USAGE], page 223) is "POINTER".

2. When the "ADDRESS OF" clause is used after the "TO", this statement will be identifying
the address of <identifier-2> as the address to be assigned to <identifier-1> or stored
in <pointer-name-1>.

3. If the "ADDRESS OF" clause is absent after the "TO", the contents of <pointer-name-2>
will serve as the address to be assigned.

15 February 2018 Chapter 7 - PROCEDURE DIVISION



370 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

7.8.39.4. SET Index� �
SET Index Syntax
 	

SET index-name-1 TO { literal-1 }

~~~ ~~ { identifier-2 }

————————————————————————————————————————

This statement assigns a value to a "USAGE INDEX" data item.

1. Either the "USAGE" (see [USAGE], page 223) of <index-name-1> should be "INDEX",
or <index-name-1> must be identified in a table "INDEXED BY" clause.

Chapter 7 - PROCEDURE DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 371

7.8.39.5. SET UP/DOWN� �
SET UP/DOWN Syntax
 	

SET identifier-1 { UP } BY [ LENGTH OF ] { literal-1 }

~~~ { ~~ } ~~ ~~~~~~ ~~ { identifier-2 }

{ DOWN }

~~~~

————————————————————————————————————————

Use this statement to increment or decrement the value of an index or pointer by a specified
amount.

1. The "USAGE" (see [USAGE], page 223) of <identifier-1> must be "INDEX", "POINTER"
or "PROGRAM-POINTER".

2. The typical usage when <identifier-1> is a "USAGE INDEX" data item is to increment
it’s value "UP" or "DOWN" by 1, since an index is usually being used to sequentially walk
through the elements of a table.

15 February 2018 Chapter 7 - PROCEDURE DIVISION



372 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

7.8.39.6. SET Condition Name� �
SET Condition Name Syntax
 	

SET condition-name-1... TO { TRUE }

~~~ ~~ { ~~~~ }

{ FALSE }

~~~~~

————————————————————————————————————————

The "SET <Condition Name>" statement provides one method of specifying the TRUE /
FALSE value of a level-88 condition name.

1. By setting the specified <condition-name-1>(s) to a TRUE or FALSE value, you will
actually be assigning a value to the parent data item(s) to which the condition name
data item(s) is(are) subordinate to.

2. When specifying "TRUE", the value assigned to each parent data item will be the first
value specified on the condition name’s "VALUE" clause.

3. When specifying "FALSE", the value assigned to each parent data item will be the value
specified for the "FALSE" clause of the condition name’s definition; if any <condition-
name-1> occurrence lacks a "FALSE" clause, the "SET" statement will be rejected by
the compiler.

Chapter 7 - PROCEDURE DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 373

7.8.39.7. SET Switch� �
SET Switch Syntax
 	

SET mnemonic-name-1... TO { ON }

~~~ ~~ { ~~ }

{ OFF }

~~~

————————————————————————————————————————

This form of the "SET" statement is used to turn switches on or off.

1. Switches are defined using the "SPECIAL-NAMES" (see [SPECIAL-NAMES], page 96)
paragraph.

2. Switches may be tested via the "IF" statement (see [IF], page 319) and a Switch-Status
Condition. See [Switch-Status Conditions], page 53, for more information.

15 February 2018 Chapter 7 - PROCEDURE DIVISION



374 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

7.8.39.8. SET ATTRIBUTE� �
SET ATTRIBUTE Syntax
 	

SET identifier-1 ATTRIBUTE { { BELL } { ON }...

~~~ ~~~~~~~~~ { ~~~~ } { ~~ }

{ BLINK } { OFF }

{ ~~~~~ } ~~~

{ HIGHLIGHT }

{ ~~~~~~~~~ }

{ LEFTLINE }

{ ~~~~~~~~ }

{ LOWLIGHT }

{ ~~~~~~~~ }

{ OVERLINE }

{ ~~~~~~~~ }

{ REVERSE-VIDEO }

{ ~~~~~~~~~~~~~ }

{ UNDERLINE }

~~~~~~~~~

————————————————————————————————————————

The "SET ATTRIBUTE" statement may be used to modify one or more attributes of a screen
section data item at run-time.

1. When making an attribute change to <identifier-1>, the change will not become vis-
ible on the screen until the screen section data item containing <identifier-1> is next
accepted (if <identifier-1> is an input field) or is next displayed (if <identifier-1> is not
an input field).

2. The attributes shown in the syntax diagram are the only ones that may be altered
by this statement. See [Data Description Clauses], page 161, for information on their
usage.

Chapter 7 - PROCEDURE DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 375

7.8.39.9. SET LAST EXCEPTION� �
SET ATTRIBUTE Syntax
 	

SET LAST EXCEPTION TO { OFF }

~~~ ~~~~ ~~~~~~~~~ ~~ ~~~

————————————————————————————————————————

The "SET LAST EXCEPTION" statement will set the last program exception status to indicate
no exception.

1. The predefined object reference EXCEPTION-OBJECT is set to null, and the last
exception status is set to indicate no exception.

2. This action resets the global exception object completely (FUNCTION EXCEPTION-
FILE, LOCATION, STATEMENT, STATUS ), and will not show anything after-
wards), no matter what the last exception was (such as a divide by zero). Use with
care.

15 February 2018 Chapter 7 - PROCEDURE DIVISION



376 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

7.8.40. SORT

7.8.40.1. File-Based SORT� �
File-Based SORT Syntax
 	

SORT sort-file-1

~~~~

{ ON { ASCENDING } KEY identifier-1... }...

{ ~~~~~~~~~ }

{ DESCENDING }

~~~~~~~~~~

[ WITH DUPLICATES IN ORDER ]

~~~~~~~~~~

[ COLLATING SEQUENCE IS alphabet-name-1 ]

~~~~~~~~~

{ INPUT PROCEDURE IS procedure-name-1 }

{ ~~~~~~ ~~~~~~~~~ }

{ [ THRU|THROUGH procedure-name-2 ] }

{ ~~~~ ~~~~~~~ }

{ USING file-name-1 ... }

~~~~~

{ OUTPUT PROCEDURE IS procedure-name-3 }

{ ~~~~~~ ~~~~~~~~~ }

{ [ THRU|THROUGH procedure-name-4 ] }

{ ~~~~ ~~~~~~~ }

{ GIVING file-name-2 ... }

~~~~~~

The "DUPLICATES" clause is syntactically recognized but is otherwise non-functional.

————————————————————————————————————————

This format of the "SORT" statement is designed to sort large volumes of data according to
one or more key fields.

1. The reserved words "IN", "IS", "KEY", "ON", "ORDER", "SEQUENCE" and "WITH" are
optional and may be included, or not, at the discretion of the programmer. The
presence or absence of these words has no effect upon the program.

2. The reserved words "THRU" and "THROUGH" are interchangeable.

3. GnuCOBOL always behaves as if the "WITH DUPLICATES IN ORDER" clause is specified,
even if it isn’t.

Chapter 7 - PROCEDURE DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 377

While any COBOL implementation’s sort or merge facilities guarantee that records
with duplicate key values will be in proper sequence with regard to other records
with different key values, they generally make no promises as to the resulting relative
sequence of records having duplicate key values with one another.

Some COBOL implementations provide this optional clause to force their sort and
merge facilities to retain duplicate key-value records in their original input sequence,
relative to one another.

4. The <sort-file-1> named on the "SORT" statement must be defined using a sort de-
scription ("SD" (see [File/Sort-Description], page 130)). This file is referred to in the
remainder of this discussion as the "sort work file".

5. If specified, <file-name-1> and <file-name-2> must reference "ORGANIZATION

LINE SEQUENTIAL" (see [ORGANIZATION LINE SEQUENTIAL], page 116) or
"ORGANIZATION SEQUENTIAL" (see [ORGANIZATION SEQUENTIAL], page 114)
files. These files must be defined using a file description ("FD" (see [File/Sort-
Description], page 130)). The same file(s) may be used for <file-name-1> and
<file-name-2>.

6. The <identifier-1> . . . field(s) must be defined as field(s) within a record of <sort-file-
1>.

7. A sort work file is never opened or closed.

8. The sorting process works in three stages — the Input Stage, the Sort Stage and the
Output Stage.

9. The following points pertain to the Input Stage:

A. The data to be sorted is loaded into the sort work file either by copying the entire
contents of the file(s) named on the "USING" clause (done automatically by the
sort) or by utilizing an input procedure.

B. When "USING" is specified, none of the <file-name-1> files may be open at the
time the "SORT" statement is executed.

C. When an input procedure is used, the procedure(s) specified on the "INPUT

PROCEDURE" clause will be invoked as if by a procedural "PERFORM" statement
(see [Procedural PERFORM], page 344) with no "VARYING", "TIMES" or "UNTIL"
options specified. Records will be loaded into the sort work file — one at a time
— within the input procedure using the "RELEASE" statement (see [RELEASE],
page 356). This, by the way, is how you could sort the contents of relative or
indexed files.

A "GO TO" statement (see [GO TO], page 316) that transfers control out of the
input procedure will terminate the "SORT" statement but allows the program to
continue executing from the point where the "GO TO" statement transferred con-
trol to. Once an input procedure has been "aborted" using a "GO TO" it can-
not be resumed, and the contents of the sort work file are lost. You may, how-
ever, re-execute the "SORT" statement itself. USING A "GO TO" statement TO

15 February 2018 Chapter 7 - PROCEDURE DIVISION



378 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

PREMATURELY TERMINATE A SORT, OR RE-STARTING A PREVIOUSLY-
CANCELLED SORT IS NOT CONSIDERED GOOD PROGRAMMING STYLE
AND SHOULD BE AVOIDED.

An input procedure should be terminated in the same way a procedural "PERFORM"
statement would be.

Neither a another file-based "SORT" statement nor a "MERGE" statement may be
executed within the input procedure unless those statements utilize a different sort
or merge work file.

D. Once the input procedure terminates, the input phase is complete.

E. As data is loaded into the sort work file, it is actually being buffered in dynamically-
allocated memory. Only if the amount of data to be sorted exceeds the amount
of available sort memory (128 MB) will actual disk files be allocated and utilized.
There is a "COB_SORT_MEMORY" run-time environment variable (see [Run Time En-
vironment Variables], page 626) that you may use to allocate more or less memory
to the sorting process.

10. The following points pertain to the Sort Stage:

A. The sort will take place by arranging the data records in the sequence defined by
the "KEY" specification(s) on the "SORT" statement according to the "COLLATING

SEQUENCE" specified on the "SORT" (if any) or — if none was defined — the
"PROGRAM COLLATING SEQUENCE" (see [OBJECT-COMPUTER], page 94). Keys
may be any supported data type and "USAGE" (see [USAGE], page 223) except for
level-78 or level-88 data items.

B. For example, let’s assume we’re sorting a series of financial transactions. The
SORT statement might look like this:

SORT Sort-File

ASCENDING KEY Transaction-Date

ASCENDING KEY Account-Number

DESCENDING KEY Transaction-Amount

The effect of this statement will be to sort all transactions into ascending order of
the date the transaction took place (oldest first, newest last). Unless the business
running this program is going out of business, there are most-likely many trans-
actions for any given date. Therefore, within each grouping of transactions all
with the same date, transactions will be sub-sorted into ascending sequence of the
account number the transactions apply to. Since it’s quite possible there might be
multiple transactions for an account on any given date, a third level sub-sort will
arrange all transactions for the same account on the same date into descending
sequence of the actual amount of the transaction (largest first, smallest last). If
two or more transactions of $100.00 were recorded for account #12345 on the 31st
of August 2009, those transactions will be retained in the order in which they were
loaded into the sort work file.

Chapter 7 - PROCEDURE DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 379

C. Should disk work files be necessary due to the amount of data being sorted, they
will be automatically allocated to disk in a folder defined by the "TMPDIR" run-time
environment variable, "TMP" run-time environment variable or "TEMP" run-time en-
vironment variable run-time environment variables (see [Run Time Environment
Variables], page 626) (checked for existence in that sequence). These disk files will
be automatically purged upon "SORT" termination or program execution termina-
tion (normal or otherwise).

11. The following points pertain to the Output Stage:

A. Once the sort stage is complete, a copy of the sorted data will be written to each
<file-name-2> if the "GIVING" clause was specified. None of the <file-name-2> files
can be open at the time the sort is executed.

B. When an output procedure is used, the procedure(s) specified on the "OUTPUT

PROCEDURE" clause will be invoked as if by a procedural "PERFORM" statement
(see [Procedural PERFORM], page 344) with no "VARYING", "TIMES" or "UNTIL"
options specified. Records will be retrieved from the sort work file — one at a time
— within the output procedure using the "RETURN" statement (see [RETURN],
page 358).

A "GO TO" statement (see [GO TO], page 316) that transfers control out of the
output procedure will terminate the "SORT" statement but allows the program
to continue executing from the point where the "GO TO" statement transferred
control to. Once an output procedure has been "aborted" using a "GO TO" it
cannot be resumed, and the contents of the sort work file are lost. You may,
however, re-execute the "SORT" statement itself. USING A "GO TO" statement TO
PREMATURELY TERMINATE A SORT, OR RE-STARTING A PREVIOUSLY-
CANCELLED SORT IS NOT CONSIDERED GOOD PROGRAMMING STYLE
AND SHOULD BE AVOIDED.

An output procedure should be terminated in the same way a procedural
"PERFORM" statement would be.

Neither a another file-based "SORT" statement nor a "MERGE" statement may be
executed within the output procedure unless those statements utilize a different
sort or merge work file.

C. Once the output procedure terminates, the sort is complete.

15 February 2018 Chapter 7 - PROCEDURE DIVISION



380 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

7.8.40.2. Table SORT� �
Table SORT Syntax
 	

SORT table-name-1

~~~~

{ ON { ASCENDING } KEY identifier-1... }...

{ ~~~~~~~~~ }

{ DESCENDING }

~~~~~~~~~~

[ WITH DUPLICATES IN ORDER ]

~~~~~~~~~~

[ COLLATING SEQUENCE IS alphabet-name-1 ]

~~~~~~~~~

The "DUPLICATES" clause is syntactically recognized but is otherwise non-functional.

————————————————————————————————————————

This format of the "SORT" statement sorts relatively small quantities of data — namely
data contained in a data division table — according to one or more key fields.

1. The reserved words "IN", "IS", "KEY", "ON", "ORDER", "SEQUENCE" and "WITH" are
optional and may be included, or not, at the discretion of the programmer. The
presence or absence of these words has no effect upon the program.

2. GnuCOBOL always behaves as if the "WITH DUPLICATES IN ORDER" clause is specified,
even if it isn’t.

While any COBOL implementation’s sort or merge facilities guarantee that records
with duplicate key values will be in proper sequence with regard to other records
with different key values, they generally make no promises as to the resulting relative
sequence of records having duplicate key values with one another.

Some COBOL implementations provide this optional clause to force their sort and
merge facilities to retain duplicate key-value records in their original input sequence,
relative to one another.

3. The <table-name-1> data item must be a table defined in any data division section
except the report or screen sections.

4. The data within <table-name-1> will be sorted in-place (i.e. no sort file is required).

5. The sort will take place by rearranging the data in <table-name-1> into the sequence
defined by the "KEY" specification(s) on the "SORT" statement, according to the
"COLLATING SEQUENCE" specified on the "SORT" (if any) or — if none was defined —
the "PROGRAM COLLATING SEQUENCE" (see [OBJECT-COMPUTER], page 94). Keys
may be any supported data type and "USAGE" (see [USAGE], page 223) except for
level-78 or level-88 data items.

Chapter 7 - PROCEDURE DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 381

6. If you are sorting <table-name-1> for the purpose of preparing the table for use with
a "SEARCH ALL" statement (see [SEARCH ALL], page 364), care must be taken that
the "KEY" specifications on the "SORT" agree with those in the table’s definition.

7. Although the specification of one or more KEY clauses is optional, currently, a table
sort with no "KEY" specification(s) made on the "SORT" statement is unsupported by
GnuCOBOL and will be rejected by the compiler.

15 February 2018 Chapter 7 - PROCEDURE DIVISION



382 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

7.8.41. START� �
START Syntax
 	

START file-name-1

~~~~~

[ { FIRST } ]

{ ~~~~~ }

{ LAST }

{ ~~~~ }

{ KEY { IS EQUAL TO | IS = | EQUALS } identifier-1 }

{ ~~~~~ ~~~~~~ }

{ IS GREATER THAN | IS > }

{ ~~~~~~~ }

{ IS GREATER THAN OR EQUAL TO | IS >= }

{ ~~~~~~~ ~~ ~~~~~ }

{ IS NOT LESS THAN }

{ ~~~ ~~~~ }

{ IS LESS THAN | IS < }

{ ~~~~ }

{ IS LESS THAN OR EQUAL TO | IS <= }

{ ~~~~ ~~ ~~~~~ }

{ IS NOT GREATER THAN }

~~~ ~~~~~~~

[ INVALID KEY imperative-statement-1 ]

~~~~~~~

[ NOT INVALID KEY imperative-statement-2 ]

~~~ ~~~~~~~

[ END-START ]

~~~~~~~~~

————————————————————————————————————————

The "START" statement defines the logical starting point within a relative or indexed file
for subsequent sequential read operations. It positions an internal logical record pointer to
a particular record in the file, but does not actually transfer any of that record’s data into
the record buffer.

1. The reserved words "IS", "KEY", "THAN" and "TO" are optional and may be included,
or not, at the discretion of the programmer. The presence or absence of these words
has no effect upon the program.

2. To use this statement, <file-name-1> must be an "ORGANIZATION RELATIVE" (see
[ORGANIZATION RELATIVE], page 118) or "ORGANIZATION INDEXED" (see
[ORGANIZATION INDEXED], page 120) file that must have been defined with an
"ACCESS MODE DYNAMIC" or "ACCESS MODE SEQUENTIAL" in its "SELECT" statement
(see [SELECT], page 109).

Chapter 7 - PROCEDURE DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 383

3. At the time this statement is executed, <file-name-1> must be open in either "INPUT"
or "I-O" (see [File OPEN Modes], page 343) mode.

4. If <file-name-1> is a relative file, <identifier-1> must be the defined "RELATIVE KEY"

of the file.

5. If <file-name-1> is an indexed file, <identifier-1> must be the defined "RECORD KEY"

of the file or any of the "ALTERNATE RECORD KEY" fields for the file.

6. If no "FIRST", "LAST" or "KEY" clause is specified, "KEY IS EQUAL TO xxx" will be
assumed, where "xxx" is the defined "RELATIVE KEY" of (if <file-name-1> is a relative
file) or the defined "RECORD KEY" (if <file-name-1> is an indexed file).

7. After successful execution of a "START" statement, the internal logical record pointer
into the <file-name-1> data will be positioned to the record which satisfied the actual
or implied "FIRST", "LAST" or "KEY" clause specification, as follows:

A. If "FIRST" was specified, the logical record pointer will point to the first record in
the file.

B. If "LAST" was specified, the logical record pointer will point to the last record in
the file.

C. If "KEY" was specified or implied, the logical record pointer will be specified to
the first record satisfying the relation condition; to identify this record, the file’s
contents are searched in a first-to-last (in sequence of the key implied by the "KEY"
clause), provided the relation is "EQUAL TO", "GREATER THAN" or "GREATER THAN

OR EQUAL TO" (or any of their syntactical equivalents).

D. If "KEY" was specified or implied, the logical record pointer will be specified to
the last record satisfying the relation condition; to identify this record, the file’s
contents are searched in a last-to-first (in sequence of the key implied by the "KEY"
clause), provided the relation is "LESS THAN", "LESS THAN OR EQUAL TO" or "NOT
GREATER THAN" (or any of their syntactical equivalents).

The next sequential "READ" statement will read the record that is pointed to by the
logical record pointer.

8. The optional "INVALID KEY" and "NOT INVALID KEY" clauses may be used to detect
and react to the failure or success, respectively, by detecting non-zero (typically 23
= key not found = record not found) and 00 file status codes, respectively. See [File
Status Codes], page 112, for additional information.

15 February 2018 Chapter 7 - PROCEDURE DIVISION



384 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

7.8.42. STOP� �
STOP Syntax
 	

STOP { RUN [ { RETURNING|GIVING { literal-1 } } ] }

~~~~ { ~~~ { ~~~~~~~~~ ~~~~~~ { identifier-1 } } }

{ { } }

{ { WITH { ERROR } STATUS [ { literal-2 } ] } }

{ { { ~~~~~ } { identifier-2 } } }

{ { { NORMAL } } }

{ ~~~~~~ }

{ literal-3 }

————————————————————————————————————————

The "STOP" statement suspends program execution. Some options will allow program exe-
cution to resume while others return control to the operating system.

1. The reserved words "STATUS" and "WITH" are optional and may be included, or not,
at the discretion of the programmer. The presence or absence of these words has no
effect upon the program.

2. The reserved words "RETURNING" and "GIVING" are interchangeable.

3. The "RUN" clause halts the program without displaying any special message to that
effect.

4. The <literal-3> clause displays the specified text on the "SYSOUT"/"STDOUT" device,
waits for the user to press the Enter key and then — once the key has been pressed —
allows the program to continue execution.

5. The optional "RETURNING" clause provides the opportunity to return a numeric value
to the operating system (a "return code"). The manner in which the return code may
be interrogated by the operating system varies, but Windows can use "%ERRORLEVEL%"
to query the return code while Unix shells such as sh, bash and ksh can query the
return code as "$?". Other Unix shells may have different ways to access return code
values.

6. The "STATUS" clause provides another means of returning a return code. Using the
"STATUS" clause is functionally equivalent to using the "RETURNING" clause.

7. Using the "STATUS" clause without a <literal-2> or <identifier-2> will return a return
code of 0 if the "NORMAL" keyword is used or a 1 if "ERROR" was specified.

8. Your program will always return a return code, even if no "RETURNING" or "STATUS"
clause is specified. In the absence of the use of these clauses, the value in the
"RETURN-CODE" special register (see [Special Registers], page 255) at the time the
"STOP" statement is executed will be used as the return code.

9. Any programmer-defined exit procedure (established via the "CBL_EXIT_PROC" built-

Chapter 7 - PROCEDURE DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 385

in system subroutine (see [CBL EXIT PROC], page 544)) will be executed by "STOP

RUN", but not by "STOP <literal-3>".

10. Valid return code values can be in the range -2147483648 to +2147483647.

11. The three code snippets below are all equivalent — they show different ways in which
a GnuCOBOL program may be coded to pass a return code value of 16 back to the
operating system and then halt.

STOP RUN RETURNING 16

MOVE 16 TO RETURN-CODE

STOP RUN

STOP RUN WITH ERROR STATUS 16

15 February 2018 Chapter 7 - PROCEDURE DIVISION



386 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

7.8.43. STRING� �
STRING Syntax
 	

STRING

~~~~~~

{ { literal-1 } [ DELIMITED BY { SIZE } ] }...

{ identifier-1 } ~~~~~~~~~ { ~~~~ }

{ literal-2 }

INTO identifier-3 { identifier-2 }

~~~~

[ WITH POINTER identifier-4 ]

~~~~~~~

[ ON OVERFLOW imperative-statement-1 ]

~~~~~~~~

[ NOT ON OVERFLOW imperative-statement-2 ]

~~~ ~~~~~~~~

[ END-STRING ]

~~~~~~~~~~

————————————————————————————————————————

The "STRING" statement is used to concatenate all or a part of one or more strings together,
forming a new string.

1. The reserved words "BY", "ON" and "WITH" are optional and may be included, or not,
at the discretion of the programmer. The presence or absence of these words has no
effect upon the program.

2. All literals and identifiers (except for <identifier-4>) must be explicitly or implicitly
defined with a "USAGE" (see [USAGE], page 223) of "DISPLAY". Any of the identifiers
may be group items.

3. The "POINTER" data item — <identifier-4> — must be a non-edited elementary integer
numeric data item with a value greater than zero.

4. Each <literal-1> / <identifier-1> will be referred to as a source item. The receiving
data item is <identifier-3>.

5. The "STRING" statement’s processing is based upon a ’current character pointer ’. The
initial value of the current character pointer will be the value of <identifier-4> at the
time the "STRING" statement began execution. If no "POINTER" clause is coded, a value
of 1 (meaning "the 1st character position") will be assumed for the current character
pointer’s initial value.

6. For each source item, the contents of the sending item will be copied — character-
by-character — into <identifier-3> at the character position specified by the current
character pointer. After each character is copied, the current character pointer will be

Chapter 7 - PROCEDURE DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 387

incremented by 1 so that it points to the position within <identifier-3> where the next
character should be copied.

7. The "DELIMITED BY" clause specifies how much of each source item will be copied into
<identifier-3>. "DELIMITED BY SIZE" (the default if no "DELIMITED BY" clause is
specified) causes the entire contents of the source item to be copied into <identifier-3>.

8. Using "DELIMITED BY <literal-2>" or "DELIMITED BY <identifier-2>" causes
only the contents of the source item up to but not including the character sequence
specified by the literal or identifier to be copied.

9. "STRING" processing will cease when one of the following occurs:

A. The initial value of the current character pointer is less than 1 or greater than the
number of characters in <identifier-3>, or. . .

B. The value of the current character pointer exceeds the size of <identifier-3> at the
point the STRING statement wants to copy a character into <identifier-3>, or. . .

C. All sending items have been fully processed

10. If event (A) occurs, <identifier-3> will remain unchanged.

11. The occurrence of either event (A) or (B) triggers what is referred to as an ’overflow
condition’.

12. The <identifier-3>) is neither automatically initialized (to spaces or any other value) at
the start of a "STRING" statement nor will it be space-filled should the total number of
sending item characters copied into it be less than its size. You may explicitly initialize
<identifier-3> yourself via the "INITIALIZE" (see [INITIALIZE], page 321) or "MOVE"
(see [MOVE], page 336) statements before executing the "STRING" if you wish.

13. The optional "ON OVERFLOW" and "NOT ON OVERFLOW" clauses may be used to detect
and react to the occurrence or not, respectively, of an overflow condition. See [ON
OVERFLOW + NOT ON OVERFLOW], page 251, for additional information.

15 February 2018 Chapter 7 - PROCEDURE DIVISION



388 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

7.8.44. SUBTRACT

7.8.44.1. SUBTRACT FROM� �
SUBTRACT FROM Syntax
 	

SUBTRACT { literal-1 }... FROM { identifier-2

~~~~~~~~ { identifier-1 } ~~~~

[ ROUNDED [ MODE IS { AWAY-FROM-ZERO } ] ] }...

~~~~~~~ ~~~~ { ~~~~~~~~~~~~~~ }

{ NEAREST-AWAY-FROM-ZERO }

{ ~~~~~~~~~~~~~~~~~~~~~~ }

{ NEAREST-EVEN }

{ ~~~~~~~~~~~~ }

{ NEAREST-TOWARD-ZERO }

{ ~~~~~~~~~~~~~~~~~~~ }

{ PROHIBITED }

{ ~~~~~~~~~~ }

{ TOWARD-GREATER }

{ ~~~~~~~~~~~~~~ }

{ TOWARD-LESSER }

{ ~~~~~~~~~~~~~ }

{ TRUNCATION }

~~~~~~~~~~

[ ON SIZE ERROR imperative-statement-1 ]

~~~~ ~~~~~

[ NOT ON SIZE ERROR imperative-statement-2 ]

~~~ ~~~~ ~~~~~

[ END-SUBTRACT ]

~~~~~~~~~~~~

————————————————————————————————————————

This format of the "SUBTRACT" statement generates the arithmetic sum of all arguments
that appear before the "FROM" (<identifier-1> or <literal-1>) and subtracts that sum from
each <identifier-2>.

1. The reserved words "IS" and "ON" are optional and may be included, or not, at the
discretion of the programmer. The presence or absence of these words has no effect
upon the program.

2. Both <identifier-1> and <identifier-2> must be numeric unedited data items.

3. <literal-1> must be a numeric literal.

4. The optional "ROUNDED" (see [ROUNDED], page 252) clause available to each

Chapter 7 - PROCEDURE DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 389

<identifier-2> will control how non-integer results will be saved.

5. The optional "ON SIZE ERROR" and "NOT ON SIZE ERROR" clauses may be used to
detect and react to the failure or success, respectively, of an attempt to perform a
calculation. In this case, failure is defined as being an <identifier-2> with an insufficient
number of digit positions available to the left of any implied decimal point. See [ON
SIZE ERROR + NOT ON SIZE ERROR], page 251, for additional information.

15 February 2018 Chapter 7 - PROCEDURE DIVISION



390 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

7.8.44.2. SUBTRACT GIVING� �
SUBTRACT GIVING Syntax
 	

SUBTRACT { literal-1 }... FROM identifier-2

~~~~~~~~ { identifier-1 } ~~~~

GIVING { identifier-3

~~~~~~

[ ROUNDED [ MODE IS { AWAY-FROM-ZERO } ] ] }...

~~~~~~~ ~~~~ { ~~~~~~~~~~~~~~ }

{ NEAREST-AWAY-FROM-ZERO }

{ ~~~~~~~~~~~~~~~~~~~~~~ }

{ NEAREST-EVEN }

{ ~~~~~~~~~~~~ }

{ NEAREST-TOWARD-ZERO }

{ ~~~~~~~~~~~~~~~~~~~ }

{ PROHIBITED }

{ ~~~~~~~~~~ }

{ TOWARD-GREATER }

{ ~~~~~~~~~~~~~~ }

{ TOWARD-LESSER }

{ ~~~~~~~~~~~~~ }

{ TRUNCATION }

~~~~~~~~~~

[ ON SIZE ERROR imperative-statement-1 ]

~~~~ ~~~~~

[ NOT ON SIZE ERROR imperative-statement-2 ]

~~~ ~~~~ ~~~~~

[ END-SUBTRACT ]

~~~~~~~~~~~~

————————————————————————————————————————

The "SUBTRACT GIVING" statement generates the arithmetic sum of all arguments that ap-
pear before the "FROM" (<identifier-1> or <literal-1>), subtracts that sum from the contents
of <identifier-2> and then replaces the contents of the identifiers listed after the "GIVING"

(<identifier-3>) with that result.

1. The reserved words "IS" and "ON" are optional and may be included, or not, at the
discretion of the programmer. The presence or absence of these words has no effect
upon the program.

2. Both <identifier-1> and <identifier-2> must be numeric unedited data items.

3. <literal-1> must be a numeric literal.

Chapter 7 - PROCEDURE DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 391

4. <identifier-3> must be a numeric (edited or unedited) data item.

5. The optional "ROUNDED" (see [ROUNDED], page 252) clause available to each
<identifier-2> will control how non-integer results will be saved.

6. The optional "ON SIZE ERROR" and "NOT ON SIZE ERROR" clauses may be used to
detect and react to the failure or success, respectively, of an attempt to perform a
calculation. In this case, failure is defined as being an <identifier-2> with an insufficient
number of digit positions available to the left of any implied decimal point. See [ON
SIZE ERROR + NOT ON SIZE ERROR], page 251, for additional information.

15 February 2018 Chapter 7 - PROCEDURE DIVISION



392 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

7.8.44.3. SUBTRACT CORRESPONDING� �
SUBTRACT CORRESPONDING Syntax
 	

SUBTRACT CORRESPONDING identifier-1 FROM identifier-2

~~~~~~~~ ~~~~

[ ROUNDED [ MODE IS { AWAY-FROM-ZERO } ] ]

~~~~~~~ ~~~~ { ~~~~~~~~~~~~~~ }

{ NEAREST-AWAY-FROM-ZERO }

{ ~~~~~~~~~~~~~~~~~~~~~~ }

{ NEAREST-EVEN }

{ ~~~~~~~~~~~~ }

{ NEAREST-TOWARD-ZERO }

{ ~~~~~~~~~~~~~~~~~~~ }

{ PROHIBITED }

{ ~~~~~~~~~~ }

{ TOWARD-GREATER }

{ ~~~~~~~~~~~~~~ }

{ TOWARD-LESSER }

{ ~~~~~~~~~~~~~ }

{ TRUNCATION }

~~~~~~~~~~

[ ON SIZE ERROR imperative-statement-1 ]

~~~~ ~~~~~

[ NOT ON SIZE ERROR imperative-statement-2 ]

~~~ ~~~~ ~~~~~

[ END-SUBTRACT ]

~~~~~~~~~~~~

————————————————————————————————————————

The "SUBTRACT CORRESPONDING" statement generates code equivalent to individual
"SUBTRACT FROM" statements for corresponding matches of data items found subordinate
to the two identifiers.

1. The reserved words "IS" and "ON" are optional and may be included, or not, at the
discretion of the programmer. The presence or absence of these words has no effect
upon the program.

2. Both <identifier-1> and <identifier-2> must be group items.

3. See [CORRESPONDING], page 248, for information on how corresponding matches
will be found between <identifier-1> and <identifier-2>.

4. The optional "ROUNDED" (see [ROUNDED], page 252) clause available to each
<identifier-2> will control how non-integer results will be saved.

5. The optional "ON SIZE ERROR" and "NOT ON SIZE ERROR" clauses may be used to

Chapter 7 - PROCEDURE DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 393

detect and react to the failure or success, respectively, of an attempt to perform a
calculation. In this case, failure is defined as being an <identifier-2> with an insufficient
number of digit positions available to the left of any implied decimal point. See [ON
SIZE ERROR + NOT ON SIZE ERROR], page 251, for additional information.

15 February 2018 Chapter 7 - PROCEDURE DIVISION



394 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

7.8.45. SUPPRESS� �
SUPPRESS Syntax
 	

SUPPRESS PRINTING

~~~~~~~~

————————————————————————————————————————

The "SUPPRESS" statement causes the presentation of a report group to be suppressed.

1. The reserved word "PRINTING" is optional and may be included, or not, at the discretion
of the programmer. The presence or absence of this word has no effect upon the
program.

2. This statement may only appear within a "USE BEFORE REPORTING" procedure (in
"DECLARATIVES" (see [DECLARATIVES], page 244)).

3. "SUPPRESS" only prevents the presentation of the report group within whose "USE

BEFORE REPORTING" procedure the statement occurs.

4. This statement must be executed each time presentation of the report group is to be
suppressed.

5. When a report group’s presentation is suppressed, none of the following operations for
the report will take place:

A. Actual presentation of the report group in question.

B. Processing of any "LINE" (see [LINE], page 189) clauses within the report group
in question.

C. Processing of the "NEXT GROUP" (see [NEXT GROUP], page 192) clause (if any)
within the report group in question.

D. Any modification to the "LINE-COUNTER" special register (see [Special Registers],
page 255).

E. Any modification to the "PAGE-COUNTER" special register .

Chapter 7 - PROCEDURE DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 395

7.8.46. TERMINATE� �
TERMINATE Syntax
 	

TERMINATE report-name-1...

~~~~~~~~~

————————————————————————————————————————

The "TERMINATE" statement causes the processing of the specified report(s) to be completed.

1. Each <report-name-1> must be the name of a report having an "RD" (see [REPORT
SECTION], page 143) defined for it.

2. The specified report name(s) must be currently initiated (via "INITIATE" (see
[INITIATE], page 326)) and cannot yet have been terminated.

3. The "TERMINATE" statement will present each "CONTROL FOOTING" (if any), in reverse
sequence of the control hierarchy, starting with the most minor up to "FINAL" (if
any). During the presentation of these groups and the processing of any "USE BEFORE

REPORTING" procedures for those groups, the prior set of control data item values will
be available, as though a control break had been detected at the most major control
data name.

4. During the presentation of the "CONTROL FOOTING" groups, any necessary "PAGE

FOOTING" and "PAGE HEADING" groups will be presented as well.

5. Finally,the "REPORT FOOTING" group, if any, will be presented.

6. If an "INITIATE" is followed by a "TERMINATE" with no intervening "GENERATE" (see
[GENERATE], page 313) statements (all pertaining to the same report, of course), no
report groups will be presented to the output file.

15 February 2018 Chapter 7 - PROCEDURE DIVISION



396 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

7.8.47. TRANSFORM� �
TRANSFORM Syntax
 	

TRANSFORM identifier-1 FROM { literal-1 } TO { literal-2 }

~~~~~~~~~ ~~~~ { identifier-2 } ~~ { identifier-3 }

————————————————————————————————————————

The "TRANSFORM" statement scans a data item performing a series of mono-alphabetic
substitutions, defined by the arguments before and after the "TO" clause.

1. Both <literal-1> and/or <literal-2> must be alphanumeric literals.

2. All of <identifier-1>, <identifier-2> and <identifier-3> must either be group items or
alphanumeric data items. Numeric data items with a "USAGE" (see [USAGE], page 223)
of "DISPLAY" are accepted, but will generate warning messages from the compiler.

3. The "TRANSFORM" statement will replace characters within <identifier-1> that are found
in the string specified before the "TO" keyword with the corresponding characters from
the string specified after the "TO" keyword.

4. This statement exists within GnuCOBOL to provide compatibility with COBOL pro-
grams written to pre-1985 standards. The "TRANSFORM" statement was made obsolete
in the 1985 standard of COBOL, having been replaced by the "CONVERTING" clause of
the "INSPECT" statement (see [INSPECT], page 327). New programs should be coded
to use "INSPECT CONVERTING" rather than "TRANSFORM".

Chapter 7 - PROCEDURE DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 397

7.8.48. UNLOCK� �
UNLOCK Syntax
 	

UNLOCK filename-1 RECORD|RECORDS

~~~~~~

————————————————————————————————————————

This statement synchronizes any as-yet unwritten file I/O buffers to the specified file (if
any) and releases any record locks held for records belonging to <file-name-1>.

1. The reserved words "RECORD" and "RECORDS" are optional and may be included, or
not, at the discretion of the programmer. The presence or absence of these words has
no effect upon the program.

2. If <file-name-1> is a Sort/Merge work file, no action will be taken.

3. Not all GnuCOBOL implementations support locking. Whether they do or not depends
upon the operating system they were built for and the build options that were used
when GnuCOBOL was generated. When a program using one of those GnuCOBOL
implementations issues an UNLOCK, it will ignored. There will be no compiler message
issued. Buffer syncing, if needed, will still occur.

4. See [Record Locking], page 64, for additional information on record locking.

15 February 2018 Chapter 7 - PROCEDURE DIVISION



398 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

7.8.49. UNSTRING� �
UNSTRING Syntax
 	

UNSTRING identifier-1

~~~~~~~~

DELIMITED BY { [ ALL ] literal-1 } [ OR { [ ALL ] literal-2 } ]...

~~~~~~~~~ { ~~~ } ~~ { ~~~ }

{ identifier-2 } { identifier-3 }

INTO { identifier-4

~~~~ [ DELIMITER IN identifier-5 ] [ COUNT IN identifier-6 ] }...

~~~~~~~~~ ~~~~~

[ WITH POINTER identifier-7 ]

~~~~~~~

[ TALLYING IN identifier-8 ]

~~~~~~~~

[ ON OVERFLOW imperative-statement-1 ]

~~~~~~~~

[ NOT ON OVERFLOW imperative-statement-2 ]

~~~ ~~~~~~~~

[ END-UNSTRING ]

~~~~~~~~~~~~

————————————————————————————————————————

The "UNSTRING" statement parses a string, extracting any number of sub strings from it.

1. The reserved words "BY", "IN" and "ON" are optional and may be included, or not, at
the discretion of the programmer. The presence or absence of these words has no effect
upon the program.

2. <identifier-1> through <identifier-5> must be explicitly or implicitly defined with a
"USAGE" (see [USAGE], page 223) of "DISPLAY". Any of those identifiers may be
group items.

3. Both <literal-1> and <literal-2> must be alphanumeric literals.

4. Each of <identifier-6>, <identifier-7> and <identifier-8> must be elementary non-edited
integer numeric items.

5. At the time the "UNSTRING" statement begins execution, <identifier-7> must have a
value greater than 0.

6. <identifier-1> will be referred to as the ’source string ’ and each <identifier-4> will be
referred to as a ’destination field ’ in the following discussions.

7. The "UNSTRING" statement’s processing is based upon a ’current character pointer ’,
the initial value of which will be the value of <identifier-7> at the time the "UNSTRING"

Chapter 7 - PROCEDURE DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 399

statement began execution. If no "POINTER" clause is coded, a value of 1 (meaning
"the 1st character position") will be assumed for the current character pointer’s initial
value.

8. The source string will be parsed into sub strings starting from the current charac-
ter pointer position. Sub strings are identified by using the various delimiter strings
specified on the "DELIMITED BY" clause as inter-sub string separators.

9. Using the "ALL" option allows a delimiter sequence to be an arbitrarily long sequence
of occurrences of the delimiter literal whereas its absence treats each occurrence as a
separate delimiter. When multiple delimiters are specified, they will be looked for in
the source string in the sequence in which they are coded.

10. Two consecutive delimiter sequences will identify a null sub string.

11. Identified sub strings will be moved into each destination field in the sequence they
are identified; values moved into a destination field will be truncated if the sub string
length exceeds the destination field length, or padded with spaces if the destination field
length exceeds the sub string length. Both truncation and padding will be controlled
by the presence or absence of a "JUSTIFIED" (see [JUSTIFIED], page 185) clause on
the destination field.

12. Each destination field may have an optional "DELIMITER" clause. If a "DELIMITER"

clause is specified, <identifier-5> will have the delimiter character string used to identify
the sub string for the destination field moved into it. If a destination field was not
altered (because an insufficient number of sub strings were identified), <identifier-5>
for that destination field will also be unchanged.

13. Each destination field may have an optional "COUNT" clause. If a "COUNT" clause is
specified, <identifier-6> will have the size of the sub string (in characters) for the
destination field moved into it. If a destination field was not altered (because an
insufficient number of sub strings were identified), <identifier-6> for that destination
field will also be unchanged.

14. If a "TALLYING" clause is coded, <identifier-8> will be incremented by 1 each time a
destination field is populated.

15. None of <identifier-4>, <identifier-5>, <identifier-6>, <identifier-7> or <identifier-8>
are initialized by the "UNSTRING" statement. You need to do that yourself via a "MOVE"
(see [MOVE], page 336) or "INITIALIZE" statement (see [INITIALIZE], page 321).

16. "UNSTRING" processing will cease when one of the following occurs:

A. The initial value of the current character pointer is less than 1 or greater than the
number of character positions in <identifier-1>, or. . .

B. All destination fields have been fully processed

17. If event (A) occurs, none of the destination field contents (or the contents of their
"DELIMITER" or <COUNT> identifiers) will be changed.

18. An ’overflow ’ condition exists if either event (A) occurs, or if event (B) occurs with at

15 February 2018 Chapter 7 - PROCEDURE DIVISION



400 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

least one character position in <identifier-1> not having been processed.

19. The optional "ON OVERFLOW" and "NOT ON OVERFLOW" clauses may be used to detect
and react to the occurrence or not, respectively, of an overflow condition. See [ON
OVERFLOW + NOT ON OVERFLOW], page 251, for additional information.

The following sample program illustrates the "UNSTRING" statement statement.

IDENTIFICATION DIVISION.

PROGRAM-ID. DEMOUNSTRING.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 Full-Name PIC X(40).

01 Parsed-Info.

05 Last-Name PIC X(15).

05 First-Name PIC X(15).

05 MI PIC X(1).

05 Delim-LN PIC X(1).

05 Delim-FN PIC X(1).

05 Delim-MI PIC X(1).

05 Count-LN BINARY-CHAR.

05 Count-FN BINARY-CHAR.

05 Count-MI BINARY-CHAR.

05 Tallying-Ctr BINARY-CHAR.

PROCEDURE DIVISION.

P1. PERFORM UNTIL EXIT

DISPLAY "Enter Full Name (null quits):"

WITH NO ADVANCING

ACCEPT Full-Name

IF Full-Name = SPACES

EXIT PERFORM

END-IF

INITIALIZE Parsed-Info

UNSTRING Full-Name

DELIMITED BY ", "

OR ","

OR ALL SPACES

INTO Last-Name

DELIMITER IN Delim-LN

COUNT IN Count-LN

First-Name

DELIMITER IN Delim-FN

COUNT IN Count-FN

MI

DELIMITER IN Delim-MI

COUNT IN Count-MI

Chapter 7 - PROCEDURE DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 401

TALLYING Tallying-Ctr

DISPLAY "First-Name=" First-Name

" Delim=’" Delim-FN

"’ Count=" Count-FN

DISPLAY "MI =" MI " "

" Delim=’" Delim-MI

"’ Count=" Count-MI

DISPLAY "Last-Name =" Last-Name

" Delim=’" Delim-LN

"’ Count=" Count-LN

DISPLAY "Tally= " Tallying-Ctr

END-PERFORM

DISPLAY "Bye!"

STOP RUN .

The following is sample output from the program:

Enter Full Name (null quits):Cutler, Gary L

First-Name=Gary Delim=’ ’ Count=+004

MI =L Delim=’ ’ Count=+001

Last-Name =Cutler Delim=’,’ Count=+006

Tally= +003

Enter Full Name (null quits):Snoddgrass,Throckmorton,P

First-Name=Throckmorton Delim=’,’ Count=+012

MI =P Delim=’ ’ Count=+001

Last-Name =Snoddgrass Delim=’,’ Count=+010

Tally= +003

Enter Full Name (null quits):Munster Herman

First-Name=Herman Delim=’ ’ Count=+006

MI = Delim=’ ’ Count=+000

Last-Name =Munster Delim=’ ’ Count=+007

Tally= +002

Enter Full Name (null quits):

Bye!

15 February 2018 Chapter 7 - PROCEDURE DIVISION



402 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

7.8.50. WRITE� �
WRITE Syntax
 	

WRITE record-name-1

~~~~~

[ FROM { literal-1 } ]

~~~~ { identifier-1 }

[ WITH [ NO ] LOCK ]

~~ ~~~~

[ { BEFORE } ADVANCING { { literal-2 } LINE|LINES } ]

{ ~~~~~~ } { { identifier-2 }

{ AFTER } { PAGE }

~~~~~ { ~~~~ }

{ mnemonic-name-1 }

[ AT END-OF-PAGE|EOP imperative-statement-1 ]

~~~~~~~~~~~ ~~~

[ NOT AT END-OF-PAGE|EOP imperative-statement-2 ]

~~~ ~~~~~~~~~~~ ~~~

[ INVALID KEY imperative-statement-3 ]

~~~~~~~

[ NOT INVALID KEY imperative-statement-4 ]

~~~ ~~~~~~~

[ END-WRITE ]

~~~~~~~~~

————————————————————————————————————————

The "WRITE" statement writes a new record to an open file.

1. The reserved words "ADVANCING", "AT", "KEY", "LINE", "LINES" and "WITH" are op-
tional and may be included, or not, at the discretion of the programmer. The presence
or absence of these words has no effect upon the program.

2. The reserved words "END-OF-PAGE" and "EOP" are interchangeable.

3. The <record-name-1> specified on the statement must be defined as an 01-level record
subordinate to the File Description ("FD" (see [File/Sort-Description], page 130)) of a
file that is currently open for "OUTPUT" (see [File OPEN Modes], page 343), "EXTEND"
or "I-O".

4. The optional "FROM" clause will cause <literal-1> or <identifier-1> to be automatically
moved into <record-name-1> prior to writing <record-name-1>’s contents to the ap-
propriate file. If this clause is not specified, it is the programmer’s responsibility to
populate <record-name-1> with the desired data prior to executing the "WRITE".

Chapter 7 - PROCEDURE DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 403

5. The optional "LOCK" options may be used to manually control access to the just-written
record by other programs while this program is running. See [Record Locking], page 64,
to review the various record locking behaviour.

6. The optional "INVALID KEY" and "NOT INVALID KEY" clauses may be used when writ-
ing to relative or indexed files to detect and react to the failure (non-zero file status
code) or success (00 file status code), respectively, of the statement. See [File Status
Codes], page 112, for additional information.

7. When "WRITE" is used against an "ORGANIZATION LINE SEQUENTIAL" (see
[ORGANIZATION LINE SEQUENTIAL], page 116) file, with or without the "LINE

ADVANCING" (see [LINE ADVANCING], page 15) option, an end-of-record delimiter
character sequence will be written to the file to signify where one record ends and the
next record begins. This delimiter sequence will be either of the following:

• A line-terminator sequence consisting of an ASCII carriage-return/line-feed char-
acter sequence (X’0D0A’) if you are running a MinGW or native Windows build
of GnuCOBOL

• A line-terminator sequence consisting of an ASCII line-feed character (X’0A’) if
you are running a Cygwin, Linux, Unix or OSX build of GnuCOBOL

8. The following points pertain to the use (or not) of the "ADVANCING" clause:

A. Using this clause with any organization other than "ORGANIZATION LINE

SEQUENTIAL" will either be rejected outright by the compiler (relative or indexed
files) or may introduce unwanted characters into the file ("ORGANIZATION
SEQUENTIAL" (see [ORGANIZATION SEQUENTIAL], page 114)).

B. If no "ADVANCING" clause is specified on a "WRITE" to a line-advancing file, "AFTER
ADVANCING 1 LINE" will be assumed; on other than line-advancing files, "BEFORE
ADVANCING 1 LINE" will be assumed.

C. When "BEFORE ADVANCING" is used (or implied), the record is written to the file
before the "ADVANCING" action writes line-terminator characters to the file.

D. If "AFTER ADVANCING" is used (or implied), the "ADVANCING" action writes line-
terminator characters to the file and then the record data is written to the file.

E. The "ADVANCING n LINES" clause will introduce the specified number of
line-terminator character sequences into the file either before the written record
("AFTER ADVANCING") or after the written record ("BEFORE ADVANCING").

F. If the "LINAGE" (see [File/Sort-Description], page 130) clause is absent from the
file’s "FD":

a. The "ADVANCING PAGE" clause will introduce an ASCII formfeed character
into the file either before the written record ("AFTER PAGE") or after the
written record ("BEFORE PAGE").

b. Management of areas on the printed page such as top-of page headers, bottom-

15 February 2018 Chapter 7 - PROCEDURE DIVISION



404 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

of-page footers, dealing with "full page" situations and the like are the com-
plete responsibility of the programmer.

G. If the LINAGE clause is present in the file’s "FD":

a. The "ADVANCING PAGE" clause will introduce the appropriate number of line-
terminator character sequences into the file either before the written record
("AFTER ADVANCING") or after the written record ("BEFORE ADVANCING") so
as to force the printer to automatically advance to a new sheet of paper when
the file prints. No formfeed characters will be generated when "LINAGE" is
specified — instead, it is assumed that the printer to which the report will be
printed will be loaded with special forms that conform to the specifications
defined by the "LINAGE" clause.

b. Management of areas on the printed page such as top-of page headers, bottom-
of-page footers, dealing with "full page" situations and the like are now the
joint responsibility of the programmer and the GnuCOBOL run-time library,
which provides tools such as the "LINAGE-COUNTER" special register (see
[Special Registers], page 255) and the "END-OF-PAGE" clause to deal with
page formatting issues.

c. The "AT END-OF-PAGE" clause will be triggered, thus executing <imperative-
statement-1> (see [Imperative Statement], page 675), if the "WRITE" statement
introduces a data line or line-feed character into the file at a line position
within the Page Footer area defined by the "LINAGE" clause. The "NOT AT

END-OF-PAGE" clause will be triggered (thus executing <imperative-statement-
2>) if no end-of-page condition occurred during the "WRITE".

————————————————————
End of Chapter 7 — PROCEDURE DIVISION

Chapter 7 - PROCEDURE DIVISION 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 405

8. FUNCTIONS

8.1. Intrinsic Functions

GnuCOBOL supports a wide variety of "intrinsic functions" that may be used anywhere in
the PROCEDURE DIVISION where a literal is allowed. For example:

MOVE FUNCTION LENGTH(Employee-Last-Name) TO Employee-LN-Len

Note how the word "FUNCTION" is part of the syntax when you use an intrinsic function.
You can use intrinsic functions without having to include the reserved word "FUNCTION"

via settings in the "REPOSITORY" (see [REPOSITORY], page 106) paragraph. You may
accomplish the same thing by specifying the "-fintrinsics" switch to the GnuCOBOL
compiler when you compile your programs.

User-written functions (see [Subprogram Types], page 641) never require the "FUNCTION"

keyword when they are executed, because each user-written function a program uses
must be included in that program’s "REPOSITORY" paragraph, which therefore makes the
"FUNCTION" keyword optional.

The following intrinsic functions, known to other "dialects" of COBOL, are defined to Gnu-
COBOL as reserved words but are not otherwise implemented currently. Any attempts to
use these functions will result in a compile-time error message. However they are described
at the end of this chapter.

BOOLEAN-OF-INTEGER

CHAR-NATIONAL

DISPLAY-OF

EXCEPTION-FILE-N

EXCEPTION-LOCATION-N

INTEGER-OF-BOOLEAN

NATIONAL-OF

STANDARD-COMPARE

The supported intrinsic functions are listed in the following sections, along with their syntax
and usage notes.

15 February 2018 Chapter 8 - FUNCTIONS



406 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

8.1.1. ABS� �
ABS Function Syntax
 	

ABS(number)

~~~

————————————————————————————————————————

This function determines and returns the absolute value of the <number> (a numeric literal
or data item) supplied as an argument.
Note that ABSOLUTE-VALUE has an alias for this function.

Chapter 8 - FUNCTIONS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 407

8.1.2. ACOS� �
ACOS Function Syntax
 	

ACOS(cosine)

~~~~

————————————————————————————————————————

The "ACOS" function determines and returns the trigonometric arc-cosine, or inverse cosine,
of the <cosine> value (a numeric literal or data item) supplied as an argument.

The result will be an angle, expressed in radians. You may convert this to an angle measured
in degrees, as follows:

"COMPUTE <degrees> = ( <radians> * 180 ) / FUNCTION PI"

15 February 2018 Chapter 8 - FUNCTIONS



408 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

8.1.3. ANNUITY� �
ANNUITY Function Syntax
 	

ANNUITY(interest-rate, number-of-periods)

~~~~~~~

————————————————————————————————————————

This function returns a numeric value approximating the ratio of an annuity paid at the
specified <interest-rate> (numeric data item or literal) for each of the specified <number-of-
periods> (numeric data items or literals).

The <interest-rate> is the rate of interest paid at each payment. If you only have an annual
interest rate and you wish to compute monthly annuity payments, divide the annual interest
rate by 12 and use that value for <interest-rate> on this function.

Multiply the result of this function times the desired principal amount to determine the
amount of each period’s payment.

A note for the financially challenged: an annuity is basically a reverse loan; an accountant
would take the result of this function multiplied by -1 times the principal amount to compute
a loan payment you are making.

Chapter 8 - FUNCTIONS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 409

8.1.4. ASIN� �
ASIN Function Syntax
 	

ASIN(sine)

~~~~

————————————————————————————————————————

The "ASIN" function determines and returns the trigonometric arc-sine, or inverse sine, of
the <sine> value (a numeric literal or data item) supplied as an argument.

The result will be an angle, expressed in radians. You may convert this to an angle measured
in degrees, as follows:

"COMPUTE <degrees> = ( <radians> * 180 ) / FUNCTION PI"

15 February 2018 Chapter 8 - FUNCTIONS



410 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

8.1.5. ATAN� �
ATAN Function Syntax
 	

ATAN(tangent)

~~~~

————————————————————————————————————————

Use this function to determine and return the trigonometric arc-tangent, or inverse tangent,
of the <tangent> value (a numeric literal or data item) supplied as an argument.

The result will be an angle, expressed in radians. You may convert this to an angle measured
in degrees, as follows:

"COMPUTE <degrees> = ( <radians> * 180 ) / FUNCTION PI"

Chapter 8 - FUNCTIONS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 411

8.1.6. BYTE-LENGTH� �
BYTE-LENGTH Function Syntax
 	

BYTE-LENGTH(string)

~~~~~~~~~~~

————————————————————————————————————————

"BYTE-LENGTH" returns the length — in bytes — of the specified <string> (a group item,
"USAGE DISPLAY" elementary item or alphanumeric literal). This intrinsic function is iden-
tical to the "LENGTH-AN" (see [LENGTH-AN], page 443) function. Note that the value
returned by this function is not necessarily the number of characters comprising <string>,
but rather the number of actual bytes required to store it.

For example, if <string> is encoded using a double-byte character set such as UNICODE
(where each character is represented by 16 bits of storage, not the 8-bits inherent to character
sets like ASCII or EBCDIC), then calling this function with a <string> argument whose
"PICTURE" (see [PICTURE], page 198) is "X(4)" would return a value of 8 rather than the
value 4.

Contrast this with the "LENGTH" (see [LENGTH], page 442) function.

15 February 2018 Chapter 8 - FUNCTIONS



412 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

8.1.7. CHAR� �
CHAR Function Syntax
 	

CHAR(integer)

~~~~

————————————————————————————————————————

This function returns the character in the ordinal position specified by the <integer> ar-
gument (a numeric integer literal or data item with a value of 1 or greater) from the
"COLLATING SEQUENCE" (see [OBJECT-COMPUTER], page 94) being used by the pro-
gram.

For example, if the program is using the (default) ASCII character set, CHAR(34) returns
the 34th character in the ASCII character set — an exclamation-point ("!"). If you are
using this function to convert a numeric value to its corresponding ASCII character, you
must use an argument value one greater than the numeric value.

If an argument whose value is less than 1 or greater than 256 is specified, the character in
the program collating sequence corresponding to a value of all zero bits is returned.

The following code is an alternative approach when you just wish to convert a number to
its ASCII equivalent:

01 Char-Value.

05 Numeric-Value USAGE BINARY-CHAR.

...

MOVE numeric-character-value TO Numeric-Value

The "Char-Value" item now has the corresponding ASCII character value.

Chapter 8 - FUNCTIONS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 413

8.1.8. COMBINED-DATETIME� �
COMBINED-DATETIME Function Syntax
 	

COMBINED-DATETIME(days, seconds)

~~~~~~~~~~~~~~~~~

————————————————————————————————————————

This function returns a 12-digit numeric result, the first seven digits of which are the integer
value of the <days> argument (a numeric data item or literal) and the last five of which are
the integer value of the <seconds> argument (also a numeric data item or literal).

If a <days> value less than 1 or greater than 3067671 is specified, or if a <seconds> value
less than 1 or greater than 86400 is specified, a value of 0 is returned and a runtime error
will result.

15 February 2018 Chapter 8 - FUNCTIONS



414 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

8.1.9. CONCATENATE� �
CONCATENATE Function Syntax
 	

CONCATENATE(string-1 [, string-2 ]...)

~~~~~~~~~~~

————————————————————————————————————————

This function concatenates the <string-1>, <string-2>, . . . (group items, "USAGE DISPLAY"

elementary items and/or alphanumeric literals) together into a single string result.

If a numeric literal or "PIC 9" identifier is specified as an argument, decimal points, if any,
will be removed and negative signs in "PIC S9" fields or numeric literals will be inserted as
defined by the "SIGN IS" (see [SIGN IS], page 214) clause (or absence thereof) of the field.
Numeric literals are processed as if "SIGN IS TRAILING SEPARATE" were in effect.

Chapter 8 - FUNCTIONS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 415

8.1.10. COS� �
COS Function Syntax
 	

COS(angle)

~~~

————————————————————————————————————————

The "COS" function determines and returns the trigonometric cosine of the <angle> (a
numeric literal or data item) supplied as an argument.

The <angle> is assumed to be a value expressed in radians. If you need to determine the
cosine of an angle measured in degrees, you first need to convert that angle to radians as
follows:

"COMPUTE <radians> = ( <degrees> * FUNCTION PI) / 180"

15 February 2018 Chapter 8 - FUNCTIONS



416 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

8.1.11. CURRENCY-SYMBOL� �
CURRENCY-SYMBOL Function Syntax
 	

CURRENCY-SYMBOL

~~~~~~~~~~~~~~~

————————————————————————————————————————

The "CURRENCY-SYMBOL" function returns the currency symbol character currently in effect
for the locale under which your program is running. On UNIX systems, your locale is
established via the "LANG" run-time environment variable (see [Run Time Environment
Variables], page 626) environment variable. On Windows, the Control Panel’s "Regional
and Language Options" define the locale.

Changing the currency symbol via the "SPECIAL-NAMES" (see [SPECIAL-NAMES], page 96)
paragraph’s "CURRENCY SYMBOL" setting will not affect the value returned by this function.

Chapter 8 - FUNCTIONS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 417

8.1.12. CURRENT-DATE� �
CURRENT-DATE Function Syntax
 	

CURRENT-DATE

~~~~~~~~~~~~

————————————————————————————————————————

Returns the current date and time as the following 21-character structure:

01 CURRENT-DATE-AND-TIME.

05 CDT-Year PIC 9(4).

05 CDT-Month PIC 9(2). *> 01-12

05 CDT-Day PIC 9(2). *> 01-31

05 CDT-Hour PIC 9(2). *> 00-23

05 CDT-Minutes PIC 9(2). *> 00-59

05 CDT-Seconds PIC 9(2). *> 00-59

05 CDT-Hundredths-Of-Secs PIC 9(2). *> 00-99

05 CDT-GMT-Diff-Hours PIC S9(2)

SIGN LEADING SEPARATE.

05 CDT-GMT-Diff-Minutes PIC 9(2). *> 00 or 30

Since this function has no arguments, no parenthesis should be specified.

15 February 2018 Chapter 8 - FUNCTIONS



418 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

8.1.13. DATE-OF-INTEGER� �
DATE-OF-INTEGER Function Syntax
 	

DATE-OF-INTEGER(integer)

~~~~~~~~~~~~~~~

————————————————————————————————————————

This function returns a numeric calendar date in yyyymmdd (i.e. Gregorian) format. The
date is determined by adding the number of days specified as <integer> (a numeric integer
data item or literal) to the date December 31, 1600. For example, "DATE-OF-INTEGER(1)"
returns 16010101 while "DATE-OF-INTEGER(150000)" returns 20110908.

A value less than 1 or greater than 3067671 (9999/12/31) will return a result of 0.

Chapter 8 - FUNCTIONS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 419

8.1.14. DATE-TO-YYYYMMDD� �
DATE-TO-YYYYMMDD Function Syntax
 	

DATE-TO-YYYYMMDD(yymmdd [, yy-cutoff [, yy-execution-time ]])

~~~~~~~~~~~~~~~~

————————————————————————————————————————

You can use this function to convert the six-digit Gregorian date specified as <yymmdd> (a
numeric integer data item or literal) to an eight-digit format (yyyymmdd).

The optional <yy-cutoff > (a numeric integer data item or literal) argument is the year cutoff
used to delineate centuries; if the year component of the date meets or exceeds this cutoff
value, the result will be 19yymmdd; if the year component of the date is less than the cutoff
value, the result will be 20yymmdd. The default cutoff value if no second argument is given
will be 50.

The optional <yy-execution-time> argument (a numeric integer data item or literal) The
default execution time value if no third argument is given will be now equivalent to specifying
(FUNCTION NUMVAL (FUNCTION CURRENT-DATE (1:4))).

15 February 2018 Chapter 8 - FUNCTIONS



420 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

8.1.15. DAY-OF-INTEGER� �
DAY-OF-INTEGER Function Syntax
 	

DAY-OF-INTEGER(integer)

~~~~~~~~~~~~~~

————————————————————————————————————————

This function returns a calendar date in yyyyddd (i.e. Julian) format. The date is deter-
mined by adding the number of days specified as integer (a numeric integer data item or
literal) to December 31, 1600. For example, "DAY-OF-INTEGER(1)" returns 1601001 while
"DAY-OF-INTEGER(250000)" returns 2011251.

A value less than 1 or greater than 3067671 (9999/12/31) will return a result of 0.

Chapter 8 - FUNCTIONS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 421

8.1.16. DAY-TO-YYYYDDD� �
DAY-TO-YYYYDDD Function Syntax
 	

DAY-TO-YYYYDDD(yyddd [, yy-cutoff [, yy-execution-time ]])

~~~~~~~~~~~~~~

————————————————————————————————————————

You can use this function to convert the five-digit Julian date specified as <yyddd> (a
numeric integer data item or literal) to a seven-digit numeric Julian format (yyyyddd).

The optional <yy-cutoff > argument (a numeric integer data item or literal) is the year cutoff
used to delineate centuries; if the year component of the date meets or exceeds this cutoff
value, the result will be 19yyddd; if the year component of the date is less than the cutoff,
the result will be 20yyddd. The default cutoff value if no second argument is given will be
50.

The optional <yy-execution-time> argument (a numeric integer data item or literal) The
default execution time value if no third argument is given will be now equivalent to specifying
(FUNCTION NUMVAL (FUNCTION CURRENT-DATE (1:4))).

15 February 2018 Chapter 8 - FUNCTIONS



422 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

8.1.17. E� �
E Function Syntax
 	

E

~

————————————————————————————————————————

This function returns the mathematical constant "E" (the base of natural log-
arithms). The maximum precision with which this value may be returned is
2.7182818284590452353602874713526625.

Since this function has no arguments, no parenthesis should be specified.

Chapter 8 - FUNCTIONS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 423

8.1.18. EXCEPTION-FILE� �
EXCEPTION-FILE Function Syntax
 	

EXCEPTION-FILE

~~~~~~~~~~~~~~

————————————————————————————————————————

This function returns I/O exception information from the most-recently executed input or
output statement. The information is returned as a 34-character string, where the first two
characters are the two-digit file status value (see [File Status Codes], page 112) and the
remaining 32 are the <file-name-1> specification from the file’s "SELECT" (see [SELECT],
page 109) statement.

The name returned after the file status information will be returned only if the returned
file status value is not 00.

Since this function has no arguments, no parenthesis should be specified.

The documentation of the "CBL_ERROR_PROC" built-in system subroutine (see
[CBL ERROR PROC], page 542) built-in subroutine illustrates the use of this function.

15 February 2018 Chapter 8 - FUNCTIONS



424 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

8.1.19. EXCEPTION-LOCATION� �
EXCEPTION-LOCATION Function Syntax
 	

EXCEPTION-LOCATION

~~~~~~~~~~~~~~~~~~

————————————————————————————————————————

This function returns exception information from the most-recently failing statement. The
information is returned to a 1023 character string in one of the following formats, depending
on the nature of the failure:

• primary-entry-point-name; paragraph OF section; statement-number

• primary-entry-point-name; section; statement-number

• primary-entry-point-name; paragraph; statement-number

• primary-entry-point-name; statement-number

Since this function has no arguments, no parenthesis should be specified.

The program must be compiled with the "-debug" switch, "-ftraceall" switch or "-g"
switch for this function to return any meaningful information.

The documentation of the "CBL_ERROR_PROC" built-in system subroutine (see
[CBL ERROR PROC], page 542) built-in subroutine illustrates the use of this function.

Chapter 8 - FUNCTIONS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 425

8.1.20. EXCEPTION-STATEMENT� �
EXCEPTION-STATEMENT Function Syntax
 	

EXCEPTION-STATEMENT

~~~~~~~~~~~~~~~~~~~

————————————————————————————————————————

This function returns the most-recent COBOL statement that generated an exception con-
dition.

Since this function has no arguments, no parenthesis should be specified.

The program must be compiled with the "-debug" switch, "-ftraceall" switch or "-g"
switch for this function to return any meaningful information.

The documentation of the "CBL_ERROR_PROC" built-in system subroutine (see
[CBL ERROR PROC], page 542) built-in subroutine illustrates the use of this function.

15 February 2018 Chapter 8 - FUNCTIONS



426 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

8.1.21. EXCEPTION-STATUS� �
EXCEPTION-STATUS Function Syntax
 	

EXCEPTION-STATUS

~~~~~~~~~~~~~~~~

————————————————————————————————————————

This function returns the error type (a text string — see column 2 of the upcoming table for
the possible values) from the most-recent COBOL statement that generated an exception
condition.

Since this function has no arguments, no parenthesis should be specified.

The documentation of the "CBL_ERROR_PROC" built-in system subroutine (see
[CBL ERROR PROC], page 542) built-in subroutine illustrates the use of this function.

The following are the error type strings, and their corresponding exception codes and de-
scriptions.

Code Error Type Description

0101 EC-ARGUMENT-
FUNCTION

Function argument error

0202 EC-BOUND-ODO OCCURS . . . DEPENDING ON data item out of
bounds

0204 EC-BOUND-PTR Data-pointer contains an address that is out of
bounds

0205 EC-BOUND-REF-MOD Reference modifier out of bounds

0207 EC-BOUND-SUBSCRIPT Subscript out of bounds

0303 EC-DATA-INCOMPATIBLE Incompatible data exception

0500 EC-I-O input-output exception

0501 EC-I-O-AT-END I-O status "1x"

0502 EC-I-O-EOP An end of page condition occurred

0504 EC-I-O-FILE-SHARING I-O status "6x"

0505 EC-I-O-IMP I-O status "9x"

Chapter 8 - FUNCTIONS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 427

0506 EC-I-O-INVALID-KEY I-O status "2x"

0508 EC-I-O-LOGIC-ERROR I-O status "4x"

0509 EC-I-O-PERMANENT-
ERROR

I-O status "3x"

050A EC-I-O-RECORD-
OPERATION

I-O status "5x"

0601 EC-IMP-ACCEPT Implementation-defined accept condition

0602 EC-IMP-DISPLAY Implementation-defined display condition

0A00 EC-OVERFLOW Overflow condition

0A02 EC-OVERFLOW-STRING STRING overflow condition

0A03 EC-OVERFLOW-
UNSTRING

UNSTRING overflow condition

0B05 EC-PROGRAM-NOT-
FOUND

Called program not found

0D03 EC-RANGE-INSPECT-
SIZE

Size of replace item in inspect differs

1000 EC-SIZE Size error exception

1004 EC-SIZE-OVERFLOW Arithmetic overflow in calculation

1005 EC-SIZE-TRUNCATION Significant digits truncated in store

1007 EC-SIZE-ZERO-DIVIDE Division by zero

1202 EC-STORAGE-NOT-
ALLOC

The data-pointer specified in a FREE statement
does not identify currently allocated storage

1203 EC-STORAGE-NOT-AVAIL The amount of storage requested by an ALLO-
CATE statement is not available

15 February 2018 Chapter 8 - FUNCTIONS



428 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

8.1.22. EXP� �
EXP Function Syntax
 	

EXP(number)

~~~

————————————————————————————————————————

Computes and returns the value of the mathematical constant "e" raised to the power
specified by <number> (a numeric literal or data item).

Chapter 8 - FUNCTIONS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 429

8.1.23. EXP10� �
EXP10 Function Syntax
 	

EXP10(number)

~~~~~

————————————————————————————————————————

Computes and returns the value of 10 raised to the power specified by <number> (a numeric
literal or data item).

15 February 2018 Chapter 8 - FUNCTIONS



430 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

8.1.24. FACTORIAL� �
FACTORIAL Function Syntax
 	

FACTORIAL(number)

~~~~~~~~~

————————————————————————————————————————

This function computes and returns the factorial value of <number> (a numeric literal or
data item).

Chapter 8 - FUNCTIONS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 431

8.1.25. FORMATTED-CURRENT-DATE� �
FORMATTED-CURRENT-DATE Function Syntax
 	

FORMATTED-CURRENT-DATE ( argument-1 )

~~~~~~~~~~~~~~~~~~~~~~

————————————————————————————————————————

"FORMATTED-CURRENT-DATE" Returns the current date and time provided by the system at
run-time, formatted according to date-and-time-format according to the argument type.

The function argument must be a national or alphanumeric literal and the content, a com-
bined date and time format.

The returned value is formatted to the same form as argument-1.

15 February 2018 Chapter 8 - FUNCTIONS



432 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

8.1.26. FORMATTED-DATE� �
FORMATTED-DATE Function Syntax
 	

FORMATTED-DATE ( argument-1, argument-2 )

~~~~~~~~~~~~~~

————————————————————————————————————————

"FORMATTED-DATE" uses a format to convert a date in integer date form to a date in the
requested format. The returned value will be in date format.

Argument-1 shall be a national or alphanumeric literal.

Argument-2 shall be a value in integer date form.

Chapter 8 - FUNCTIONS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 433

8.1.27. FORMATTED-DATETIME� �
FORMATTED-DATETIME Function Syntax
 	

FORMATTED-DATETIME ( argument-1, argument-2, argument-3, argument-4 )

~~~~~~~~~~~~~~~~~~

————————————————————————————————————————

"FORMATTED-DATETIME" uses a combined time and date form to convert and combine a date
in integer form and a numeric time expressed as seconds past midnight in UTC.

Argument-1 shall be a national or alphanumeric literal.

Argument-2 shall be a value in integer date form.

Argument-3 shall be a value in standard numeric time form.

Argument-4 is an integer specifying the offset from UTC expressed in minutes. If specified
but have a value equal or less than 1439.

Note: The offset value 1439 represents 23 hours 59 minutes which is one minutes less than
a day.

Augument-4 must not be specified if the time portion in argument-1 is neither a UTC nor
an offset format.

The returned value is a representation of the date contained in argument-2 combined with
the time contained in argument-3 according to the format in argument-1.

If the format in argument-1 indicates that the returned value is to be expressed in UTC,
the time portion of the returned value reflects the adjustment of the value in argument-3
by the offset in argument-4.

If the format in argument-1 indicates that the time is to be returned as an offset from UTC,
the value in argument-3 is reflected directly in the time portion of the returned value and
the offset in argument-4 is reflected directly in the offset portion of the returned value.

15 February 2018 Chapter 8 - FUNCTIONS



434 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

8.1.28. FORMATTED-TIME� �
FORMATTED-TIME Function Syntax
 	

FORMATTED-TIME ( argument-1, argument-2, argument-3 )

~~~~~~~~~~~~~~

————————————————————————————————————————

"FORMATTED-TIME" converts a value representing seconds past midnight formatted time of
day with optional offset.

Argument-1 shall be a national or alphanumeric literal.

Argument-2 shall be a value in integer time form.

Argument-3 is an integer specifying the offset from UTC expressed in minutes. If specified
but have a value equal or less than 1439.

Note: The offset value 1439 represents 23 hours 59 minutes which is one minutes less than
a day.

Augument-3 must not be specified if the time portion in argument-1 is neither a UTC nor
an offset format.

Returned value :

Is a representation of the standard numeric time contained in argument-2 according to the
format in argument-1.

If the format in argument-1 indicates that the returned value is to be expressed in UTC,
the time portion of the returned value reflects the adjustment of the value in argument-2
by the offset in argument-3.

If the format in argument-1 indicates that the time is to be returned as an offset from UTC,
the value in argument-2 is reflected directly in the time portion of the returned value and
the offset in argument-3 is reflected directly in the offset portion of the returned value.

Chapter 8 - FUNCTIONS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 435

8.1.29. FRACTION-PART� �
FRACTION-PART Function Syntax
 	

FRACTION-PART(number)

~~~~~~~~~~~~~

————————————————————————————————————————

This function returns that portion of <number> (a numeric data item or a numeric literal)
that occurs to the right of the decimal point. "FRACTION-PART(3.1415)", for example,
returns a value of 0.1415. This function is equivalent to the expression:

<number> -- FUNCTION INTEGER-PART(<number>)

15 February 2018 Chapter 8 - FUNCTIONS



436 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

8.1.30. HIGHEST-ALGEBRAIC� �
HIGHEST-ALGEBRAIC Function Syntax
 	

HIGHEST-ALGEBRAIC(numeric-identifier)

~~~~~~~~~~~~~~~~~

————————————————————————————————————————

This function returns the highest (i.e. largest or farthest away from 0 in a positive direction if
<numeric-identifier> is signed) value that could possibly be stored in the specified <numeric-
identifier>.

Chapter 8 - FUNCTIONS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 437

8.1.31. INTEGER� �
INTEGER Function Syntax
 	

INTEGER(number)

~~~~~~~

————————————————————————————————————————

The "INTEGER" function returns the greatest integer value that is less than or equal to
<number> (a numeric literal or data item).

15 February 2018 Chapter 8 - FUNCTIONS



438 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

8.1.32. INTEGER-OF-DATE� �
INTEGER-OF-DATE Function Syntax
 	

INTEGER-OF-DATE(date)

~~~~~~~~~~~~~~~

————————————————————————————————————————

This function converts <date> (a numeric integer data item or literal) — presumed to be
a Gregorian calendar form standard date (YYYYMMDD) — to internal date form (the
number of days that have transpired since 1600/12/31).

Once in that form, mathematical operations may be performed against the internal date
before it is transformed back into a date using the "DATE-OF-INTEGER" (see [DATE-OF-
INTEGER], page 418) or "DAY-OF-INTEGER" (see [DAY-OF-INTEGER], page 420) func-
tion.

Chapter 8 - FUNCTIONS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 439

8.1.33. INTEGER-OF-DAY� �
INTEGER-OF-DAY Function Syntax
 	

INTEGER-OF-DAY(date)

~~~~~~~~~~~~~~

————————————————————————————————————————

This function converts <date> (a numeric integer data item or literal) — presumed to be a
Julian calendar form standard date (YYYYDDD) — to internal date form (the number of
days that have transpired since 1600/12/31).

Once in that form, mathematical operations may be performed against the internal date
before it is transformed back into a date using the "DATE-OF-INTEGER" (see [DATE-OF-
INTEGER], page 418) or "DAY-OF-INTEGER" (see [DAY-OF-INTEGER], page 420) func-
tion.

15 February 2018 Chapter 8 - FUNCTIONS



440 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

8.1.34. INTEGER-OF-FORMATTED-DATE� �
INTEGER-OF-FORMATTED-DATE Function Syntax
 	

INTEGER-OF-FORMATTED-DATE ( argument-1, argument-2 )

~~~~~~~~~~~~~~~~~~~~~~~~~

————————————————————————————————————————

"INTEGER-OF-FORMATTED-DATE" converts a date that is in specified format to integer date
form.

Argument-1 shall be a national or alphanumeric literal. The content must be either a date
format or a combined date and time format.

Argument-2 shall be a data item of the same type as argument-1.

If argument-1 is a date format the content of argument-2 shall be a valid date in that format.

If argument-1 is a combined date and time format, the content of argument-2 shall be a
valid combined date and time in same format.

Chapter 8 - FUNCTIONS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 441

8.1.35. INTEGER-PART� �
INTEGER-PART Function Syntax
 	

INTEGER-PART(number)

~~~~~~~~~~~~

————————————————————————————————————————

Returns the integer portion of the value of <number> (a numeric literal or data item).

15 February 2018 Chapter 8 - FUNCTIONS



442 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

8.1.36. LENGTH� �
LENGTH Function Syntax
 	

LENGTH(string)

~~~~~~

————————————————————————————————————————

Returns the length — in characters — of <string> (a group item, "USAGE DISPLAY" ele-
mentary item or alphanumeric literal).

The value returned by this function is not the number of bytes of storage occupied by string,
but rather the number of actual characters making up the string. For example, if <string>
is encoded using a double-byte character set such as UNICODE (where each character is
represented by 16 bits of storage, not the 8-bits inherent to character sets like ASCII or
EBCDIC), then calling this function with a <string> argument whose "PICTURE is X(4)"

would return a value of 4 rather than the value 8 (the actual number of bytes of storage
occupied by that item).

Contrast this function with the "BYTE-LENGTH" (see [BYTE-LENGTH], page 411) and
"LENGTH-AN" (see [LENGTH-AN], page 443) functions.

Chapter 8 - FUNCTIONS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 443

8.1.37. LENGTH-AN� �
LENGTH-AN Function Syntax
 	

LENGTH-AN(string)

~~~~~~~~~

————————————————————————————————————————

This function returns the length — in bytes of storage — of <string> (a group item, "USAGE
DISPLAY" elementary item or alphanumeric literal).

This intrinsic function is identical to the "BYTE-LENGTH" (see [BYTE-LENGTH], page 411)
function.

Note that the value returned by this function is not the number of characters making up
the <string>, but rather the number of actual bytes of storage required to store <string>.
For example, if <string> is encoded using a double-byte character set such as UNICODE
(where each character is represented by 16 bits of storage, not the 8-bits inherent to character
sets like ASCII or EBCDIC), then calling this function with a <string> argument whose
"PICTURE is X(4)" would return a value of 8 rather than the value 4.

Contrast this with the "LENGTH" (see [LENGTH], page 442) function.

15 February 2018 Chapter 8 - FUNCTIONS



444 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

8.1.38. LOCALE-COMPARE� �
LOCALE-COMPARE Function Syntax
 	

LOCALE-COMPARE(argument-1, argument-2 [ , locale ])

~~~~~~~~~~~~~~

————————————————————————————————————————

The "LOCALE-COMPARE" function returns a character indicating the result of comparing
<argument-1> and <argument-2> using a culturally-preferred ordering defined by a <locale>.

Either or both of the 1st two arguments may be an alphanumeric literal, a group item or
an elementary item appropriate to storing alphabetic or alphanumeric data. If the lengths
of the two arguments are unequal, the shorter will be assumed to be padded to the right
with spaces.

The two arguments will be compared, character by character, against each other until their
relationship to each other can be determined. The comparison is made according to the
cultural rules in effect for the specified <locale> name or for the current locale if no <locale>
argument is specified. Once that relationship is determined, a one-character alphanumeric
value will be returned as follows:

• "<" — If <argument-1> is determined to be less than <argument-2>

• "=" — If the two arguments are equal to each other

• ">" — If <argument-1> is determined to be greater than <argument-2>

See [LOCALE Names], page 98, for a list of typically-available locale names.

Chapter 8 - FUNCTIONS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 445

8.1.39. LOCALE-DATE� �
LOCALE-DATE Function Syntax
 	

LOCALE-DATE(date [, locale ])

~~~~~~~~~~~

————————————————————————————————————————

Converts the eight-digit Gregorian <date> (a numeric integer data item or literal) from
yyyymmdd format to the format appropriate to the current locale. On a Windows system,
this will be the "short date" format as set using Control Panel.

You may include an optional second argument to specify the <locale> name (group item
or "PIC X" identifier) you’d like to use for date formatting. If used, this second argument
must be an identifier. Locale names are specified using UNIX-standard names.

15 February 2018 Chapter 8 - FUNCTIONS



446 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

8.1.40. LOCALE-TIME� �
LOCALE-TIME Function Syntax
 	

LOCALE-TIME(time [, locale ])

~~~~~~~~~~~

————————————————————————————————————————

Converts the four- (hhmm) or six-digit (hhmmss) <time> (a numeric integer data item or
literal) to a format appropriate to the current locale. On a Windows system, this will be
the "time" format as set using Control Panel.

You may include an optional <locale> name (a group item or "PIC X" identifier) you’d like
to use for time formatting. If used, this second argument must be an identifier. Locale
names are specified using UNIX-standard names.

Chapter 8 - FUNCTIONS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 447

8.1.41. LOCALE-TIME-FROM-SECONDS� �
LOCALE-TIME-FROM-SECONDS Function Syntax
 	

LOCALE-TIME-FROM-SECONDS(seconds [, locale ])

~~~~~~~~~~~~~~~~~~~~~~~~

————————————————————————————————————————

Converts the number of <seconds> since midnight (a numeric integer data item or literal) to
a format appropriate to the current locale. On a Windows system, this will be the "time"
format as set using Control Panel.

You may include an optional <locale> name (a group item or "PIC X" identifier) you’d like
to use for time formatting. If used, this second argument must be an identifier. Locale
names are specified using UNIX-standard names.

See [LOCALE Names], page 98, for a list of typically-available locale names.

15 February 2018 Chapter 8 - FUNCTIONS



448 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

8.1.42. LOG� �
LOG Function Syntax
 	

LOG(number)

~~~

————————————————————————————————————————

Computes and returns the natural logarithm (base "e") of <number> (a numeric literal or
data item).

Chapter 8 - FUNCTIONS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 449

8.1.43. LOG10� �
LOG10 Function Syntax
 	

LOG10(number)

~~~~~

————————————————————————————————————————

Computes and returns the base 10 logarithm of <number> (a numeric literal or data item).

15 February 2018 Chapter 8 - FUNCTIONS



450 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

8.1.44. LOWER-CASE� �
LOWER-CASE Function Syntax
 	

LOWER-CASE(string)

~~~~~~~~~~

————————————————————————————————————————

This function returns the value of <string> (a group item, "USAGE DISPLAY" elementary
item or alphanumeric literal), converted entirely to lower case.

What constitutes a "letter" (or upper/lower case too, for that manner) may be influ-
enced through the use of a "CHARACTER CLASSIFICATION" (see [OBJECT-COMPUTER],
page 94).

Chapter 8 - FUNCTIONS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 451

8.1.45. LOWEST-ALGEBRAIC� �
LOWEST-ALGEBRAIC Function Syntax
 	

LOWEST-ALGEBRAIC(numeric-identifier)

~~~~~~~~~~~~~~~~

————————————————————————————————————————

This function returns the lowest (i.e. smallest or farthest away from 0 in a negative direc-
tion if <numeric-identifier> is signed) value that could possibly be stored in the specified
<numeric-identifier>.

15 February 2018 Chapter 8 - FUNCTIONS



452 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

8.1.46. MAX� �
MAX Function Syntax
 	

MAX(number-1 [, number-2 ]...)

~~~

————————————————————————————————————————

This function returns the maximum value from the specified list of numbers (each <number-
n> may be a numeric data item or a numeric literal).

Chapter 8 - FUNCTIONS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 453

8.1.47. MEAN� �
MEAN Function Syntax
 	

MEAN(number-1 [, number-2 ]...)

~~~~

————————————————————————————————————————

This function returns the statistical mean value of the specified list of numbers (each
<number-n> may be a numeric data item or a numeric literal).

15 February 2018 Chapter 8 - FUNCTIONS



454 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

8.1.48. MEDIAN� �
MEDIAN Function Syntax
 	

MEDIAN(number-1 [, number-2 ]...)

~~~~~~

————————————————————————————————————————

This function returns the statistical median value of the specified list of numbers (each
<number-n> may be a numeric data item or a numeric literal).

Chapter 8 - FUNCTIONS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 455

8.1.49. MIDRANGE� �
MIDRANGE Function Syntax
 	

MIDRANGE(number-1 [, number-2 ]...)

~~~~~~~~

————————————————————————————————————————

The "MIDRANGE" (middle range) function returns a numeric value that is the arithmetic
mean (average) of the values of the minimum and maximum numbers from the supplied
list. Each <number-n> may be a numeric data items or a numeric literal.

15 February 2018 Chapter 8 - FUNCTIONS



456 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

8.1.50. MIN� �
MIN Function Syntax
 	

MIN(number-1 [, number-2 ]...)

~~~

————————————————————————————————————————

This function returns the minimum value from the specified list of numbers (each <number-
n> may be a numeric data item or a numeric literal).

Chapter 8 - FUNCTIONS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 457

8.1.51. MOD� �
MOD Function Syntax
 	

MOD(value, modulus)

~~~

————————————————————————————————————————

This function returns the value of <value> modulo <modulus> (essentially the remainder
from the division of <value> by <modulus>). Both arguments may be numeric data items
or numeric literals. Either (or both) may have a non-integer value.

15 February 2018 Chapter 8 - FUNCTIONS



458 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

8.1.52. MODULE-CALLER-ID� �
MODULE-CALLER-ID Function Syntax
 	

MODULE-CALLER-ID

~~~~~~~~~~~~~~~~

————————————————————————————————————————

This function returns the null string if it is executed within a main program. When exe-
cuted with a subprogram, it returns the entry-point name of the program that called the
subprogram.

The discussion of the "MODULE-TIME" (see [MODULE-TIME], page 464) function includes
a sample program that uses this function.

Since this function has no arguments, no parenthesis should be specified.

Chapter 8 - FUNCTIONS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 459

8.1.53. MODULE-DATE� �
MODULE-DATE Function Syntax
 	

MODULE-DATE

~~~~~~~~~~~

————————————————————————————————————————

This function Returns the date the GnuCOBOL program that is executing the function was
compiled, in the form yyyymmdd.

The discussion of the "MODULE-TIME" (see [MODULE-TIME], page 464) function includes
a sample program that uses this function.

Since this function has no arguments, no parenthesis should be specified.

15 February 2018 Chapter 8 - FUNCTIONS



460 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

8.1.54. MODULE-FORMATTED-DATE� �
MODULE-FORMATTED-DATE Function Syntax
 	

MODULE-FORMATTED-DATE

~~~~~~~~~~~~~~~~~~~~~

————————————————————————————————————————

This function returns the fully-formatted date and time when the program executing the
function was compiled. The exact format of this returned string value may vary depending
on the operating system and GnuCOBOL build type.

The discussion of the "MODULE-TIME" (see [MODULE-TIME], page 464) function includes
a sample program that uses this function.

Since this function has no arguments, no parenthesis should be specified.

Chapter 8 - FUNCTIONS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 461

8.1.55. MODULE-ID� �
MODULE-ID Function Syntax
 	

MODULE-ID

~~~~~~~~~

————————————————————————————————————————

This function returns the primary entry-point name (i.e. the "PROGRAM-ID" or
"FUNCTION-ID" of the program. See [IDENTIFICATION DIVISION], page 87, for
information on those clauses.

The discussion of the "MODULE-TIME" (see [MODULE-TIME], page 464) function includes
a sample program that uses this function.

Since this function has no arguments, no parenthesis should be specified.

15 February 2018 Chapter 8 - FUNCTIONS



462 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

8.1.56. MODULE-PATH� �
MODULE-PATH Function Syntax
 	

MODULE-PATH

~~~~~~~~~~~

————————————————————————————————————————

This function returns the full path to the executable version of this GnuCOBOL program.
The filename component of this value will be exactly as typed on the command line, down
to the use of upper- and lower-case letters and presence (or absence) of any extension.

The discussion of the "MODULE-TIME" (see [MODULE-TIME], page 464) function includes
a sample program that uses this function.

Since this function has no arguments, no parenthesis should be specified.

Chapter 8 - FUNCTIONS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 463

8.1.57. MODULE-SOURCE� �
MODULE-SOURCE Function Syntax
 	

MODULE-SOURCE

~~~~~~~~~~~~~

————————————————————————————————————————

The filename of the source code of the program (as specified on the "cobc" command when
the program was compiled) is returned by this function.

The discussion of the "MODULE-TIME" (see [MODULE-TIME], page 464) function includes
a sample program that uses this function.

Since this function has no arguments, no parenthesis should be specified.

15 February 2018 Chapter 8 - FUNCTIONS



464 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

8.1.58. MODULE-TIME� �
MODULE-TIME Function Syntax
 	

MODULE-TIME

~~~~~~~~~~~

————————————————————————————————————————

This function returns the time the GnuCOBOL program was compiled, in the form hhmmss.

Since this function has no arguments, no parenthesis should be specified.

The following sample program uses all the MODULE- Functions:

IDENTIFICATION DIVISION.

PROGRAM-ID. DEMOMODULE.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

REPOSITORY.

FUNCTION ALL INTRINSIC.

PROCEDURE DIVISION.

000-Main.

DISPLAY "MODULE-CALLER-ID = [" MODULE-CALLER-ID "]"

DISPLAY "MODULE-DATE = [" MODULE-DATE "]"

DISPLAY "MODULE-FORMATTED-DATE = [" MODULE-FORMATTED-DATE "]"

DISPLAY "MODULE-ID = [" MODULE-ID "]"

DISPLAY "MODULE-PATH = [" MODULE-PATH "]"

DISPLAY "MODULE-SOURCE = [" MODULE-SOURCE "]"

DISPLAY "MODULE-TIME = [" MODULE-TIME "]"

STOP RUN

.

The program produces this output when executed:

MODULE-CALLER-ID = []

MODULE-DATE = [20120614]

MODULE-FORMATTED-DATE = [Jun 14 2012 15:07:45]

MODULE-ID = [DEMOMODULE]

MODULE-PATH = [E:\Programs\Demos\DEMOMODULE.exe]

MODULE-SOURCE = [DEMOMODULE.cbl]

MODULE-TIME = [150745]

Chapter 8 - FUNCTIONS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 465

8.1.59. MONETARY-DECIMAL-POINT� �
MONETARY-DECIMAL-POINT Function Syntax
 	

MONETARY-DECIMAL-POINT

~~~~~~~~~~~~~~~~~~~~~~

————————————————————————————————————————

"MONETARY-DECIMAL-POINT" returns the character used to separate the integer portion from
the fractional part of a monetary currency value according to the rules currently in effect
for the locale under which your program is running.

On UNIX (including OSX, Windows/Cygwin and Windows/MinGW) systems, your locale
is established via the "LANG" run-time environment variable (see [Run Time Environment
Variables], page 626) environment variable. On Windows, the Control Panel’s Regional and
Language Options define the locale.

Using the "DECIMAL-POINT IS COMMA" (see [SPECIAL-NAMES], page 96) clause in your
program will not affect the value returned by this function.

Since this function has no arguments, no parenthesis should be specified.

15 February 2018 Chapter 8 - FUNCTIONS



466 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

8.1.60. MONETARY-THOUSANDS-SEPARATOR� �
MONETARY-THOUSANDS-SEPARATOR Function Syntax
 	

MONETARY-THOUSANDS-SEPARATOR

~~~~~~~~~~~~~~~~~~~~~~~~~~~~

————————————————————————————————————————

This function returns the character used to separate the thousands digit groupings of mon-
etary currency values according to the rules currently in effect for the locale under which
your program is running.

On UNIX (including OSX, Windows/Cygwin and Windows/MinGW) systems, your locale
is established via the "LANG" run-time environment variable (see [Run Time Environment
Variables], page 626) environment variable. On Windows, the Control Panel’s Regional and
Language Options define the locale.

Using the "DECIMAL-POINT IS COMMA" (see [SPECIAL-NAMES], page 96) clause in your
program will not affect the value returned by this function.

Since this function has no arguments, no parenthesis should be specified.

Chapter 8 - FUNCTIONS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 467

8.1.61. NUMERIC-DECIMAL-POINT� �
NUMERIC-DECIMAL-POINT Function Syntax
 	

NUMERIC-DECIMAL-POINT

~~~~~~~~~~~~~~~~~~~~~

————————————————————————————————————————

This function returns the character used to separate the integer portion of a non-integer
numeric item from the fractional part according to the rules currently in effect for the locale
under which your program is running.

On UNIX (including OSX, Windows/Cygwin and Windows/MinGW) systems, your locale
is established via the "LANG" run-time environment variable (see [Run Time Environment
Variables], page 626) environment variable. On Windows, the Control Panel’s Regional and
Language Options define the locale.

Using the "DECIMAL-POINT IS COMMA" (see [SPECIAL-NAMES], page 96) clause in your
program will not affect the value returned by this function.

Since this function has no arguments, no parenthesis should be specified.

15 February 2018 Chapter 8 - FUNCTIONS



468 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

8.1.62. NUMERIC-THOUSANDS-SEPARATOR� �
NUMERIC-THOUSANDS-SEPARATOR Function Syntax
 	

NUMERIC-THOUSANDS-SEPARATOR

~~~~~~~~~~~~~~~~~~~~~~~~~~~

————————————————————————————————————————

This function returns the character used to separate the thousands digit groupings of nu-
meric values according to the rules currently in effect for the locale under which your
program is running.

On UNIX (including OSX, Windows/Cygwin and Windows/MinGW) systems, your locale
is established via the "LANG" run-time environment variable (see [Run Time Environment
Variables], page 626) environment variable. On Windows, the Control Panel’s Regional and
Language Options define the locale.

Using the "DECIMAL-POINT IS COMMA" (see [SPECIAL-NAMES], page 96) clause in your
program will not affect the value returned by this function.

Since this function has no arguments, no parenthesis should be specified.

Chapter 8 - FUNCTIONS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 469

8.1.63. NUMVAL� �
NUMVAL Function Syntax
 	

NUMVAL(string)

~~~~~~

————————————————————————————————————————

The "NUMVAL" function converts a <string> (a group item, "USAGE DISPLAY" elementary
item or alphanumeric literal) to its corresponding numeric value.

The <string> must have any of the following formats, where ’#’ represents a sequence of
one or more decimal digits:

# -# +# #- #+ #CR #DB #CR

#.# -#.# +#.# #.#- #.#+ #.#CR #.#DB

There must be at least one digit character in the string.

Leading and/or trailing spaces are allowed, as are spaces before the first digit.

The character period in argument-1 <string>, represents the decimal separator. The charac-
ter comma in argument-1 represents the grouping separator. When the DECIMAL-POINT
IS COMMA clause is specified, the character comma shall be used in argument-1 to repre-
sent the decimal separator and the character period shall be used to represent the grouping
separator.

NOTE Locale-based functionality equivalent to NUMVAL can be obtained by using the
NUMVAL-C function with the LOCALE keyword. A currency sign is optional in NUMVAL-
C. The locale category LC MONETARY will be used because there is no sign convention
specified in locale category LC NUMERIC.

Returned values:

The returned value is the numeric value represented by <string>.

If it contains a CR, DB, or the minus sign, the returned value is negative.

15 February 2018 Chapter 8 - FUNCTIONS



470 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

8.1.64. NUMVAL-C� �
NUMVAL-C Function Syntax
 	

NUMVAL-C (string [, symbol ]

~~~~~~~~

[, LOCALE locale-name-1 ] [, ANYCASE ])

————————————————————————————————————————

This function converts a <string> (a group item, "USAGE DISPLAY" elementary item or
alphanumeric literal) representing a currency value to its corresponding numeric value.

The currency string if any, and any grouping separators preceding the decimal separator
are ignored. Optionally, the currency string, sign convention, grouping separator and the
decimal separator permitted in the character string may be specified by locale category
LC-MONETARY, or the currency string may be specified by <symbol>.

The optional <symbol> character represents the currency symbol (a non-space
single-character group item, "USAGE DISPLAY" elementary item or alphanumeric literal)
that may be used as the currency character in <string>. Any spaces including leading or
trailing are ignored. If no <symbol> is specified, the value that would be returned by the
"CURRENCY-SYMBOL" intrinsic function (see [CURRENCY-SYMBOL], page 416) will be
used.

If this references the LOCALE :

Changing the currency symbol via the "SPECIAL-NAMES" paragraph’s "CURRENCY
SYMBOL" setting will not affect the value returned by this function.

While NUMVAL-C will always use the currency symbol that is specified via the "SPECIAL-
NAMES" paragraph’s "CURRENCY SYMBOL (or the system default which is currently
always ’$’).

<string> may have any of the following formats, where ’#’ represents a sequence of one or
more decimal digits and ’$’ represents the <symbol> character:

# -# +# #- #+ #CR #DB #CR

#.# -#.# +#.# #.#- #.#+ #.#CR #.#DB

$# -$# +$# $#- $#+ $#CR $#DB $#CR

$#.# -$#.# +$#.# $#.#- $#.#+ $#.#CR $#.#DB

There must be at least one digit character in the string.

Leading and/or trailing spaces are allowed, as are spaces before and/or after the currency
symbol, sign, CR and DB characters.

Chapter 8 - FUNCTIONS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 471

If the ANYCASE keyword is used the matching rules for detecting a currency string in
argument-1 are case-insensitive. If the ANYCASE keyword is not specified, the matching
rules are case-sensitive.

If neither symbol nor the LOCALE keyword is specified, there shall be only one currency
string used, either the default currency sign or a currency string specified in the SPECIAL-
NAMES paragraph.

The returned value is the numeric value represented by string.

When the LOCALE keyword is specified, the returned value is negative if string contains a
negative sign.

When the LOCALE keyword is not specified, the returning value is negative if string con-
tains CR, DB, or a minus sign.

15 February 2018 Chapter 8 - FUNCTIONS



472 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

8.1.64B. NUMVAL-C� �
NUMVAL-C Function Syntax
 	

NUMVAL-C (argument-1 [, argument-2 ]

~~~~~~~~

[, LOCALE locale-name-1 ] [, ANYCASE ])

————————————————————————————————————————

This function returns the numeric value represented by the character string specified by
argument-1 and defined as alphanumeric.

Argument-2, the currency string if any, and any grouping separators preceding the decimal
separator are ignored. Optionally, the currency string, sign convention, grouping separator
and the decimal separator permitted in the character string may be specified by locale
category LC-MONETARY, or the currency string may be specified by argument-2.

The optional alphanumeric argument-2 character represents the currency symbol (a non-
space and at least one single-character item, that may be used as the currency character
in argument-1. Any spaces including leading or trailing are ignored. If no argument-2 is
specified, the value that would be returned by the "CURRENCY-SYMBOL" intrinsic function
(see [CURRENCY-SYMBOL], page 416) will be used. Argument-2 must not contain any
of the digits - through 9, characters ’*’, ’+’, ’-’, ’,’ or ’.’; or the two consecutive letters ’CR’
or ’DB’, whether upper or lower case or a combination of both.

Argument-2 specifies a currency string that may appear in argument-1.

If the ANYCASE keyword is specified, the matching rules for detecting a currency string
in argument-1 are case-insensitive. If not specified, the matching rules are case-sensitive.

If neither argument-2 nor the LOCALE keyword is specified, there shall be only one currency
string used, either the default currency sign or a currency string specified in the SPECIAL-
NAMES paragraph.

While NUMVAL-C will always use the currency symbol that is specified via the "SPECIAL-
NAMES" paragraph’s "CURRENCY SYMBOL (or the system default which is currently
always ’$’) argument-1 shall have any of the following formats, where ’#’ represents a
sequence of one or more decimal digits and ’$’ represents the <symbol> character:

# -# +# #- #+ #CR #DB #CR

#.# -#.# +#.# #.#- #.#+ #.#CR #.#DB

$# -$# +$# $#- $#+ $#CR $#DB $#CR

$#.# -$#.# +$#.# $#.#- $#.#+ $#.#CR $#.#DB

There must be at least one digit character in the string.

Chapter 8 - FUNCTIONS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 473

Leading and/or trailing spaces are allowed, as are spaces before and/or after the currency
symbol, sign, CR and DB characters.

The returned value is the numeric value represented by argument-1.

When the LOCALE keyword is specified, the returned value is negative if string contains a
negative sign and when not specified, the returning value is negative if string contains CR,
DB, or a minus sign.

15 February 2018 Chapter 8 - FUNCTIONS



474 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

8.1.65. NUMVAL-F� �
NUMVAL-F Function Syntax
 	

NUMVAL-F(char)

~~~~~~~~

————————————————————————————————————————

This function converts a <string> (a group item, "USAGE DISPLAY" elementary item or
alphanumeric literal) representing a floating-point value to its corresponding numeric value.

# -# +# #E# -#E# +#E#

#E+# -#E+# +#E+# #E-# -#E-# +#E-#

#.# -#.# +#.# #.#E# -#.#E# +#.#E#

#.#E+# -#.#E+# +#.#E+# #.#E-# -#.#E-# +#.#E-#

There must be at least one digit character both before and after the "E" in the string.

Leading and/or trailing spaces are allowed, as are spaces before and/or after any sign
characters.

Chapter 8 - FUNCTIONS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 475

8.1.66. ORD� �
ORD Function Syntax
 	

ORD(char)

~~~

————————————————————————————————————————

This function returns the ordinal position in the program character set (usually ASCII)
corresponding to the 1st character of the <char> argument (a group item, "USAGE DISPLAY"

elementary item or alphanumeric literal).

For example, assuming the program is using the standard ASCII collating sequence,
"ORD(’!’)" returns 34 because "!" is the 34th ASCII character. If you are using this
function to convert an ASCII character to its numeric value, you must subtract one from
the result.

The following code is an alternative approach when you just wish to convert an ASCII
character to its numeric equivalent:

01 Char-Value.

05 Numeric-Value USAGE BINARY-CHAR.

...

MOVE "character" TO Char-Value

"Numeric-Value" now has the numeric value of "character".

15 February 2018 Chapter 8 - FUNCTIONS



476 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

8.1.67. ORD-MAX� �
ORD-MAX Function Syntax
 	

ORD-MAX(char-1 [, char-2 ]...)

~~~~~~~

————————————————————————————————————————

This function returns the ordinal position in the argument list corresponding to the <char-
n> whose 1st character has the highest position in the program collating sequence (usually
ASCII).

For example, assuming the program is using the standard ASCII collating sequence,
"ORD-MAX(’Z’, ’z’, ’!’)" returns 2 because the 2nd character in the argument list
(the ASCII character ’z’) occurs after ’Z’ and ’ !’ in the program collating sequence.
Each <char-n> argument may be a group item, "USAGE DISPLAY" elementary item or
alphanumeric literal.

Chapter 8 - FUNCTIONS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 477

8.1.68. ORD-MIN� �
ORD-MIN Function Syntax
 	

ORD-MIN(char-1 [, char-2 ]...)

~~~~~~~

————————————————————————————————————————

This function returns the ordinal position in the argument list corresponding to the <char-
n> whose 1st character has the lowest position in the program collating sequence (usually
ASCII).

For example, assuming the program is using the standard ASCII collating sequence,
"ORD-MIN(’Z’, ’z’, ’!’)" returns 3 because the 3rd character in the argument list
(the ASCII character ’ !’) occurs before ’Z’ and ’z’ in the program collating sequence.
Each <char-n> argument may be a group item, "USAGE DISPLAY" elementary item or
alphanumeric literal.

15 February 2018 Chapter 8 - FUNCTIONS



478 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

8.1.69. PI� �
PI Function Syntax
 	

PI

~~

————————————————————————————————————————

This function returns the mathematical constant "PI". The maximum precision with which
this value may be returned is 3.1415926535897932384626433832795029.

Since this function has no arguments, no parenthesis should be specified.

Chapter 8 - FUNCTIONS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 479

8.1.70. PRESENT-VALUE� �
PRESENT-VALUE Function Syntax
 	

PRESENT-VALUE(rate, value-1 [, value-2 ])

~~~~~~~~~~~~~

————————————————————————————————————————

The "PRESENT-VALUE" function returns a value that approximates the present value of
a series of future period-end amounts specified by the various <value-n> arguments at a
discount rate specified by the <rate> argument.

All arguments are numeric data items and/or numeric literals.

The following equation summarizes how present value is calculated, where ’N’ is the number
of <value> arguments:

presentvalue =
N∑
i=1

(
valuei

(1 + rate)i

)

15 February 2018 Chapter 8 - FUNCTIONS



480 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

8.1.71. RANDOM� �
RANDOM Function Syntax
 	

RANDOM[(seed)]

~~~~~~

————————————————————————————————————————

This function returns a pseudo-random non-integer value in the range 0 to 1 (for example,
0.123456789).

The purpose of the optional <seed> argument, is to initialize the chain of pseudo-random
numbers that will be returned by the function. Not only will calls to this function using
the same <seed> value return the same pseudo-random number, but so will all subsequent
executions of the function without a <seed>. This is actually a good thing when you
are testing your program because you can rely on always receiving the same sequence of
"random" numbers if you always start using the same <seed>.

The <seed> may be any form of literal or data item. If <seed> is numeric, its numeric value
will serve as the seed value. If <seed> is alphanumeric, a value for it will be determined as
if it were used as an argument to "NUMVAL" (see [NUMVAL], page 469).

Take, for example, the following sample program:

IDENTIFICATION DIVISION.

PROGRAM-ID. DEMORANDOM.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 Pseudo-Random-Number USAGE COMP-1.

PROCEDURE DIVISION.

000-Main.

MOVE FUNCTION RANDOM(1) TO Pseudo-Random-Number

DISPLAY Pseudo-Random-Number

PERFORM 4 TIMES

MOVE FUNCTION RANDOM TO Pseudo-Random-Number

DISPLAY Pseudo-Random-Number

END-PERFORM

STOP RUN

.

Every time this program is executed, it will produce the same output, because the same
sequence of pseudo-random numbers will be generated:

0.41

0.18467

0.63340002

0.26499999

Chapter 8 - FUNCTIONS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 481

0.19169

It is worth mentioning that if the first execution of "RANDOM" in your program lacks a <seed>
argument, the result will be exactly as if that execution were coded with a <seed> argument
value of 1.

Once your program has been thoroughly tested, you’ll want different sequences to be gen-
erated each time the program runs. One possible way to accomplish this is to use a <seed>
that is likely to be different every time the program is executed, as is likely to be the case
if the first "MOVE" statement in the previous example were replaced by this:

MOVE RANDOM(FUNCTION CURRENT-DATE(1:16))

TO Pseudo-Random-Number

The first 16 characters returned by the "CURRENT-DATE" (see [CURRENT-DATE], page 417)
function will be a number in the format "YYYYMMDDhhmmssnn", where "YYYYM-
MDD" is the current calendar date and "hhmmssnn" is the current time of day to the one
one-hundredth of a second. Since two different executions of the program will never get
identical "CURRENT-DATE" values (unless they are executed in extremely close time frames
to one another), using those first sixteen characters as the "RANDOM" seed will guarantee
that receiving a duplicate sequence of pseudo-random numbers in two different executions
of the program will be HIGHLY unlikely.

15 February 2018 Chapter 8 - FUNCTIONS



482 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

8.1.72. RANGE� �
RANGE Function Syntax
 	

RANGE(number-1 [, number-2 ]...)

~~~~~

————————————————————————————————————————

The "RANGE" function returns a value that is equal to the value of the maximum <number-n>
in the argument list minus the value of the minimum <number-n> argument.

All <number-n> arguments are numeric data items and/or numeric literals.

Chapter 8 - FUNCTIONS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 483

8.1.73. REM� �
REM Function Syntax
 	

REM(number,divisor)

~~~

————————————————————————————————————————

This function returns a numeric value that is the remainder of <number> divided by <divi-
sor>. Both arguments must be numeric data items or numeric literals.

15 February 2018 Chapter 8 - FUNCTIONS



484 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

8.1.74. REVERSE� �
REVERSE Function Syntax
 	

REVERSE(string)

~~~~~~~

————————————————————————————————————————

This function returns the byte-by-byte reversed value of the specified <string> (a group
item, USAGE DISPLAY elementary item or alphanumeric literal).

Chapter 8 - FUNCTIONS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 485

8.1.75. SECONDS-FROM-FORMATTED-TIME� �
SECONDS-FROM-FORMATTED-TIME Function Syntax
 	

SECONDS-FROM-FORMATTED-TIME(format,time)

~~~~~~~~~~~~~~~~~~~~~~~~~~~

————————————————————————————————————————

This function decodes the string <time> — whose value represents a formatted time — and
returns the total number of seconds that string represents.

The <time> string must contain hours, minutes and seconds. The time argument may be
specified as a group item, "USAGE DISPLAY" elementary item or an alphanumeric literal.

The <format> argument is a string (a group item, "USAGE DISPLAY" elementary item or
an alphanumeric literal) documenting the format of <time> using "hh", "mm" and "ss" to
denote where the respective time information can be found. Any other characters found
in <format> represent character positions that will be ignored. For example, a format of
"hhmmss" indicates that <time> will be treated as a six-digit string value where the first
two characters are the number of hours, the next two represent minutes and the last two
represent seconds. A <format> of "hh:mm:ss", however, describes <time> as an eight-
character string where characters 3 and 6 will be ignored.

15 February 2018 Chapter 8 - FUNCTIONS



486 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

8.1.76. SECONDS-PAST-MIDNIGHT� �
SECONDS-PAST-MIDNIGHT Function Syntax
 	

SECONDS-PAST-MIDNIGHT

~~~~~~~~~~~~~~~~~~~~~

————————————————————————————————————————

This function returns the current time of day expressed as the total number of elapsed
seconds since midnight.

Since this function has no arguments, no parenthesis should be specified.

Chapter 8 - FUNCTIONS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 487

8.1.77. SIGN� �
SIGN Function Syntax
 	

SIGN(number)

~~~~

————————————————————————————————————————

The "SIGN" function returns a -1 if the value of <number> (a numeric literal or numeric
data item) is negative, a zero if the value of <number> is exactly zero and a 1 if the value
of <number> if greater than 0.

15 February 2018 Chapter 8 - FUNCTIONS



488 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

8.1.78. SIN� �
SIN Function Syntax
 	

SIN(angle)

~~~

————————————————————————————————————————

This function determines and returns the trigonometric sine of the specified <angle> (a
numeric literal or numeric data item).

The <angle> is assumed to be a value expressed in radians. If you need to determine the
sine of an angle measured in degrees, you first need to convert that angle to radians as
follows:

"COMPUTE <radians> = ( <degrees> * FUNCTION PI) / 180"

Chapter 8 - FUNCTIONS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 489

8.1.79. SQRT� �
SQRT Function Syntax
 	

SQRT(number)

~~~~

————————————————————————————————————————

The "SQRT" function returns a numeric value that approximates the square root of <number>
(a numeric data item or numeric literal with a non-negative value).

The following two statements produce identical results:

01 Result PIC 9(4).9(10).

...

MOVE FUNCTION SQRT(15) TO Result

COMPUTE Result = 15 ^ 0.5

15 February 2018 Chapter 8 - FUNCTIONS



490 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

8.1.80. STANDARD-DEVIATION� �
STANDARD-DEVIATION Function Syntax
 	

STANDARD-DEVIATION(number-1 [, number-2 ]...)

~~~~~~~~~~~~~~~~~~

————————————————————————————————————————

This function returns the statistical standard deviation of the list of <number-n> arguments
(numeric data items or numeric literals).

Chapter 8 - FUNCTIONS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 491

8.1.81. STORED-CHAR-LENGTH� �
STORED-CHAR-LENGTH Function Syntax
 	

STORED-CHAR-LENGTH(string)

~~~~~~~~~~~~~~~~~~

————————————————————————————————————————

Returns the length — in bytes — of the specified "string" (a group item, "USAGE DISPLAY"

elementary item or alphanumeric literal), minus the total number of trailing spaces, if any.

15 February 2018 Chapter 8 - FUNCTIONS



492 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

8.1.82. SUBSTITUTE� �
SUBSTITUTE Function Syntax
 	

SUBSTITUTE(string, from-1, to-1 [, from-n, to-n ]...)

~~~~~~~~~~

————————————————————————————————————————

This function parses the specified <string>, replacing all occurrences of the <from-n> strings
with the corresponding <to-n> strings.

The <from-n> strings must match sequences in <string> exactly with regard to value and
case.

A <from-n> string does not have to be the same length as its corresponding <to-n> string.

All arguments are group items, <USAGE DISPLAY > elementary items or alphanumeric
literals.

A null <to-n> string will be treated as a single space.

Chapter 8 - FUNCTIONS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 493

8.1.83. SUBSTITUTE-CASE� �
SUBSTITUTE-CASE Function Syntax
 	

SUBSTITUTE-CASE(string, from-1, to-1 [, from-n, to-n ]...)

~~~~~~~~~~~~~~~

————————————————————————————————————————

The "SUBSTITUTE-CASE" function operates the same as the "SUBSTITUTE" (see
[SUBSTITUTE], page 492) function, except that <from-n> string matching is performed
without regard to case.

All arguments are group items, "USAGE DISPLAY" elementary items or alphanumeric literals.

15 February 2018 Chapter 8 - FUNCTIONS



494 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

8.1.84. SUM� �
SUM Function Syntax
 	

SUM(number-1 [, number-2 ]...)

~~~

————————————————————————————————————————

The "SUM" function returns a value that is the sum of the <number-n> arguments (these
may be numeric data items or numeric literals).

Chapter 8 - FUNCTIONS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 495

8.1.85. TAN� �
TAN Function Syntax
 	

TAN(angle)

~~~

————————————————————————————————————————

This function determines and returns the trigonometric tangent of the specified <angle> (a
numeric literal or numeric data item).

The <angle> is assumed to be a value expressed in radians. If you need to determine the
tangent of an angle measured in degrees, you first need to convert that angle to radians as
follows:

"COMPUTE <radians> = ( <degrees> * FUNCTION PI) / 180"

15 February 2018 Chapter 8 - FUNCTIONS



496 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

8.1.86. TEST-DATE-YYYYMMDD� �
TEST-DATE-YYYYMMDD Function Syntax
 	

TEST-DATE-YYYYMMDD(date)

~~~~~~~~~~~~~~~~~~

————————————————————————————————————————

This function determines if the supplied <date> argument (a numeric integer data item or
literal) is a valid date.

A valid date is one of the form yyyymmdd in the range 1601/01/01 to 9999/12/31, with no
more than the expected maximum number of days in the month, accounting for leap year.

If the <date> is valid, a 0 value is returned. If it isn’t, a value of 1, 2 or 3 is returned
signalling the problem lies with the year, month or day, respectively.

Chapter 8 - FUNCTIONS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 497

8.1.87. TEST-DAY-YYYYDDD� �
TEST-DAY-YYYYDDD Function Syntax
 	

TEST-DATE-YYYYDDD(date)

~~~~~~~~~~~~~~~~~

————————————————————————————————————————

This function determines if the supplied <date> (a numeric integer data item or literal) is
a valid date.

A valid date is one of the form yyyyddd in the range 1601001 to 9999365. Leap year is
accounted for in determining the maximum number of days in a year.

If the date is valid, a 0 value is returned. If it isn’t, a value of 1 or 2 is returned signalling
the problem lies with the year or day, respectively.

15 February 2018 Chapter 8 - FUNCTIONS



498 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

8.1.88. TEST-FORMATTED-DATETIME� �
TEST-FORMATTED-DATETIME Function Syntax
 	

TEST-FORMATTED-DATETIME ( argument-1, argument-2 )

~~~~~~~~~~~~~~~~~~~~~~~

————————————————————————————————————————

"TEST-FORMATTED-DATETIME" tests whether a date literal representing a date, a time or a
combined date and time is valid according to the specified format.

Argument-1 shall be a national or alphanumeric literal. The content must be either a date
format or a combined date and time format.

Argument-2 must be a data item of the same type as argument-1.

Returned value :

If no format or range problems occur during evaluation of argument-2 according to the
format in argument-1, the returned value is zero. Otherwise the returned value is the
ordinal character position at which the first error in argument-2 was detected.

Chapter 8 - FUNCTIONS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 499

8.1.89. TEST-NUMVAL� �
TEST-NUMVAL Function Syntax
 	

TEST-NUMVAL(string)

~~~~~~~~~~~

————————————————————————————————————————

The "TEST-NUMVAL" function evaluates the specified <string> (a group item, "USAGE

DISPLAY" elementary item or alphanumeric literal) for being appropriate for use as the
<string> argument to a "NUMVAL" (see [NUMVAL], page 469) function, returning to a
integer a zero value if it is appropriate otherwise if one or more characters are in error, the
position of the first character in error or the length of the field plus one for other cases
such as all spaces.

Note that these errors include but are not limited to: argument (string) is zero length,
contains only spaces or contains valid characters but is incomplete, such as the string "+.".

15 February 2018 Chapter 8 - FUNCTIONS



500 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

8.1.90. TEST-NUMVAL-C� �
TEST-NUMVAL-C Function Syntax
 	

TEST-NUMVAL-C(string[,symbol])

~~~~~~~~~~~~~

————————————————————————————————————————

This function evaluates the specified <string> (a group item, "USAGE DISPLAY" elementary
item or alphanumeric literal) for being appropriate for use as the <string> argument to a
"NUMVAL-C" (see [NUMVAL-C], page 472) function, returning to a integer a zero value if
it is appropriate otherwise if one or more characters are in error, the position of the first
character in error or the length of the field plus one for other cases such as all spaces.

Note that these errors include but are not limited to: argument (string) is zero length,
contains only spaces or contains valid characters but is incomplete, such as the string "+.".

The optional <symbol> argument serves the same function — and has the same default and
possible values — as the corresponding argument of the "NUMVAL-C" function.

Chapter 8 - FUNCTIONS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 501

8.1.91. TEST-NUMVAL-F� �
TEST-NUMVAL-F Function Syntax
 	

TEST-NUMVAL-F(string)

~~~~~~~~~~~~~

————————————————————————————————————————

This function evaluates the specified <string> (a group item, "USAGE DISPLAY" elementary
item or alphanumeric literal) for being appropriate for use as the <string> argument to a
"NUMVAL-F" (see [NUMVAL-F], page 474) function, returning to a integer a zero value if
it is appropriate otherwise if one or more characters are in error, the position of the first
character in error or the length of the field plus one for other cases such as all spaces.

Note that these errors include but are not limited to: argument (string) is zero length,
contains only spaces or contains valid characters but is incomplete, such as the string "+.".

15 February 2018 Chapter 8 - FUNCTIONS



502 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

8.1.92. TRIM� �
TRIM Function Syntax
 	

TRIM(string [, LEADING|TRAILING ])

~~~~ ~~~~~~~ ~~~~~~~~

————————————————————————————————————————

This function removes "LEADING" or "TRAILING" spaces from the specified <string> (a group
item, "USAGE DISPLAY" elementary item or alphanumeric literal).

The second argument is specified as a keyword, not a quoted string or identifier. If no
second argument is specified, both leading and trailing spaces will be removed. The case
(upper, lower or mixed) of this argument is irrelevant.

Chapter 8 - FUNCTIONS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 503

8.1.93. UPPER-CASE� �
UPPER-CASE Function Syntax
 	

UPPER-CASE(string)

~~~~~~~~~~

————————————————————————————————————————

This function returns the value of <string> (a group item, "USAGE DISPLAY" elementary
item or alphanumeric literal), converted entirely to upper case.

What constitutes a "letter" (or upper/lower case too, for that manner) may be influ-
enced through the use of a "CHARACTER CLASSIFICATION" (see [OBJECT-COMPUTER],
page 94).

15 February 2018 Chapter 8 - FUNCTIONS



504 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

8.1.94. VARIANCE� �
VARIANCE Function Syntax
 	

VARIANCE(number-1 [, number-2 ]...)

~~~~~~~~

————————————————————————————————————————

This function returns the statistical variance of the specified list of <number-n> arguments
(these may be numeric data items or numeric literals).

Chapter 8 - FUNCTIONS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 505

8.1.95. WHEN-COMPILED� �
WHEN-COMPILED Function Syntax
 	

WHEN-COMPILED

~~~~~~~~~~~~~

————————————————————————————————————————

The "WHEN-COMPILED" intrinsic function, not to be confused with the "WHEN-COMPILED"

(see [Special Registers], page 255) special register, returns the date and time the program
was compiled, in ASCII.

Since this function has no arguments, no parenthesis should be specified.

Unlike the "WHEN-COMPILED" special register, which has an ASCII value of the compila-
tion date/time in the format "mm/dd/yyhh.mm.ss", the "WHEN-COMPILED" intrinsic func-
tion returns the compilation date/time as an ASCII string in the format "yyyymmddhh-
mmssnnooooo", where "yyyymmdd" is the date, "hhmmss" is the time, "nn" is the hun-
dredths of a second component of the compilation time, if available (or "00" if it isn’t) and
"ooooo" is the time zone offset from GMT.

If the "-fintrinsics=WHEN-COMPILED" switch or "-fintrinsics=ALL" switch is specified
to the compiler or the "REPOSITORY" (see [REPOSITORY], page 106) paragraph specifies
either "FUNCTION WHEN-COMPILED INTRINSIC" or "FUNCTION ALL INTRINSIC", then ref-
erences to "WHEN-COMPILED" (without a leading "FUNCTION" keyword will always reference
this intrinsic function and there will be no way to access the "WHEN-COMPILED" special
register.

15 February 2018 Chapter 8 - FUNCTIONS



506 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

8.1.96. YEAR-TO-YYYY� �
YEAR-TO-YYYY Function Syntax
 	

YEAR-TO-YYYY(yy [, yy-cutoff [, yy-execution-time ]])

~~~~~~~~~~~~

————————————————————————————————————————

"YEAR-TO-YYYY" converts <yy> — a two-digit year — to a four-digit format (yyyy).

The optional <yy-cutoff > argument is the year cutoff used to delineate centuries; if <yy>
meets or exceeds this cutoff value, the result will be 19yy; if <yy> is less than the cutoff,
the result will be 20yy. The default cutoff value if no second argument is given will be 50.

The optional <yy-execution-time> argument (a numeric integer data item or literal) The
default execution time value if no third argument is given will be now equivalent to specifying
(FUNCTION NUMVAL (FUNCTION CURRENT-DATE (1:4))).

All arguments must be numeric data items or numeric literals.

Chapter 8 - FUNCTIONS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 507

8.1.97. BOOLEAN-OF-INTEGER� �
BOOLEAN-OF-INTEGER Function Syntax
 	

BOOLEAN-OF-INTEGER(argument-1 argument-2)

~~~~~~~~~~~~~~~~~~

This option is not yet implemented.

The included file NEWS will indicate when it is.

————————————————————————————————————————

"BOOLEAN-OF-INTEGER" returns a boolean item of usage bit representing the binary value
of argument-1. Argument-2 specifies the length of the boolean data item that is returned.

Argument-1 must be a positive integer.

Argument-2 must be a positive non-zero integer

Returned value is a boolean item of usage bit that has the same bit configuration as the
binary representation of the value of argument-1, where the rightmost boolean position
is the low-order binary digit. The boolean value is zero-filled or truncated on the left, if
necessary, in order to return a boolean item whose length is specified by argument-2 in
therms of boolean positions.

15 February 2018 Chapter 8 - FUNCTIONS



508 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

8.1.98. CHAR-NATIONAL� �
CHAR-NATIONAL Function Syntax
 	

CHAR-NATIONAL(argument-1)

~~~~~~~~~~~~~

This option is not yet implemented.

The included file NEWS will indicate when it is.

————————————————————————————————————————

"CHAR-NATIONAL" returns a one character value that is a character in the national program
collating sequence having the ordinal position equal to the value of the argument.

Argument-1 must be a integer and greater than zero and less than or equal to the number
of positions in the national program collating sequence.

Chapter 8 - FUNCTIONS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 509

8.1.99. DISPLAY-OF� �
DISPLAY-OF Function Syntax
 	

DISPLAY-OF(argument-1 [ argument-2] )

~~~~~~~~~~

This option is not yet implemented.

The included file NEWS will indicate when it is.

————————————————————————————————————————

"DISPLAY-OF" returns a character string containing the alphabetic coded character set
representation of the national characters in the argument.

Argument-1 must be of class national.

Argument-2 must be a of class alphabetic or alphanumeric and is one character position in
length. It specifies an alphanumeric substitution character for use in conversion of national
characters for which there is no corresponding alphanumeric character.

A character string is returned with each national character of argument-1 converted to its
corresponding alphanumeric character representation, if any.

If argument-2 is specified, the alphanumeric substitution character is returned for each
national character in argument-1 that has no corresponding alphanumeric character repre-
sentation.

If argument-2 is un-specified, and argument-1 contains a national character for which there
is no corresponding alphanumeric character representation, an substitution character is used
as the corresponding alphanumeric character and the EC-DATA-CONVERSION exception
condition is set.

The length of the returned value is the number of character positions of usage display
required to hold the converted argument and depends on the number of characters contained
in argument-1.

15 February 2018 Chapter 8 - FUNCTIONS



510 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

8.1.100. EXCEPTION-FILE-N� �
EXCEPTION-FILE-N Function Syntax
 	

EXCEPTION-FILE-N

~~~~~~~~~~~~~~~~

This option is not yet implemented.

The included file NEWS will indicate when it is.

————————————————————————————————————————

"EXCEPTION-FILE-N" returns a national character string that is the I/O status value and
file-name of the file connector, if any, associated with the last exception status.

The value returned has a length that is based on its contents and the concents are as follows:

If the last exception status is not an EC-I-O eception condition, the returned value is two
national zeros.

The returned value is two national spaces when the last exception status indicates an EC-I-O
exception condition that originates from one of the following statements:

– a RAISE statement.

– an EXIT or a GOBACK statement with a RAISING phrase that specifies an EC-I-O
exception-name.

Otherwise the returned value is a character string that is as long as is needed to contain
the I-O status value and the file-name. The first two characters are the I-O status value in
national characters. The succeeding characters contain the file-name exactly as specified in
the SELECT clause converted at runtime to the runtime national character set.

The documentation of the "CBL_ERROR_PROC" built-in system subroutine (see
[CBL ERROR PROC], page 542) built-in subroutine illustrates the use of this function.

Chapter 8 - FUNCTIONS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 511

8.1.101. EXCEPTION-LOCATION-N� �
EXCEPTION-LOCATION-N Function Syntax
 	

EXCEPTION-LOCATION-N

~~~~~~~~~~~~~~~~~~~~

This option is not yet implemented.

The included file NEWS will indicate when it is.

————————————————————————————————————————

"EXCEPTION-LOCATION-N" returns an national character string containing exception infor-
mation from the most-recently failing statement. The information is returned to a 1023
character string in one of the following formats, depending on the nature of the failure:

• primary-entry-point-name; paragraph OF section; statement-number

• primary-entry-point-name; section; statement-number

• primary-entry-point-name; paragraph; statement-number

• primary-entry-point-name; statement-number

Since this function has no arguments, no parenthesis should be specified.

The program must be compiled with the "-debug" switch, "-ftraceall" switch or "-g"
switch for this function to return any meaningful information.

The documentation of the "CBL_ERROR_PROC" built-in system subroutine (see
[CBL ERROR PROC], page 542) built-in subroutine illustrates the use of this function.

15 February 2018 Chapter 8 - FUNCTIONS



512 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

8.1.102. INTEGER-OF-BOOLEAN� �
INTEGER-OF-BOOLEAN Function Syntax
 	

INTEGER-OF-BOOLEAN(argument-1)

~~~~~~~~~~~~~~~~~~

This option is not yet implemented.

The included file NEWS will indicate when it is.

————————————————————————————————————————

"INTEGER-OF-BOOLEAN" returns the numeric value of the boolean string in argument-1
which is class boolean.

Returned value as argument-1 is assigned to a temporary boolean data item of usage bit
described with the same number of boolean positions.

The unsigned binary value represented by the same bit configuration as the bit configura-
tion of that temporary boolean data item is determined.
NOTE Binary representation is a mathematical concept. It is not required that this repre-
sentation be the same as a COBOL representation.

Chapter 8 - FUNCTIONS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 513

8.1.103. NATIONAL-OF� �
NATIONAL-OF Function Syntax
 	

NATIONAL-OF(argument-1 [argument-2] )

~~~~~~~~~~~

This option is not yet implemented.

The included file NEWS will indicate when it is.

————————————————————————————————————————

"NATIONAL-OF" returns a character string containing the national character representation
of the characters in the argument which must be of class boolean.

A character string is returned with each alphanumeric character in argument-1 converted
to its corresponding national coded character set representation.

If argument-2 is specified, each character in argument-1 that has no corresponding national
representation is converted to the substitution character specified by argument-2.

If argument-2 is unspecified and argument-1 contains an alphanumeric character for which
there is no corresponding national character representation, a substitution character is
used as the corresponding national character and the EC-DATA-CONVERSION exception
condition is set to exist.

The length of the returned value is the number of character positions of usage national
required to hold the converted argument and depends on the number of characters contained
in argument-1.

15 February 2018 Chapter 8 - FUNCTIONS



514 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

8.1.104. STANDARD-COMPARE� �
STANDARD-COMPARE Function Syntax
 	

STANDARD-COMPARE(argument-1 argument-2 [ordering-name-1] [argument-4] )

~~~~~~~~~~~~~~~~

This option is not yet implemented.

The included file NEWS will indicate when it is.

————————————————————————————————————————

"STANDARD-COMPARE" returns a character indicating the result of comparing argument-1 as
a alphanumeric and argument-2 using a cultural ordering table.

1) Argument-1 shall be of class alphabetic, alphanumeric, or national.

2) Argument-2 shall be of class alphabetic, alphanumeric, or national.

3) Argument-1 and argument-2 may be of different classes.

4) Neither argument-1 nor argument-2 shall be a zero-length literal.

5) Ordering-name-1, if specified, shall be associated with a cultural ordering table in the
ORDER TABLE clause of the SPEClAL-NAMES paragraph. Ordering-name-I identifies
the ordering table to be used for the comparison. if ordering-name-1 is not specified,
the default ordering table ’ISO14651 2010 TABLE1 described in Appendix A of ISO/IEC
14651:2011 shall be used.

6) Argument-4, if specified, shall be a positive nonzero integer.

Returned values:

1) If argument-4 is unspecified, the highest level defined in the ordering table is used for
the comparison.

2) If the cultural ordering table is not available on the processor, or the specified ordering
level is not available, or the level number specified by argument-4 is not defined in the
ordering table, the EC-ORDER-NOT-SUPPORTED exception condition is set.

3) If the arguments are of different classes, and one is national, the other argument is
converted to class national for purposes of comparison.

4) For purposes of comparison, trailing spaces are truncated from the operands except that
an operand consisting of all spaces is truncated to a single space.

5) Argument-1 and argument-2 are compared in accordance with the ordering table and
ordering level being used.
NOTE This comparison is culturally sensitive and the default ordering table is acceptable for

Chapter 8 - FUNCTIONS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 515

most cultures. It is not necessarily a character-by-character comparison and not necessarily
a case-sensitive comparison. In order to use this function, users should understand the types
of comparisons specified by ISO/IEC 14651:2D11 and the ordering tables in use for their
installation.

6) The returned value is:

"=" if the arguments compare equal,

"-=.:" if argument-1 is less than argument-2,

":>" if argument-1 is greater than argument-2.

7) The length of the returned value is 1.

15 February 2018 Chapter 8 - FUNCTIONS



516 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

8.2. Built-In System Subroutines

There are a number of built-in system subroutines included with GnuCOBOL.

Generally, these routines are intended to match those available in Micro Focus COBOL,
ACUCOBOL and directly for GnuCOBOL.

It is recommended to change the CBL OC routines to CBL GC for forward compatibility
as at some point they will be removed as they are a hangover from Open Cobol.

Prefix explanation:

C$ --> ACU,

CBL_ --> MF,

CBL_GC_ (For backwards compatibility some routines are also available as

CBL_OC_, as well): but these wonderful extensions are *only* available

with GnuCOBOL.

These routines, all executed via their UPPER-CASE NAMES via the "CALL" statement
(see [CALL], page 281), are capable of performing the following Functions:

• Changing the current directory

• Copying files

• Creating a directory

• Creating, Opening, Closing, Reading and Writing byte-stream files

• Deleting directories (folders)

• Deleting files

• Determining how many arguments were passed to a subroutine

• Getting file information (size and last-modification date/time)

• Getting the length (in bytes) of an argument passed to a subroutine

• Justifying a field left-, right- or center-aligned

• Moving files (a destructive "copy")

• Putting the program ’to sleep’, specifying the sleep time in seconds

• Putting the program ’to sleep’, specifying the sleep time in nanoseconds; CAVEAT:
although you’ll express the time in nanoseconds, Windows systems will only be able to
sleep at a millisecond granularity

• Retrieving information about the currently-executing program

• Submitting a command to the shell environment appropriate for the version of Gnu-
COBOL you are using for execution

Chapter 8 - FUNCTIONS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 517

Early versions of Micro Focus COBOL allowed programmers to access various runtime
library routines by using a single two-digit hexadecimal number as the entry-point name.
These were known as call-by-number routines. Over time, Micro Focus COBOL evolved,
replacing most of the call-by-number routines with ones accessible using a more conventional
call-by-name technique.

Most of the call-by-number routines have evolved into even more powerful call-by-name
routines, many of which are supported by GnuCOBOL.

Some of the original call-by-number routines never evolved call-by-name equivalents; Gnu-
COBOL supports some of these routines.

The following sections describe the various built-in subroutines. ALL SUBROUTINE AR-
GUMENTS ARE MANDATORY EXCEPT WHERE EXPLICITLY NOTED TO THE
CONTRARY. Any subroutine returning a value to the "RETURN-CODE" special register (see
[Special Registers], page 255) could utilize the "RETURNING" clause on the "CALL" statement
to return the result back to the full-word binary data item of your choice.

15 February 2018 Chapter 8 - FUNCTIONS



518 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

8.2.1. C$CALLEDBY� �
C$CALLEDBY Built-In Subroutine Syntax
 	

CALL "C$CALLEDBY" USING prog-name-area

~~~~ ~~~~~

————————————————————————————————————————

This routine returns the name of the program that called the currently-executing program.
The program name will be returned, left-justified and space filled, in the specified <prog-
name-area> argument, which should be a "PIC X" elementary item or a group item. If
<prog-name-area> is too small to receive the entire program name, the program name value
will be truncated (on the right) to fit.

The "RETURN-CODE" special register (see [Special Registers], page 255) will be set to one
of the following values:

-1 An error occurred. The <prog-name-area> contents will be unchanged.
0 The program calling "C$CALLEDBY" was not called by any other program (in other

words, it is a main program). The <prog-name-area> contents will be set entirely to
spaces.

1 The program calling "C$CALLEDBY" was indeed called by another program, and that
program’s name has been saved in <prog-name-area>.

Chapter 8 - FUNCTIONS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 519

8.2.2. C$CHDIR� �
C$CHDIR Built-In Subroutine Syntax
 	

CALL "C$CHDIR" USING directory-path, result

~~~~ ~~~~~

————————————————————————————————————————

This routine makes <directory-path> (an alphanumeric literal or identifier) the current di-
rectory.

The return code of the operation is returned both in the <result> argument (any non-edited
numeric identifier) as well as in the "RETURN-CODE" special register (see [Special Registers],
page 255). The return code of the operation will be either 0=Success or 128=failure.

The directory change remains in effect until the program terminates (in which the original
current directory at the time the program was started will be automatically restored)
or until another "C$CHDIR" or a "CBL_CHANGE_DIR" built-in system subroutine (see
[CBL CHANGE DIR], page 533) is executed.

15 February 2018 Chapter 8 - FUNCTIONS



520 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

8.2.3. C$COPY� �
C$COPY Built-In Subroutine Syntax
 	

CALL "C$COPY" USING src-file-path, dest-file-path, 0

~~~~ ~~~~~

————————————————————————————————————————

Use this subroutine to copy file <src-file-path> to <dest-file-path> as if it were done via the
"CP" (Unix/OSX) or "COPY" (Windows) command.

Both file path arguments may be alphanumeric literals or identifiers.

The third argument is required, but is unused.

If the attempt to copy the file fails (for example, it or the destination directory doesn’t
exist), the "RETURN-CODE" special register (see [Special Registers], page 255) will be set to
128; on successful completion it will be set to 0.

Chapter 8 - FUNCTIONS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 521

8.2.4. C$DELETE� �
C$DELETE Built-In Subroutine Syntax
 	

CALL "C$DELETE" USING file-path, 0

~~~~ ~~~~~

————————————————————————————————————————

This routine deletes the file specified by the <file-path> argument (an alphanumeric literal
or identifier) just as if that were done using the "RM" (Unix/OSX) or "ERASE" (Windows)
command.

The second argument is required, but is unused.

If the attempt to delete the file fails (for example, it doesn’t exist), the "RETURN-CODE"

special register (see [Special Registers], page 255) will be set to 128; on successful completion
it will be set to 0.

15 February 2018 Chapter 8 - FUNCTIONS



522 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

8.2.5. C$FILEINFO� �
C$FILEINFO Built-In Subroutine Syntax
 	

CALL "C$FILEINFO" USING file-path, file-info

~~~~ ~~~~~

————————————————————————————————————————

With this routine you may retrieve the size of the file specified as the <file-path> argument
(an alphanumeric literal or identifier) and the date/time that file was last modified. File size
information may not be available in the particular GnuCOBOL build / Operating System
combination you are using and may therefore always be returned as zero. The information
is returned to the <file-info> argument, which is defined as the following 16-byte area:

01 File-Info.

05 File-Size-In-Bytes PIC 9(18) COMP.

05 Mod-YYYYMMDD PIC 9(8) COMP. *> Modification Date

05 Mod-HHMMSS00 PIC 9(8) COMP. *> Modification Time

The last two decimal digits in the modification time will always be 00.

If the subroutine is successful, a value of 0 will be returned in the "RETURN-CODE" special
register (see [Special Registers], page 255). Failure to retrieve the needed statistics on the
file will cause a "RETURN-CODE" special register value of 35 to be passed back. Supplying
less than two arguments will generate a 128 "RETURN-CODE" special register value.

Chapter 8 - FUNCTIONS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 523

8.2.6. C$GETPID� �
C$GETPID Built-In Subroutine Syntax
 	

CALL "C$GETPID"

~~~~

————————————————————————————————————————

Use this subroutine to return the PID (process ID) of the executing GnuCOBOL program.
The PID value is returned into the "RETURN-CODE" special register (see [Special Registers],
page 255).

There are no arguments to this routine.

15 February 2018 Chapter 8 - FUNCTIONS



524 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

8.2.7. C$JUSTIFY� �
C$JUSTIFY Built-In Subroutine Syntax
 	

CALL "C$JUSTIFY" USING data-item, "justification-type"

~~~~ ~~~~~

————————————————————————————————————————

Use C$JUSTIFY to left, right or center-justify an alphabetic, alphanumeric or numeric
edited data-item. The optional justification-type argument indicates the type of the justi-
fication to be performed. The value of that argument will be interpreted as follows:

• If it begins with a capital "C", the value will be centred

• If it begins with a capital "R", the value will be right-justified, space-filled to the left

• If it begins with a capital "L", the value will be left-justified, space-filled to the right

• If it begins with anything else, or is absent, it will be treated as if it is present and
begins with a capital "R"

Chapter 8 - FUNCTIONS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 525

8.2.8. C$MAKEDIR� �
C$MAKEDIR Built-In Subroutine Syntax
 	

CALL "C$MAKEDIR" USING dir-path

~~~~ ~~~~~

————————————————————————————————————————

With this routine you may create a new directory — the name of which is supplied as the
<dir-path> argument (an alphanumeric literal or identifier).

Only the lowest-level directory (last) in the specified path can be created — all others must
already exist. This subroutine will NOT behave as a "mkdir -p" (Unix) or "mkdir /p"

(Windows).

The "RETURN-CODE" special register (see [Special Registers], page 255) will be set to the
return code of the operation; the value will be either 0=Success or 128=failure.

15 February 2018 Chapter 8 - FUNCTIONS



526 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

8.2.9. C$NARG� �
C$NARG Built-In Subroutine Syntax
 	

CALL "C$NARG" USING arg-count-result

~~~~ ~~~~~

————————————————————————————————————————

This subroutine returns the number of arguments passed to the program that calls it back
to in the numeric field <arg-count-result>. When called from within a user-defined function,
a value of one (1) is returned if any arguments were passed to the function or a zero (0)
otherwise.

When called from a main program, the returned value will always be 0.

Chapter 8 - FUNCTIONS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 527

8.2.10. C$PARAMSIZE� �
C$PARAMSIZE Built-In Subroutine Syntax
 	

CALL "C$PARAMSIZE" USING argument-number

~~~~ ~~~~~

————————————————————————————————————————

This subroutine returns the size (in bytes) of the subroutine argument supplied using the
<argument-number> parameter (a numeric literal or data item).

The size is returned in the "RETURN-CODE" special register (see [Special Registers],
page 255).

If the specified argument does not exist, or an invalid argument number is specified, a value
of 0 is returned.

15 February 2018 Chapter 8 - FUNCTIONS



528 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

8.2.11. C$PRINTABLE� �
C$PRINTABLE Built-In Subroutine Syntax
 	

CALL "C$PRINTABLE" USING data-item [ , char ]

~~~~ ~~~~~

————————————————————————————————————————

The "C$PRINTABLE" subroutine converts the contents of the data-item specified as the first
argument to printable characters. Those characters that are deemed printable (as defined
by the character set used by <data-item>) will remain unchanged, while those that are NOT
printable will be converted to the character specified as the second argument.

If no <char> argument is provided, a period (".") will be used.

NOTE that CBL GC PRINTABLE replaces this although it is currently still supported for
legacy reasons.

Chapter 8 - FUNCTIONS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 529

8.2.12. C$SLEEP� �
C$SLEEP Built-In Subroutine Syntax
 	

CALL "C$SLEEP" USING seconds-to-sleep

~~~~ ~~~~~

————————————————————————————————————————

"C$SLEEP" puts the program to sleep for the specified number of seconds. The <seconds-
to-sleep> argument may be a numeric literal or data item.

Sleep times less than 1 will be interpreted as 0, which immediately returns control to the
calling program without any sleep delay.

15 February 2018 Chapter 8 - FUNCTIONS



530 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

8.2.13. C$TOLOWER� �
C$TOLOWER Built-In Subroutine Syntax
 	

CALL "C$TOLOWER" USING data-item, BY VALUE convert-length

~~~~ ~~~~~ ~~~~~

————————————————————————————————————————

This routine will converts the <convert-length> (a numeric literal or data item) leading
characters of <data-item> (an alphanumeric identifier) to lower-case.

The <convert-length> argument must be specified "BY VALUE" (see [CALL], page 281). Any
characters in <data-item> after the <convert-length> point will remain unchanged.

If <convert-length> is negative or zero, no conversion will be performed.

Chapter 8 - FUNCTIONS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 531

8.2.14. C$TOUPPER� �
C$TOUPPER Built-In Subroutine Syntax
 	

CALL "C$TOUPPER" USING data-item, BY VALUE convert-length

~~~~ ~~~~~ ~~~~~

————————————————————————————————————————

This routine will converts the <convert-length> (a numeric literal or data item) leading
characters of <data-item> (an alphanumeric identifier) to upper-case.

The <convert-length> argument must be specified "BY VALUE" (see [CALL], page 281). Any
characters in <data-item> after the <convert-length> point will remain unchanged.

If <convert-length> is negative or zero, no conversion will be performed.

15 February 2018 Chapter 8 - FUNCTIONS



532 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

8.2.15. CBL AND� �
CBL AND Built-In Subroutine Syntax
 	

CALL "CBL_AND" USING item-1, item-2, BY VALUE byte-length

~~~~ ~~~~~ ~~~~~

————————————————————————————————————————

Old Old New

Arg 1 Arg 2 Arg 2

Bit Bit Bit

===== ===== =====

0 0 0

0 1 0

1 0 0

1 1 1

This subroutine performs a bit-by-bit logical AND operation
between the left-most 8*<byte-length> corresponding bits of
<item-1> and <item-2>, storing the resulting bit string into
<item-2>. The truth table shown to the left documents the
AND process.

The <item-1> argument may be an alphanumeric literal or a
data item and <item-2> must be a data item. The length of
both <item-1> and <item-2>must be at least 8*<byte-length>.

The <byte-length> argument may be a numeric literal or data item, and must be specified
using "BY VALUE" (see [CALL], page 281).

Any bits in <item-2> after the 8*<byte-length> point will be unaffected.

A result of zero will be passed back in the "RETURN-CODE" special register (see [Special
Registers], page 255).

Chapter 8 - FUNCTIONS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 533

8.2.16. CBL CHANGE DIR� �
CBL CHANGE DIR Built-In Subroutine Syntax
 	

CALL "CBL_CHANGE_DIR" USING directory-path

~~~~ ~~~~~

————————————————————————————————————————

This routine makes <directory-path> (an alphanumeric literal or identifier) the current di-
rectory.

The return code of the operation, which will be either 0=Success or 128=failure, is returned
in the "RETURN-CODE" special register (see [Special Registers], page 255).

The directory change remains in effect until the program terminates (in which the original
current directory at the time the program was started will be automatically restored) or until
another "CBL_CHANGE_DIR" or a "C$CHDIR" built-in system subroutine (see [C$CHDIR],
page 519) is executed.

15 February 2018 Chapter 8 - FUNCTIONS



534 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

8.2.17. CBL CHECK FILE EXIST� �
CBL CHECK FILE EXIST Built-In Subroutine Syntax
 	

CALL "CBL_CHECK_FILE_EXIST" USING file-path, file-info

~~~~ ~~~~~

————————————————————————————————————————

With this routine you may retrieve the size of the file specified as the <file-path> argument
(an alphanumeric literal or identifier) and the date/time that file was last modified. File size
information may not be available in the particular GnuCOBOL build / Operating System
combination you are using and may therefore always be returned as zero.

The information is returned to the <file-info> argument, which is defined as the following
16-byte area:

01 file-info.

05 File-Size-In-Bytes PIC 9(18) COMP.

05 Mod-DD PIC 9(2) COMP. *> Modification Date

05 Mod-MO PIC 9(2) COMP.

05 Mod-YYYY PIC 9(4) COMP.

05 Mod-HH PIC 9(2) COMP. *> Modification Time

05 Mod-MM PIC 9(2) COMP.

05 Mod-SS PIC 9(2) COMP.

05 FILLER PIC 9(2) COMP. *> Always 00

If the subroutine is successful, a value of 0 will be returned in the "RETURN-CODE" special
register (see [Special Registers], page 255). Failure to retrieve the needed statistics on the
file will cause a "RETURN-CODE" special register value of 35 to be passed back. Supplying
less than two arguments will generate a 128 "RETURN-CODE" special register value.

Chapter 8 - FUNCTIONS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 535

8.2.18. CBL CLOSE FILE� �
CBL CLOSE FILE Built-In Subroutine Syntax
 	

CALL "CBL_CLOSE_FILE" USING file-handle

~~~~ ~~~~~

————————————————————————————————————————

The "CBL_CLOSE_FILE" subroutine closes a byte stream file previously opened by either
the "CBL_OPEN_FILE" built-in system subroutine (see [CBL OPEN FILE], page 565) or
"CBL_CREATE_FILE" built-in system subroutine (see [CBL CREATE FILE], page 538) sub-
routines.

If the file defined by the <file-handle> argument (a "PIC X(4) USAGE COMP-X" data item)
was opened for output, an implicit "CBL_FLUSH_FILE" built-in system subroutine (see
[CBL FLUSH FILE], page 546) will be performed before the file is closed.

If the subroutine is successful, a value of 0 will be returned in the "RETURN-CODE" special
register (see [Special Registers], page 255). Failure will cause a "RETURN-CODE" special
register value of -1 to be passed back.

15 February 2018 Chapter 8 - FUNCTIONS



536 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

8.2.19. CBL COPY FILE� �
CBL COPY FILE Built-In Subroutine Syntax
 	

CALL "CBL_COPY_FILE" USING src-file-path, dest-file-path

~~~~ ~~~~~

————————————————————————————————————————

Use this subroutine to copy file <src-file-path> to <dest-file-path> as if it were done via the
"CP" (Unix/OSX) or "COPY" (Windows) command.

Both arguments may be alphanumeric literals or identifiers.

If the attempt to copy the file fails (for example, it or the destination directory doesn’t
exist), the "RETURN-CODE" special register (see [Special Registers], page 255) will be set to
128; on successful completion it will be set to 0.

Chapter 8 - FUNCTIONS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 537

8.2.20. CBL CREATE DIR� �
CBL CREATE DIR Built-In Subroutine Syntax
 	

CALL "CBL_CREATE_DIR" USING dir-path

~~~~ ~~~~~

————————————————————————————————————————

With this routine you may create a new directory — the name of which is supplied as the
<dir-path> argument (an alphanumeric literal or identifier).

Only the lowest-level directory (last) in the specified path can be created — all others must
already exist. This subroutine will NOT behave as a "mkdir -p" (Unix) or "mkdir /p"

(Windows).

The "RETURN-CODE" special register (see [Special Registers], page 255) will be set to the
return code of the operation; the value will be either 0=Success or 128=failure.

15 February 2018 Chapter 8 - FUNCTIONS



538 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

8.2.21. CBL CREATE FILE� �
CBL CREATE FILE Built-In Subroutine Syntax
 	

CALL "CBL_CREATE_FILE" USING file-path, 2, 0, 0, file-handle

~~~~ ~~~~~

————————————————————————————————————————

The "CBL_CREATE_FILE" subroutine creates the new file specified using the file-path argu-
ment and opens it for output as a byte-stream file usable by "CBL_WRITE_FILE" built-in
system subroutine (see [CBL WRITE FILE], page 572).

Arguments 2, 3 and 4 should be coded as the constant values shown. "CBL_CREATE_FILE"
is actually a special-case of the "CBL_OPEN_FILE" built-in system subroutine (see
[CBL OPEN FILE], page 565) routine — see that routine for a description of the meanings
of arguments 2, 3 and 4.

A <file-handle> ("PIC X(4) USAGE COMP-X)" will be returned, for use on any subsequent
"CBL_WRITE_FILE" built-in system subroutine (see [CBL WRITE FILE], page 572) or
"CBL_CLOSE_FILE" built-in system subroutine (see [CBL CLOSE FILE], page 535) calls.

The success or failure of the subroutine will be reported back in the "RETURN-CODE" special
register (see [Special Registers], page 255), with a value of -1 indicating an invalid argument
and a value of 0 indicating success.

Chapter 8 - FUNCTIONS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 539

8.2.22. CBL DELETE DIR� �
CBL DELETE DIR Built-In Subroutine Syntax
 	

CALL "CBL_DELETE_DIR" USING dir-path

~~~~ ~~~~~

————————————————————————————————————————

This subroutine deletes an empty directory.

The only argument — <dir-path> (an alphanumeric literal or identifier) — is the name of
the directory to be deleted.

Only the lowest-level directory (last) in the specified path will be deleted, and that directory
must be empty to be deleted.

The "RETURN-CODE" special register (see [Special Registers], page 255) will be set to the
return code of the operation; the value will be either 0=Success or 128=failure.

15 February 2018 Chapter 8 - FUNCTIONS



540 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

8.2.23. CBL DELETE FILE� �
CBL DELETE FILE Built-In Subroutine Syntax
 	

CALL "CBL_DELETE_FILE" USING file-path

~~~~ ~~~~~

————————————————————————————————————————

This routine deletes the file specified by the <file-path> argument (an alphanumeric literal
or identifier) just as if that were done using the "RM" (Unix/OSX) or "ERASE" (Windows)
command.

If the attempt to delete the file fails (for example, it doesn’t exist), the "RETURN-CODE"

special register (see [Special Registers], page 255) will be set to 128; on successful completion
it will be set to 0.

Chapter 8 - FUNCTIONS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 541

8.2.24. CBL EQ� �
CBL EQ Built-In Subroutine Syntax
 	

CALL "CBL_EQ" USING item-1, item-2, BY VALUE byte-length

~~~~ ~~~~~ ~~~~~

————————————————————————————————————————

Old Old New

Arg 1 Arg 2 Arg 2

Bit Bit Bit

===== ===== =====

0 0 1

0 1 0

1 0 0

1 1 1

This subroutine performs a bit-by-bit comparison between the
left-most 8*<byte-length> corresponding bits of <item-1> and
<item-2>, storing the resulting bit string into <item-2>. The
truth table shown to the left documents the EQ process.

The <item-1> argument may be an alphanumeric literal or a
data item and <item-2> must be a data item. The length of
both <item-1> and <item-2>must be at least 8*<byte-length>.

The <byte-length> argument may be a numeric literal or data item, and must be specified
using "BY VALUE" (see [CALL], page 281).

Any bits in <item-2> after the 8*<byte-length> point will be unaffected.

A result of zero will be passed back in the "RETURN-CODE" special register (see [Special
Registers], page 255).

15 February 2018 Chapter 8 - FUNCTIONS



542 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

8.2.25. CBL ERROR PROC� �
CBL ERROR PROC Built-In Subroutine Syntax
 	

CALL "CBL_ERROR_PROC" USING function, program-pointer

~~~~ ~~~~~

————————————————————————————————————————

This routine registers a general error-handling routine.

The <function> argument must be a numeric literal or a 32-bit binary data item ("USAGE
BINARY-LONG", for example) with a value of 0 or 1. A value of 0 means that you will be
registering ("installing") an error procedure while a value of 1 indicates you’re de-registering
("uninstalling") a previously-installed error procedure.

The <program-pointer> must be a data item with a "USAGE" (see [USAGE], page 223) of
"PROGRAM-POINTER" containing the address of your error procedure. This item should be
given a value using the "SET Program-Pointer" statement (see [SET Program-Pointer],
page 368). If the error procedure is written in GnuCOBOL, it must be a subroutine, not a
user-defined function.

A success (0) or failure (non-0) result will be passed back in the "RETURN-CODE" special
register (see [Special Registers], page 255).

A custom error procedure will trigger when a runtime error condition is encountered. An
error procedure may be registered by a main program or a subprogram, but regardless
of from where it was registered, it applies to the overall program compilation group and
will trigger when a runtime error occurs anywhere in the executable program. If the error
procedure was defined by a subprogram, that program must be loaded at the time the error
procedure is executed.

An error procedure may be used to take whatever actions might be warranted to display
additional information or to gracefully close down work in progress, but it cannot prevent
the termination of program execution; should the error procedure not issue its own "STOP

RUN", control will return back to the standard error routine when the error procedure exits.

The code within the handler will be executed and — once the handler issues a "return", if
it was written in C, or an "EXIT PROGRAM" statement (see [EXIT], page 309) or "GOBACK"
statement, if it was written in GnuCOBOL, the system-standard error handling routine will
be executed.

Only one user-defined error procedure may be in effect at any time.

The following is a sample GnuCOBOL program that registers an error procedure. The
output of that program is shown as well. As as you can see, the error handler’s messages
appear followed by the standard GnuCOBOL message.

1. IDENTIFICATION DIVISION.

Chapter 8 - FUNCTIONS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 543

2. PROGRAM-ID. DemoERRPROC.

3. ENVIRONMENT DIVISION.

4. DATA DIVISION.

5. WORKING-STORAGE SECTION.

6. 01 Err-Proc-Address USAGE PROGRAM-POINTER.

7. PROCEDURE DIVISION.

8. S1.

9. DISPLAY ’Program is starting’

10. SET Err-Proc-Address TO ENTRY ’ErrProc’

11. CALL ’CBL_ERROR_PROC’ USING 0, Err-Proc-Address

12. CALL ’Tilt’ *> THIS DOESN’T EXIST!!!!

13. DISPLAY ’Program is stopping’

14. STOP RUN

15. .

16. END PROGRAM DemoERRPROC.

17.

18. IDENTIFICATION DIVISION.

19. PROGRAM-ID. ErrProc.

20. PROCEDURE DIVISION.

21. 000-Main.

22. DISPLAY ’Error: ’ FUNCTION EXCEPTION-LOCATION

23. DISPLAY ’ ’ FUNCTION EXCEPTION-STATEMENT

24. DISPLAY ’ ’ FUNCTION EXCEPTION-FILE

25. DISPLAY ’ ’ FUNCTION EXCEPTION-STATUS

26. DISPLAY ’*** Returning to Standard Error Routine ***’

27. EXIT PROGRAM

28. .

29. END PROGRAM ErrProc.

When executed, this sample program generates the following console output.

E:\Programs\Demos>demoerrproc

Program is starting

Error: DemoERRPROC; S1; 12

CALL

00

EC-PROGRAM-NOT-FOUND

*** Returning to Standard Error Routine ***

DEMOERRPROC.cbl: 27: libcob: Cannot find module ’Tilt’

E:\Programs\Demos>

15 February 2018 Chapter 8 - FUNCTIONS



544 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

8.2.26. CBL EXIT PROC� �
CBL EXIT PROC Built-In Subroutine Syntax
 	

CALL "CBL_EXIT_PROC" USING function, program-pointer

~~~~ ~~~~~

————————————————————————————————————————

This routine registers a general exit-handling routine.

The <function> argument must be a numeric literal or a 32-bit binary data item ("USAGE
BINARY-LONG", for example) with a value of 0 or 1. A value of 0 means that you will be
registering ("installing") an exit procedure while a value of 1 indicates you’re deregistering
("uninstalling") a previously-installed exit procedure.

The <program-pointer> must be a data item with a "USAGE" (see [USAGE], page 223) of
"PROGRAM-POINTER" containing the address of your exit procedure.

A success (0) or failure (non-0) result will be passed back in the "RETURN-CODE" special
register (see [Special Registers], page 255).

An exit procedure, once registered, will trigger whenever a "STOP RUN" statement (see
[STOP], page 384) or a "GOBACK" statement (see [GOBACK], page 315) is executed any-
where in the program. The exit procedure may execute whatever code is desired to un-
dertake an orderly shut down of the program. Once the exit procedure terminates by
executing an "EXIT PROGRAM" statement (see [EXIT], page 309) or a "GOBACK" statement,
the system-standard program termination routine will be executed.

Only one user-defined exit procedure may be in effect at any time.

The following is a sample GnuCOBOL program that registers an exit procedure. The output
of that program is shown as well.

IDENTIFICATION DIVISION.

PROGRAM-ID. demoexitproc.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 Exit-Proc-Address USAGE PROGRAM-POINTER.

PROCEDURE DIVISION.

000-Register-Exit-Proc.

SET Exit-Proc-Address TO ENTRY "ExitProc"

CALL "CBL_EXIT_PROC" USING 0, Exit-Proc-Address

IF RETURN-CODE NOT = 0

DISPLAY ’Error: Could not register Exit Procedure’

END-IF

.

099-Now-Test-Exit-Proc.

Chapter 8 - FUNCTIONS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 545

DISPLAY

’Executing a STOP RUN...’

END-DISPLAY

GOBACK.

END PROGRAM demoexitproc.

IDENTIFICATION DIVISION.

PROGRAM-ID. ExitProc.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 Display-Date PIC XXXX/XX/XX.

01 Display-Time PIC XX/XX/XX.

01 Now PIC X(8).

01 Today PIC X(8).

PROCEDURE DIVISION.

000-Main.

DISPLAY ’*** STOP RUN has been executed ***’

ACCEPT Today FROM DATE YYYYMMDD

ACCEPT Now FROM TIME

MOVE Today TO Display-Date

MOVE Now TO Display-Time

INSPECT Display-Time REPLACING ALL ’/’ BY ’:’

DISPLAY ’*** ’ Display-Date ’ ’ Display-Time ’ ***’

GOBACK.

END PROGRAM ExitProc.

15 February 2018 Chapter 8 - FUNCTIONS



546 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

8.2.27. CBL FLUSH FILE� �
CBL FLUSH FILE Built-In Subroutine Syntax
 	

CALL "CBL_FLUSH_FILE" USING file-handle

~~~~ ~~~~~

————————————————————————————————————————

In Micro Focus COBOL, calling this subroutine flushes any as-yet unwritten memory buffers
for the (output) file whose file-handle is specified as the argument to disk.

This routine is non-functional in GnuCOBOL. It exists only to provide compatibility for
applications that may have been developed for Micro Focus COBOL.

Chapter 8 - FUNCTIONS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 547

8.2.28. CBL GC FORK� �
CBL GC FORK Built-In Subroute Syntax
 	

CALL "CBL_GC_FORK" USING Child-PID

~~~~ ~~~~~

————————————————————————————————————————

CBL GC FORK allows you to fork the current COBOL process to a new one.

The current content of the process storage (including LOCAL-STORAGE) will be identical,
any file handles get invalid in the new process, positions and file / record locks are only
available to the original process.

This system routine is not available on Windows (exception: GCC on Cygwin).

Parameters: none Returns: PID (the child process gets 0 returned, the calling process gets
the PID of the created children).

Negative values are returned for system dependant error codes and -1 if the function is not
available on the current system.

CBL_GC_FORK allows you to fork the current COBOL process to a new one. The

current content of the process storage (including LOCAL-STORAGE) will be

identical, any file handles get invalid in the new process, positions and

file / record locks are only available to the original process.

This system routine is not available on Windows (exception: GCC on Cygwin).

Parameters: none Returns: PID (the child process gets 0 returned, the calling

process gets the PID of the created children). Negative values are returned for

system dependant error codes and -1 if the function is not available on the

current system.

IDENTIFICATION DIVISION.

PROGRAM-ID. prog.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 CHILD-PID PIC S9(9) BINARY.

01 WAIT-STS PIC S9(9) BINARY.

PROCEDURE DIVISION.

CALL "CBL_GC_FORK" RETURNING CHILD-PID END-CALL

EVALUATE TRUE

WHEN CHILD-PID = ZERO

PERFORM CHILD-CODE

WHEN CHILD-PID > ZERO

PERFORM PARENT-CODE

15 February 2018 Chapter 8 - FUNCTIONS



548 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

WHEN CHILD-PID = -1

DISPLAY CBL_GC_FORK is not available on the current’

’ system!

PERFORM CHILD-CODE

MOVE 0 TO CHILD-PID

PERFORM PARENT-CODE

WHEN OTHER

MULTIPLY CHILD-PID BY -1 END-MULTIPLY

DISPLAY CBL_GC_FORK returned system error: CHILD-PID

END-EVALUATE

STOP RUN.

CHILD-CODE.

CALL "C$SLEEP" USING 1 END-CALL

DISPLAY "Hello, I am the child"

MOVE 2 TO RETURN-CODE

PARENT-CODE.

DISPLAY "Hello, I am the parent"

CALL "CBL_GC_WAITPID" USING CHILD-PID RETURNING WAIT-STS

MOVE 0 TO RETURN-CODE

EVALUATE TRUE

WHEN WAIT-STS >= 0

DISPLAY Child ended with status: WAIT-STS

WHEN WAIT-STS = -1

DISPLAY CBL_GC_WAITPID is not available on the ’

’current system!

WHEN WAIT-STS < -1

MULTIPLY -1 BY WAIT-STS END-MULTIPLY

DISPLAY CBL_GC_WAITPID returned system error: WAIT-STS

END-EVALUATE

Chapter 8 - FUNCTIONS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 549

8.2.29. CBL GC GETOPT� �
CBL GC GETOPT Built-In Subroutine Syntax
 	

CALL "CBL_GC_GETOPT" USING BY REFERENCE SHORTOPTIONS LONGOPTIONS LONGIND

~~~~ ~~~~~

BY VALUE LONG-ONLY

BY REFERENCE RETURN-CHAR OPT-VAL

————————————————————————————————————————

CBL GC GETOPT realises the quite well-known option parser, getopt, for GnuCOBOL.

The usage of this system routine is described by the following example.

IDENTIFICATION DIVISION.

PROGRAM-ID. PROG.

DATA DIVISION.

WORKING-STORAGE SECTION.

78 SHORTOPTIONS VALUE "jkl".

01 LONGOPTIONS.

05 OPTIONRECORD OCCURS 2 TIMES.

10 OPTIONNAME PIC X(25).

10 HAS-VALUE PIC 9.

10 VALPOINT POINTER VALUE NULL.

10 RETURN-VALUE PIC X(4).

01 LONGIND PIC 99.

01 LONG-ONLY PIC 9 VALUE 1.

01 RETURN-CHAR PIC X(4).

01 OPT-VAL PIC X(10).

01 COUNTER PIC 9 VALUE 0.

We first need to define the necessary fields for getopts shortoptions (so),

longoptions (lo), longoption index (longind), long-only-option (long-only)

and also the fields for return values return-char and opt-val (arbitrary

size with trimming, see return codes).

The shortoptions are written down as an alphanumeric field (i.e., a string

with arbitrary size) as follows:

"ab:c::d"

This means we want getopt to look for shortoptions named a, b, c or d and

we demand an option value for b and we are accepting an optional one for c.

The longoptions are defined as a table of records with oname, has-value,

valpoint and val.

oname defines the name of a longoption.

15 February 2018 Chapter 8 - FUNCTIONS



550 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

has-value defines if an option value is demanded (has-val = 1), optional

(has-val = 2) or not required (has-val = 0).

valpoint is a pointer used to specify an address to save getopts return

value to. The pointer is optional. If it is NULL, getopt returns a value

as usual. If you use the pointer it has to point to a PIC X(4) field.

The field val is a PIC X(4) character which is returned if the longoption

was recognized.

The longoption structure is immutable! You can only vary the number of

records.

Now we have the tools to run CBL_GC_GETOPT within the procedure division.

PROCEDURE DIVISION.

MOVE "version" to OPTIONNAME (1).

MOVE 0 TO HAS-VALUE (1).

MOVE "V" TO RETURN-VALUE (1).

MOVE "verbose" TO OPTIONNAME (2).

MOVE 0 TO HAS-VALUE (2).

MOVE "V" TO RETURN-VALUE (2).

PERFORM WITH TEST AFTER UNTIL RETURN-CODE = -1

CALL CBL_GC_GETOPT USING

BY REFERENCE SHORTOPTIONS LONGOPTIONS LONGIND

BY VALUE LONG-ONLY

BY REFERENCE RETURN-CHAR OPT-VAL

END-CALL

DISPLAY RETURN-CHAR END-DISPLAY

DISPLAY OPT-VAL END-DISPLAY

END-PERFORM

STOP RUN.

The example shows how we initialize all parameters and call the routine until

CBL_GC_GETOPT runs out of options and returns -1.

The return-char might contain the following:

regular character if an option was recognized

? if we have an undefined or ambiguous option

1 if we have a non-option (only if first byte of so is -)

0 if valpoint != NULL and we are writing the return value to the specified

address

-1 if we dont have any more options (or reach the first non-option if first

byte of so is +)

The return-codes of CBL_GC_GETOPT are:

1 if weve got a non-option (only if first byte of so is -)

0 if valpoint != NULL and we are writing the return value to the specified

address

-1 if we dont have any more options (or reach the first non-option if first

Chapter 8 - FUNCTIONS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 551

byte of so is +)

2 if we have got an truncated option value in opt-val (because opt-val was

too small)

3 if we got a regular answer from getopt

15 February 2018 Chapter 8 - FUNCTIONS



552 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

8.2.30. CBL GC HOSTED� �
CBL GC HOSTED Built-In Subroutine Syntax
 	

CALL "CBL_GC_HOSTED" USING ARG-1 ARG-2

~~~~ ~~~~~

Note replaces CBL_OC_HOSTED which is kept as a legacy item.

————————————————————————————————————————

CBL_GC_HOSTED provides access to the following C hosted variables:

argc to binary-long by value

argv to pointer to char **

stdin, stdout, stderr to pointer

errno giving address of errno in pointer to binary-long, use based for more

direct access and conditional access to the following variables:

tzname pointer to pointer to array of two char pointers

timezone C long, will be seconds west of UTC

daylight C int, will be 1 during daylight savings

System will need to HAVE TIMEZONE defined for these to return anything

meaningful.

Attempts made when they are not available WILL return 1 from CBL GC HOSTED.

It returns 0 when match, 1 on failure, case matters as does length, "arg"

wont match.

The usage of this system routine is described by the following example.

IDENTIFICATION DIVISION.

PROGRAM-ID. HOSTED.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 Argc BINARY-LONG.

01 Argv POINTER.

01 Stdin POINTER.

01 Stdout POINTER.

01 Stderr POINTER.

01 Errno POINTER.

01 Err BINARY-LONG BASED.

01 Domain FLOAT-LONG VALUE 3.0.

01 Tzname POINTER.

01 Tznames POINTER BASED.

05 Tzs POINTER OCCURS 2.

01 Timezone BINARY-LONG.

Chapter 8 - FUNCTIONS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 553

01 Daylight BINARY-SHORT.

*>

PROCEDURE DIVISION.

call "CBL_GC_HOSTED" using stdin "stdin"

display "stdin : " stdin

call "feof" using by value stdin

display "feof stdin : " return-code

call "CBL_GC_HOSTED" using stdout "stdout"

display "stdout : " stdout

call "fprintf" using by value stdout by content "Hello" & x"0a"

call "CBL_GC_HOSTED" using stderr "stderr"

display "stderr : " stderr

call "fprintf" using by value stderr by content "on err" & x"0a"

call "CBL_GC_HOSTED" using argc "argc"

display "argc : " argc

call "CBL_GC_HOSTED" using argv "argv"

display "argv : " argv

call "args" using by value argc argv

call "CBL_GC_HOSTED" using errno "errno"

display "&errno : " errno

set address of err to errno

display "errno : " err

call "acos" using by value domain

display "errno after acos(3.0): " err ", EDOM is 33"

call "CBL_GC_HOSTED" using argc "arg"

display "arg lookup : " return-code

call "CBL_GC_HOSTED" using null "argc"

display "null with argc : " return-code

display "argc is still : " argc

*> the following only returns zero if the system has HAVE_TIMEZONE set

call "CBL_GC_HOSTED" using daylight "daylight "

display "timezone lookup : " return-code

if return-code not = 0

display "system doesnt has timezone"

else

display "timezone is : " timezone

call "CBL_GC_HOSTED" using daylight "daylight "

display "daylight lookup : " return-code

display "daylight is : " daylight

set environment "TZ" to "PST8PDT"

call static "tzset" returning omitted on exception

continue end-call

call "CBL_GC_HOSTED" using tzname "tzname"

display "tzname lookup : " return-code

*> tzs(1) will point to z"PST" and tzs(2) to z"PDT"

if return-code equal 0 and tzname not equal null then

15 February 2018 Chapter 8 - FUNCTIONS



554 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

set address of tznames to tzname

if tzs(1) not equal null then

display "tzs #1 : " tzs(1)

end-if

if tzs(2) not equal null then

display "tzs #2 : " tzs(2)

end-if

end-if

end-if

goback.

end program hosted.

Note that the legacy name of this routine that starts with CBL OC is deprecated, as is
NANOSLEEP but will still work. It is recommended that all library routines names starting
with CBL OC are replaced with CBL GC to minimise issues.

Chapter 8 - FUNCTIONS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 555

8.2.31. CBL GC NANOSLEEP� �
CBL GC NANOSLEEP Built-In Subroutine Syntax
 	

CALL "CBL_GC_NANOSLEEP" USING nanoseconds-to-sleep

~~~~ ~~~~~

Note replaces CBL_OC_NANOSLEEP which is kept as a legacy item.

————————————————————————————————————————

This subroutine puts the program to sleep for the specified number of nanoseconds.

The effective granularity of <nanoseconds-to-sleep> values will depend upon the granularity
of the system clock your computer is using and the timing granularity of the operating
system that computer is running.

For example, You will not expect to see any difference whatsoever between values of 1,
100, 500 or 1000, but you should see a difference between values such as 250000000 and
500000000.

The <nanoseconds-to-sleep> argument is a numeric literal or data item.

There are one BILLION nanoseconds in a second, so if you wanted to put the program to
sleep for 1/4 second you’d use a <nanoseconds-to-sleep> value of 250000000.

Note that the legacy name of this routine starts with CBL OC is deprecated, as is HOSTED
but will still work. It is recommended that all library routines names starting with CBL OC
are replaced with CBL GC to minimise issues.

15 February 2018 Chapter 8 - FUNCTIONS



556 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

8.2.32. CBL GC PRINTABLE� �
CBL GC PRINTABLE Built-In Subroutine Syntax
 	

CALL "CBL_GC_PRINTABLE" USING data-item [ , char ]

~~~~ ~~~~~

Note replaces C$PRINTABLE which is kept as a legacy item.

————————————————————————————————————————

The "CBL_GC_PRINTABLE" subroutine converts the contents of the data-item specified as
the first argument to printable characters.

Those characters that are deemed printable (as defined by the character set used by <data-
item>) will remain unchanged, while those that are NOT printable will be converted to the
character specified as the second argument.

If no <char> argument is provided, a period (".") will be used.

Chapter 8 - FUNCTIONS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 557

8.2.33. CBL GC WAITPID� �
CBL GC WAITPID Built-In Subroutine Syntax
 	

CALL "CBL_GC_WAITPID" USING ARG-1

~~~~ ~~~~~

RETURNING RET-STATUS

~~~~~~~~~

————————————————————————————————————————

CBL_GC_WAITPID allows you to wait until another system process ended.

Additional you can check the process return code.

Parameters: none Returns: function-status / child-status Negative values

are returned for system dependant error codes and -1 if the function is not

available on the current system.

CALL "CBL_GC_WAITPID" USING CHILD-PID RETURNING WAIT-STS

MOVE 0 TO RETURN-CODE

DISPLAY CBL_GC_WAITPID ended with status: WAIT-STS

15 February 2018 Chapter 8 - FUNCTIONS



558 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

8.2.34. CBL GET CSR POS� �
CBL GET CSR POS Built-In Subroutine Syntax
 	

CALL "CBL_GET_CSR_POS" USING cursor-locn-buffer

~~~~ ~~~~~

————————————————————————————————————————

This subroutine will retrieve the current cursor location on the screen, returning a 2-byte
value into the supplied <cursor-locn-buffer>. The first byte of <cursor-locn-buffer> will
receive the current line (row) location while the second receives the current column location.

The returned location data will be in binary form, and will be based upon starting values
of 0, meaning that if the cursor is located at line 15, column 12 at the time this routine is
called, a value of (14,11) will be returned.

The following is a typical <cursor-locn-buffer> definition:

01 CURSOR-LOCN-BUFFER.

05 CURSOR-LINE USAGE BINARY-CHAR.

05 CURSOR-COLUMN USAGE BINARY-CHAR.

Values of 1 (Line) and 1 (column) will be returned if GnuCOBOL was not generated to
include screen I/O.

Chapter 8 - FUNCTIONS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 559

8.2.35. CBL GET CURRENT DIR� �
CBL GET CURRENT DIR Built-In Subroutine Syntax
 	

CALL "CBL_GET_CURRENT_DIR" USING BY VALUE 0,

~~~~ ~~~~~ ~~~~~

BY VALUE length,

~~~~~

BY REFERENCE buffer

~~~~~~~~~

————————————————————————————————————————

This retrieves the fully-qualified pathname of the current directory, saving up to <length>
characters of that name into the specified <buffer>.

The first argument is unused, but must be specified. It must be specified "BY VALUE" (see
[CALL], page 281).

The <length> argument must be specified "BY VALUE". The <buffer> argument must be
specified "BY REFERENCE".

The value specified for the <length> argument (a numeric literal or data item) should not
exceed the actual length of the <buffer> argument.

If the value specified for the <length> argument is LESS THAN the actual length of the
<buffer> argument, the current directory path will be left-justified and space filled within the
first <length> bytes of <buffer> — any bytes in <buffer> after that point will be unchanged.

If the routine is successful, a value of 0 will be returned to the "RETURN-CODE" special
register (see [Special Registers], page 255). If the routine failed because of a problem with
an argument (such as a negative or 0 length), a value of 128 will result. Finally, if the 1st
argument value is anything but zero, the routine will fail with a 129 value.

15 February 2018 Chapter 8 - FUNCTIONS



560 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

8.2.36. CBL GET SCR SIZE� �
CBL GET SCR SIZE Built-In Subroutine Syntax
 	

CALL "CBL_GET_SCR_SIZE" USING no-of-lines, no-of-cols

~~~~ ~~~~~

————————————————————————————————————————

Use this subroutine to retrieve the current console screen size.

When the system is running in a windowed environment, this will be the sizing of the console
window in which the program is executing. When the system is not running a windowing
environment, the physical console screen attributes will be returned. In environments such
as a Windows console window, where the logical size of the window may far exceed that of
the physical console window, the size returned will be that of the physical console window.
Two one-byte values will be returned — the first will be the current number of lines (rows)
while the second will be the number of columns.

The returned size data will be in binary form.

The following are typical <no-of-lines> and <no-of-columns> definitions:

01 NO-OF-LINES USAGE BINARY-CHAR.

01 NO-OF-COLUMNS USAGE BINARY-CHAR.

GnuCOBOL run-time screen management must have been initialized prior to CALLing
this routine in order to receive meaningful values. This means that a "DISPLAY

screen-data-item" statement (see [DISPLAY screen-data-item], page 296) or a "ACCEPT

screen-data-item" statement (see [ACCEPT screen-data-item], page 262) must have
been executed prior to executing the "CALL" statement.

Zero values will be returned if the screen has not been initialized and values of 24 (lines)
and 80 (columns) will be returned if GnuCOBOL was not generated to include screen I/O.

Chapter 8 - FUNCTIONS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 561

8.2.37. CBL IMP� �
CBL IMP Built-In Subroutine Syntax
 	

CALL "CBL_IMP" USING item-1, item-2, BY VALUE byte-length

~~~~ ~~~~~ ~~~~~

————————————————————————————————————————

Old Old New

Arg 1 Arg 2 Arg 2

Bit Bit Bit

===== ===== =====

0 0 1

0 1 1

1 0 0

1 1 1

This subroutine performs a bit-by-bit logical "implies" pro-
cess between the left-most 8*<byte-length> corresponding bits
of <item-1> and <item-2>, storing the resulting bit string into
<item-2>. The truth table shown to the left documents the
IMP process.

The <item-1> argument may be an alphanumeric literal or a
data item and <item-2> must be a data item. The length of
both <item-1> and <item-2>must be at least 8*<byte-length>.

The <byte-length> argument may be a numeric literal or data item, and must be specified
using "BY VALUE" (see [CALL], page 281).

Any bits in <item-2> after the 8*<byte-length> point will be unaffected.

A result of zero will be passed back in the "RETURN-CODE" special register (see [Special
Registers], page 255).

15 February 2018 Chapter 8 - FUNCTIONS



562 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

8.2.38. CBL NIMP� �
CBL NIMP Built-In Subroutine Syntax
 	

CALL "CBL_NIMP" USING item-1, item-2, BY VALUE byte-length

~~~~ ~~~~~ ~~~~~

————————————————————————————————————————

Old Old New

Arg 1 Arg 2 Arg 2

Bit Bit Bit

===== ===== =====

0 0 0

0 1 0

1 0 1

1 1 0

This subroutine performs the negation of a bit-by-bit logi-
cal "implies" process between the left-most 8*<byte-length>
corresponding bits of <item-1> and <item-2>, storing the re-
sulting bit string into <item-2>. The truth table shown to the
left documents the NIMP process.

The <item-1> argument may be an alphanumeric literal or a
data item and <item-2> must be a data item. The length of
both <item-1> and <item-2>must be at least 8*<byte-length>.

The <byte-length> argument may be a numeric literal or data item, and must be specified
using "BY VALUE" (see [CALL], page 281).

Any bits in <item-2> after the 8*<byte-length> point will be unaffected.

A result of zero will be passed back in the "RETURN-CODE" special register (see [Special
Registers], page 255).

Chapter 8 - FUNCTIONS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 563

8.2.39. CBL NOR� �
CBL NOR Built-In Subroutine Syntax
 	

CALL "CBL_NOR" USING item-1, item-2, BY VALUE byte-length

~~~~ ~~~~~ ~~~~~

————————————————————————————————————————

Old Old New

Arg 1 Arg 2 Arg 2

Bit Bit Bit

===== ===== =====

0 0 1

0 1 0

1 0 0

1 1 0

This subroutine performs the negation of a bit-by-bit logi-
cal "or" process between the left-most 8*<byte-length> corre-
sponding bits of <item-1> and <item-2>, storing the resulting
bit string into <item-2>. The truth table shown to the left
documents the NOR process.

The <item-1> argument may be an alphanumeric literal or a
data item and <item-2> must be a data item. The length of
both <item-1> and <item-2>must be at least 8*<byte-length>.

The <byte-length> argument may be a numeric literal or data item, and must be specified
using "BY VALUE" (see [CALL], page 281).

Any bits in <item-2> after the 8*<byte-length> point will be unaffected.

A result of zero will be passed back in the "RETURN-CODE" special register (see [Special
Registers], page 255).

15 February 2018 Chapter 8 - FUNCTIONS



564 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

8.2.40. CBL NOT� �
CBL NOT Built-In Subroutine Syntax
 	

CALL "CBL_NOT" USING item-1, BY VALUE byte-length

~~~~ ~~~~~ ~~~~~

————————————————————————————————————————

This subroutine "flips" the left-most 8*<byte-length> bits of <item-1>, changing 0 bits to
1s and 1s to 0s. The changes are made directly im <item-1>.

The <item-1> argument must be a data item. The length of <item-1> must be at least
8*<byte-length>.

The <byte-length> argument may be a numeric literal or data item, and must be passed
using "BY VALUE" (see [CALL], page 281).

Any bits in <item-1> after the 8*<byte-length> point will be unaffected.

A result of zero will be passed back in the "RETURN-CODE" special register (see [Special
Registers], page 255).

Chapter 8 - FUNCTIONS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 565

8.2.42. CBL OPEN FILE� �
CBL OPEN FILE Built-In Subroutine Syntax
 	

CALL "CBL_OPEN_FILE" USING file-path, access-mode, 0, 0, handle

~~~~ ~~~~~

————————————————————————————————————————

This routine opens an existing file for use as a byte-stream file usable by CBL WRITE FILE
or CBL READ FILE.

The <file-path> argument is an alphanumeric literal or data-item.

The <access-mode> argument is a numeric literal or data item with a PIC X USAGE
COMP-X (or USAGE BINARY-CHAR) definition; it specifies how you wish to use the file,
as follows:

1 = input (read-only)
2 = output (write-only)
3 = input and/or output

The third and fourth arguments would specify a locking mode and device specification,
respectively, but they’re not implemented in GnuCOBOL (currently, at least) — just specify
each as 0.

The final argument (<handle>) is a "PIC X(4) USAGE COMP-X" item that will receive the
handle to the file. That handle is used on all other byte-stream functions to reference this
specific file.

A "RETURN-CODE" special register (see [Special Registers], page 255) value of -1 indicates
an invalid argument, while a value of 0 indicates success. A value of 35 means the file does
not exist.

15 February 2018 Chapter 8 - FUNCTIONS



566 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

8.2.43. CBL OR� �
CBL OR Built-In Subroutine Syntax
 	

CALL "CBL_OR" USING item-1, item-2, BY VALUE byte-length

~~~~ ~~~~~ ~~~~~

————————————————————————————————————————

Old Old New

Arg 1 Arg 2 Arg 2

Bit Bit Bit

===== ===== =====

0 0 0

0 1 1

1 0 1

1 1 1

This subroutine performs a bit-by-bit logical "or" process
between the left-most 8*<byte-length> corresponding bits of
<item-1> and <item-2>, storing the resulting bit string into
<item-2>. The truth table shown to the left documents the
OR process.

The <item-1> argument may be an alphanumeric literal or a
data item and <item-2> must be a data item. The length of
both <item-1> and <item-2>must be at least 8*<byte-length>.

The <byte-length> argument may be a numeric literal or data item, and must be specified
using "BY VALUE" (see [CALL], page 281).

Any bits in <item-2> after the 8*<byte-length> point will be unaffected.

A result of zero will be passed back in the "RETURN-CODE" special register (see [Special
Registers], page 255).

Chapter 8 - FUNCTIONS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 567

8.2.44. CBL READ FILE� �
CBL READ FILE Built-In Subroutine Syntax
 	

CALL "CBL_READ_FILE" USING handle, offset, nbytes, flag, buffer

~~~~ ~~~~~

————————————————————————————————————————

This routine reads <nbytes> of data starting at byte number <offset> from the byte-stream
file defined by <handle> into the specified <buffer>.

The <handle> argument ("PIC X(4) USAGE COMP-X") must have been populated by a prior
call to "CBL_OPEN_FILE" built-in system subroutine (see [CBL OPEN FILE], page 565).

The <offset> argument ("PIC X(8) USAGE COMP-X") defines the location in the file of the
first byte to be read. The first byte of a file is byte offset 0.

The <nbytes> argument ("PIC X(4) USAGE COMP-X") specifies how many bytes (maximum)
will be read. If the <flag> argument is specified as 128, the size of the file (in bytes) will
be returned into the file offset argument (argument 2) upon completion. Not all operating
system/GnuCOBOL environments may be able to retrieve file sizes in such cases, a value
of zero will be returned. The only other valid value for flags is 0. This argument may be
specified either as a numeric literal or as a "PIC X USAGE COMP-X" data item.

Upon completion, the "RETURN-CODE" special register (see [Special Registers], page 255)
will be set to 0 if the read was successful or to 10 if an "end-of-file" condition occurred. If
a value of -1 is returned, a problem was identified with the subroutine arguments.

15 February 2018 Chapter 8 - FUNCTIONS



568 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

8.2.45. CBL READ KBD CHAR� �
CBL READ KBD CHAR Build-In Subroutine Syntax
 	

CALL "CBL_READ_KBD_CHAR" USING A-Character-item ?.

~~~~ ~~~~~

————————————————————————————————————————

Get character from terminal.

Chapter 8 - FUNCTIONS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 569

8.2.46. CBL RENAME FILE� �
CBL RENAME FILE Built-In Subroutine Syntax
 	

CALL "CBL_RENAME_FILE" USING old-file-path, new-file-path

~~~~ ~~~~~

————————————————————————————————————————

You may use this subroutine to rename a file.

The file specified by <old-file-path> will be "renamed" to the name specified as <new-file-
path>. Each argument may be an alphanumeric literal or data item.

Despite what the name of this routine might make you believe, this routine is more than
just a simple "rename" — it will actually move the file supplied as the 1st argument to the
file specified as the 2nd argument. Think of it as a two-step sequence, first copying the <old-
file-path> file to the <new-file-path> file and then a second step where the <old-file-path> is
deleted.

If the attempt to move the file fails (for example, it doesn’t exist), the "RETURN-CODE" special
register (see [Special Registers], page 255) will be set to 128; on successful completion it
will be set to 0.

15 February 2018 Chapter 8 - FUNCTIONS



570 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

8.2.47. CBL SET CSR POS� �
CBL SET CSR POS Build-In Subroutine Syntax
 	

CALL "CBL_SET_CSR_POS" USING cursor-locn-buffer ?

~~~~ ~~~~~

————————————————————————————————————————

Set current position on terminal.

Chapter 8 - FUNCTIONS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 571

8.2.48. CBL TOLOWER� �
CBL TOLOWER Built-In Subroutine Syntax
 	

CALL "CBL_TOLOWER" USING data-item, BY VALUE convert-length

~~~~ ~~~~~ ~~~~~

————————————————————————————————————————

This routine will convert the first <convert-length> (a numeric literal or data item) characters
of <data-item> (an alpha-numeric identifier) to lower-case.

The <convert-length> argument must be specified "BY VALUE" (see [CALL], page 281). It
specifies how many (leading) characters in data-item will be converted — any characters
after that will remain unchanged.

If <convert-length> is negative or zero, no conversion will be performed.

8.2.49. CBL TOUPPER� �
CBL TOUPPER Built-In Subroutine Syntax
 	

CALL "CBL_TOUPPER" USING data-item, BY VALUE convert-length

~~~~ ~~~~~ ~~~~~

————————————————————————————————————————

This routine will convert the first <convert-length> (a numeric literal or data item) characters
of <data-item> (an alpha-numeric identifier) to upper-case.

The <convert-length> argument must be specified "BY VALUE" (see [CALL], page 281). It
specifies how many (leading) characters in data-item will be converted — any characters
after that will remain unchanged.

If <convert-length> is negative or zero, no conversion will be performed.

15 February 2018 Chapter 8 - FUNCTIONS



572 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

8.2.50. CBL WRITE FILE� �
CBL WRITE FILE Built-In Subroutine Syntax
 	

CALL "CBL_WRITE_FILE" USING handle, offset, nbytes, 0, buffer

~~~~ ~~~~~

————————————————————————————————————————

This routine writes <nbytes> of data from the specified <buffer> to the byte-stream file
defined by <handle> starting at byte number <offset> within the file.

The <handle> argument ("PIC X(4) USAGE COMP-X") must have been populated by a prior
call to CBL OPEN FILE. The offset argument ("PIC X(4) USAGE COMP-X") defines the
location in the file of the first byte to be written to. The first byte of a file is byte offset 0.

The <nbytes> argument ("PIC X(4) USAGE COMP-X") specifies how many bytes (maximum)
will be written.

Currently, the only allowable value for the flags argument is 0. This argument may be
specified either as a numeric literal or as a "PIC X(1) USAGE COMP-X" data item.

Upon completion, the "RETURN-CODE" special register (see [Special Registers], page 255)
will be set to 0 if the write was successful or to 30 if an I/O error condition occurred. If a
value of -1 is returned, a problem was identified with the subroutine arguments.

Chapter 8 - FUNCTIONS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 573

8.2.51. CBL XOR� �
CBL XOR Built-In Subroutine Syntax
 	

CALL "CBL_XOR" USING item-1, item-2, BY VALUE byte-length

~~~~ ~~~~~ ~~~~~

————————————————————————————————————————

Old Old New

Arg 1 Arg 2 Arg 2

Bit Bit Bit

===== ===== =====

0 0 0

0 1 1

1 0 1

1 1 0

This subroutine performs a bit-by-bit logical "exclusive or"
process between the left-most 8*<byte-length> corresponding
bits of <item-1> and <item-2>, storing the resulting bit string
into <item-2>. The truth table shown to the left documents
the XOR process.

The <item-1> argument may be an alphanumeric literal or a
data item and <item-2> must be a data item. The length of
both <item-1> and <item-2>must be at least 8*<byte-length>.

The <byte-length> argument may be a numeric literal or data item, and must be specified
using "BY VALUE" (see [CALL], page 281).

Any bits in <item-2> after the 8*<byte-length> point will be unaffected.

A result of zero will be passed back in the "RETURN-CODE" special register (see [Special
Registers], page 255).

15 February 2018 Chapter 8 - FUNCTIONS



574 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

8.2.52. SYSTEM� �
SYSTEM Built-In Subroutine Syntax
 	

CALL "SYSTEM" USING command

~~~~ ~~~~~

————————————————————————————————————————

This subroutine submits the specified <command> (an alphanumeric literal or data item)
to a command shell for execution as if it were typed into a console/terminal window.

A shell will be opened subordinate to the GnuCOBOL program issuing the call to "SYSTEM".

Output from the command (if any) will appear in the command window in which the
GnuCOBOL program was executed.

On a Unix system, the shell environment will be established using the default shell program.
This is also true when using a GnuCOBOL build created with and for OSX or the Cygwin
Unix emulator.

With native Windows Windows/MinGW builds, the shell environment will be the Windows
console window command processor (usually "cmd.exe") appropriate for the version of
Windows you’re using.

To trap output from the executed command and process it within the GnuCOBOL program,
use a pipe (>) to send the command output to a temporary file which you read from within
the program once control returns.

Chapter 8 - FUNCTIONS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 575

8.2.53. X"91"� �
X"91" Built-In Subroutine Syntax
 	

CALL X"91" USING return-code, function-code, binary-variable-arg

~~~~ ~~~~~

————————————————————————————————————————

The original Micro Focus version of this routine is capable of providing a wide variety of
functions. GnuCOBOL supports just three of them:

• Turning runtime switches (SWITCH-1, . . . , SWITCH-8) on.

• Turning runtime switches (SWITCH-1, . . . , SWITCH-8) off.

• Retrieving the number of arguments passed to a subroutine.

The <return-code> argument must be a one-byte binary numeric data item ("USAGE
BINARY-CHAR" is recommended). It will receive a value of 0 if the operation was successful,
1 otherwise.

The <function-code> argument must be either a numeric literal or a one-byte binary numeric
data item ("USAGE BINARY-CHAR" is recommended).

The third argument — <variable-arg> — is defined differently depending upon the
<function-code> value, as follows:

11

Sets and/or clears all eight of the COBOL switches (SWITCH-1 through
SWITCH-8). See [SPECIAL-NAMES], page 96, for an explanation of those
switches.

The <variable-arg> argument should be an "OCCURS 8 TIMES" table of "USAGE
BINARY-CHAR".

Each occurrence that is set to a value of zero prior to the "CALL X"91"" will
cause the corresponding switch to be cleared. Each occurrence set to 1 prior to
the "CALL X"91"" will cause the corresponding switch to be set.

Values other than 0 or 1 will be ignored.

12

Reads all eight of the COBOL switches (SWITCH-1 through SWITCH-8)

The <variable-arg> argument should be an "OCCURS 8 TIMES" table of "USAGE
BINARY-CHAR".

15 February 2018 Chapter 8 - FUNCTIONS



576 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

Each of the 1st eight occurrences of the array will be set to either 0 or 1 — 1
if the corresponding switch is set, 0 otherwise.

16

Retrieves the number of arguments passed to the program executing the CALL
X"91", saving that number into the <variable-arg> argument. That should be
a binary numeric data item ("USAGE BINARY-CHAR" is recommended).

Chapter 8 - FUNCTIONS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 577

8.2.54. X"E4"� �
X"E4" Built-In Subroutine Syntax
 	

CALL X"E4"

~~~~

————————————————————————————————————————

Use X"E4" to clear the screen. There are no arguments and no returned value.

8.2.55. X"E5"� �
X"E5" Built-In Subroutine Syntax
 	

CALL X"E5"

~~~~

————————————————————————————————————————

The X"E5" routine will sound the PC "bell". There are no arguments and no returned
value.

15 February 2018 Chapter 8 - FUNCTIONS



578 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

8.2.56. X"F4"� �
X"F4" Built-In Subroutine Syntax
 	

CALL X"F4" USING byte, table

~~~~ ~~~~~

————————————————————————————————————————

This routine packs the low-order (rightmost) bit from each of the eight 1-byte items in
<table> into the corresponding bit positions of the single-byte data item <byte>.

The <byte> data item need be only a single byte in size. If it is longer, the excess will be
unaffected by this subroutine.

The <table> data item must be at least 8 bytes long. If it is longer, the excess will be
ignored by this subroutine.

Typically, table is defined similarly to the following:

01 Table-Arg.

05 Each-Byte OCCURS 8 TIMES USAGE BINARY-CHAR.

Chapter 8 - FUNCTIONS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 579

8.2.57. X"F5"� �
X"F5" Built-In Subroutine Syntax
 	

CALL X"F5" USING byte, table

~~~~ ~~~~~

————————————————————————————————————————

This routine unpacks each bit of the single-byte data item <byte> into the low-order (right-
most) bit of each of the corresponding eight 1-byte items in <table>. The other seven bit
positions of each of the first eight entries in <table> will be set to zero.

The <byte> data item need be only a single byte in size. If it is longer, the excess will be
unaffected by this subroutine.

The <table> data item must be at least 8 bytes long. If it is longer, the excess will be
ignored by this subroutine.

Typically, table is defined similarly to the following:

01 Table-Arg.

05 Each-Byte OCCURS 8 TIMES USAGE BINARY-CHAR.

————————————————————
End of Chapter 8 — FUNCTIONS

15 February 2018 Chapter 8 - FUNCTIONS





GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 581

9. Report Writer Usage Notes

9.1. RWCS Lexicon

There are a number of terms that describe various aspects of the operation of the Report
Writer Control System (RWCS). Understanding the meanings of these terms is vital to
developing an understanding of the subject.

Control Break

An event that is triggered when a control field on an RWCS-generated report
changes value. It is these events that trigger the generation of control heading
and control footing groups.

Control Field

A field of data being presented within a detail group; as the various detail
groups that comprise the report are presented, they are presumed to appear
in sorted sequence of the control fields contained within them. As an example,
a department-by-department sales report for a chain of stores would probably
be sorted by store number and – within like store numbers – be further sorted
by department number. The store number will undoubtedly serve as a control
field for the report, allowing control heading groups to be presented before each
sequence of detail groups for the same store and control footing groups to be
presented after each such sequence.

Control Footing

A report group that appears immediately after one or more detail groups of
an RWCS-generated report. Such are produced automatically as a result of a
control break. This type of group typically serves as a summary of the detail
group(s) that precede it, as might be the case on a sales report for a chain
of stores, where the detail groups documenting sales for each department (one
department per detail group) from the same store might be followed by a control
footing that provides a summation of the department-by-department sales for
that store.

Control Heading

A report group that appears immediately before one or more detail groups
of an RWCS-generated report. Such are produced automatically as a result
of a control break. This type of group typically serves as an introduction to
the detail group(s) that follow, as might be the case on a sales report for a
chain of stores, where the detail groups documenting sales for each department
(one department per detail group) from the same store might be preceded by a
control heading that states the full name and location of the store.

15 February 2018 Chapter 9 - Report Writer Usage Notes



582 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

Detail Group

A report group that contains the detailed data being presented for the report.

Page Footing

A report group that appears at the bottom of every page of an RWCS-generated
report. Information typically found within such a report group might be:

• The date the report was generated

• The current page number of the report

Page Heading

A report group that appears at the top of every page of an RWCS-generated
report. Information typically found within such a report group might be:

• A title for the report

• The date the report was generated

• The current page number of the report

• Column headings describing the fields within the detail group(s)

Report Footing

A report group that occurs only once in an RWCS-generated report — as the
very last presented report group of the report. These typically serve as a visual
indication that the report is finished.

Report Group

One or more consecutive lines on a report that serve a common informational
purpose or function. For example, lines of text that are displayed at the top or
bottom of every printed page of a report.

Report Heading

A report group that occurs only once in an RWCS-generated report — as the
very first presented report group of the report. These typically serve as an
introduction to the report.

9.2. The Anatomy of a Report

Every report has the same basic structure, as shown here, even though not all reports will
have all of the groups shown. In fact, it is a very unusual report indeed that actually has
every one of these groups:

• REPORT HEADING

• PAGE HEADING [1]

• CONTROL HEADING(S) [2]

Chapter 9 - Report Writer Usage Notes 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 583

• DETAIL GROUP(S) [2]

• CONTROL FOOTING(S) [2]

• FINAL CONTROL FOOTING

• PAGE FOOTING [1]

• REPORT FOOTING

[1] Presented throughout the report, as needed
[2] Repeated, as needed

These groups will be presented (printed) across however many formatted pages are necessary
to hold them. No single report group will be allowed to cross page boundaries.

The management of paging, enforcement of the "groups cannot span pages" rule and almost
every aspect of report generation are handled entirely by the Report Writer Control System.

9.3. The Anatomy of a Report Page

Each page of a report is divided into as many as five (5) areas, as shown in the following
diagram.

_______________________________

| |

| Top-of-page Unusable Area |—# Lines: LINES AT TOP (LINAGE)
|_______________________________|

| |—Line #: HEADING (RD)
| Heading Area |

|_______________________________|—Line #: FIRST DETAIL (RD) - 1
| |—Line #: FIRST DETAIL (RD)
| |

| Body Area |—Line #: LAST CONTROL HEADING (RD)
| |—Line #: LAST DETAIL (RD)
|_______________________________|—Line #: FOOTING (RD)
| |—Line #: FOOTING (RD) + 1
| Footing Area |

|_______________________________|

| |

| Bottom-of-page Unusable Area |—# Lines: LINES AT BOTTOM (LINAGE)
|_______________________________|

When describing a report via the "RD" (see [REPORT SECTION], page 143) clause, the
total number of usable lines are specified as the "PAGE LIMIT" value; this value is the sum
of the number of lines contained in the Heading, Body and Footing Areas.

15 February 2018 Chapter 9 - Report Writer Usage Notes



584 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

The unusable areas of a page (if any) will appear above and below that usable area. You
don’t specify the unusable area in the "RD", but rather using a "LINAGE" (see [File/Sort-
Description], page 130) clause in the "FD" of the file the report is "attached" to.

The various report groups will be presentable in the various areas of a page, as follows:

"REPORT HEADING"

Heading Area — An exception to this is the situation where the report heading
report group contains the "NEXT GROUP NEXT PAGE" (see [NEXT GROUP],
page 192) option; in those cases, the report heading will be presented on a page
by itself (anywhere on that page) at the beginning of the report.

"PAGE HEADING"

Heading Area

"CONTROL HEADING"

Body Area, but no line of a control heading is allowed past the line number
specified by "LAST CONTROL HEADING"

"DETAIL"

Body Area, but no line of a detail report group is allowed past the line number
specified by "LAST DETAIL"

"CONTROL FOOTING"

Body Area, but no line of a control footing report group is allowed past the line
number specified by "FOOTING"

"PAGE FOOTING"

Footing Area

"REPORT FOOTING"

Footing Area — An exception to this is the situation where the report foot-
ing report group contains the "NEXT PAGE" option in its "LINE" (see [LINE],
page 189) clause; in those cases, the report footing will be presented on a page
by itself at the end of the report.

9.4. How RWCS Builds Report Pages

A report created via a "WRITE" statement (see [WRITE], page 402) will contain carriage-
control information. Most notably, ASCII form-feed characters (X’0C’) will be written to
the report file to support the statement’s "ADVANCING PAGE" option. Whether the data for
a report line created via "ADVANCING PAGE" occurs before or after the form-feed character
depends upon whether the programmer coded "WRITE <record-name> BEFORE ADVANCING

PAGE" or "WRITE <record-name> AFTER ADVANCING PAGE", respectively.

Chapter 9 - Report Writer Usage Notes 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 585

The GnuCOBOL implementation of RWCS does not issue any carriage-control information
to the report files it produces — instead, it relies upon the information coded in the "RD" for
the report (specifically the "PAGE LIMITS" and related options) and it’s internally-generated
and managed "LINE-COUNTER" special register (see [Special Registers], page 255) for the
report to know when to issue any blank lines to the file to fill-out the end of a printed page.

Because this is the way the GnuCOBOL RWCS works, in order to design an RWCS-
generated report you’ll need to know answers to the following questions:

1. What printer(s) will the report be printed on?

2. What paper orientation will you use, — Landscape (long edge of the paper at the top
and bottom of page), or Portrait (long edge of the paper at the left and right of page)?

3. What tool will be used to print the report (direct printing to the device, notepad.exe,
MS-Word, . . . )?

4. What font and font size will be used for the report when it is printed? RWCS-generated
reports will assume that a fixed-width font such as "Courier", "Lucida Console", "Con-
solas" and the like will be used to print, as variable-pitch fonts would make the proper
alignment of columns of data on reports virtually impossible.

5. When unprintable area exists at all four margins of the paper? These are generally
caused by the printer itself or by its software driver.

6. What is the maximum number of lines per page that may be printed on a single sheet
of paper?

7. What is the maximum number of characters that may be printed on one line?

Once you know the answer to questions 1-4, you may easily determine the answers to the
remaining questions as follows:

1. Prepare a text file containing 100 or so records, each consisting of a numeric scale
("123456789012345678901234". . . ).

2. Print the file in a manner consistent with your answers to questions 1-4.

3. Add any necessary additional digits to each record in your test file (if lines weren’t
full) or remove characters from the end of each record if lines wrapped. If you made
changes, reprint the file.

4. Now that you know exactly how long each record may be, add additional records and
reprint. Continue until printing overflows to a second page.

5. The first page you print is now a perfect template to use when designing reports — it
shows, given the answers to questions 1-4, every available printable character position
on a page! The number of lines printed on that page becomes your "PAGE LIMIT" value
for the "RD".

The remaining "PAGE LIMIT" values can be established as required by your report(s).

15 February 2018 Chapter 9 - Report Writer Usage Notes



586 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

Using <identifier> rather than <integer> specifications in the "RD" will give your program
the ability — at run time — to accommodate multiple printers, fonts, font sizes and paper
orientation. Just follow the above steps for each combination you wish your program to
support.

9.5. Control Hierarchy

Every report that employs control breaks has a natural hierarchy of those control breaks
based upon the manner in which the data the report is being generated from is sorted. This
concept is best understood using an example which assumes a COBOL program to process
sales data collected from every computerized cash register across a chain of stores having
multiple departments is being developed.

The application that collects data from the various cash registers at each store will generate
data records that look like this to a COBOL program:

01 Sales-For-Register.

05 Sales-Date PIC 9(8).

05 Time-Collected PIC 9(6).

05 Register-Number PIC 9(7).

05 Store-Number PIC 9(3).

05 Department-Number PIC 9(3).

05 Total-Sales PIC 9(6)V99.

Your task is to develop a report that shows the sales total from each cash register and
summarizes those sales by department within each store, by store and also generates a total
sales figure for the day across all stores.

To accomplish this, you will use a "SORT" statement (see [SORT], page 376) to sort the file
of cash register sales data into:

1. Ascending sequence of store number

2. Within each store, data will be sorted into ascending sequence of department number

3. If there are multiple cash registers in a particular department of a specific store, the
data needs to be further sorted so that the cash registers are ordered in sequence of
their register number.

So, assuming a sort file has been defined and it’s record layout (essentially a mirror of the
raw data file) is defined as follows:

01 Sorted-Sales-For-Register.

05 Sorted-Sales-Date PIC 9(8).

05 Sorted-Time-Collected PIC 9(6).

05 Sorted-Register-Number PIC 9(7).

05 Sorted-Store-Number PIC 9(3).

05 Sorted-Department-Number PIC 9(3).

Chapter 9 - Report Writer Usage Notes 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 587

05 Sorted-Total-Sales PIC 9(6)V99.

Then the "SORT" statement to accomplish the desired sequencing would be:

SORT SORT-FILE

ASCENDING KEY Sorted-Store-Number

Sorted-Department-Number

Sorted-Register-Number

USING Input-file

OUTPUT PROCEDURE 100-Generate-Report

As a result of the sort, our program might expect to see data somewhat like this (date, time
and sales totals are shown as ". . ."):

+-------------------- Register Number

| +------------- Store Number

| | +---------- Department Number

| | |

...0535240001001...

...0589130001001...

...0625174001001...

...0122234001002...

...0732345001002...

...0003423001003...

...2038774001004...

...0112646002001...

...9963348002002...

...3245677002003...

...4456778002003...

...0002345002004...

Because of the sort, the most-frequently changing value of the three sort keys will be that
of Sorted-Register-Number. This essentially defines the "detail" level of the report.

The next most-frequently changing value is that of Sorted-Department-Number, and the
least-frequently changing value is that of Sorted-Store-Number. remember that the program
should be generating totals each time one of these two values change, plus a grand total
of sales at the end of the report. These three points are the ’Control Break ’ points of the
report.

When the report is defined, it’s "RD" would contain a "CONTROLS ARE" clause that lists the
control breaks in least- to most-frequent sequence of changing. This would be coded as:

"CONTROLS ARE FINAL, Sorted-Store-Number, Sorted-Department-Number"

A FINAL control break only occurs once, at the very end of the report. The "CONTROL

FOOTING" for this break will be the one that produces the grand total of sales for all stores.

15 February 2018 Chapter 9 - Report Writer Usage Notes



588 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

The next break listed on the "CONTROLS" clause will be the one that occurs next most-
frequently (Sorted-Store-Number). This control break will be the one that produces the
summation for each entire store, and will have its own "CONTROL FOOTING".

The next (and last, in this case) break listed on the CONTROLS clause will be the one
that occurs even more frequently (Sorted-Department-Number). The "CONTROL FOOTING"

for this control field will be the one that summarizes sales for each department within a
store.

This sequence of control breaks from least- to most-frequent (in other words, in the order
they occur on the CONTROLS ARE clause) is the ’control hierarchy ’ of the report; control
breaks that occur more frequently than others are said to be at a lower level in the control
hierarchy.

Defining a control hierarchy (via "CONTROLS ARE") that does not match the actual sequence
in which data will be processed is a great way to guarantee a "broken" report. I’ll show
you an example in a later section.

9.6. An Example

This section contains an example of the RWCS at work. The complete program, presented
here, is a stripped-down version of a program I have used to generate a report for a class
I teach on PC hardware. This report will provide benchmark statistics on a variety of
popular AMD and Intel CPUs. The data for the report was obtained from the website www.
cpubenchmark.net in December of 2013. By the time you are reading this, that data will
most likely have become rather out-of-date, but it illustrates RWCS well enough.

9.6.1. Data

Here is the data that the program will be reading. Each record reflects the aggregated
benchmark scoring for one particular CPU, as scores for benchmarks against that CPU have
been reported to the cpubenchmark.net website by their PassMark benchmark software.
The data consists of four fields. Fields are separated from one another by a single comma.
The descriptions of the fields are as follows:

Benchmark Score

A five-digit number showing the aggregated benchmark scores for the CPU; the
higher this number, the better the CPU performed in benchmark testing.

Vendor

The name of the vendor who makes the CPU. In this data, that will either be
"AMD" (American Micro Devices) or "INTEL".

Family

The 7-character family of CPU products the CPU falls into. This will have
values such as "A4", "A10", "Core i5", "Core i7", etc.

Chapter 9 - Report Writer Usage Notes 15 February 2018

www.cpubenchmark.net
www.cpubenchmark.net
cpubenchmark.net


GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 589

Model

The specific model of CPU within the family.

The first record of data shown below shows that the aggregated score of all benchmarks
reported for the AMD A10-4600M CPU is 3145, as compared to the second record which
shows that the aggregated score reported of all benchmarks reported for the Intel Core-i7-
4960X CPU is 14291.

The following is the complete set of input data used for this example. This is by no means
the complete set of data available at cpubenchmark.net – it is just a representative sample
used for this example. For my class, I give my students a report showing the results for
almost a thousand CPUs.

For the sake of brevity, this document lists the data in three columns.

03145,AMD,A10,4600M 05421,AMD,FX,6100 03917,Intel,Core i5,4300U

14291,Intel,Core i7,4960X 05813,AMD,FX,6120 01743,Intel,Core i5,4300Y

02505,AMD,A10,4655M 06194,AMD,FX,6200 04804,Intel,Core i5,4330M

03449,AMD,A10,4657M 06388,AMD,FX,6300 03604,Intel,Core i5,4350U

04251,AMD,A10,5700 07017,AMD,FX,6350 06282,Intel,Core i5,4430

02758,AMD,A10,5745M 06163,AMD,FX,8100 05954,Intel,Core i5,4430S

03332,AMD,A10,5750M 06605,AMD,FX,8120 06517,Intel,Core i5,4440

03253,AMD,A10,5757M 06845,AMD,FX,8140 07061,Intel,Core i5,4570

04798,AMD,A10,5800B 07719,AMD,FX,8150 06474,Intel,Core i5,4570R

04677,AMD,A10,5800K 08131,AMD,FX,8320 06803,Intel,Core i5,4570S

04767,AMD,A10,6700 09067,AMD,FX,8350 02503,Intel,Core i5,4570T

05062,AMD,A10,6800K 09807,AMD,FX,9370 07492,Intel,Core i5,4670

00677,AMD,A4,1200 10479,AMD,FX,9590 07565,Intel,Core i5,4670K

00559,AMD,A4,1250 03076,Intel,Core i3,3110M 06351,Intel,Core i5,4670T

01583,AMD,A4,3300 03301,Intel,Core i3,3120M 03701,Intel,Core i7,3517U

01237,AMD,A4,3300M 03655,Intel,Core i3,3130M 03449,Intel,Core i7,3517UE

01227,AMD,A4,3305M 03820,Intel,Core i3,3210 04588,Intel,Core i7,3520M

01263,AMD,A4,3310MX 02266,Intel,Core i3,3217U 03912,Intel,Core i7,3537U

01193,AMD,A4,3320M 04219,Intel,Core i3,3220 04861,Intel,Core i7,3540M

01343,AMD,A4,3330MX 03724,Intel,Core i3,3220T 04009,Intel,Core i7,3555LE

01625,AMD,A4,3400 04407,Intel,Core i3,3225 06144,Intel,Core i7,3610QE

01768,AMD,A4,3420 02575,Intel,Core i3,3227U 07532,Intel,Core i7,3610QM

01685,AMD,A4,4300M 01885,Intel,Core i3,3229Y 06988,Intel,Core i7,3612QE

01169,AMD,A4,4355M 04259,Intel,Core i3,3240 06907,Intel,Core i7,3612QM

01919,AMD,A4,5000 03793,Intel,Core i3,3240T 05495,Intel,Core i7,3615QE

01973,AMD,A4,5150M 04414,Intel,Core i3,3245 07310,Intel,Core i7,3615QM

02078,AMD,A4,5300 04757,Intel,Core i3,3250 07759,Intel,Core i7,3630QM

01632,AMD,A4,5300B 03443,Intel,Core i3,4000M 07055,Intel,Core i7,3632QM

02305,AMD,A4,6300 02459,Intel,Core i3,4010U 06516,Intel,Core i7,3635QM

01634,AMD,A6,1450 02003,Intel,Core i3,4010Y 04032,Intel,Core i7,3667U

01964,AMD,A6,3400M 04904,Intel,Core i3,4130 04271,Intel,Core i7,3687U

02101,AMD,A6,3410MX 04041,Intel,Core i3,4130T 03479,Intel,Core i7,3689Y

02078,AMD,A6,3420M 05115,Intel,Core i3,4330 08347,Intel,Core i7,3720QM

02277,AMD,A6,3430MX 05117,Intel,Core i3,4340 08512,Intel,Core i7,3740QM

01995,AMD,A6,3500 03807,Intel,Core i5,3210M 09420,Intel,Core i7,3770

02798,AMD,A6,3600 03995,Intel,Core i5,3230M 09578,Intel,Core i7,3770K

02892,AMD,A6,3620 03126,Intel,Core i5,3317U 09074,Intel,Core i7,3770S

03232,AMD,A6,3650 04101,Intel,Core i5,3320M 08280,Intel,Core i7,3770T

03327,AMD,A6,3670 05902,Intel,Core i5,3330 08995,Intel,Core i7,3820

15 February 2018 Chapter 9 - Report Writer Usage Notes

cpubenchmark.net


590 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

01630,AMD,A6,4400M 05690,Intel,Core i5,3330S 08548,Intel,Core i7,3820QM

01296,AMD,A6,4455M 05781,Intel,Core i5,3335S 09025,Intel,Core i7,3840QM

02440,AMD,A6,5200 03280,Intel,Core i5,3337U 09196,Intel,Core i7,3920XM

01958,AMD,A6,5350M 02252,Intel,Core i5,3339Y 12107,Intel,Core i7,3930K

01878,AMD,A6,5357M 06282,Intel,Core i5,3340 09052,Intel,Core i7,3940XM

01906,AMD,A6,5400B 04327,Intel,Core i5,3340M 12718,Intel,Core i7,3960X

02174,AMD,A6,5400K 05372,Intel,Core i5,3340S 12823,Intel,Core i7,3970X

02384,AMD,A6,6400K 06199,Intel,Core i5,3350P 03992,Intel,Core i7,4500U

02050,AMD,A8,3500M 04314,Intel,Core i5,3360M 04507,Intel,Core i7,4558U

02426,AMD,A8,3510MX 04555,Intel,Core i5,3380M 04892,Intel,Core i7,4600M

02245,AMD,A8,3520M 03589,Intel,Core i5,3427U 04484,Intel,Core i7,4600U

02276,AMD,A8,3530MX 03479,Intel,Core i5,3437U 03680,Intel,Core i7,4610Y

02866,AMD,A8,3550MX 03057,Intel,Core i5,3439Y 04345,Intel,Core i7,4650U

03215,AMD,A8,3800 06442,Intel,Core i5,3450 07352,Intel,Core i7,4700EQ

03217,AMD,A8,3820 06071,Intel,Core i5,3450S 08161,Intel,Core i7,4700HQ

03552,AMD,A8,3850 06576,Intel,Core i5,3470 07946,Intel,Core i7,4700MQ

03682,AMD,A8,3870K 06077,Intel,Core i5,3470S 08002,Intel,Core i7,4702HQ

02709,AMD,A8,4500M 04591,Intel,Core i5,3470T 07647,Intel,Core i7,4702MQ

02193,AMD,A8,4555M 05991,Intel,Core i5,3475S 08066,Intel,Core i7,4750HQ

04052,AMD,A8,5500 06828,Intel,Core i5,3550 07367,Intel,Core i7,4765T

03464,AMD,A8,5500B 06631,Intel,Core i5,3550S 09969,Intel,Core i7,4770

02434,AMD,A8,5545M 06993,Intel,Core i5,3570 10190,Intel,Core i7,4770K

03052,AMD,A8,5550M 07118,Intel,Core i5,3570K 09803,Intel,Core i7,4770S

02935,AMD,A8,5557M 06709,Intel,Core i5,3570S 08803,Intel,Core i7,4770T

04348,AMD,A8,5600K 05414,Intel,Core i5,3570T 10078,Intel,Core i7,4771

04390,AMD,A8,6500 04333,Intel,Core i5,4200M 08567,Intel,Core i7,4800MQ

04719,AMD,A8,6600K 03355,Intel,Core i5,4200U 09969,Intel,Core i7,4820K

04055,AMD,FX,4100 02358,Intel,Core i5,4200Y 09331,Intel,Core i7,4850HQ

04153,AMD,FX,4130 02382,Intel,Core i5,4210Y 09323,Intel,Core i7,4900MQ

04094,AMD,FX,4150 03482,Intel,Core i5,4250U 13620,Intel,Core i7,4930K

04774,AMD,FX,4170 04381,Intel,Core i5,4258U 09754,Intel,Core i7,4930MX

04711,AMD,FX,4300 04663,Intel,Core i5,4288U 10262,Intel,Core i7,4960HQ

05247,AMD,FX,4350 04786,Intel,Core i5,4300M

9.6.2. Program

Here is the program that will be producing the report. Pay attention to how the data is
sorted and how the control hierarchy ("CONTROLS ARE") relates to the "SORT".

IDENTIFICATION DIVISION.

PROGRAM-ID. DEMORWCS.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

REPOSITORY. FUNCTION ALL INTRINSIC.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT CPU-FILE ASSIGN TO "CPUDATA.txt"

LINE SEQUENTIAL.

SELECT REPORT-FILE ASSIGN TO "CPUREPORT.txt"

LINE SEQUENTIAL.

SELECT SORT-FILE ASSIGN TO DISK.

DATA DIVISION.

FILE SECTION.

Chapter 9 - Report Writer Usage Notes 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 591

FD CPU-FILE.

01 CPU-REC PIC X(26).

FD REPORT-FILE

REPORT IS CPU-Report.

SD SORT-FILE.

01 SORT-REC.

05 F-SR-Score-NUM PIC 9(5).

05 F-SR-Vendor-TXT PIC X(5).

05 F-SR-Family-TXT PIC X(7).

05 F-SR-Model-TXT PIC X(6).

WORKING-STORAGE SECTION.

01 WS-Date PIC 9(8).

01 WS-Family-Counters.

05 WS-FC-AVE PIC 9(5)V99.

05 WS-FC-Qty BINARY-LONG.

05 WS-FC-Total-NUM BINARY-LONG.

01 WS-Flags.

05 WS-F-EOF PIC X(1).

01 WS-One-Const PIC 9 VALUE 1.

01 WS-Overall-Counters.

05 WS-OC-AVE PIC 9(5)V99.

05 WS-OC-Qty BINARY-LONG.

05 WS-OC-Total-NUM BINARY-LONG.

01 WS-Starz PIC X(44) VALUE ALL ’*’.

01 WS-Vendor-Counters.

05 WS-VC-AVE PIC 9(5)V99.

05 WS-VC-Qty BINARY-LONG.

05 WS-VC-Total-NUM BINARY-LONG.

REPORT SECTION.

RD CPU-Report

CONTROLS ARE FINAL

F-SR-Vendor-TXT

F-SR-Family-TXT

PAGE LIMIT IS 36 LINES

HEADING 1

FIRST DETAIL 5

15 February 2018 Chapter 9 - Report Writer Usage Notes



592 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

LAST DETAIL 36.

01 TYPE IS PAGE HEADING.

05 LINE NUMBER PLUS 1.

10 COL 1 SOURCE WS-Date PIC 9999/99/99.

10 COL 14 VALUE ’CPU Benchmark Scores’.

10 COL 37 VALUE ’Page:’.

10 COL 43 SOURCE PAGE-COUNTER PIC Z9.

05 LINE NUMBER PLUS 1.

10 COL 1 SOURCE WS-Starz PIC X(44).

05 LINE NUMBER PLUS 1.

10 COL 1 VALUE ’**’.

10 COL 6 VALUE ’All CPU Data From cpubenchmark.net’.

10 COL 43 VALUE ’**’.

05 LINE NUMBER PLUS 1.

10 COL 1 SOURCE WS-Starz PIC X(44).

01 TYPE CONTROL HEADING F-SR-Family-TXT.

05 LINE NUMBER PLUS 1.

10 COL 1 SOURCE F-SR-Vendor-TXT PIC X(6).

10 COL 8 SOURCE F-SR-Family-TXT PIC X(7).

05 LINE NUMBER PLUS 1.

10 COL 1 VALUE ’Family’.

10 COL 9 VALUE ’Model’.

10 COL 16 VALUE ’Benchmark Score (High to Low)’.

05 LINE NUMBER PLUS 1.

10 COL 1 VALUE ’======’.

10 COL 9 VALUE ’======’.

10 COL 16 VALUE ’=============================’.

01 Detail-Line TYPE IS DETAIL.

05 LINE NUMBER PLUS 1.

10 COL 1 SOURCE F-SR-Family-TXT PIC X(7) GROUP INDICATE.

10 COL 9 PIC X(6) SOURCE F-SR-Model-TXT.

10 COL 16 PIC ZZZZ9 SOURCE F-SR-Score-NUM.

01 End-Family TYPE IS CONTROL FOOTING F-SR-Family-TXT.

05 LINE NUMBER PLUS 1.

10 COL 9 VALUE ’Ave...’.

10 COL 16 PIC ZZZZ9.99 SOURCE WS-FC-AVE.

10 COL 25 VALUE ’(’.

10 COL 26 PIC ZZ9 SUM WS-One-Const.

10 COL 30 VALUE ’Family CPUs)’.

01 End-Vendor TYPE IS CONTROL FOOTING F-SR-Vendor-TXT.

05 LINE NUMBER PLUS 1.

Chapter 9 - Report Writer Usage Notes 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 593

10 COL 9 VALUE ’Ave...’.

10 COL 16 PIC ZZZZ9.99 SOURCE WS-VC-AVE.

10 COL 25 VALUE ’(’.

10 COL 26 PIC ZZ9 SUM WS-One-Const.

10 COL 30 VALUE ’Vendor CPUs)’.

01 End-Overall TYPE IS CONTROL FOOTING FINAL.

05 LINE NUMBER PLUS 1.

10 COL 9 VALUE ’Ave...’.

10 COL 16 PIC ZZZZ9.99 SOURCE WS-OC-AVE.

10 COL 25 VALUE ’(’.

10 COL 26 PIC ZZ9 SUM WS-One-Const.

10 COL 30 VALUE ’CPUs)’.

PROCEDURE DIVISION.

DECLARATIVES.

000-End-Family SECTION.

USE BEFORE REPORTING End-Family.

1. IF WS-FC-Qty > 0

COMPUTE WS-FC-AVE = WS-FC-Total-NUM / WS-FC-Qty

ELSE

MOVE 0 TO WS-FC-AVE

END-IF

MOVE 0 TO WS-FC-Qty

WS-FC-Total-NUM

.

000-End-Vendor SECTION.

USE BEFORE REPORTING End-Vendor.

1. IF WS-VC-Qty > 0

COMPUTE WS-VC-AVE = WS-VC-Total-NUM / WS-VC-Qty

ELSE

MOVE 0 TO WS-VC-AVE

END-IF

MOVE 0 TO WS-VC-Qty

WS-VC-Total-NUM

.

000-End-Overall SECTION.

USE BEFORE REPORTING End-Overall.

1. IF WS-OC-Qty > 0

COMPUTE WS-OC-AVE = WS-OC-Total-NUM / WS-OC-Qty

ELSE

MOVE 0 TO WS-OC-AVE

END-IF

MOVE 0 TO WS-OC-Qty

WS-OC-Total-NUM

.

15 February 2018 Chapter 9 - Report Writer Usage Notes



594 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

END DECLARATIVES.

010-Main SECTION.

1. ACCEPT WS-Date FROM DATE YYYYMMDD

SORT SORT-FILE

ASCENDING KEY F-SR-Vendor-TXT

F-SR-Family-TXT

DESCENDING KEY F-SR-Score-NUM

ASCENDING KEY F-SR-Model-TXT

INPUT PROCEDURE 100-Pre-Process-Data

OUTPUT PROCEDURE 200-Generate-Report

STOP RUN

.

100-Pre-Process-Data SECTION.

1. OPEN INPUT CPU-FILE

PERFORM FOREVER

READ CPU-FILE

AT END

EXIT PERFORM

END-READ

MOVE SPACES TO SORT-REC

UNSTRING CPU-REC DELIMITED BY ’,’

INTO F-SR-Score-NUM,

F-SR-Vendor-TXT,

F-SR-Family-TXT,

F-SR-Model-TXT

RELEASE SORT-REC

END-PERFORM

CLOSE CPU-FILE

.

200-Generate-Report SECTION.

1. INITIALIZE WS-Family-Counters

WS-Flags

OPEN OUTPUT REPORT-FILE

INITIATE CPU-Report

RETURN SORT-FILE

AT END

MOVE ’Y’ TO WS-F-EOF

END-RETURN

PERFORM UNTIL WS-F-EOF = ’Y’

GENERATE Detail-Line

ADD 1 TO WS-FC-Qty

WS-OC-Qty

WS-VC-Qty

ADD F-SR-Score-NUM TO WS-FC-Total-NUM

WS-OC-Total-NUM

Chapter 9 - Report Writer Usage Notes 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 595

WS-VC-Total-NUM

RETURN SORT-FILE

AT END

MOVE ’Y’ TO WS-F-EOF

END-RETURN

END-PERFORM

TERMINATE CPU-Report

CLOSE REPORT-FILE

.

9.6.3. Generated Report Pages

Finally, here’s the report the program generates!

2013/12/24 CPU Benchmark Scores Page: 1

********************************************

** All CPU Data From cpubenchmark.net **

********************************************

AMD A10

Family Model Benchmark Score (High to Low)

====== ====== =============================

A10 6800K 5062

5800B 4798

6700 4767

5800K 4677

5700 4251

4657M 3449

5750M 3332

5757M 3253

4600M 3145

5745M 2758

4655M 2505

Ave... 3817.90 ( 11 Family CPUs)

AMD A4

Family Model Benchmark Score (High to Low)

====== ====== =============================

A4 6300 2305

5300 2078

5150M 1973

5000 1919

3420 1768

4300M 1685

5300B 1632

3400 1625

3300 1583

3330MX 1343

15 February 2018 Chapter 9 - Report Writer Usage Notes



596 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

3310MX 1263

3300M 1237

3305M 1227

3320M 1193

____________________________________________

2013/12/24 CPU Benchmark Scores Page: 2

********************************************

** All CPU Data From cpubenchmark.net **

********************************************

A4 4355M 1169

1200 677

1250 559

Ave... 1484.47 ( 17 Family CPUs)

AMD A6

Family Model Benchmark Score (High to Low)

====== ====== =============================

A6 3670 3327

3650 3232

3620 2892

3600 2798

5200 2440

6400K 2384

3430MX 2277

5400K 2174

3410MX 2101

3420M 2078

3500 1995

3400M 1964

5350M 1958

5400B 1906

5357M 1878

1450 1634

4400M 1630

4455M 1296

Ave... 2220.22 ( 18 Family CPUs)

AMD A8

Family Model Benchmark Score (High to Low)

====== ====== =============================

A8 6600K 4719

6500 4390

5600K 4348

____________________________________________

2013/12/24 CPU Benchmark Scores Page: 3

********************************************

Chapter 9 - Report Writer Usage Notes 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 597

** All CPU Data From cpubenchmark.net **

********************************************

A8 5500 4052

3870K 3682

3850 3552

5500B 3464

3820 3217

3800 3215

5550M 3052

5557M 2935

3550MX 2866

4500M 2709

5545M 2434

3510MX 2426

3530MX 2276

3520M 2245

4555M 2193

3500M 2050

Ave... 3148.68 ( 19 Family CPUs)

AMD FX

Family Model Benchmark Score (High to Low)

====== ====== =============================

FX 9590 10479

9370 9807

8350 9067

8320 8131

8150 7719

6350 7017

8140 6845

8120 6605

6300 6388

6200 6194

8100 6163

6120 5813

____________________________________________

2013/12/24 CPU Benchmark Scores Page: 4

********************************************

** All CPU Data From cpubenchmark.net **

********************************************

FX 6100 5421

4350 5247

4170 4774

4300 4711

4130 4153

4150 4094

15 February 2018 Chapter 9 - Report Writer Usage Notes



598 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

4100 4055

Ave... 6457.00 ( 19 Family CPUs)

Ave... 3448.86 ( 84 Vendor CPUs)

Intel Core i3

Family Model Benchmark Score (High to Low)

====== ====== =============================

Core i3 4340 5117

4330 5115

4130 4904

3250 4757

3245 4414

3225 4407

3240 4259

3220 4219

4130T 4041

3210 3820

3240T 3793

3220T 3724

3130M 3655

4000M 3443

3120M 3301

3110M 3076

3227U 2575

4010U 2459

3217U 2266

4010Y 2003

____________________________________________

2013/12/24 CPU Benchmark Scores Page: 5

********************************************

** All CPU Data From cpubenchmark.net **

********************************************

Core i3 3229Y 1885

Ave... 3677.76 ( 21 Family CPUs)

Intel Core i5

Family Model Benchmark Score (High to Low)

====== ====== =============================

Core i5 4670K 7565

4670 7492

3570K 7118

4570 7061

3570 6993

3550 6828

4570S 6803

3570S 6709

3550S 6631

Chapter 9 - Report Writer Usage Notes 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 599

3470 6576

4440 6517

4570R 6474

3450 6442

4670T 6351

3340 6282

4430 6282

3350P 6199

3470S 6077

3450S 6071

3475S 5991

4430S 5954

3330 5902

3335S 5781

3330S 5690

3570T 5414

3340S 5372

4330M 4804

____________________________________________

2013/12/24 CPU Benchmark Scores Page: 6

********************************************

** All CPU Data From cpubenchmark.net **

********************************************

Core i5 4300M 4786

4288U 4663

3470T 4591

3380M 4555

4258U 4381

4200M 4333

3340M 4327

3360M 4314

3320M 4101

3230M 3995

4300U 3917

3210M 3807

4350U 3604

3427U 3589

4250U 3482

3437U 3479

4200U 3355

3337U 3280

3317U 3126

3439Y 3057

4570T 2503

4210Y 2382

15 February 2018 Chapter 9 - Report Writer Usage Notes



600 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

4200Y 2358

3339Y 2252

4300Y 1743

Ave... 5026.13 ( 52 Family CPUs)

Intel Core i7

Family Model Benchmark Score (High to Low)

====== ====== =============================

Core i7 4960X 14291

4930K 13620

3970X 12823

____________________________________________

2013/12/24 CPU Benchmark Scores Page: 7

********************************************

** All CPU Data From cpubenchmark.net **

********************************************

Core i7 3960X 12718

3930K 12107

4960HQ 10262

4770K 10190

4771 10078

4770 9969

4820K 9969

4770S 9803

4930MX 9754

3770K 9578

3770 9420

4850HQ 9331

4900MQ 9323

3920XM 9196

3770S 9074

3940XM 9052

3840QM 9025

3820 8995

4770T 8803

4800MQ 8567

3820QM 8548

3740QM 8512

3720QM 8347

3770T 8280

4700HQ 8161

4750HQ 8066

4702HQ 8002

4700MQ 7946

3630QM 7759

4702MQ 7647

Chapter 9 - Report Writer Usage Notes 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 601

3610QM 7532

4765T 7367

____________________________________________

2013/12/24 CPU Benchmark Scores Page: 8

********************************************

** All CPU Data From cpubenchmark.net **

********************************************

Core i7 4700EQ 7352

3615QM 7310

3632QM 7055

3612QE 6988

3612QM 6907

3635QM 6516

3610QE 6144

3615QE 5495

4600M 4892

3540M 4861

3520M 4588

4558U 4507

4600U 4484

4650U 4345

3687U 4271

3667U 4032

3555LE 4009

4500U 3992

3537U 3912

3517U 3701

4610Y 3680

3689Y 3479

3517UE 3449

Ave... 7725.58 ( 58 Family CPUs)

Ave... 6005.16 (131 Vendor CPUs)

Ave... 5006.42 (215 CPUs)

____________________________________________

9.7. Control Hierarchy (Revisited)

The sample program just discussed presents a great opportunity to show what can happen
if you don’t define the control hierarchy of a report properly.

15 February 2018 Chapter 9 - Report Writer Usage Notes



602 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

I changed the "CONTROLS ARE" clause on the sample program from this:

CONTROLS ARE FINAL

F-SR-Vendor-TXT

F-SR-Family-TXT

To this:

CONTROLS ARE FINAL

F-SR-Family-TXT

F-SR-Vendor-TXT

And then ran the report again. Here are the first two pages of that new report. See what
happened to the control breaks?

2013/12/24 CPU Benchmark Scores Page: 1

********************************************

** All CPU Data From cpubenchmark.net **

********************************************

AMD A10

Family Model Benchmark Score (High to Low)

====== ====== =============================

A10 6800K 5062

5800B 4798

6700 4767

5800K 4677

5700 4251

4657M 3449

5750M 3332

5757M 3253

4600M 3145

5745M 2758

4655M 2505

Ave... 3817.90 ( 11 Vendor CPUs)

Ave... 3817.90 ( 11 Family CPUs)

AMD A4

Family Model Benchmark Score (High to Low)

====== ====== =============================

A4 6300 2305

5300 2078

5150M 1973

5000 1919

3420 1768

4300M 1685

5300B 1632

3400 1625

3300 1583

Chapter 9 - Report Writer Usage Notes 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 603

3330MX 1343

3310MX 1263

3300M 1237

3305M 1227

____________________________________________

2013/12/24 CPU Benchmark Scores Page: 2

********************************************

** All CPU Data From cpubenchmark.net **

********************************************

A4 3320M 1193

4355M 1169

1200 677

1250 559

Ave... 1484.47 ( 17 Vendor CPUs)

Ave... 1484.47 ( 17 Family CPUs)

AMD A6

Family Model Benchmark Score (High to Low)

====== ====== =============================

A6 3670 3327

3650 3232

3620 2892

3600 2798

5200 2440

6400K 2384

3430MX 2277

5400K 2174

3410MX 2101

3420M 2078

3500 1995

3400M 1964

5350M 1958

5400B 1906

5357M 1878

1450 1634

4400M 1630

4455M 1296

Ave... 2220.22 ( 18 Vendor CPUs)

Ave... 2220.22 ( 18 Family CPUs)

AMD A8

Family Model Benchmark Score (High to Low)

====== ====== =============================

A8 6600K 4719

____________________________________________

15 February 2018 Chapter 9 - Report Writer Usage Notes



604 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

9.8. Turning PHYSICAL Page Formatting Into LOGICAL
Formatting

You can trick RWCS into using the PAGE LIMIT values as logical specifications rather
than physical ones quite easily — simply include an ASCII form-feed (X’0C’) character into
your page heading design! Here’s how the sample program shown earlier could be easily
modified:

Simply Change This. . .

01 TYPE IS PAGE HEADING.

05 LINE NUMBER 1.

10 COL 1 SOURCE WS-Date PIC 9999/99/99.

10 COL 14 VALUE ’CPU Benchmark Scores’.

10 COL 37 VALUE ’Page:’.

10 COL 43 SOURCE PAGE-COUNTER PIC Z9.

05 LINE NUMBER PLUS 1.

10 COL 1 SOURCE WS-Starz PIC X(44).

05 LINE NUMBER PLUS 1.

10 COL 1 VALUE ’**’.

10 COL 6 VALUE ’All CPU Data From ’ &

’cpubenchmark.net’.

10 COL 43 VALUE ’**’.

05 LINE NUMBER PLUS 1.

10 COL 1 SOURCE WS-Starz PIC X(44).

To This. . .

01 TYPE IS PAGE HEADING.

05 LINE NUMBER 1. *> NEW
10 COL 1 VALUE X’0C’. *> NEW

05 LINE NUMBER PLUS 1. *> CHANGED
10 COL 1 SOURCE WS-Date PIC 9999/99/99.

10 COL 14 VALUE ’CPU Benchmark Scores’.

10 COL 37 VALUE ’Page:’.

10 COL 43 SOURCE PAGE-COUNTER PIC Z9.

05 LINE NUMBER PLUS 1.

10 COL 1 SOURCE WS-Starz PIC X(44).

05 LINE NUMBER PLUS 1.

10 COL 1 VALUE ’**’.

10 COL 6 VALUE ’All CPU Data From ’ &

’cpubenchmark.net’.

10 COL 43 VALUE ’**’.

05 LINE NUMBER PLUS 1.

10 COL 1 SOURCE WS-Starz PIC X(44).

RWCS will still be counting lines to decide when to close off one page and start a new
one, but when a new page is started it’s page heading will physically form-feed the printer

Chapter 9 - Report Writer Usage Notes 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 605

when the report is printed. As long as any printer you plan on using supports at least as
many physical print lines as what is defined as the "PAGE LIMIT" value in whatever paper
orientation and font you plan on (or are limited to) printing in, you have now divorced your
program from the physical realities of the printer!

Of course, whatever software you are using to deliver the printed document to the printer
with must allow the ASCII form-feed character to pass through to the printer.

————————————————————
End of Chapter 9 — Report Writer Usage Notes

15 February 2018 Chapter 9 - Report Writer Usage Notes





GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 607

10. Interfacing With The OS

10.1. Compiling Programs

Program source files should have extensions of ".cob" or ".cbl".

Program file names should match exactly the specification of PROGRAM-ID (including
case).

Spaces cannot be included in primary entry-point names and therefore should not be in-
cluded in program file names.

The GnuCOBOL compiler will translate your COBOL program into C source code, compile
that C source code into executable binary form using the "C" compiler specified when
GnuCOBOL was built and link that executable binary into:

Directly executable form

This is an executable file directly-executable from the command-line. On Win-
dows computers, this would be an ".exe" file. On Unix systems, this will be
a file with no specific extension, but with execute permissions. This file will
include the main program as well as any static-linked subprograms.

Static-linkable form

This is a single subprogram compiled into object-code form, ready to be linked
in with a main program to form a directly-executable program. On windows
computers, these generally are ".o" (object-code) files.

Dynamically-loadable executable form

These are dynamically-loadable object code files ready to be invoked from other
programs at execution time. On Windows systems, these would be ".dll" files,
while on Unix systems they are typically ".so" files (OSX uses ".dylib").

10.1.1. cobc - The GnuCOBOL Compiler

The GnuCOBOL compiler is named "cobc" ("cobc.exe" on a Windows system).

The following describes the syntax and option switches of the cobc command. This infor-
mation may be displayed by entering the command "cobc –help" or "cobc -h".

Usage: cobc [options]... file...

Options:

-h, -help display this help and exit

-V, -version display compiler version and exit

-i, -info display compiler information (build/environment)

-v, -verbose display compiler version and the commands

15 February 2018 Chapter 10 - Interfacing With The OS



608 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

invoked by the compiler

-vv, -verbose=2 like -v but additional pass verbose option

to assembler/compiler

-vvv, -verbose=3 like -vv but additional pass verbose option

to linker

-q, -brief reduced displays, commands invoked not shown

-### like -v but commands not executed

-x build an executable program

-m build a dynamically loadable module (default)

-j [<args>], -job[=<args>]

run program after build, passing <args>

-std=<dialect> warnings/features for a specific dialect

<dialect> can be one of:

cobol2014, cobol2002, cobol85, default,

ibm, mvs, bs2000, mf, acu;

see configuration files in directory config

-F, -free use free source format

-fixed use fixed source format (default)

-O, -O2, -Os enable optimization

-g enable C compiler debug / stack check / trace

-d, -debug enable all run-time error checking

-o <file> place the output into <file>

-b combine all input files into a single

dynamically loadable module

-E pre-process only; do not compile or link

-C translation only; convert COBOL to C

-S compile only; output assembly file

-c compile and assemble, but do not link

-T <file> generate and place wide program listing into <file>

-t <file> generate and place a program listing into <file>

--tlines=<lines> specify lines per page in listing, default = 55

--tsymbols specify symbols in listing

-P[=<dir or file>] generate preprocessed program listing (.lst)

This excludes all comment lines and output is

converted to free format left justified.

For a neater listing, use -T or -t

-Xref specify cross reference in listing

-I <directory> add <directory> to copy/include search path

-L <directory> add <directory> to library search path

-l <lib> link the library <lib>

-A <options> add <options> to the C compile phase

-Q <options> add <options> to the C link phase

-D <define> define <define> for COBOL compilation

-K <entry> generate CALL to <entry> as static

-conf=<file> user-defined dialect configuration; see -std

-list-reserved display reserved words

Chapter 10 - Interfacing With The OS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 609

-list-intrinsics display intrinsic functions

-list-mnemonics display mnemonic names

-list-system display system routines

-save-temps[=<dir>] save intermediate files

- default: current directory

-ext <extension> add file extension for resolving COPY

-W enable all warnings

-Wall enable most warnings (all except as noted below)

-Wno-<warning> disable warning enabled by -W or -Wall

-Wno-unfinished do not warn if unfinished features are used

- ALWAYS active

-Wno-pending do not warn if pending features are mentioned

- ALWAYS active

-Wobsolete warn if obsolete features are used

-Warchaic warn if archaic features are used

-Wredefinition warn incompatible redefinition of data items

-Wconstant warn inconsistent constant

-Woverlap warn overlapping MOVE items

-Wpossible-overlap warn MOVE items that may overlap depending on

variables

- NOT set with -Wall

-Wparentheses warn lack of parentheses around AND within OR

-Wstrict-typing warn type mismatch strictly

-Wimplicit-define warn implicitly defined data items

-Wcorresponding warn CORRESPONDING with no matching items

-Winitial-value warn Initial VALUE clause ignored

-Wprototypes warn missing FUNCTION prototypes/definitions

-Warithmetic-osvs warn if arithmetic expression precision has changed

-Wcall-params warn non 01/77 items for CALL params

- NOT set with -Wall

-Wconstant-expression warn expressions that always resolve to true/false

-Wcolumn-overflow warn text after program-text area, FIXED format

- NOT set with -Wall

-Wterminator warn lack of scope terminator END-XXX

- NOT set with -Wall

-Wtruncate warn possible field truncation

- NOT set with -Wall

-Wlinkage warn dangling LINKAGE items

- NOT set with -Wall

-Wunreachable warn unreachable statements

- NOT set with -Wall

-Werror treat all warnings as errors

-Werror=<warning> treat specified <warning> as error

-fsign=[ASCII|EBCDIC] define display sign representation

15 February 2018 Chapter 10 - Interfacing With The OS



610 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

- default: machine native

-ffold-copy=[UPPER|LOWER]

fold COPY subject to value

- default: no transformation

-ffold-call=[UPPER|LOWER]

fold PROGRAM-ID, CALL, CANCEL subject to value

- default: no transformation

-fdefaultbyte=0..255 or any quoted character

initialize fields without VALUE to decimal value

- default: initialize to picture

-fmax-errors=<number> maximum number of errors to report

- default: 100

-fintrinsics=[ALL|intrinsic function name(,name,...)]

intrinsics to be used without FUNCTION keyword

-ftrace generate trace code

- executed SECTION/PARAGRAPH

-ftraceall generate trace code

- executed SECTION/PARAGRAPH/STATEMENTS

- turned on by -debug

-fsyntax-only syntax error checking only; don’t emit any output

-fdebugging-line enable debugging lines

- ’D’ in indicator column or floating >>D

-fsource-location generate source location code

- turned on by -debug/-g/-ftraceall

-fimplicit-init automatic initialization of the COBOL runtime system

-fstack-check PERFORM stack checking

- turned on by -debug or -g

-fsyntax-extension allow syntax extensions

- e.g. switch name SW1, etc.

-fwrite-after use AFTER 1 for WRITE of LINE SEQUENTIAL

- default: BEFORE 1

-fmfcomment ’*’ or ’/’ in column 1 treated as comment

- FIXED format only

-facucomment ’$’ in indicator area treated as ’*’,

’|’ treated as floating comment

-fnotrunc allow numeric field overflow

- non-ANSI behaviour

-fodoslide adjust items following OCCURS DEPENDING

- requires implicit/explicit relaxed syntax

-fsingle-quote use a single quote (apostrophe) for QUOTE

- default: double quote

-frecursive-check check recursive program call

-foptional-file treat all files as OPTIONAL

- unless NOT OPTIONAL specified

-ftab-width=1..12 set number of spaces that are asumed for tabs

-ftext-column=72..255 set right margin for source (fixed format only)

Chapter 10 - Interfacing With The OS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 611

-fpic-length=<number> maximum number of characters allowed in the

character-string

-fword-length=1..61 maximum word-length for COBOL words / Programmer

defined words

-fliteral-length=<number>

maximum literal size in general

-fnumeric-literal-length=1..38

maximum numeric literal size

-fassign-clause=<value>

set way of interpreting ASSIGN

-fbinary-size=<value> binary byte size - defines the allocated bytes

according to PIC

-fbinary-byteorder=<value>

binary byte order

-ffilename-mapping resolve file names at run time using environment

variables.

-fpretty-display alternate formatting of numeric fields

-fbinary-truncate numeric truncation according to ANSI

-fcomplex-odo allow complex OCCURS DEPENDING ON

-findirect-redefines allow REDEFINES to other than last equal level number

-flarger-redefines-ok allow larger REDEFINES items

-frelax-syntax-checks allow certain syntax variations (e.g. REDEFINES

position)

-fperform-osvs exit point of any currently executing perform is

recognized if reached

-farithmetic-osvs limit precision in intermediate results to precision

of final result

-fmove-ibm MOVE operates as on IBM (left to right, byte by byte)

-fsticky-linkage LINKAGE-SECTION items remain allocated between

invocations

-frelax-level-hierarchy

allow non-matching level numbers

-fhostsign allow hexadecimal value ’F’ for NUMERIC test of signed

PACKED DECIMAL field

-faccept-update set WITH UPDATE clause as default for ACCEPT dest-item,

instead of WITH NO UPDATE

-faccept-auto set WITH AUTO clause as default for ACCEPT dest-item,

instead of WITH TAB

-fconsole-is-crt assume CONSOLE IS CRT if not set otherwise

-fprogram-name-redefinition

program names don’t lead to a reserved identifier

-fno-echo-means-secure

NO-ECHO hides input with asterisks like SECURE

-fcomment-paragraphs=<support>

comment paragraphs in IDENTIFICATION DIVISION (AUTHOR,

DATE-WRITTEN, ...)

15 February 2018 Chapter 10 - Interfacing With The OS



612 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

-fmemory-size-clause=<support>

MEMORY-SIZE clause

-fmultiple-file-tape-clause=<support>

MULTIPLE-FILE-TAPE clause

-flabel-records-clause=<support>

LABEL-RECORDS clause

-fvalue-of-clause=<support>

VALUE-OF clause

-fdata-records-clause=<support>

DATA-RECORDS clause

-ftop-level-occurs-clause=<support>

OCCURS clause on top-level

-fsynchronized-clause=<support>

SYNCHRONIZED clause

-fgoto-statement-without-name=<support>

GOTO statement without name

-fstop-literal-statement=<support>

STOP-literal statement

-fstop-identifier-statement=<support>

STOP-identifier statement

-fdebugging-line=<support>

DEBUGGING MODE and indicator ’D’

-fuse-for-debugging=<support>

USE FOR DEBUGGING

-fpadding-character-clause=<support>

PADDING CHARACTER clause

-fnext-sentence-phrase=<support>

NEXT SENTENCE phrase

-flisting-statements=<support>

listing-directive statements EJECT, SKIP1, SKIP2,

SKIP3

-ftitle-statement=<support>

listing-directive statement TITLE

-fentry-statement=<support>

ENTRY statement

-fmove-noninteger-to-alphanumeric=<support>

move noninteger to alphanumeric

-fodo-without-to=<support>

OCCURS DEPENDING ON without to

-fsection-segments=<support>

section segments

-falter-statement=<support>

ALTER statement

-fcall-overflow=<support>

OVERFLOW clause for CALL

-fnumeric-boolean=<support>

Chapter 10 - Interfacing With The OS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 613

boolean literals (B’1010’)

-fhexadecimal-boolean=<support>

hexadecimal-boolean literals (BX’A’)

-fnational-literals=<support>

national literals (N’UTF-16 string’)

-fhexadecimal-national-literals=<support>

hexadecimal-national literals (NX’265E’)

-facucobol-literals=<support>

ACUCOBOL-GT literals (#B #O #H #X)

-fword-continuation=<support>

continuation of COBOL words

-fnot-exception-before-exception=<support>

NOT ON EXCEPTION before ON EXCEPTION

-faccept-display-extensions=<support>

extensions to ACCEPT and DISPLAY

-frenames-uncommon-levels=<support>

RENAMES of 01-, 66- and 77-level items

-fconstant-78=<support>

constant with level 78 item (note: has left to right

precedence in expressions)

-fconstant-01=<support>

constant with level 01 CONSTANT AS/FROM item

-fprogram-prototypes=<support>

CALL/CANCEL with program-prototype-name

-freference-out-of-declaratives=<support>

references to sections not in DECLARATIVES from within

DECLARATIVES

-fnumeric-value-for-edited-item=<support>

numeric literals in VALUE clause of numeric-edited

items

-fincorrect-conf-sec-order=<support>

incorrect order of CONFIGURATOIN SECTION paragraphs

-fdefine-constant-directive=<support>

allow >> DEFINE CONSTANT var AS literal

where <support> is one of the following:

’ok’, ’warning’, ’archaic’, ’obsolete’, ’skip’,

’ignore’, ’error’, ’unconformable’

-fnot-reserved=<word> word to be taken out of the reserved words list

-freserved=<word> word to be added to reserved words list

-freserved=<word>:<alias>

word to be added to reserved words list as alias

Each file specified on the "cobc" command constitutes a ’Compilation Unit ’. A compilation
unit may be a single GnuCOBOL program — with or without nested subprograms(see
[Independent vs Contained vs Nested Subprograms], page 641) — or multiple GnuCOBOL

15 February 2018 Chapter 10 - Interfacing With The OS



614 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

programs, separated by "END PROGRAM" or "END FUNCTION" marker lines, as appropriate.
See [Independent vs Contained vs Nested Subprograms], page 641, for some examples of
these marker lines.

A compilation unit may also be a C-language source program, recognized as such by having
a file extension of ".c" or an assembly-language program, recognized by its file extension
of ".s". In such a case, COBOL compilation of that file will be bypassed by the "cobc"

command; instead, the file will be passed directly to the C compiler or assembler (executed
automatically by "cobc").

A compilation unit may also be an object-code module (output from the C compiler),
recognized as such by having a file extension of ".o". In these situations, all compilation
will be bypassed, and the object code will be "bound" into the generated executable by the
loader (an "ld" command executed internally by the "cobc" command).

Pre-compiled object-code subprograms may be automatically located by the GnuCOBOL
compiler and the loader by using the "LD_LIBRARY_PATH" compilation-time environment
variable (see [Compilation Time Environment Variables], page 615). If they are locatable
through that environment variable, they need not be named on the "cobc" command.

The collection of compilation units supplied on a single "cobc" execution constitute a
’Compilation Group’. All executable code produced from a single compilation group will
be collected together into a single executable file, whose filename will be the same as that
of the first compilation unit specified on the "cobc" command.

The simplest mode of compilation is to generate a single executable file from one or more
GnuCOBOL source files:

"cobc -x mainprog.cbl sub1.cbl sub2.cbl"

The main program must be the first program found in the first compilation unit ("main-
prog.cbl"). The remainder of that compilation unit as well as the rest of the files in the
compilation group ("sub1.cbl" and "sub2.cbl") must be independent and/or contained sub-
programs (see [Independent vs Contained vs Nested Subprograms], page 641).

This command assumes that all source files are in the directory from which the "cobc"

command was executed. You are, of course, free to include full pathnames with any filename,
if necessary.

With the "-x" switch on the compiler command, a single directly-executable executable
file (UNIX, Windows/Cygwin, OSX) or "exe" file (Windows, Windows/MinGW) will be
generated. This executable file has the compiled code for all COBOL programs contained
within the compilation group specified on the "cobc" command included in the file.

Any subroutines or user-defined functions that weren’t included in any of the source files
comprising the compilation group will be treated as dynamically loadable subprograms (see
[Dynamic vs Static Subprograms], page 643).

Optionally, the "-o" switch may be used in addition to "-x" to specify the name of the
generated executable file. If "-o" switch is not specified, the filename of the 1st compilation

Chapter 10 - Interfacing With The OS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 615

unit will be used as the name of the executable file. The appropriate extension for the
generated file (".exe", on a Windows computer, for example) will be added to the filename
that is explicitly specified or implicitly assumed for the output file.

Compilations may be performed to generate dynamically-loadable modules (or dynamically-
loadable libraries, as they are frequently called). These compilations are performed by using
the "-m" switch instead of "-x" switch:

"cobc -m mainprog.cbl sub1.cbl sub2.cbl"

When the "-m" switch is used, an operating-system specific dynamically-loadable module is
generated for each individual compilation unit, using the filename of each compilation unit
as the it’s module filename and either an extension of ".so" (UNIX, Windows/Cygwin),
"dylib" (OSX) or ".dll" (Windows, Windows/MinGW).

You may compile GnuCOBOL subprograms into assembler source code which can then be
assembled and linked with a main program when that main program is compiled. To create
such an assembler source file, compile the subprogram(s) as follows:

"cobc -S sprog1.cbl"

The above generates an assembler source file named "sprog1.s". If you have multiple sub-
programs to compile this way, just string their file names out on the command — each will
be translated to it’s own assembler source file.

Later, when you wish to compile a calling program and combine any needed assembly
language subroutines in (as static subroutines — see [Dynamic vs Static Subprograms],
page 643), use a command such as this:

"cobc -x mainprog.cbl sprog1.s"

10.1.2. Compilation Time Environment Variables

The following are the various environment variables that can play a role in the compilation
of GnuCOBOL programs.

"COB_CC" *

Set to the name of the C compiler you wish GnuCOBOL to use.

USE THIS FEATURE AT YOUR OWN RISK – YOU SHOULD ALWAYS
USE THE C COMPILER YOUR GnuCOBOL BUILD WAS GENERATED
FOR

"COB_CFLAGS" *

Set to any switches that you’d like to pass on to the C compiler from the "cobc"
compiler (in addition to any that "cobc" will specify).

"COB_CONFIG_DIR" *

Set to the path to the folder where GnuCOBOL "config" files are kept.

15 February 2018 Chapter 10 - Interfacing With The OS



616 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

"COB_COPY_DIR" *

If copybooks your program needs are NOT stored in the same directory as your
program, set this environment variable to the folder in which the copybooks
may be found (IBM mainframe programmers will recognize this as "SYSLIB").

"COB_LDADD"

Set to any additional linker switches (ld) that can specify where standard li-
braries that must be linked with the program can be found. The default is ""
(null).

"COB_LDFLAGS"

Set to any linker/loader (ld) switches that you’d like to pass on to the C compiler
from the "cobc" compiler (in addition to any that cobc will specify).

"COB_LIBS" *

Set to any linker switches (ld) that specify where standard libraries that must
be linked with the program can be found.

"COBCPY"

This environment variable provides an additional means of specifying where
copybooks may be found by the compiler (see also COB COPY DIR, above).

"LD_LIBRARY_PATH"

If you are planning on using static-linked subroutine libraries, set this variable
to the path of the directory containing your libraries.

"TMPDIR"

"TMP"

Set to a directory/folder appropriate to create temporary files in. The inter-
mediate working files created by the compiler will be created here (and deleted
once they’re no longer needed).

The variable "TMPDIR" is checked for a valid path first; if that isn’t set, then
"TMP" is checked.

On a Windows system, the "TMP" environment variable is normally set for you
when you logon. If you wish to use a different temporary folder, you may set
"TMPDIR" yourself and have no fear of disrupting other Windows software that
relies on TMP.

Chapter 10 - Interfacing With The OS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 617

* These environment variables have default values established for them when the version
of GnuCOBOL you are using was built. To see these default values, as well as other
build-specific information, execute the command:

"cobc -i"

10.1.3. Predefined Compilation Variables

GnuCOBOL defines compilation variables when certain conditions are true.

If the condition associated with a variable is false, the variable is not defined during com-
pilations.

Name Condition

DEBUG The -d debug flag is specified.

EXECUTABLE The module being compiled contains the main program.

GCCOMP The size of a COMP item is determined according to the GnuCOBOL

scheme, where for a PICTURE of length:

1-2, the item has 1 byte

3-4, the item has 2 bytes

5-9, the item has 4 bytes

10-18, the item has 8 bytes.

GNUCOBOL GnuCOBOL is compiling the source unit.

HOSTSIGNS A signed packed-decimal items value may be considered NUMERIC

if the sign has value X"F".

IBMCOMP The size of a COMP item is determined according to the IBM

scheme, where for a PICTURE of length:

1-4, the item has 2 bytes

5-9, the item has 4 bytes

10-18, the item has 8 bytes.

MODULE The module being compiled does not contain the main program.

NOHOSTSIGNS A signed packed-decimal items value may not be considered

NUMERIC if the sign has value X"F".

NOIBMCOMP The size of a COMP item is not determined according to the IBM

scheme.

NOSTICKYLINKAGE Sticky-linkage (linkage-section items remaining allocated

between invocations) is not enabled.

NOTRUNC Numeric data items are truncated according to their internal

representation.

P64 Pointers are greater than 32 bits long

STICKY-LINKAGE Sticky-linkage (linkage-section items remaining allocated

between invocations) is enabled.

TRUNC Numeric data items are truncated according to their PICTURE

clauses.

15 February 2018 Chapter 10 - Interfacing With The OS



618 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

10.1.4. Locating Copybooks

The GnuCOBOL compiler will attempt to locate copybooks by searching for them in the
following folders. The search will occur in the sequence shown below, and will terminate
once a copybook is found.

1. The folder named as the <library-name-1> on the "COPY" statement (see [COPY],
page 69).

2. The folder in which the program being compiled resides.

3. The folder named on the "-I" switch.

4. Each of the folders named on the "COBCPY" compilation-time environment variable (see
[Compilation Time Environment Variables], page 615).

A single folder may be named or multiple folders may be specified, separated by a
system-appropriate delimiter character. When multiple folders are specified, they will
be searched in the order they are named on the environment variable.

If the GnuCOBOL compiler you are using was built to utilize a native Windows envi-
ronment, use a semicolon (;) as the delimiter character.

If, however, the GnuCOBOL compiler was built for a Unix, OSX or Linux environment,
or was built for a Windows environment utilizing either the Cygwin or MinGW Unix
emulators, use a colon character (:) as the delimiter.

5. The single folder specified on the COB COPY DIR environment variable.

As each of the above folders is searched for a copybook — "COPY XXXXXXXX.", for example
— the GnuCOBOL compiler will attempt to locate the copybook file by any of the following
names, in the sequence shown:

1. XXXXXXXX.CPY

2. XXXXXXXX.CBL

3. XXXXXXXX.COB

4. XXXXXXXX.cpy

5. XXXXXXXX.cbl

6. XXXXXXXX.cob

7. XXXXXXXX

The "COPY" statement is case-sensitive on UNIX systems; "COPY copybookname" and "COPY

COPYBOOKNAME" will both fail to locate the "CopyBookName" copybook on a UNIX system.

Windows implementations of GnuCOBOL may, or may not, be similarly case sensitive
with regard to copybook names, depending upon the Windows version and GnuCOBOL

Chapter 10 - Interfacing With The OS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 619

build options — it is safest to simply treat the COPY command as case-sensitive in all
environments.

It is possible, however, to automatically cause all "COPY" statements to ’fold’ the names
of all copybooks to upper-case by specifying the "-ffold-copy" switch with the "upper"
option (i.e. "--fold-copy=upper") to the GnuCOBOL compiler. Similarly, names could be
folded to lower-case by using the "lower" option (i.e. "--fold-copy=lower". If copybook
libraries are maintained entirely using upper- or lower-case file names and extensions, either
of these options will allow copybooks to be found regardless of how the programmer entered
their names on "COPY" statements.

Case-folding may also be turned on and off within the program source code using the CDF
">>SET" statement (see [>>SET], page 78).

10.1.5. Compiler Configuration Files

GnuCOBOL uses compiler configuration files to define various options that will control the
compilation process. These configuration files are specified using the "-conf" switch compi-
lation switch and are found in the folder defined by the "COB_CONFIG_DIR" compilation-time
environment variable (see [Compilation Time Environment Variables], page 615).

If this is not defined under *nix it will default to /usr/local/share/gnucobol/config.

The following is a verbatim listing of the "default" configuration file (the one used if you
don’t specify the "-conf" switch), just to show you the types of settings that may appear:

# GnuCOBOL compiler configuration

#

# Copyright (C) 2001-2012, 2014-2017 Free Software Foundation, Inc.

# Written by Keisuke Nishida, Roger While, Simon Sobisch, Edward Hart

#

# Value: any string

name: "GnuCOBOL"

# Value: enum

standard-define 0

# CB_STD_OC = 0,

# CB_STD_MF,

# CB_STD_IBM,

# CB_STD_MVS,

# CB_STD_BS2000,

# CB_STD_ACU,

# CB_STD_85,

# CB_STD_2002,

# CB_STD_2014

# Value: int

15 February 2018 Chapter 10 - Interfacing With The OS



620 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

tab-width: 8

text-column: 72

# Maximum word-length for COBOL words / Programmer defined words

# Be aware that GC checks the word length against COB_MAX_WORDLEN

# first (currently 61)

word-length: 61

# Maximum literal size in general

literal-length: 8191

# Maximum numeric literal size (absolute maximum: 38)

numeric-literal-length: 38

# Maximum number of characters allowed in the character-string (max. 255)

pic-length: 255

# Value: ’mf’, ’ibm’

#

assign-clause: mf

# If yes, file names are resolved at run time using

# environment variables.

# For example, given ASSIGN TO "DATAFILE", the file name will be

# 1. the value of environment variable ’DD_DATAFILE’ or

# 2. the value of environment variable ’dd_DATAFILE’ or

# 3. the value of environment variable ’DATAFILE’ or

# 4. the literal "DATAFILE"

# If no, the value of the assign clause is the file name.

#

filename-mapping: yes

# Alternate formatting of numeric fields

pretty-display: yes

# Allow complex OCCURS DEPENDING ON

complex-odo: no

# Allow REDEFINES to other than last equal level number

indirect-redefines: no

# Binary byte size - defines the allocated bytes according to PIC

# Value: signed unsigned bytes

# ------ -------- -----

# ’2-4-8’ 1 - 4 same 2

# 5 - 9 same 4

# 10 - 18 same 8

Chapter 10 - Interfacing With The OS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 621

#

# ’1-2-4-8’ 1 - 2 same 1

# 3 - 4 same 2

# 5 - 9 same 4

# 10 - 18 same 8

#

# ’1--8’ 1 - 2 1 - 2 1

# 3 - 4 3 - 4 2

# 5 - 6 5 - 7 3

# 7 - 9 8 - 9 4

# 10 - 11 10 - 12 5

# 12 - 14 13 - 14 6

# 15 - 16 15 - 16 7

# 17 - 18 17 - 18 8

#

binary-size: 1-2-4-8

# Numeric truncation according to ANSI

binary-truncate: yes

# Binary byte order

# Value: ’native’, ’big-endian’

binary-byteorder: big-endian

# Allow larger REDEFINES items

larger-redefines-ok: no

# Allow certain syntax variations (eg. REDEFINES position)

relax-syntax-checks: no

# Perform type OSVS - If yes, the exit point of any currently

# executing perform is recognized if reached.

perform-osvs: no

# Compute intermediate decimal results like IBM OSVS

arithmetic-osvs: no

# MOVE like IBM (mvc); left to right, byte by byte

move-ibm: no

# If yes, linkage-section items remain allocated

# between invocations.

sticky-linkage: no

# If yes, allow non-matching level numbers

relax-level-hierarchy: no

15 February 2018 Chapter 10 - Interfacing With The OS



622 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

# If yes, evaluate constant expressions at compile time

constant-folding: yes

# Allow Hex ’F’ for NUMERIC test of signed PACKED DECIMAL field

hostsign: no

# If yes, set WITH UPDATE clause as default for ACCEPT dest-item,

# except if WITH NO UPDATE clause is used

accept-update: no

# If yes, set WITH AUTO clause as default for ACCEPT dest-item,

# except if WITH TAB clause is used

accept-auto: no

# If yes, DISPLAY’s and ACCEPT’s are, by default, done on the CRT (i.e.,

# using curses).

console-is-crt: no

# If yes, allow redefinition of the current program’s name. This prevents

# its use in a prototype-format CALL/CANCEL statement.

program-name-redefinition: yes

# If yes, NO ECHO/NO-ECHO/OFF is the same as SECURE (hiding input with

# asterisks, not spaces).

no-echo-means-secure: no

# Dialect features

# Value: ’ok’, ’warning’, ’archaic’, ’obsolete’, ’skip’, ’ignore’, ’error’,

# ’unconformable’

alter-statement: obsolete

comment-paragraphs: obsolete

call-overflow: archaic

data-records-clause: obsolete

debugging-mode: ok

use-for-debugging: obsolete

listing-statements: skip # may be a user-defined word

title-statement: skip # may be a user-defined word

entry-statement: ok

goto-statement-without-name: obsolete

label-records-clause: obsolete

memory-size-clause: obsolete

move-noninteger-to-alphanumeric: error

move-figurative-constant-to-numeric: archaic

move-figurative-quote-to-numeric: obsolete

Chapter 10 - Interfacing With The OS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 623

multiple-file-tape-clause: obsolete

next-sentence-phrase: archaic

odo-without-to: warning

padding-character-clause: obsolete

section-segments: ignore

stop-literal-statement: obsolete

stop-identifier-statement: obsolete

synchronized-clause: ok

top-level-occurs-clause: ok

value-of-clause: obsolete

numeric-boolean: ok

hexadecimal-boolean: ok

national-literals: ok

hexadecimal-national-literals: ok

acu-literals: unconformable

word-continuation: warning

not-exception-before-exception: ok

accept-display-extensions: ok

renames-uncommon-levels: ok

constant-01: ok

constant-78: ok

program-prototypes: ok

reference-out-of-declaratives: warning

numeric-value-for-edited-item: ok

incorrect-conf-sec-order: warning

define-constant-directive: archaic

# use complete word list; synonyms and exceptions are specified below

reserved-words: default

# not-reserved:

# Value: Word to be taken out of the reserved words list

not-reserved: TERMINAL

# reserved:

# Entries of the form word-1=word-2 define word-1 as an alias for default

# reserved word word-2. No spaces are allowed around the equal sign.

reserved: AUTO-SKIP=AUTO

reserved: AUTOTERMINATE=AUTO

reserved: BACKGROUND-COLOUR=BACKGROUND-COLOR

reserved: BEEP=BELL

reserved: BINARY-INT=BINARY-LONG

reserved: BINARY-LONG-LONG=BINARY-DOUBLE

reserved: EMPTY-CHECK=REQUIRED

reserved: EQUALS=EQUAL

15 February 2018 Chapter 10 - Interfacing With The OS



624 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

reserved: FOREGROUND-COLOUR=FOREGROUND-COLOR

reserved: INITIALISE=INITIALIZE

reserved: INITIALISED=INITIALIZED

reserved: LENGTH-CHECK=FULL

reserved: ORGANISATION=ORGANIZATION

reserved: SYNCHRONISED=SYNCHRONIZED

reserved: TIMEOUT=TIME-OUT

10.2. Running Programs

Once GnuCOBOL programs have been compiled into either directly-executable programs
(created via the "-x" switch) or dynamically-loadable libraries (created via the "-m" switch),
those programs may be executed from any shell environment. The exact manner in which
the two are executed will differ, as described in the upcoming sections.

10.2.1. Direct Execution

GnuCOBOL programs compiled with the "-x" switch will be generated as directly-
executable programs. For example, a native Windows or Windows/MinGW build of
GnuCOBOL will generate an ".exe" file when the "-x" switch switch is specified to the
compiler.

On Unix, OSX, or Windows/Cygwin builds, the "-x" switch switch will generate an exe-
cutable binary file, usually with no particular extension unless one is explicitly requested
of the compiler via the "-o" switch.

On a UNIX system this means the programs may be executed from a command shell such
as bash, csh, ksh and so forth. When a GnuCOBOL program runs on a Windows system,
it runs within a console window (i.e. "cmd.exe"). OSX versions of GnuCOBOL programs
run within a "terminal.app" window.

Interactions between the program and the user will take place using the standard input,
standard output and standard error streams. Any screen section I/O performed by the
program will take place within the command shell "window".

Direct program execution syntax is as follows:

"[path]program [arguments]"

For example:

"/usr/local/printaccount ACCT=6625378"

or

"C:\Users\Me\Documents\Programs\printaccount.exe ACCT=6625378"

Chapter 10 - Interfacing With The OS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 625

10.2.2. Executing Dynamically-Loadable Libraries

As discussed previously, dynamically-loadable libraries are created via the compiler’s "-m"
switch. Once so created, the program(s) in these libraries are executed from the command
line (via the GnuCOBOL "cobcrun" utility), or as dynamically-loadable subprograms.

10.2.2.1. cobcrun - Command-line Execution

It is possible to generate executable modules for all GnuCOBOL programs, not just sub-
programs, by choosing to use the "-m" switch option to specify the loader output format,
even for main programs.

Some may prefer to compile their GnuCOBOL main programs into these dynamically-
loadable modules in the interests of using the same general compilation command for all
programs without having to think "Is it a main program or a subprogram?".

Main programs compiled in this manner should be executed as follows:

"[path]cobcrun program [arguments]"

Do not specify the ".so" or ".dll" extension on the program name. The program value
must exactly match the primary entry-point name of the main program (including upper-
and lower-case letters), unless you are planning on using "Call Folding" (see [Dynamically
Loaded Subprograms], page 626).

The general usage and syntax of cobcrun is as follows as issued by running cobcrun -h (or
–help) :

COBOL driver program for GnuCOBOL modules

Usage: cobcrun [options] PROGRAM [parameter ...]

or: cobcrun options

Options:

-h, -help display this help and exit

-V, -version display cobcrun and runtime version and exit

-i, -info display runtime information (build/environment)

-c <file>, -config=<file> set runtime configuration from <file>

-r, -runtime-conf display current runtime configuration

(value and origin for all settings)

-M <module>, -module=<module> set entry point module name and/or load path

where -M module prepends any directory to the

dynamic link loader library search path

and any basename to the module preload list

(COB_LIBRARY_PATH and/or COB_PRELOAD)

Here are two examples of using "cobcrun". First, on a Unix, OSX or Windows/Cygwin
system:

15 February 2018 Chapter 10 - Interfacing With The OS



626 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

cd /usr/local

cobcrun printaccount acct=6625378

Or, on a Native Windows or Windows/MinGW system:

cd C:\Users\Me\Documents\Programs

cobcrun printaccount.exe acct=6625378

Note how the "cobcrun" command does not allow a path to be specified with the program
name — the directory in which the programs dynamically loadable module exists must
either be the current directory or must be defined in the current PATH.

10.2.2.2. Dynamically Loaded Subprograms

Dynamically-loaded subprograms are executed (from a COBOL syntax point of view) just
like any other subprograms. What makes them unique, however, is that they are loaded into
memory only when they are actually used the first time during the execution of a program.

When a dynamically-loadable module needs to be loaded (because it is not already in
memory from a previous subprogram execution), the dynamically-loadable library will be
sought in the same directory from which the main program was loaded. If it cannot be
found there, each directory named in the "PATH" run-time environment variable (see [Run
Time Environment Variables], page 626) will be searched. If it was not located in any of
those directories, the library specified by the "COB_LIBRARY_PATH" run-time environment
variable will be searched. Finally, if it still cannot be located, execution will be terminated
with an error message ("libcob: Cannot find module ’xxxxxxxx’").

The process of locating dynamically-loadable modules is case-sensitive on UNIX systems;
"CALL "dynsub"" and "CALL "DYNSUB"" will both fail to locate the "DynSub.so" library
on a UNIX system.

Windows implementations of GnuCOBOL may, or may not, be similarly case sensitive
with regard to library names, depending upon the Windows version and GnuCOBOL build
options — it is safest to simply treat library names as case-sensitive in all environments.

It is possible, however, to automatically cause all library names to ’fold’ to upper-case by
specifying the "-ffold-call" switch with the "upper" option (i.e. "--fold-call=upper")
to the GnuCOBOL compiler. Similarly, library names could be folded to lower-case by using
the "lower" option (i.e. "--fold-call=lower". If libraries are maintained entirely using
upper- or lower-case file names, either of these options will allow libraries to be found
regardless of how the programmer entered their names on "CALL" statements.

See [Sub-Programming], page 641, for a complete discussion of sub-programming.

10.2.3. Run Time Environment Variables

The following is a list of the various environment variables that can play a role in the
execution of GnuCOBOL programs.

Chapter 10 - Interfacing With The OS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 627

"COB_DISPLAY_WARNINGS"

If set to a value of "Y", any run-time warnings (such as noting the implicit
closing of open files when a "GOBACK" statement (see [GOBACK], page 315) or
"STOP" statement (see [STOP], page 384) with the "RUN" option is executed)
will be displayed. Any other value for this environment variable (including not
setting the variable at all) will suppress such messages.

"COB_LIBRARY_PATH"

At runtime, GnuCOBOL will attempt to locate and load any application
dynamically-loadable libraries using from the directory in which the program
executable was found or, if it wasn’t found there, using the "PATH" environment
variable. If these library files could be somewhere else, specify the directory
path using this variable.

"COB_LOAD_CASE"

If set to either "UPPER" or "LOWER", this environment variable will internally
convert referenced entry-point names to either upper- or lower-case before ini-
tiating searches for dynamically-loadable modules. The "UPPER" and "LOWER"

values of the environment variable are actually case-insensitive.

"COB_PHYSICAL_CANCEL"

If set to "Y", "y" or "1", a "CANCEL" statement (see [CANCEL], page 285) will
physically unload a subprogram dynamically-loadable module.

If set to anything else, a "CANCEL" statement (see [CANCEL], page 285) log-
ically unloads a module so that subsequent use will re-initialize the module
as if it had actually been reloaded, but the overhead of actually reloading the
module will be avoided.

"COB_PRE_LOAD"

If set to any non-null value, this variable will cause all dynamically-loadable
libraries to be loaded when the program begins execution (rather than searching
for and loading the module upon first use).

"COB_SET_DEBUG"

If a "USE FOR DEBUGGING" (see [DECLARATIVES], page 244) section exists,
the code within it will be disabled unless this environment variable is set to a
value of "Y", "y" or "1".

"COB_SET_TRACE"

If the "-ftrace" switch (trace procedures) or "-ftraceall" switch (trace pro-
cedures and statements) was used when the program was compiled, setting this
environment variable to a value of "Y" will activate the trace at the point the
program begins execution. Setting this environment variable to any other value
(or never setting it to ANY value) will disable tracing.

15 February 2018 Chapter 10 - Interfacing With The OS



628 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

Tracing, if configured by one of the two switches described above, can also
be controlled via the the "READY TRACE" statement (see [READY TRACE],
page 355) and "RESET TRACE" statement (see [RESET TRACE], page 357).

If COB SET TRACE is set to Y, then tracing will always occur regardless of
the presence of READY TRACE or RESET TRACE so in effect they will have
no action on program execution.

"COB_SCREEN_ESC"

If set to any non-blank value, this variable allows a "ACCEPT

screen-data-item" statement (see [ACCEPT screen-data-item],
page 262) to detect the "Esc" key.

"COB_SCREEN_EXCEPTIONS"

Setting this variable to any non-blank value will allow the "ACCEPT

screen-data-item" statement (see [ACCEPT screen-data-item], page 262) to
detect the pressing of the "Esc", "PgUp" and "PgDn" keys.

"COB_SORT_MEMORY"

The value of this variable (an integer) will be used to define how much memory
will be allocated for use in sorting. If the value is 1048576 or greater, that value
will be used "as is" as the amount of memory (in bytes) to allocate. If the value
is less than 1048576, the value will specify how many MB of memory will be
allocated. The default sort memory amount is 128 MB.

"COB_SWITCH_n"

(n=0 to 15); These environment variables correspond to "SWITCH-0" through
"SWITCH-15", defined in the "SPECIAL-NAMES" (see [SPECIAL-NAMES],
page 96) paragraph. Setting them to "ON" will activate them; any other value
turns them off.

"COB_SYNC"

If set to a value of upper- or lower-case "p", this variable will force a file commit
every time a file is written to (ensuring that data is immediately written to the
file rather than retained in memory until a future commit occurs). This will
slow-down update access to files, but will provide for better integrity in the
event of a program failure.

"COB_TRACE_FILE"

If set to any non-null value, this environment variable specifies the file to which
all "-ftrace" switch and "-ftraceall" switch output will be written.

If this is NOT set to a value, all "-ftrace" switch and "-ftraceall" switch
output will be written to STDERR, where it may be piped via a "2> filename"
on the command that executes the program.

Chapter 10 - Interfacing With The OS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 629

"DB_HOME"

If your GnuCOBOL build uses the Berkeley Database (BDB) package, use
this environment variable to specify the folder in which the lock manage-
ment files to be associated with all non-SORT files opened by the program
will be stored. "ORGANIZATION INDEXED" (see [ORGANIZATION INDEXED],
page 120) files will also have their data file allocated in the folder pointed
to by this environment variable, if it exists.. Having this variable defined
will activate record locking features on the "READ" statement (see [READ],
page 350), "REWRITE" statement (see [REWRITE], page 359) and "WRITE"

statement (see [WRITE], page 402). Even with DB HOME, locking will not
work with "ORGANIZATION SEQUENTIAL" (see [ORGANIZATION SEQUEN-
TIAL], page 114), "ORGANIZATION LINE SEQUENTIAL" (see [ORGANIZATION
LINE SEQUENTIAL], page 116) or ORGANIZATION RELATIVE files with
GnuCOBOL builds created for Windows/MinGW. "ORGANIZATION INDEXED"

locks will work with Windows/MinGW + BDB and all locks will work for all
file organizations with UNIX GnuCOBOL builds.

"PATH"

The GnuCOBOL "bin" directory should be defined in the PATH.

"TMPDIR"

"TMP"

"TEMP"

One of these environment variables must be set to a directory/folder appropriate
to create temporary files in. They will be checked in the order shown. This
will be used by the "SORT" statement (see [SORT], page 376) and "MERGE"

statement (see [MERGE], page 333) to create temporary work files. You may
also use this folder for any temporary files your application may require.

Also used during execution of programs is runtime.cfg also found in /usr/local/share/gnucobol/config
for *nix and this file can also be changed to match your environment if needed.

When viewing, note the Default settings.

# GnuCOBOL runtime configuration

#

# Copyright (C) 2015-2018 Free Software Foundation, Inc.

# Written by Simon Sobisch, Ron Norman

#

# This file is part of the GnuCOBOL runtime.

#

#

## General instructions

#

15 February 2018 Chapter 10 - Interfacing With The OS



630 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

# The initial runtime.cfg file is found in the $COB_CONFIG_DIR/config

# ( COB_CONFIG_DIR defaults to installdir/gnucobol ).

# The environment variable COB_RUNTIME_CONFIG may define a different runtime

# configuration file to read.

# If settings are included in the runtime environment file multiple times

# then the last setting value is used, no warning occurs.

# Settings via environment variables always take precedence over settings

# that are given in runtime configuration files. And the environment is

# checked after completing processing of the runtime configuration file(s)

# All values set to string variables or environment variables are checked

# for ${envvar} and replacement is done at the time of the setting.

# Any environment variable may be set with the directive setenv .

# Example: setenv COB_LIBARAY_PATH ${LD_LIBRARY_PATH}

# Any environment variable may be unset with the directive unsetenv

# (one var per line).

# Example: unsetenv COB_LIBRARY_PATH

# Runtime configuration files can include other files with the directive

# include.

# Example: include my-runtime-configuration-file

# To include another configuration file only if it is present use the directive

# includeif.

# You can also use ${envvar} inside this.

# Example: includeif ${HOME}/mygc.cfg

# If you want to reset a parameter to its default value use:

# reset parametername

# Most runtime variables have boolean values, some are switches, some have

# string values, integer values and some are size values.

# The boolean values will be evaluated as following:

# to true: 1, Y, ON, YES, TRUE (no matter of case)

# to false: 0, N, OFF

# A ’size’ value is an integer optionally followed by K, M, or G for kilo, mega

# or giga.

# For convenience a parameter in the runtime.cfg file may be defined by using

# either the environment variable name or the parameter name.

# In most cases the environment variable name is the parameter name (in upper

# case) with the prefix COB_ .

Chapter 10 - Interfacing With The OS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 631

# Note: If you want to *slightly* speed up a program’s startup time, remove all

# of the comments from the actual real configuration file that is processed

#

## General environment

#

# Environment name: COB_DISABLE_WARNINGS

# Parameter name: disable_warnings

# Purpose: turn off runtime warning messages

# Type: boolean

# Default: false

# Example: DISABLE_WARNINGS TRUE

# Environment name: COB_ENV_MANGLE

# Parameter name: env_mangle

# Purpose: names checked in the environment would get non alphanumeric

# change to ’_’

# Type: boolean

# Default: false

# Example: ENV_MANGLE TRUE

# Environment name: COB_SET_DEBUG

# Parameter name: debugging_mode

# Purpose: to enable USE ON DEBUGGING procedures that were active

# during compile-time because of WITH DEBUGGING MODE,

# otherwise the code generated will be skipped

# Type: boolean

# Default: false

# Example: COB_SET_DEBUG 1

# Environment name: COB_SET_TRACE

# Parameter name: set_trace

# Purpose: to enable COBOL trace feature

# Type: boolean

# Default: false

# Example: SET_TRACE TRUE

# Environment name: COB_TRACE_FILE

# Parameter name: trace_file

# Purpose: to define where COBOL trace output should go

# Type: string

# Default: stderr

# Example: TRACE_FILE ${HOME}/mytrace.log

15 February 2018 Chapter 10 - Interfacing With The OS



632 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

# Environment name: COB_CURRENT_DATE

# Parameter name: current_date

# Purpose: specify an alternate Date/Time to be returned to ACCEPT

# clauses this is used for testing purposes or to tweak

# a missing offset partial setting is allowed

# Type: numeric string in format YYYYDDMMHH24MISS or date string

# Default: the operating system date is used

# Example: COB_CURRENT_DATE "2016/03/16 16:40:52"

# current_date YYYYMMDDHHMMSS+01:00

#

## Call environment

#

# Environment name: COB_LIBRARY_PATH

# Parameter name: library_path

# Purpose: paths for dynamically-loadable modules

# Type: string

# Note: the default paths .:/installpath/extras are always

# added to the given paths

# Example: LIBRARY_PATH /opt/myapp/test:/opt/myapp/production

# Environment name: COB_PRE_LOAD

# Parameter name: pre_load

# Purpose: modules that are loaded during startup, can be used

# to CALL COBOL programs or C functions that are part

# of a module library

# Type: string

# Note: the modules listed should NOT include extensions, the

# runtime will use the right ones on the various platforms,

# COB_LIBRARY_PATH is used to locate the modules

# Example: PRE_LOAD COBOL_function_library:external_c_library

# Environment name: COB_LOAD_CASE

# Parameter name: load_case

# Purpose: resolve ALL called program names to UPPER or LOWER case

# Type: Only use UPPER or LOWER

# Default: if not set program names in CALL are case sensitive

# Example: LOAD_CASE UPPER

# Environment name: COB_PHYSICAL_CANCEL

# Parameter name: physical_cancel

# Purpose: physically unload a dynamically-loadable module on CANCEL,

# this frees some RAM and allows the change of modules during

# run-time but needs more time to resolve CALLs (both to

# active and not-active programs)

Chapter 10 - Interfacing With The OS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 633

# Alias: default_cancel_mode, LOGICAL_CANCELS (0 = yes)

# Type: boolean (evaluated for true only)

# Default: false

# Example: PHYSICAL_CANCEL TRUE

#

## File I/O

#

# Environment name: COB_VARSEQ_FORMAT

# Parameter name: varseq_format

# Purpose: declare format used for variable length sequential files

# - different types and lengths precede each record

# - ’length’ is the data length, does not include the prefix

# Type: 0 means 2 byte record length (big-endian) + 2 NULs

# 1 means 4 byte record length (big-endian)

# 2 means 4 byte record length (local machine int)

# 3 means 2 byte record length (big-endian)

# Default: 0

# Example: VARSEQ_FORMAT 1

# Environment name: COB_FILE_PATH

# Parameter name: file_path

# Purpose: define default location where data files are stored

# Type: file path directory

# Default: . (current directory)

# Example: FILE_PATH ${HOME}/mydata

# Environment name: COB_LS_FIXED

# Parameter name: ls_fixed

# Purpose: Defines if LINE SEQUENTIAL files should be fixed length

# (or variable, by removing trailing spaces)

# Alias: STRIP_TRAILING_SPACES (0 = yes)

# Type: boolean

# Default: false

# Example: LS_FIXED TRUE

# Environment name: COB_LS_NULLS

# Parameter name: ls_nulls

# Purpose: Defines for LINE SEQUENTIAL files what to do with data

# which is not DISPLAY type. This could happen if a LINE

# SEQUENTIAL record has COMP data fields in it.

# Type: boolean

# Default: false

# Note: The TRUE setting will handle files that contain COMP data

# in a similar manner to the method used by Micro Focus COBOL

15 February 2018 Chapter 10 - Interfacing With The OS



634 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

# Example: LS_NULL = TRUE

# Environment name: COB_SYNC

# Parameter name: sync

# Purpose: Should the file be synced to disk after each write/update

# Type: boolean

# Default: false

# Example: SYNC: TRUE

# Environment name: COB_SORT_MEMORY

# Parameter name: sort_memory

# Purpose: Defines how much RAM to assign for sorting data

# if this size is exceeded the SORT will be done

# on disk instead of memory

# Type: size but must be more than 1M

# Default: 128M

# Example: SORT_MEMORY 64M

# Environment name: COB_SORT_CHUNK

# Parameter name: sort_chunk

# Purpose: Defines how much RAM to assign for sorting data in chunks

# Type: size but must be within 128K and 16M

# Default: 256K

# Example: SORT_CHUNK 1M

#

## Screen I/O

#

# Environment name: COB_BELL

# Parameter name: bell

# Purpose: Defines how a request for the screen to beep is handled

# Type: FLASH, SPEAKER, FALSE, BEEP

# Default: BEEP

# Example: BELL SPEAKER

# Environment name: COB_REDIRECT_DISPLAY

# Parameter name: redirect_display

# Purpose: Defines if DISPLAY output should be sent to ’stderr’

# Type: boolean

# Default: false

# Example: redirect_display Yes

# Environment name: COB_SCREEN_ESC

# Parameter name: screen_esc

# Purpose: Enable handling of ESC key during ACCEPT

Chapter 10 - Interfacing With The OS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 635

# Type: boolean

# Default: false

# Note: is only evaluated if COB_SCREEN_EXCEPTIONS is active

# Example: screen_esc Yes

# Environment name: COB_SCREEN_EXCEPTIONS

# Parameter name: screen_exceptions

# Purpose: enable exceptions for function keys during ACCEPT

# Type: boolean

# Default: false

# Example: screen_exceptions Yes

# Environment name: COB_TIMEOUT_SCALE

# Parameter name: timeout_scale

# Purpose: specify translation in milliseconds for ACCEPT clauses

# BEFORE TIME value / AFTER TIMEOUT

# Type: integer

# 0 means 1000 (Micro Focus COBOL compatible), 1 means 100

# (ACUCOBOL compatible), 2 means 10, 3 means 1

# Default: 0

# Example: timeout_scale 3

# Environment name: COB_INSERT_MODE

# Parameter name: insert_mode

# Purpose: specify default insert mode for ACCEPT; 0=off, 1=on

# Type: boolean

# Default: false

# Note: also sets the cursor type (if available)

# Example: insert_mode Y

# Environment name: COB_LEGACY

# Parameter name: legacy

# Purpose: keep behaviour of former runtime versions, currently only

# for setting screen attributes for non input fields

# Type: boolean

# Default: not set

# Example: legacy true

# Environment name: COB_EXIT_WAIT

# Parameter name: exit_wait

# Purpose: to wait on main program exit if an extended screenio

# DISPLAY was issued without an ACCEPT following

# Type: boolean

# Default: true

# Example: COB_EXIT_WAIT off

15 February 2018 Chapter 10 - Interfacing With The OS



636 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

# Environment name: COB_EXIT_MSG

# Parameter name: exit_msg

# Purpose: string to display if COB_EXIT_WAIT is processed, set to ’’

# if no actual display but an ACCEPT should be done

# Type: string

# Default: ’end of program, please press a key to exit’ (localized)

# Example: COB_EXIT_MSG ’’

#

## Report I/O

#

# Environment name: COB_COL_JUST_LRC

# Parameter name: col_just_lrc

# Purpose: If true, then COLUMN defined as LEFT, RIGHT or CENTER

# will have the data justified within the field limits

# If false, then the data is just copied into the column as is

# Type: boolean

# Default: TRUE

# Example: col_just_lrc True

10.2.4. Program Arguments

Regardless of the manner in which a main program is executed (i.e. directly or via
"cobcrun"), any arguments specified to the program may be retrieved via any of the fol-
lowing:

• "ACCEPT FROM COMMAND-LINE" (see [ACCEPT FROM COMMAND-LINE], page 259)

• "PROCEDURE DIVISION CHAINING" (see [PROCEDURE DIVISION CHAINING],
page 240)

10.3. Binary Truncation

By default, the GnuCOBOL compiler will truncate binary data items to the precision indi-
cated by their "PICTURE" (see [PICTURE], page 198) clause, if they have one. This applies
to COMP, BINARY and COMP-4 items Only.
The fact is, however, that binary truncation has a significant effect on the performance
of GnuCOBOL programs. When binary truncation is in effect, arithmetic operations per-
formed against all types of numeric data items (even "USAGE DISPLAY") are slowed down.

Before continuing, it’s worth making the point that we’re NOT talking about astronomical
performance degradations here. Today’s computers are FAST, and a user sitting at the
keyboard, running a GnuCOBOL program is unlikely to notice. BUT . . . if you have a

Chapter 10 - Interfacing With The OS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 637

GnuCOBOL program that has to process large amounts of data, performing some significant
"number crunching" against that data as it goes, the impact of truncation could become
noticeable.

The following program compares the performance of performing arithmetic operations (in a
totally non-scientific, non-rigorous way) against data items with a "USAGE" (see [USAGE],
page 223) of "DISPLAY", "COMP" and "BINARY-LONG". It was actually my intent when I
first wrote the program to merely demonstrate the relative performance differences between
different types of numeric data storage, and it certainly met that objective.

IDENTIFICATION DIVISION.

PROGRAM-ID. DEMOMATH.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 Begin-Time.

05 BT-HH PIC 9(2).

05 BT-MM PIC 9(2).

05 BT-SS PIC 9(2).

05 BT-HU PIC 9(2).

01 Binary-Item BINARY-LONG SIGNED VALUE 0.

01 Comp-Item COMP PIC S9(9) VALUE 0.

01 Display-Item DISPLAY PIC S9(9) VALUE 0.

01 End-Time.

05 ET-HH PIC 9(2).

05 ET-MM PIC 9(2).

05 ET-SS PIC 9(2).

05 ET-HU PIC 9(2).

78 Repeat-Count VALUE 10000000.

01 Time-Diff PIC ZZ9.99.

PROCEDURE DIVISION.

010-Test-Usage-DISPLAY.

ACCEPT Begin-Time FROM TIME

PERFORM Repeat-Count TIMES

ADD 7 TO Display-Item

END-PERFORM

PERFORM 100-Determine-Time-Diff

DISPLAY ’USAGE DISPLAY: ’ Time-Diff ’ SECONDS’

.

020-Test-Usage-COMP.

ACCEPT Begin-Time FROM TIME

PERFORM Repeat-Count TIMES

ADD 7 TO Comp-Item

END-PERFORM

PERFORM 100-Determine-Time-Diff

DISPLAY ’USAGE COMP: ’ Time-Diff ’ SECONDS’

.

15 February 2018 Chapter 10 - Interfacing With The OS



638 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

040-Test-Usage-BINARY.

ACCEPT Begin-Time FROM TIME

PERFORM Repeat-Count TIMES

ADD 7 TO Binary-Item

END-PERFORM

PERFORM 100-Determine-Time-Diff

DISPLAY ’USAGE BINARY: ’ Time-Diff ’ SECONDS’

.

099-Done.

STOP RUN

.

100-Determine-Time-Diff.

ACCEPT End-Time FROM TIME

COMPUTE Time-Diff =

( (ET-HH * 360000 + ET-MM * 6000 + ET-SS * 100 + ET-HU)

- (BT-HH * 360000 + BT-MM * 6000 + BT-SS * 100 + BT-HU) )

/ 100

.

Each data item has 7 added to it ten million times.

The time (to one-one-hundredth of a second) will be retrieved before and after each test
and the difference between the two is displayed. This is why the computations were done so
many times — it was to make sure the timing was "measurable" with only a 1/100 second
"stopwatch".

I also ran the tests multiple times, just to make sure I had consistent results (I did). Like I
mentioned earlier, this is not a rigorous, scientific benchmark of numeric performance; it’s
just a quick-and-dirty comparison.

Here are the results:

Test 1:

USAGE DISPLAY: 1.72 SECONDS

USAGE COMP: 0.62 SECONDS

USAGE BINARY: 0.02 SECONDS

Test 2:

USAGE DISPLAY: 1.69 SECONDS

USAGE COMP: 0.61 SECONDS

USAGE BINARY: 0.02 SECONDS

Test 3:

USAGE DISPLAY: 1.69 SECONDS

USAGE COMP: 0.65 SECONDS

USAGE BINARY: 0.02 SECONDS

Chapter 10 - Interfacing With The OS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 639

The results I saw here were consistent with those that would have been obtained from most
of the COBOL implementations I have ever worked with — "USAGE COMP" has a significant
performance advantage over "USAGE DISPLAY" and "USAGE BINARY-LONG" (and presum-
ably the other "BINARY-xxx" usages as well) perform identically, within the measurement
tolerances of the test.

Imagine my surprise, however, when I discovered that the use of "-fnotrunc" switch also
made a difference:

Test 4:

USAGE DISPLAY: 1.72 SECONDS

USAGE COMP: 0.07 SECONDS

USAGE BINARY: 0.02 SECONDS

Test 5:

USAGE DISPLAY: 1.72 SECONDS

USAGE COMP: 0.07 SECONDS

USAGE BINARY: 0.02 SECONDS

Test 6:

USAGE DISPLAY: 1.73 SECONDS

USAGE COMP: 0.06 SECONDS

USAGE BINARY: 0.02 SECONDS

As you can see, there was a huge drop in "USAGE COMP" timings by turning off truncation.
As a result, I see absolutely no reason whatsoever why the "-fnotrunc" switch option
shouldn’t be used on all GnuCOBOL compilations.

If you want to squeeze every last bit of performance out of your GnuCOBOL programs,
don’t forget to investigate the "-O" switch, "-O2" switch and the "-Os" switch, all of
which influence the optimization of compiled code. Actually run programs using various
optimization switches (or not) and compare execution times against those of unoptimized
compiled versions of your programs. Don’t just compare the generated C code because
sometimes the differences can’t be "seen" at the C source-code level.

Test 7:

cobc -x demomath.cbl -O2;demomath

USAGE DISPLAY: 1.68 SECONDS

USAGE COMP: 0.60 SECONDS

USAGE BINARY: 0.00 SECONDS

Test 8:

cobc -x demomath.cbl -fnotrunc -O2;demomath

USAGE DISPLAY: 1.67 SECONDS

USAGE COMP: 0.01 SECONDS

USAGE BINARY: 0.00 SECONDS

15 February 2018 Chapter 10 - Interfacing With The OS



640 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

All tests above carried out under Linux with a AMD FX8350 under very low loading prior
to the test. I would have also tried on a i7-7700 but that is under Windows 10 and I do not
have a GC version on it - Vince.

————————————————————
End of Chapter 10 — Interfacing With The OS

Chapter 10 - Interfacing With The OS 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 641

11. Sub-Programming

11.1. Subprogram Types

Simply stated, a ’Subprogram’ is a program that is invoked by another program; the sub-
program performs whatever its designed operations are and — when complete — typically
returns control back to the program that invoked it. There are two different types of subpro-
grams supported by GnuCOBOL, subroutines and user-defined functions. The distinction
between these two subprogram types lies in the manner in which they are executed.

When program "A" invokes subprogram "B" as a ’Subroutine’, it does so using a special
statement dedicated to that function (the "CALL" statement (see [CALL], page 281), just
as if "B" were one of the built-in system subroutines.

When program "A" invokes program "B" as a ’User-Defined Function’, it does so in a
manner identical to how "B" would have been invoked had it been one of the many built-in
intrinsic functions.

In either instance, program "A" is referred to as the ’Calling Program’ while program "B"
is known as the ’Called Program’. GnuCOBOL programs may be a calling program, a called
program or both.

A program written in the C programming language may serve as either the calling or called
program too. A called program may act as a calling program to another called program.
When a calling program does not serve as a called program to any program, that calling
program is known as a ’Main Program’.

Both subroutines and user-defined functions may return a value. The value they return
must be an integer in the range -2147483648 to +2147483647. This value will be available
in the "RETURN-CODE" special register (see [Special Registers], page 255) and also as the
value of the data item specified on the "RETURNING" (see [CALL], page 281) clause of a
subroutine’s CALL.

11.2. Independent vs Contained vs Nested Subprograms

Subprograms (either subroutines or user-defined functions) can be implemented in three
different ways.

’Independent Subprograms’

These are subprograms that are coded as the only COBOL program in their
Compilation Unit (see [Compilation Unit], page 613).

’Contained Subprograms’

These are subprograms which occur in the same Compilation Unit as a main
program and/or other subprograms. Each contained subprogram is separated
from the next via an "END PROGRAM" marker line. As an example. . .

15 February 2018 Chapter 11 - Sub-Programming



642 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

IDENTIFICATION DIVISION.

PROGRAM-ID. SUB1.

...

END PROGRAM SUB1.

IDENTIFICATION DIVISION.

PROGRAM-ID. SUB2.

...

END PROGRAM SUB2.

Program source code may be concatenated as shown here, provided an "END

PROGRAM" marker naming the "PROGRAM-ID" of the just-completed program is
used to separate one program from another.

There’s no reason that user-defined functions cannot be included too — they’ll
just have "FUNCTION-ID"s and will be ended by "END FUNCTION" markers.

The last program in any GnuCOBOL source file need not have an "END"marker.

When multiple programs occur in a source file, it is assumed that the programs
are related to one another in that they will be CALLed or executed as functions
from the others.

’Nested Subprograms’

It is also possible to create source files where GnuCOBOL programs are nested
inside each other. Take for example these four GnuCOBOL programs:

IDENTIFICATION DIVISION.

PROGRAM-ID. PROG1.

...

IDENTIFICATION DIVISION.

PROGRAM-ID. PROG2.

...

IDENTIFICATION DIVISION.

PROGRAM-ID. PROG3.

...

END PROGRAM PROG3.

END PROGRAM PROG2.

IDENTIFICATION DIVISION.

PROGRAM-ID. PROG4.

...

END PROGRAM PROG4.

END PROGRAM PROG1.

Here we see that PROG2 is nested inside of PROG1 because there is no "END

PROGRAM" marker separating them. This means that data items or files defined
within PROG1 can be used within PROG2 simply by attaching the "GLOBAL"

Chapter 11 - Sub-Programming 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 643

(see [GLOBAL], page 182) attribute to them back in PROG1 when they are
defined.

Similarly, since there is no "END PROGRAM" marker separating PROG3 from
PROG2, it is possible for PROG3 to access "GLOBAL" files and data items
defined within PROG2. Since PROG2 is nested within PROG1, any "GLOBAL"

resources defined within PROG1 will be available to PROG3 as well.

The two "END PROGRAM" markers for PROG3 and PROG2 (note their sequence)
mean that PROG4 is nested within PROG1 only. It will not have access to any
"GLOBAL" resources defined within either PROG2 or PROG3.

The "END PROGRAM PROG1." marker, since it is the last line in the source file,
is entirely optional.

11.3. Alternate Entry Points

Any subroutine may have multiple entry-points defined within it. This means the subrou-
tine could be called either via a "CALL ’<program-id>’" or a "CALL ’<entry-point>’"

statement. There may be any number of alternate entry-points defined within a subroutine.

Alternate entry-points provide multiple ways in which the same subroutine may be called;
presumably, each entry-point will provide some different functionality to the calling pro-
gram. For example, if you wished to write a subroutine that manipulates "student" records
in a database, you might have the primary entry-point name retrieve a student record
from the database, while the alternate entry points "Add-Student", "Update-Student"
and "Delete-Student" could provide the alternate functions implied by their entry-point
names.

The alternative to using multiple entry points in your subroutine, by the way, would be to
include an additional argument to the primary (and only) entry point of the subroutine; this
new argument might be named "STUDENT-FUNCTION" and might have values of "FETCH",
"ADD", "UPDATE" or "DELETE".

The primary entry-point for any subroutine is always the first executable statement following
any "DECLARATIVES" (see [DECLARATIVES], page 244) in the procedure division. The
name of that entry-point (the name that will be called) is the subroutine’s "PROGRAM-ID"
(see [IDENTIFICATION DIVISION], page 87).

An alternate entry point is added to a subroutine using the "ENTRY" statement (see
[ENTRY], page 304).

When an alternate entry-point is called, execution within the subroutine will begin at the
first executable statement following the "ENTRY" statement.

11.4. Dynamic vs Static Subprograms

Any subprogram may be either statically or dynamically loaded into memory.

15 February 2018 Chapter 11 - Sub-Programming



644 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

A ’Static Subprogram’ is one which was in the same Compilation Unit (see [Compilation
Unit], page 613) as the other program(s) which call it, therefore meaning that it’s executable
object code is part of the same executable file as it’s calling program. The static subprogram
was therefore loaded into memory as part of and at the same time as the calling program.

A ’Dynamic Subprogram’ is one whose executable object code exists as an executable file
separate from that containing the calling program; these two programs were therefore each
compiled in their own separate Compilation Group (see [Compilation Group], page 614).
Dynamic subprograms are located and loaded into memory the first time they are executed.
Dynamic subprograms may be unloaded from memory via the "CANCEL" statement (see
[CANCEL], page 285), if desired.

GnuCOBOL subprograms may be created as either static or dynamic subprograms, as
desired by the programmer.

To demonstrate, assume that a GnuCOBOL Main Program (whose code resides in the
file "M.cbl") will be calling three subprograms, named "A", "B" and "C" (these are the
"PROGRAM-ID"s of the three subprograms, and their source code may be found in the files
"A.cbl", "B.cbl" and "C.cbl", respectively.

Here is how these four programs would be compiled if the three subprograms are to be
static:

"cobc -x M.cbl A.cbl B.cbl C.cbl"

This command informs the compiler (cobc) that four programs are to be compiled (the first
named on the command must always be the main program), and a single executable file is
to be created (due to the "-x" switch).

Here is how the main program and the three subprograms could be compiled if the three
subprograms are to be dynamic:

"cobc -x M.cbl"

"cobc -m A.cbl B.cbl C.cbl"

These commands will create an executable file for the main program ("-x" switch) and
three separate dynamically-loadable libraries ("-m" switch), one for each of the three sub-
programs. Had we wished, we could have created a single dynamically-loadable library
containing all three subprograms by adding the "-b" switch to their compilation:

"cobc -m -b A.cbl B.cbl C.cbl"

Dynamically-loadable libraries are also known by the term dynamically-loadable modules
— the two terms are synonymous.

Here are the rules about GnuCOBOL dynamically-loadable modules:

1. There may be multiple GnuCOBOL subprograms contained within a single
dynamically-loadable library if the "-b" switch is used in addition to "-m". If not,
each subprogram will be compiled to a separate dynamically-loadable library.

Chapter 11 - Sub-Programming 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 645

2. Dynamically-loadable modules will be named "xxxxxxxx.dll" on a Windows system,
"xxxxxxxx.so" on a Unix system or "xxxxxxxx.dylib" on an OSX system, where
"xxxxxxxx" exactly matches, including the usage of upper- and lower-case letters, the
primary entry-point name ("PROGRAM-ID" or "FUNCTION-ID") or an alternate entry
point name defined via the "ENTRY" statement (see [ENTRY], page 304) of any one of
the GnuCOBOL programs included in that module.

3. The first time any of the GnuCOBOL subprograms in a dynamically-loadable module
are invoked, the entry-point referenced must be the one for which the ".dll", ".so" or
".dylib" file is named.

4. When a dynamically-loadable module needs to be loaded (because it is not already in
memory from a previous subprogram execution), the dynamically-loadable library will
be sought in the same directory from which the main program was loaded. If it cannot
be found there, each directory named in the "PATH" run-time environment variable (see
[Run Time Environment Variables], page 626) will be searched. If it was not located
in any of those directories, the library specified by the "COB_LIBRARY_PATH" run-time
environment variable will be searched. Finally, if it still cannot be located, execution
will be terminated with an error message ("libcob: Cannot find module ’xxxxxxxx’").

5. Once the dynamically-loadable module has been successfully loaded, any of the entry-
points contained within it are now available for reference.

6. Dynamically-loadable modules may be removed from memory via the "CANCEL" state-
ment (see [CANCEL], page 285).

7. Once a dynamically-loadable module is actually loaded into memory, even if it is subse-
quently unloaded (via the "CANCEL" statement), it’s list of entry-points remain available
to the GnuCOBOL run-time library and subsequent re-executions of any of those entry
points will be able to bypass the search (rule #4) as well as the "first-execution rule"
(rule #3).

Consult the documentation on the "COB_PRE_LOAD" run-time environment variable,
"COB_PHYSICAL_CANCEL" run-time environment variable and "COB_LOAD_CASE" run-time
environment variable run-time environment variables (see [Run Time Environment
Variables], page 626) for additional options when using dynamically-loadable modules.

11.5. Subprogram Execution Flow

When a subprogram is invoked, the flow of execution will differ slightly depending on
whether the subprogram is a subroutine or a user-defined function.

11.5.1. Subroutine Execution Flow

When a subroutine is "CALL"ed:

1. The calling program issues a statement of the form "CALL ’<entry-point>’ USING

..." to transfer control to the subroutine.

15 February 2018 Chapter 11 - Sub-Programming



646 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

2. The executable for the called program will be located and loaded into memory:

A. If it is a static subroutine, it will already be part of the executable program issuing
the "CALL" (see [CALL], page 281).

B. If it is a dynamic subroutine, the GnuCOBOL run-time system will check to see
if a dynamically-loadable module containing the subprogram’s entry point was
already located. If it was, no further "location" activity is needed. If not, the
dynamically-loadable module will be located (see [Locating Dynamically-Loadable
Modules], page 645).

C. Once the module has been located (if location was needed), it will be loaded into
memory (if not already loaded).

3. Execution of the calling program is suspended and control will transfer to the called
program, as follows:

A. If the "PROGRAM-ID" (see [IDENTIFICATION DIVISION], page 87) clause of the
subprogram included the "INITIAL" clause, the program will be reinitialized back
to its compile-time state. This will happen regardless of the "INITIAL" clause the
first time the subprogram is executed.

B. Local-storage, if any, will be allocated and initialized.

C. Execution will begin at the first executable statement following the subprograms
entry-point. The entry point will be either the first executable statement following
any "DECLARATIVES" (see [DECLARATIVES], page 244) that might be present
(if the subprogram was invoked using its primary entry-point name) or the first
executable statement following the "ENTRY" statement (see [ENTRY], page 304)
naming the entry-point specified on the "CALL" if the subprogram was invoked
using an alternate entry point.

4. The flow of execution will then progress through the coding of the subprogram as it
would with any other program.

5. If the subprogram issues a "STOP" statement (see [STOP], page 384) with the "RUN" op-
tion, program execution ceases and control returns to the operating system or whatever
execution shell invoked the main program.

6. If the subprogram wishes to return control back to the calling program, it will do so us-
ing either the "GOBACK" statement (see [GOBACK], page 315) or the "EXIT PROGRAM"

statement (see [EXIT], page 309). At this time:

A. If the subprograms procedure division header or "ENTRY" statement included a
"RETURNING", the value of the data item found on that clause is moved to the
"RETURN-CODE" special register (see [Special Registers], page 255); this behaviour
can be altered utilizing the "CALL-CONVENTION" (see [SPECIAL-NAMES],
page 96) feature to leave "RETURN-CODE" unchanged.

B. Local-storage, if any, is de-allocated.

C. If the calling program included a "RETURNING" clause on the "CALL" statement

Chapter 11 - Sub-Programming 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 647

that invoked the subprogram, the value of the "RETURNING" data item in the
subroutine is moved to that data item. If there was no "RETURNING" specified in
the subroutine, the value of the "RETURN-CODE" special register is moved to that
data item.

D. Execution will resume back in the calling program with the first executable state-
ment following the "CALL" that invoked the subprogram.

11.5.2. User-Defined Function Execution Flow

When a user-defined function is executed:

1. The object code for the called program (the user-defined function) will be located, as
follows:

A. If it is a static user-defined function, it will already be part of the executable file
containing the calling program.

B. If it is a dynamic user-defined function, the GnuCOBOL run-time system will check
to see if a dynamically-loadable module containing the function’s entry point was
already located. If it was, no further "location" activity is needed. If not, the
dynamically-loadable module will be located (see [Locating Dynamically-Loadable
Modules], page 645).

C. Once the module has been located (if location was needed), it will be loaded into
memory (if not already loaded).

2. Execution of the calling program is suspended and control will transfer to the called
program, as follows:

A. Local-storage, if any, will be allocated and initialized.

B. Execution will begin with the first executable statement in the procedure division
following any "DECLARATIVES" (see [DECLARATIVES], page 244) that might be
present.

3. The flow of execution will then progress through the coding of the function as it would
with any other program.

4. If the function issues a "STOP" statement (see [STOP], page 384) with the "RUN" option,
program execution ceases and control returns to the operating system or whatever
execution shell invoked the main program.

5. If the function wishes to return control back to the calling program, it will do so using
either the "GOBACK" statement (see [GOBACK], page 315) or the "EXIT FUNCTION"

statement (see [EXIT], page 309). At this time:

A. The value of the data item found on the user-defined functions "PROCEDURE

DIVISION RETURNING" (see [PROCEDURE DIVISION RETURNING], page 242)
clause is moved to the "RETURN-CODE" special register (see [Special Registers],
page 255).

15 February 2018 Chapter 11 - Sub-Programming



648 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

B. Local-storage, if any, is de-allocated.

C. Execution will resume back in the calling program at the point where the returned
value of the function is needed. At that point, the value in the "RETURN-CODE"

special register will be used for the function’s value.

Chapter 11 - Sub-Programming 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 649

11.6. Sharing Data Between Calling and Called Programs

11.5.1. Subprogram Arguments

11.6.1.1. Calling Program Considerations

Data items defined in a calling program may be passed to either type of called program
(subroutine or user-defined function) as arguments.

Arguments must be described in both the calling and called programs, and while they don’t
need to have the same names in both programs, they should be described in an identical
manner with regard to the following characteristics:

• "PICTURE" (see [PICTURE], page 198) (including both type and length)

• "SIGN" (see [SIGN], page 487)

• "SYNCRONIZED" (see [SYNCRONIZED], page 218)

• "USAGE" (see [USAGE], page 223)

A subroutine may be passed a maximum of 36 arguments; if you build the GnuCOBOL
software yourself from the distributed source, you CAN change this value by altering the
defined value of "COB_MAX_FIELD_PARAMS" in the "common.h" header file. There is no
built-in GnuCOBOL limit to how many arguments a user-defined function may be passed.

Whether or not changes made to an argument within a subroutine will be "visible" to the
calling program depends on how the argument was passed. There are three ways in which
arguments may be passed from a calling program to a subroutine, as defined by the use of
optional "BY" clauses in the "CALL" (see [CALL], page 281) statement’s list of arguments.

As an example, the following statement passes three arguments to a subroutine — each
argument is passed differently.

CALL "subroutine" USING BY REFERENCE arg-1

BY CONTENT arg-2

BY VALUE arg-3

END-CALL

The three ways arguments are passed are as follows.

"BY REFERENCE"

When a subroutine argument is passed "BY REFERENCE", the subroutine is
passed the address of the actual data item being passed as an argument. The
item may anything defined within the data division of the program. If the sub-
routine modifies the contents of this argument, the calling program will "see"
the results of that change when the subroutine returns control. This is the

15 February 2018 Chapter 11 - Sub-Programming



650 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

default manner in which GnuCOBOL passes arguments to a subroutine, should
no "BY" clauses be included on the "CALL".

"BY CONTENT"

When a subroutine is passed an argument "BY CONTENT", the subroutine is
passed the address of a copy of the actual data being passed as an argument.
The item may anything defined within the data division of the program. The
copy is made each time the "CALL" statement is executed, immediately before
the "CALL" actually takes place. If the subroutine modifies the contents of this
argument, it will be the copy that is modified, not the original data item; the
calling program will therefore not "see" the results of that change when the
subroutine returns control.

"BY VALUE"

Passing a subroutine argument "BY VALUE" passes the actual value of the data
being passed as an argument. The item may be any elementary binary numeric
item defined within the data division of the program. If the subroutine modifies
the contents of this argument, the calling program will not "see" the results of
that change when the subroutine returns control.

The first two ways in which arguments may be passed ("BY REFERENCE" and "BY CONTENT")
are intended for use when a GnuCOBOL program is being called, while the first and third
("BY REFERENCE" and "BY VALUE") are intended for use when a C program is being called.
You can use "BY VALUE" arguments when calling GnuCOBOL subroutines, but remember
that those arguments are limited to being a numeric binary data item.

Arguments to user-defined functions are always passed "BY REFERENCE".

11.6.1.2. Called Program Considerations

When coding a GnuCOBOL subprogram (a subroutine or user-defined function), all argu-
ments to the subprogram must be defined in the subprogram’s linkage section.

These arguments must be explicitly included on the "PROCEDURE DIVISION USING" (see
[PROCEDURE DIVISION USING], page 238) clause that lists the arguments in the se-
quence in which they will be passed to the subprogram.

These arguments described in the "PROCEDURE DIVISION USING" clause may each be
defined as either "BY REFERENCE", if the calling program is passing them either "BY

REFERENCE" or "BY CONTENT", or as "BY VALUE" if they are being passed "BY VALUE".

By default, all arguments are assumed to be "BY REFERENCE" unless explicitly stated oth-
erwise on the procedure division header.

Arguments to a user-defined function are always to be specified as "BY REFERENCE" (either
explicitly or by not using any "BY").

Chapter 11 - Sub-Programming 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 651

If the subprogram returns a value, the data item in which the value is returned must also
be defined in the subprogram’s linkage section, with a "USAGE" (see [USAGE], page 223) of
"BINARY-LONG SIGNED", or it’s equivalent.

11.6.2. GLOBAL Data Items

Another way in which a data item may be shared between a calling program ("A") and a
called program ("B") is by defining the data item in the calling program and attaching the
"GLOBAL" (see [GLOBAL], page 182) clause to it so that it may be used within the called
program. In order for this to work, program "B" (the one called by program "A") must be
a nested subprogram within program "A".

Here’s a small example:

IDENTIFICATION DIVISION.

PROGRAM-ID. DemoGLOBAL.

ENVIRONMENT DIVISION.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 Arg GLOBAL PIC X(10).

PROCEDURE DIVISION.

000-Main.

MOVE ALL "X" TO Arg

CALL "DemoSub" END-CALL

DISPLAY "DemoGLOBAL: " Arg END-DISPLAY

GOBACK

.

IDENTIFICATION DIVISION.

PROGRAM-ID. DemoSub.

PROCEDURE DIVISION.

000-Main.

MOVE ALL "*" TO Arg.

GOBACK

.

END PROGRAM DemoSub.

END PROGRAM DemoGLOBAL.

When the program runs, it produces the output:

DemoGLOBAL: **********

11.6.3. EXTERNAL Data Items

The final way in which a data item may be shared between a calling program ("A") and a
called program ("B") is by defining the data item (with the same name) in both programs
and attaching the "EXTERNAL" (see [EXTERNAL], page 177) clause to it (again, in both

15 February 2018 Chapter 11 - Sub-Programming



652 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

programs). This approach works regardless of whether the called program is nested within
the calling program or not. It also works even if the two programs are compiled separately.

Here’s a demonstration:

IDENTIFICATION DIVISION.

PROGRAM-ID. DemoEXTERNAL.

ENVIRONMENT DIVISION.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 Arg EXTERNAL PIC X(10).

PROCEDURE DIVISION.

000-Main.

MOVE ALL "X" TO Arg

CALL "DemoSub" END-CALL

DISPLAY "DemoEXTERNAL: " Arg END-DISPLAY

GOBACK

.

END PROGRAM DemoEXTERNAL.

IDENTIFICATION DIVISION.

PROGRAM-ID. DemoSub.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 Arg EXTERNAL PIC X(10).

PROCEDURE DIVISION.

000-Main.

MOVE ALL "*" TO Arg.

GOBACK

.

END PROGRAM DemoSub.

When the program runs, it produces the output:

DemoEXTERNAL: **********

11.7. Recursive Subprograms

A subroutine may "CALL" itself, either directly or indirectly from another subroutine or user-
defined function that it "CALL"s. Any subroutine that indulges in this sort of behaviour
(called recursion) is called a ’Recursive Subprogram’.

Any GnuCOBOL subroutine can be recursively invoked only if it is defined to the
GnuCOBOL compiler as being a recursive subroutine. This is accomplished by adding
the "RECURSIVE" attribute to it’s "PROGRAM-ID" (see [IDENTIFICATION DIVISION],
page 87).

All User-defined functions are automatically capable of being executed recursively.

Chapter 11 - Sub-Programming 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 653

Here is an example of a main program (DEMOFACT) that calls both a subprogram (SUB)
and a user-defined function (FUNC) to compute the factorial value of a number.

IDENTIFICATION DIVISION.

PROGRAM-ID. DEMOFACT.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

REPOSITORY.

FUNCTION RECURSIVEFUNC.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 Result USAGE BINARY-LONG.

01 Arg USAGE BINARY-LONG.

PROCEDURE DIVISION.

000-Main.

MOVE 6 TO Arg

CALL "RECURSIVESUB"

USING BY CONTENT Arg

RETURNING Result

DISPLAY Arg "! = "

Result

DISPLAY Arg "! = "

RECURSIVEFUNC(Arg)

GOBACK

.

END PROGRAM DEMOFACT.

IDENTIFICATION DIVISION.

PROGRAM-ID. SUB RECURSIVE.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 Result USAGE BINARY-LONG.

01 Next-Arg USAGE BINARY-LONG.

01 Next-Result USAGE BINARY-LONG.

LINKAGE SECTION.

01 Arg USAGE BINARY-LONG.

PROCEDURE DIVISION USING Arg

RETURNING Result.

000-Main.

DISPLAY "Entering SUB"

" Arg=" Arg

IF Arg = 1

MOVE 1 TO Result

DISPLAY "Leaving SUB"

" Returning " Result

ELSE

SUBTRACT 1 FROM Arg

15 February 2018 Chapter 11 - Sub-Programming



654 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

GIVING Next-Arg

CALL "SUB"

USING BY CONTENT Next-Arg

RETURNING Next-Result

COMPUTE Result =

Arg * Next-Result

DISPLAY "Leaving SUB"

" Returning "

Result "=" Arg "*"

Next-Result

END-IF

GOBACK

.

END PROGRAM SUB.

IDENTIFICATION DIVISION.

FUNCTION-ID. FUNC.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

REPOSITORY.

FUNCTION RECURSIVEFUNC.

DATA DIVISION.

WORKING-STORAGE SECTION.

LINKAGE SECTION.

01 Arg USAGE BINARY-LONG.

01 Result USAGE BINARY-LONG

SIGNED.

PROCEDURE DIVISION USING Arg

RETURNING Result.

000-Main.

DISPLAY "Entering FUNC"

" Arg=" Arg

IF Arg = 1

MOVE 1 TO Result

ELSE

COMPUTE Result = Arg *

FUNC(Arg - 1)

END-IF

DISPLAY "Leaving FUNC"

" Returning " Result

GOBACK

.

END FUNCTION FUNC.

When DEMOFACT is executed, the output shown below is generated.

E:\Programs\Demos>demofact

Chapter 11 - Sub-Programming 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 655

Entering RECURSIVESUB Arg=+0000000006

Entering RECURSIVESUB Arg=+0000000005

Entering RECURSIVESUB Arg=+0000000004

Entering RECURSIVESUB Arg=+0000000003

Entering RECURSIVESUB Arg=+0000000002

Entering RECURSIVESUB Arg=+0000000001

Leaving RECURSIVESUB Returning +0000000001

Leaving RECURSIVESUB Returning +0000000002=+0000000002*+0000000001

Leaving RECURSIVESUB Returning +0000000006=+0000000003*+0000000002

Leaving RECURSIVESUB Returning +0000000024=+0000000004*+0000000006

Leaving RECURSIVESUB Returning +0000000120=+0000000005*+0000000024

Leaving RECURSIVESUB Returning +0000000720=+0000000006*+0000000120

+0000000006! = +0000000720

Entering RECURSIVEFUNC Arg=+0000000006

Entering RECURSIVEFUNC Arg=+0000000005

Entering RECURSIVEFUNC Arg=+0000000004

Entering RECURSIVEFUNC Arg=+0000000003

Entering RECURSIVEFUNC Arg=+0000000002

Entering RECURSIVEFUNC Arg=+0000000001

Leaving RECURSIVEFUNC Returning +0000000001

Leaving RECURSIVEFUNC Returning +0000000002

Leaving RECURSIVEFUNC Returning +0000000006

Leaving RECURSIVEFUNC Returning +0000000024

Leaving RECURSIVEFUNC Returning +0000000120

Leaving RECURSIVEFUNC Returning +0000000720

+0000000006! = +0000000720

11.8. Combining GnuCOBOL and C Programs

The upcoming sections deal the issues pertaining to calling C language programs from
GnuCOBOL programs, and vice versa. Two additional sections provide samples illustrating
specifics as to how those issues are overcome in actual program code.

11.8.1. GnuCOBOL Run-Time Library Requirements

Like most other implementations of the COBOL language, GnuCOBOL utilizes a run-time
library. When the first program executed in a given execution sequence is a GnuCOBOL
program, any run-time library initialization will be performed by the compiled COBOL code
in a manner that is transparent to the C-language programmer. If, however, a C program
is the first to execute, the burden of performing GnuCOBOL run-time library initialization
falls upon the C program. See [C Main Programs Calling GnuCOBOL Subprograms],
page 659, for an example of how to do this.

15 February 2018 Chapter 11 - Sub-Programming



656 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

11.8.2. String Allocation Differences Between GnuCOBOL and C

Both languages store strings as a fixed-length continuous sequence of characters.

COBOL stores these character sequences up to a specific quantity limit imposed by the
"PICTURE" (see [PICTURE], page 198) clause of the data item. For example: "01 LastName

PIC X(15).".

There is never an issue of exactly what the length of a string contained in a "USAGE

DISPLAY" (see [USAGE], page 223) data item is — there are always exactly how ever many
characters as were allowed for by the "PICTURE" clause. In the example above, "LastName"
will always contain exactly fifteen characters; of course, there may be anywhere from 0 to
15 trailing SPACES as part of the current LastName value.

C actually has no "string" data type; it stores strings as an array of "char" data type items
where each element of the array is a single character. Being an array, there is an upper
limit to how many characters may be stored in a given "string". For example:

char lastName[15]; /* 15 chars: lastName[0] through lastName[14] */

C provides a robust set of string-manipulation functions to copy strings from one char
array to another, search strings for certain characters, compare one char array to another,
concatenate char arrays and so forth. To make these functions possible, it was necessary
to be able to define the logical end of a string. C accomplishes this via the expectation
that all strings (char arrays) will be terminated by a NULL character (x’00’). Of course, no
one forces a programmer to do this, but if [s]he ever expects to use any of the C standard
functions to manipulate that string they had better be null-terminating their strings!

So, GnuCOBOL programmers expecting to pass strings to or receive strings from C pro-
grams had best be prepared to deal with the null-termination issue, as follows:

1. Pass a quoted literal string from GnuCOBOL to C as a zero-delimited string literal
(Z’<string>’).

2. Pass alphanumeric (PIC X) or alphabetic (PIC A) data items to C subroutines by
appending an ASCII NULL character (X’00’) to them. For example, to pass the 15-
character LastName data item described above to a C subroutine:

on

01 LastName-Arg-to-C PIC X(16).

...

MOVE FUNCTION CONCATENATE(LastName,X’00’) TO LastName-Arg-to-C

And then pass LastName-Arg-to-C to the C subprogram!

3. When a COBOL program needs to process string data prepared by a C program, the
embedded null character must be accounted for. This can easily be accomplished with
an "INSPECT" statement (see [INSPECT], page 327) such as the following:

INSPECT Data-From-a-C-Program

Chapter 11 - Sub-Programming 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 657

REPLACING FIRST X’00’ BY SPACE

CHARACTERS BY SPACE AFTER INITIAL X’00’

11.8.3. Matching C Data Types with GnuCOBOL USAGE’s

Matching up GnuCOBOL numeric Usage s with their C language data type equivalents is
possible via the following chart:

COBOL C
BINARY-CHAR [ UNSIGNED ] unsigned char
BINARY-CHAR SIGNED signed char
BINARY-SHORT [ UNSIGNED ] unsigned

unsigned int
unsigned short
unsigned short int

BINARY-CHAR [ UNSIGNED ] unsigned char
BINARY-CHAR SIGNED signed char
BINARY-SHORT [ UNSIGNED ] unsigned

unsigned int
unsigned short
unsigned short int

BINARY-SHORT SIGNED int
short
short int
signed int
signed short
signed short int

BINARY-LONG [ UNSIGNED ] unsigned long
unsigned long int

BINARY-LONG SIGNED
BINARY-INT

long
long int
signed long
signed long int

BINARY-C-LONG SIGNED long
BINARY-DOUBLE [ UNSIGNED ] unsigned long long

unsigned long long int

BINARY-DOUBLE SIGNED
BINARY-LONG-LONG

long long int
signed long long int

COMPUTATIONAL-1 float
COMPUTATIONAL-2 double
N/A (no GnuCOBOL equivalent) long double

These are the ANSI2002 standard specifications for C-program data compatibility and Gnu-
COBOL programmers should get used to using them when data is being shared with C pro-

15 February 2018 Chapter 11 - Sub-Programming



658 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

grams (they’re good documentation too, highlighting the fact that the data will be "shared"
with a C program).

11.8.4. GnuCOBOL Main Programs CALLing C Subprograms

Here’s a sample of a GnuCOBOL program that CALLs a C subprogram.
COBOL Calling Program C Called Program

================================== ===============================

IDENTIFICATION DIVISION. #include <stdio.h>

PROGRAM-ID. maincob. int subc(char *arg1,

DATA DIVISION. char *arg2,

WORKING-STORAGE SECTION. unsigned long *arg3) {

01 Arg1 PIC X(7). char nu1[7]="New1";

01 Arg2 PIC X(7). char nu2[7]="New2";

01 Arg3 USAGE BINARY-LONG. printf("Starting subc\n");

PROCEDURE DIVISION. printf("Arg1=%s\n",arg1);

000-Main. printf("Arg2=%s\n",arg2);

DISPLAY ’Starting maincob’ printf("Arg3=%d\n",*arg3);

MOVE Z’Arg1’ TO Arg1 arg1[0]=’X’;

MOVE Z’Arg2’ TO Arg2 arg2[0]=’Y’;

MOVE 123456789 TO Arg3 *arg3=987654321;

CALL ’subc’ return 2;

USING BY CONTENT Arg1, }

BY REFERENCE Arg2,

BY REFERENCE Arg3

DISPLAY ’Back’

DISPLAY ’Arg1=’ Arg1

DISPLAY ’Arg2=’ Arg2

DISPLAY ’Arg3=’ Arg3

DISPLAY ’Returned value=’

RETURN-CODE

STOP RUN

.

The idea is to pass two string and one full-word unsigned arguments to the subprogram,
have the subprogram print them out, change all three and pass a return code of 2 back to
the caller. The caller will then re-display the three arguments (showing changes only to the
two "BY REFERENCE" arguments), display the return code and halt.

While simple, these two programs illustrate the techniques required quite nicely.

Note how the COBOL program ensures that a null end-of-string terminator is present on
both string arguments.

Since the C program is planning on making changes to all three arguments, it declares all
three as pointers in the function header and references the third argument as a pointer in
the function body. It actually had no choice for the two string (char array) arguments –
they must be defined as pointers in the function even though the function code references
them without the leading * that normally signifies pointers.

These programs are compiled and executed as follows.

$ cobc -x maincob.cbl subc.c

Chapter 11 - Sub-Programming 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 659

$ maincob

Starting maincob

Starting subc

Arg1=Arg1

Arg2=Arg2

Arg3=123456789

Back

Arg1=Arg1

Arg2=Yrg2

Arg3=+0987654321

Returned value=+000000002

$

Remember that the null characters are actually in the GnuCOBOL "Arg1" and "Arg2"
data items. They don’t appear in the output, but they ARE there.

Did you notice the output showing the contents of "Arg1" after the subroutine was called?
Those contents were unchanged! The subroutine definitely changed that argument, but
since the COBOL program passed that argument "BY CONTENT", the change was made to
a copy of the argument, not to the "Arg1" data item itself.

11.8.5. C Main Programs Calling GnuCOBOL Subprograms

Now, the roles of the two languages in the previous section will be reversed, having a C
main program execute a GnuCOBOL subprogram.

C Calling Program GNU-COBOL Called Program

============================================= =================================

#include <libcob.h> /* COB RUN-TIME */ IDENTIFICATION DIVISION.

#include <stdio.h> PROGRAM-ID. subcob.

int main (int argc, char **argv) { DATA DIVISION.

int returnCode; LINKAGE SECTION.

char arg1[7] = "Arg1"; 01 Arg1 PIC X(7).

char arg2[7] = "Arg2"; 01 Arg2 PIC X(7).

unsigned long arg3 = 123456789; 01 Arg3 USAGE BINARY-LONG.

printf("Starting mainc...\n"); PROCEDURE DIVISION USING

cob_init (argc, argv); /* COB RUN-TIME */ BY VALUE Arg1,

returnCode = subcob(arg1,arg2,&arg3); BY REFERENCE Arg2,

printf("Back\n"); BY REFERENCE Arg3.

printf("Arg1=%s\n",arg1); 000-Main.

printf("Arg2=%s\n",arg2); DISPLAY ’Starting cobsub.cbl’

printf("Arg3=%d\n",arg3); DISPLAY ’Arg1=’ Arg1

printf("Returned value=%d\n",returnCode); DISPLAY ’Arg2=’ Arg2

return returnCode; DISPLAY ’Arg3=’ Arg3

} MOVE ’X’ TO Arg1 (1:1)

MOVE ’Y’ TO Arg2 (1:1)

MOVE 987654321 TO Arg3

MOVE 2 TO RETURN-CODE

GOBACK

.

15 February 2018 Chapter 11 - Sub-Programming



660 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

Since the C program is the one that will execute first, before the GnuCOBOL subroutine,
the burden of initializing the GnuCOBOL run-time environment lies with that C program;
it will have to invoke the "cob init" function, which is part of the "libcob" library. The
two required C statements are shown highlighted.

The arguments to the "cob init" routine are the argument count and value parameters
passed to the main function when the program began execution. By passing them into
the GnuCOBOL subprogram, it will be possible for that GnuCOBOL program to retrieve
the command line or individual command-line arguments. If that won’t be necessary,
"cob init(0,NULL);" could be specified instead.

Since the C program wants to allow "arg3" to be changed by the subprogram, it prefixes
it with a "&" to force a CALL BY REFERENCE for that argument. Since "arg1" and
"arg2" are strings (char arrays), they are automatically passed by reference.

Here’s the output of the compilation process as well as the program’s execution. The
example assumes aWindows system with a GnuCOBOL build that uses the GNU C compiler
on that system; the technique works equally well regardless of which C compiler and which
operating system you’re using.

C:\Users\Gary\Documents\Programs> cobc -S subcob.cbl

C:\Users\Gary\Documents\Programs> gcc mainc.c subcob.s -o mainc.exe -llibcob

C:\Users\Gary\Documents\Programs> mainc.exe

Starting mainc...

Starting cobsub.cbl

Arg1=Arg1

Arg2=Arg2

Arg3=+0123456789

Back

Arg1=Xrg1

Arg2=Yrg2

Arg3=987654321

Returned value=2

C:\Users\Gary\Documents\Programs>

Note that even though we told GnuCOBOL that the 1st argument was to be "BY VALUE",
it was treated as if it were "BY REFERENCE" anyway. String (char array) arguments passed
from C callers to GnuCOBOL subprograms will be modifiable by the subprogram. It’s best
to pass a copy of such data if you want to ensure that the subprogram doesn’t change it.

The third argument is different, however. Since it’s not an array you have the choice of
passing it either "BY REFERENCE" or "BY VALUE".

————————————————————
End of Chapter 11 — Sub-Programming

Chapter 11 - Sub-Programming 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 661

12. Programming Style Suggestions

This chapter deals with a variety of stylistic issues that may be of interest to someone who
is just starting out learning and using COBOL. Much of this chapter makes recommenda-
tions and suggestions for how to write your own programs. The sample programs in the
"Sample Programs" document (see Sample Programs) were coded using almost all of these
recommendations.

There’s no particular order of importance to the topics presented here.

12.1. Marking Changes in Programs

Historically in the early 60’s programs were first punched on to paper tape and by the mid
60’s that was replaced almost totally, by punched cards although paper tape was still used
by programmers for the odd few changes to their sources held on magnetic tape or disk as
a portable paper tape punch could be put in your pocket. Now the problem with punched
cards were there was 2,000 cards per box and that they could and did, get dropped. So, cc
(column) 1 through 6 had the card sequence number in and that way if a box was dropped
they could be feed in to a card sorter to be fixed. This was after the cards was cleaned up
so that they were all in the same direction which one corner cut out helped.

In the late 70’s cards was also on its way out to the point where P.C’s started being used
(and no they were not made by IBM), so these columns could be used for other purposes
including cc 73 - 80 instead of indicating the 8 character program name which was the
maximum size allowed on a IBM system.

For quite a while now (back to the late 1970’s), the "sequence number area" of a COBOL
statement (columns 1-6) has come to be used as a change indicator area. Programmers
would place a code in columns 1-6 of every line they changed in a program. The author
works in a COBOL shop where change indicators of the form "xxmmyy" are required on
every altered line of a program — "xx" is the initials of the programmer while "mmyy"
are the month and two-digit year of the date the change was made. This is frequently
accompanied by a comment block at or near the top of a COBOL program providing
general documentation of what changes were made and what change indicator was used to
mark that change.

The GCic sample program source listing (see Section “GCic” in GnuCOBOL Sample Pro-
grams) provides an excellent example of such documentation.

This technique of using columns 1-6 as a change indicator will ONLY work if fixed source-
record format is in effect.

Some COBOL shops prefer to use the eight-character Program Name Area (columns 73-80)
as a change code area.

Marking changes becomes more of a challenge when free-format source code is in effect.
Creating a top-of-program comment block to generically describe changes that have been

15 February 2018 Chapter 12 - Programming Style Suggestions



662 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

made isn’t difficult, even in free-form. What IS difficult, however, is coming up with a
scheme for per-statement mark up of changes that doesn’t introduce a ridiculously excessive
number of source lines to the program. I’m not sure there is a good answer to this problem
(if a reader has one, please let me know). Generally, I’ve noticed that shops using free-
format conventions for their COBOL source tend to stick with just the top-of-program
comment block combined with minimal comment blocks sprinkled throughout the program
noting areas that underwent major changes.

12.2. Data Item Coding and Naming Conventions

When programs get very large, it becomes more and more challenging to keep track of the
data items that will be used in the program. Here, in no particular order of importance,
are a variety of conventions that can simply that problem.

Remember that the points described here are intended to make things easier for you, the
programmer. No COBOL compiler cares one way or another whether any of these sugges-
tions are followed.

1. Avoid the use of level 77 data items in new programs. Once (1968 and before) there
were valid reasons for creating level-77 data items, but since the 1974 ANSI standard
of COBOL there really hasn’t been any reason why an elementary level-01 data item
couldn’t have been used instead of a level-77 item.

2. Allocate level-01 data items in alphabetical sequence in the program source wherever
practical. This will make it vastly easier to locate the definitions of 01-level items in
the program source without having to resort to a compilation cross-reference listing
and/or text editor "find" command to locate them.

3. Consider prefixing data items with an indication of where in the program structure
they were created. For example:

• Start everything defined in the file section with "F-"

• Start everything defined in working-storage with "WS-"

• Start everything defined in local-storage with "LS-"

• Start everything defined in the linkage section with "L-"

• Start everything defined in the screen section with "S-"

• Start everything defined in the report section with "R-"

A convention such as this makes it simple, when you’re reviewing code in the procedure
division, to know in which section of the data division you should look in when locating
the detailed description of a data item. Once you’re in the right division, coding
convention #2 will assist in locating the data item definition.

4. Consider including a trailing descriptor of the nature of all data items in their names.

Chapter 12 - Programming Style Suggestions 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 663

The following chart presents a variety of such descriptors the author has encountered
and used through the years.

-ADDR

The data item contains all or a part of an Address (City-ADDR, State-
ADDR, Street-ADDR, . . . )

-BOOL

A level-88 data item (which only has the value TRUE or FALSE)

-CD

A CODE whose value denotes information content above and beyond that
of the mere value itself. Some examples could be "Error-CD", "Status-
CD", "Billing-CD"

-CHR

A data item containing a single character of data.

-CONST

A constant, specified as a level-78 data item, a level-01 item with the
CONST attribute

-DT

The data item contains a complete or partial date (Birth-DT, Birth-Month-
DT, Birth-Year-DT, . . . )

-DTTM

A data item containing both a date and a time

-FILE

A file name. Note that these items would probably also have a "F-" prefix.

-IDX

A data item used as a table index (see section 12.3)

-NM

All or a portion of a person’s name. These could be extended to include
business names, product names, etc.

-PTR

A data item whose USAGE is POINTER

15 February 2018 Chapter 12 - Programming Style Suggestions



664 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

-NUM

A generic numeric data item that doesn’t fit into any of the other categories

-QTY

A count of something

-REC

An 01-level item defined in the FILE SECTION (constituting the layout
of a record within a file). Note that these items would probably also have
a "F-" prefix.

-SCR

The data item contains a complete or partial screen description (appropri-
ate for SCREEN SECTION 01-level data items).

-SUB

A numeric item used as a table subscript (see section 12.3)

-TEL

All or part of a telephone number

-TM

The data item contains a complete or partial time value

-TXT

The data item contains generic alphanumeric text that doesn’t fit into any
of the other categories.

The above is by no means an exhaustive list, but good programmers will use as few of
these descriptors as possible as having too many defeats any benefits of such classifica-
tion/documentation efforts.

5. Consider including an acronym to be inserted into the name of any data item defined
directly or indirectly subordinate to an 01-level item, typically to be specified after any
section-level tag, if you’re using them. For example, consider the names used in the
following structure:

01 WS-File-Status-Message-TXT.

05 FILLER PIC X(13) VALUE ’Status Code: ’.

05 WS-FSM-Status-CD PIC 9(2).

05 FILLER PIC X(11) VALUE ’, Meaning: ’.

05 WS-FSM-Msg-TXT PIC X(25).

Chapter 12 - Programming Style Suggestions 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 665

The "-FSM-" acronyms make it easier to locate the description of the 01-item the
status code and message text items belong to.

12.3. Table Subscripting versus Table Indexing

The elements of a table may be referenced either using a subscript or an index. Syntactically,
this is coded using parenthesis, as per the following three examples, all of which store the
letter "A" into the 17th occurrence of a data item named WSS-Output-Image-TXT:

1. MOVE ’A’ TO WSS-Output-Image-TXT (17)

2. MOVE 17 TO WSS-OI-SUB

MOVE ’A’ TO WSS-Output-Image-TXT (WSS-OI-SUB)

3. SET WSS-OI-IDX TO 17

MOVE ’A’ TO WSS-Output-Image-TXT (WSS-OI-IDX)

The 1st and 2nd examples are referred to as ’Subscripting ’ while the 3rd is known as
’Indexing ’. The distinction is fairly simple.

Indexing is the process of referencing an element of a table utilizing a data item with an
explicitly or implicitly defined "USAGE" (see [USAGE], page 223) of "INDEX" to select the
desired occurrence, while . . .

Subscripting is the process of referencing an element of a table utilizing either a numeric
constant or an unedited numeric data item to select the desired occurrence.

Various implementations of COBOL generate object code that is quite different in each of
these three situations, and GnuCOBOL is no exception.

In general, table references such as example #1 (constant subscript) generate the smallest,
simplest and fastest object code while table references such as example #2 (numeric data
item subscript) generate the largest, most-complicated and slowest object code.

Table references such as example #3 (table indexing) generate object code that falls in the
middle of the other two but is far closer in efficiency to example #1 than #2.

Some COBOL statements ("SEARCH" (see [SEARCH], page 362), "SEARCH ALL" (see
[SEARCH ALL], page 364) and the table-based "SORT" (see [Table SORT], page 380))
require you to index the affected table and to utilize that index with those statements.
With any other references to tables, the choice is left to the programmer as to which
approach should be used. In general, follow these rules:

1. Use constant subscripts (example #1) wherever possible/practical.

2. If references to table elements are going to be performed many, many times (tens or
hundreds of thousands of times or more) during program execution, you will proba-

15 February 2018 Chapter 12 - Programming Style Suggestions



666 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

bly see a noticeable reduction in program execution time if you use indexing versus
subscripting.

It’s impossible to perform any arithmetic operation against an index data item directly
(other than a simple incrementation or decremental operation via the "SET UP/DOWN" state-
ment (see [SET UP/DOWN], page 371)). Situations where any non-trivial computations
are required to calculate the effective occurrence number for a table reference will require
you to use a conventional unedited numeric data item as the receiving field for the calcu-
lation. That calculated value would then need to be saved into the index data item via a
"SET Index" statement.

If you only need to use the computed occurrence number once, you might as well just use
the computed occurrence number data item as a subscript. If, however, you will need to use
a computed "subscript" many more times than once, the run-time overhead of converting
that occurrence value to an index (via "SET Index") will be worth the coding effort.

Whew!

If references to table elements are not going to be performed many, many times it probably
won’t make much difference whether you use indexing or subscripting.

If you are comfortable with the "C" programming language, you might find the following
simple GnuCOBOL program useful in exploring the differences between subscripting and
indexing:

IDENTIFICATION DIVISION.

PROGRAM-ID. SUBVSINDEX.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 WS-TABLE-SUB BINARY-LONG.

01 WS-TABLE.

05 WS-TABLE-ENTRY OCCURS 20 TIMES

INDEXED BY WS-TABLE-IDX

PIC X(1).

PROCEDURE DIVISION.

000-Main SECTION.

E1. MOVE ’A’ TO WS-TABLE-ENTRY (17)

.

E2. MOVE 17 TO WS-TABLE-SUB

MOVE ’A’ TO WS-TABLE-ENTRY (WS-TABLE-SUB)

.

E3. SET WS-TABLE-IDX TO 17

MOVE ’A’ TO WS-TABLE-ENTRY (WS-TABLE-SUB)

.

Compile this program as follows (the assumption is made that you are executing the "cobc"

Chapter 12 - Programming Style Suggestions 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 667

command from the directory in which the above program source code (subvsindex.cbl)
exists.

cobc -C -save-temps subvsindex.cbl

After this command is executed, the file "subvsindex.c" will contain the procedure division
C code and "subvsindex.c.1.h" will contain the working-storage C code. Compare the
generated C code for each of the three "MOVE" statements.

12.4. Copybook Naming Conventions and Usage

Since the intent of a copybook is to introduce COBOL code into a particular spot in a
program via the "COPY" statement (see [COPY], page 69), it is always a good idea to prefix
copybook names with a character sequence that identifies where in a program it’s contents
are intended to be copyed.

For example:

"IDxxxxxxxx"

Copybooks containing code intended for the identification division. These will
be rare as you almost never encounter copied code in the identification division.

"EDxxxxxxxx"

Copybooks containing code intended for use in the environment division. These
copybooks are generally used for predefined "SPECIAL-NAMES" (see [SPECIAL-
NAMES], page 96) or "FILE-CONTROL" (see [INPUT-OUTPUT SECTION],
page 108) syntax,

"DDxxxxxxxx"

Copybooks that contain data definitions.

"PDxxxxxxxx"

Copybooks that contain executable instructions.

12.5. PROCEDURE DIVISION Sections Versus Paragraphs

The issue of whether to use section and/or paragraph names (collectively referred to as
procedure names) within the procedure division is one of near religious significance with
many COBOL programmers.

COBOL programming standards used by many organizations that use the language gener-
ally call for procedure names to:

1. Contain a leading numeric component (for example: "2000-Update-Customer"),
AND. . .

2. Be defined in the procedure division in non-decreasing sequence of that numeric com-
ponent.

15 February 2018 Chapter 12 - Programming Style Suggestions



668 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

When you are looking at or editing any large COBOL program that has been created with
programming standards that include these two rules, it is always a simple thing to know
whether a reference to a procedure is being made to code that exists before or after your
current location in the program, simply by comparing the numeric component of the current
procedure’s name with the one in question.

Technically, GnuCOBOL does not require ANY procedure names be defined unless:

1. You are using the "ALTER" statement (see [ALTER], page 280) (the use of which should
be avoided at all costs)

2. You are using a procedural "PERFORM" statement (see [Procedural PERFORM],
page 344)

3. You are using a "GO TO" statement (see [GO TO], page 316)

4. You are using a "MERGE" statement (see [MERGE], page 333) with an "OUTPUT

PROCEDURE"

5. You are using a "SORT" statement (see [SORT], page 376) with either (or both) an
"INPUT PROCEDURE" or "OUTPUT PROCEDURE"

6. You are using "DECLARATIVES" (see [DECLARATIVES], page 244)

Since it is difficult to write any non-trivial COBOL program that uses none of the above,
lets assume you will be including at least one section or paragraph in your GnuCOBOL
programs.

I like to use procedure division paragraphs and sections as follows:

1. The very first procedure defined in the procedure division of my programs, assuming
no "DECLARATIVES" (see [DECLARATIVES], page 244) are defined, will be a section
named "000-Main". The declaration of this procedure will immediately follow the
procedure division header (or "END DECLARATIVES" if "DECLARATIVES" are used).

2. Any procedures referenced by "MERGE", "PERFORM", or "SORT" statements will be de-
fined as sections.

3. Any procedures referenced by "GO TO" statements will be defined as paragraphs, and
those paragraphs will be defined in the same section as the "GO TO" statements that
reference them. In other words, "GO TO" statements may not be used to transfer control
to a point in a different section. This is NOT a GnuCOBOL rule — this is my own
personal programming practice intended to improve the readability and maintainability
of my programs.

4. I always include a numeric prefix to all procedure names I define, for the reasons stated
earlier.

5. I do not use "THRU" on any "MERGE", "PERFORM" or "SORT" statement unless the pro-
gramming standards of the shop in which I am working require it. My reasoning for

Chapter 12 - Programming Style Suggestions 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 669

this is that it is too easy to accidentally introduce a new procedure into the scope of a
"THRU".

12.6. COMPUTE Versus ADD-SUBTRACT-MULTIPLY-
DIVIDE

Over the years, there has been much debate over the efficiency and arithmetic accuracy
of using the "COMPUTE" statement (see [COMPUTE], page 288) rather than the four basic
arithmetic operation statements.

Here are the facts — draw your own conclusions as to which approach is more appropriate
under which circumstances.

1. The "COMPUTE" statement supports exponentiation (via the "**" operator) — there
is no equivalent basic arithmetic statement. Although you could simulate integral
exponentiation (raising a value to the third power, for example) using "MULTIPLY"

statements, and you may use the "SQRT" intrinsic function (see [SQRT], page 489) to
find a square root, there’s just no (easy) way to find the cube-root of a value without
using the "COMPUTE" statement.

2. For non-trivial computations, "COMPUTE" statements "read" better. Take this, for
example:

COMPUTE R = (A + B * C) / D

As compared to:

MULTIPLY B BY C GIVING TEMP

ADD A TO TEMP

DIVIDE TEMP BY D GIVING R

For non-trivial computations, "COMPUTE" statements may execute faster than the equiv-
alent chain of basic arithmetic statements. For example, the COMPUTE statement
shown above executes about 25% faster on my computer using GnuCOBOL than does
the MULTIPLY-ADD-DIVIDE sequence.

3. For trivial computations, on the other hand, I prefer the inherent readability of a
statement such as this:

ADD 1 TO WSS-Input-Trans-QTY

to this:

COMPUTE WS-Input-Trans-QTY = WS-Input-Trans-QTY + 1

————————————————————

15 February 2018 Chapter 12 - Programming Style Suggestions



670 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

End of Chapter 12 — Programming Style Suggestions

Chapter 12 - Programming Style Suggestions 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 671

Appendix A - Glossary of Terms

’Alphabetic Data Item’

A data item whose "PICTURE" clause allows it to contain only upper- and/or
lower-case letters. See [PICTURE], page 198.

’Alphanumeric Data Item’

A data item whose "PICTURE" clause allows it to contain absolutely any char-
acter whatsoever. See [PICTURE], page 198. Group items (see [Structured
Data], page 14) are also implicitly considered to be alphanumeric data items.

’Alphanumeric Literal ’

A string of characters enclosed within a pair of quotation marks (") or apos-
trophes (’). See [Alphanumeric Literals], page 37.

’Called Program’

Another way to refer to a subprogram. Note that a called program may also
be a calling program.

’Calling Program’

A program that executes a subprogram. Note that a calling program may also
be a called program.

’Collating Sequence’

The sequence in which the characters that are acceptable to a computer are
ordered for purposes of all types of sorting, merging, comparing, and processing.
GnuCOBOL programs may utilize standard character-set collating sequences
(such as that defined by the ASCII or EBCDIC character sets) or programmer-
defined custom sequences as specified in the OBJECT-COMPUTER paragraph
(section 4.1.2) and defined in the SPECIAL-NAMES paragraph (section 4.1.4).

’Compilation Group’

The collection of all compilation units being compiled by a single execution of
the GnuCOBOL compiler.

’Compilation Unit ’

A single source file being compiled by the GnuCOBOL compiler. A compilation
unit may contain one or more programs.

’Control Break ’

An event that is triggered when a control field on an RWCS-generated report
changes value. It is these events that trigger the generation of control heading
and control footing groups.

15 February 2018 Appendix A - Glossary of Terms



672 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

’Control Field ’

A field of data being presented within a detail group; as the various detail
groups that comprise the report are presented, they are presumed to appear
in sorted sequence of the control fields contained within them. As an example,
a department-by-department sales report for a chain of stores would probably
be sorted by store number and – within like store numbers – be further sorted
by department number. The store number will undoubtedly serve as a control
field for the report, allowing control heading groups to be presented before each
sequence of detail groups for the same store and control footing groups to be
presented after each such sequence.

’Control Footing ’

A report group that appears immediately after one or more detail groups of
an RWCS-generated report. Such are produced automatically as a result of a
control break. This type of group typically serves as a summary of the detail
group(s) that precede it, as might be the case on a sales report for a chain
of stores, where the detail groups documenting sales for each department (one
department per detail group) from the same store might be followed by a control
footing that provides a summation of the department-by-department sales for
that store.

’Control Heading ’

A report group that appears immediately before one or more detail groups
of an RWCS-generated report. Such are produced automatically as a result
of a control break. This type of group typically serves as an introduction to
the detail group(s) that follow, as might be the case on a sales report for a
chain of stores, where the detail groups documenting sales for each department
(one department per detail group) from the same store might be preceded by a
control heading that states the full name and location of the store.

’Control Hierarchy ’

The natural hierarchy of control breaks within a RWCS-controlled report based
upon the manner in which the data the report is being generated from is sorted.

’Copybook ’

A segment of program code that may be utilized by multiple programs simply
by having that program use the COPY statement to import that code into
the program. Although similar to the "include" facility present in many other
programming languages, the COBOL copybook mechanism is actually consid-
erably more powerful. See [Copybooks], page 13, for a general discussion. See
[COPY], page 69, for the specifics of the COPY statement.

Appendix A - Glossary of Terms 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 673

’Data Item’

A contiguous area of storage within the memory space of a program that may
be referenced, by name, in a COBOL program. Other programming languages
use the term variable, property or attribute to describe the same concept. See
[Structured Data], page 14.

’Detail Group’

A report group that contains the detailed data being presented for the report.

’Detail Report ’

An RWCS-generated report to which at least one type of detail group is pre-
sented.

’Division’

A collection of zero, one, or more sections of paragraphs, called the division
body, that are formed and combined in accordance with a specific set of rules.
Each division consists of the division header and the related division body.
There are four divisions in a GnuCOBOL program: Identification, Environ-
ment, Data, and Procedure (coded in that sequence). See [Program Structure],
page 33.

’Dynamic Subprogram’

A subprogram whose executable object code is contained in a different exe-
cutable file as its calling program. Dynamic subprograms are therefore loaded
into memory as needed.

’Elementary Item’

A data item that isn’t itself comprised of other data items. See [Structured
Data], page 14.

’Entry-point ’

A spot in the procedure division where a program may begin execution when
it is executed from the operating system, invoked as a user-defined function or
called by another program.

Every program has at least one entry-point — known as the primary entry-
point — which corresponds to the first executable statement in the procedure
division following the declaratives area, if any.

Additional entry-points may be defined via the "ENTRY" statement (see
[ENTRY], page 304).

’Entry-point Name’

Every entry-point has a name. That name must be unique for all programs that
comprise an executable program. Entry-point names are defined using a sub-

15 February 2018 Appendix A - Glossary of Terms



674 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

routine’s "PROGRAM-ID" paragraph, a user-defined function’s "FUNCTION-ID"

paragraph or via "ENTRY" (see [ENTRY], page 304) statements coded in a sub-
program’s procedure division.

’Executable File’

The GnuCOBOL compiler can create operating-system appropriate files that
may be executed directly from the operating system environment. On Windows
systems, these will be ".exe" files whereas on UNIX systems they will have no
specific extensions. The compiler’s "-x" switch is used to create executable
files. Only main programs should be compiled in this manner.

’Execution Thread ’

The complete set of executable code that is run during the execution of a
program. This includes the main program as well as all executed subprograms,
including those that are both dynamically and statically loaded.

’Figurative Constants’

GnuCOBOL, like other COBOL implementations, supports a number of re-
served words that may be used to represent a specific literal value. These are
known as figurative constants. See [Figurative Constants], page 39, for more
information.

’Fixed Format Mode’

A mode of the GnuCOBOL compiler’s operation where source statements are
constrained to meeting the pre-2002 standard of limiting COBOL statements
to 80 columns, with various columns having limitations as to what sort of
COBOL syntax could be specified in them. See [Format of Program Source
Lines], page 29, for more information.

’Free Format Mode’

A mode of the GnuCOBOL compiler’s operation where source statements are
allowed to be as long as 255 characters, with no restrictions or requirements
as to in which columns various syntax elements must appear. See [Format of
Program Source Lines], page 29, for more information.

’Group Item’

A hierarchical data structure where the group item — itself a data item —
actually consists of two or more other contiguously allocated data items. For
example, ’Employee-Name’ could be a 35-character data item consisting of a
20-character ’Last-Name’ data item followed by a 14-character ’First-Name’
and a 1-character ’Middle-Initial’. See [Structured Data], page 14.

’Hexadecimal Alphanumeric Literal ’

These are alphanumeric literals whose character sequence is specified by hex-
adecimal value. These literals are formed by a quote- or apostrophe-delimited

Appendix A - Glossary of Terms 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 675

sequence of an even number of hexadecimal digits (upper- or lower-case), pre-
fixed with the letter "X" (also upper- or lower-case). For example, the charac-
ter string "Demo" could be specified as the hexadecimal alphanumeric literal
"X’44656D6F’", assuming the ASCII character set. See [Alphanumeric Liter-
als], page 37.

’Hexadecimal Numeric Literal ’

A numeric literal whose value is specified by hexadecimal value. These liter-
als are formed by a quote- or apostrophe-delimited sequence of from 1 to 16
hexadecimal digits (upper- or lower-case), prefixed with the letter "H" (also
upper- or lower-case). For example, the number 123456 could be specified as
the hexadecimal numeric literal "H’01E240’". See [Numeric Literals], page 37.

’Identifiers’

These are data items a COBOL program will be working with. The vast ma-
jority of identifiers are defined by the user (programmer) while a few are pre-
defined by the GnuCOBOL compiler. Identifiers pre-defined by the compiler
are referred to as special registers. Other programming languages generally
refer to identifiers as "variables".

’Imperative Statement ’

Either a statement that begins with a non decision-making verb and speci-
fies an unconditional action to be taken or a conditional verb such as "IF"

or "EVALUATE", delimited by its explicit scope terminator (such as "END-IF"

or "END-EVALUATE"). An imperative statement can consist of a sequence of
imperative statements.

’Intrinsic Function’

A built-in routine that accepts arguments and returns a value; syntactically,
these may be used most places where GnuCOBOL identifiers are valid. See
[Intrinsic Functions], page 405, for documentation on all the GnuCOBOL in-
trinsic functions.

’Level Number ’

A 1- or 2-digit number that indicates the hierarchical position of a data item
in a group item or the special properties of a data description entry.

Level numbers in the range 1 through 49 indicate the position of a data item
in the hierarchical structure of a logical record. Level numbers in the range 1
through 9 can be written either as a single digit or as a zero followed by the
significant digit.

Level numbers 66, 77, 78 and 88 identify special properties of a data description
entry.

’Literal ’

15 February 2018 Appendix A - Glossary of Terms



676 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

A generic term used for a constant value coded in a program that may be either
a numeric literal or an alphanumeric literal.

’Main program’

A program that is executed directly from an operating system or shell event.
Main programs are not executed from other programs (i.e. they are not called
programs).

’National Character set ’

A character set that supports symbols using other than the traditional Roman
alphabet symbols used by the ASCII character set. Typically, such a character
set uses a UTF-16 (i.e. 16 bits-per-character) encoding of the Unicode character
set.

Support for national character sets in GnuCOBOL is currently only partially
implemented, and the compile- and run-time effect of using the "N" symbol in
a "PICTURE" (see [PICTURE], page 198) clause to define a field as containing
national characters is the same as if "X(2)" had been coded, with the additional
effect that such a field will qualify as a "NATIONAL" or "NATIONAL-EDITED" field
on an "INITIALIZE" (see [INITIALIZE], page 321) statement.

’Numeric Data Item’

A data item whose "PICTURE" clause allows it to contain only the numeric
digit characters "0"-"9" (signed or unsigned), or a data item whose
"PICTURE"/"USAGE" combination allow it to contain actual binary numbers
in integer, fixed-point, floating-point or packed-decimal format. Numeric data
items are the only ones that may be used as table subscripts or as source
arguments on arithmetic statements. "PICTURE" (see [PICTURE], page 198),
or "USAGE" (see [USAGE], page 223).

’Numeric Edited Data Item’

An otherwise numeric data item whose "PICTURE" (see [PICTURE], page 198)
clause also contains any of the editing symbols "$", "*", "+", ",", "-", ".",
"/", "0" (zero), "B", "CR", "DB" or "Z". Numeric edited data items are not eli-
gible to serve as table subscripts or source arguments on arithmetic statements.

’Numeric Literal ’

A numeric constant. See [Numeric Literals], page 37.

’Page Footing ’

A report group that appears at the bottom of every page of an RWCS-generated
report. Information typically found within such a report group might be:

• The date the report was generated

• The current page number of the report

Appendix A - Glossary of Terms 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 677

’Page Heading ’

A report group that appears at the top of every page of an RWCS-generated
report. Information typically found within such a report group might be:

• A title for the report

• The date the report was generated

• The current page number of the report

• Column headings describing the fields within the detail group(s)

’Primary Entry-Point ’

See entry-point.

’Procedure’

All executable code statements within a single procedure division paragraph or
section.

’Procedure name’

A programmer-defined section or paragraph name in the procedure division as-
signed to a procedure. Procedure names serve as a means by which a statement
may refer to the statements that follow the procedure name.

’Program’

A GnuCOBOL main program or subprogram.

’Qualification’

The process of establishing a unique reference to a data item whose name is
duplicated in a program. This takes the form of using the duplicated data name
and the name of any of its parent data items, connected by "OF" or "IN" such
that the combination of those two data names is unique within the program.

’Record ’

A group item that is not part of a higher-level group item. See [Data Definition
Principles], page 126. An elementary item with a level number of 01 can also be
referred to as a record if it’s definition occurs in the file section, provided that
it’s definition does not include the "CONSTANT" attribute. See [FILE-SECTION-
Data-Item], page 134.

’Report Footing ’

A report group that occurs only once in an RWCS-generated report — as the
very last presented report group of the report. These typically serve as a visual
indication that the report is finished.

15 February 2018 Appendix A - Glossary of Terms



678 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

’Report Group’

One or more consecutive lines on a report that serve a common informational
purpose or function. For example, lines of text that are displayed at the top or
bottom of every printed page of a report.

’Report Heading ’

A report group that occurs only once in an RWCS-generated report — as the
very first presented report group of the report. These typically serve as an
introduction to the report.

’Reserved Word ’

A word coded in a GnuCOBOL program without any quote or apostrophe
characters around it (which would have transformed that sequence of characters
into a literal string) which has a very specific meaning to the compiler. See
[Language Reserved Words], page 9, for a general discussion of the concept. See
[Appendix B - Reserved Word List], page 681, for a complete list of GnuCOBOL
reserved words.

’Sentence’

An arbitrarily long sequence of statements terminated by a period.

’Special Registers’

Special data items that are automatically defined for your use by the Gnu-
COBOL compiler. See [Special Registers], page 255, for a complete list.

’Statement ’

A single executable COBOL instruction. All statements start with a verb
("DISPLAY", "IF", "MOVE", ...) which is followed by the operands and addi-
tional syntax elements that describe the actions to be performed.

’Static Subprogram’

A subprogram whose executable object code is part of the same executable file
as its calling program. Static subprograms are therefore loaded into memory
at the same time as their caller.

’Subprogram’

A program invoked directly by another program in such a manner that it may
return control back to the other program, directly back to the point where the
subprogram was invoked.

’Subroutine’

A subprogram executed from another via a GnuCOBOL "CALL" (see [CALL],
page 281) statement (or the equivalent in whatever programming language that
other program was written in).

Appendix A - Glossary of Terms 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 679

’Summary Report ’

An RWCS-generated report to which no detail groups are presented.

’User-Defined Function’

A subprogram written in GnuCOBOL that is executed in a syntactically-similar
manner to that by which the various built-in intrinsic functions are executed.

’User-Defined Names’

Either the name of an identifier or a procedure in the program. GnuCOBOL
limits user-defined names to a maximum of 31 characters taken from the set
of numeric digits, upper- and lower-case letters, hyphens and underscores. A
user-defined name may neither begin nor end with a hyphen or underscore.
User-defined names used as file names may additionally not begin with a digit
although - unlike many other programming languages - user-defined names used
as identifiers or procedure names may.

’Verb’

The first reserved word of a COBOL statement.

’Zero-Delimited Alphanumeric Literals’

An alphanumeric literal prefixed with an upper- or lower-case "Z" character —
for example, "Z’ABC’". These literals are one character longer than the value
within apostrophes or quotes would make them appear. The extra character
(the last character) will be a null character (comprised entirely of zero bits).
These literals are ideal when defining or assigning values to alphanumeric data
items that will be passed as arguments to a C subroutine. See [Alphanumeric
Literals], page 37.

————————————————————
End of Appendix A — Glossary of Terms

15 February 2018 Appendix A - Glossary of Terms





GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 681

Appendix B - Reserved Word List

The following is the complete list of ALL reserved words in the 01Jan2018 build of Gnu-
COBOL 3.0 rc1. Even though the functionality behind some of these words may not be
implemented in this version of GnuCOBOL, none may be used as any user-defined name.
This list includes ALL reserved, intrinsics, mnemonics and system and shows some 900
words in total. In addition there are the arthmetic and relational symbols see 1.3.15.

A ABS, ACCEPT, ACCESS, ACOS, ACTIVE-CLASS, ADD, ADDRESS,
ADVANCING, AFTER, ALIGNED, ALL, ALLOCATE, ALPHABET,
ALPHABETIC, ALPHABETIC-LOWER, ALPHABETIC-UPPER,
ALPHANUMERIC, ALPHANUMERIC-EDITED, ALSO, ALTER,
ALTERNATE, AND, ANNUITY, ANY, ANYCASE, ARE, AREA,
AREAS, ARGUMENT-NUMBER, ARGUMENT-VALUE, ARITHMETIC,
AS, ASCENDING, ASCII, ASIN, ASSIGN, AT, ATAN, ATTRIBUTE,
AUTHOR, AUTO, AUTOMATIC, AUTO-SKIP, AUTOTERMINATE,
AWAY-FROM-ZERO

B BACKGROUND-COLOR, BACKGROUND-COLOUR, B-AND, BASED,
BEEP, BEFORE, BELL, BINARY, BINARY-CHAR, BINARY-C-LONG,
BINARY-DOUBLE, BINARY-INT, BINARY-LONG, BINARY-LONG-
LONG, BINARY-SHORT, BIT, BLANK, BLINK, BLOCK, B-NOT,
BOOLEAN, BOOLEAN-OF-INTEGER, B-OR, BOTTOM, B-XOR, BY,
BYTE-LENGTH

C C01, C02, C03, C04, C05, C06, C07, C08, C09, C10, C11, C12, CALL,
CALL-CONVENTION, CANCEL, CAPACITY, CD, CENTER, CF,
CH, CHAIN, CHAINING, CHAR, CHAR-NATIONAL, CHARACTER,
CHARACTERS, CLASS, CLASS-ID, CLASSIFICATION, CLOSE, COB-
CRT-STATUS, CODE, CODE-SET, COL, COLLATING, COLS, COLUMN,
COLUMNS, COMBINED-DATETIME, COMMA, COMMAND-LINE,
COMMIT, COMMON, COMMUNICATION, COMP, COMP-1, COMP-2,
COMP-3, COMP-4, COMP-5, COMP-6, COMP-X, COMPUTATIONAL,
COMPUTATIONAL-1, COMPUTATIONAL-2, COMPUTATIONAL-3,
COMPUTATIONAL-4, COMPUTATIONAL-5, COMPUTATIONAL-X,
COMPUTE, CONCATENATE, CONDITION, CONFIGURATION,
CONSOLE, CONSTANT, CONTAINS, CONTENT, CONTINUE, CON-
TROL, CONTROLS, CONVERSION, CONVERTING, COPY, CORR,
CORRESPONDING, COS, COUNT, CRT, CRT-UNDER, CSP, CURRENCY,
CURRENCY-SYMBOL, CURRENT-DATE, CURSOR, CYCLE

D DATA, DATA-POINTER, DATE, DATE-COMPILED, DATE-MODIFIED,
DATE-OF-INTEGER, DATE-TO-YYYYMMDD, DATE-WRITTEN,
DAY, DAY-OF-INTEGER, DAY-OF-WEEK, DAY-TO-YYYYDDD, DE,
DEBUGGING, DECIMAL-POINT, DECLARATIVES, DEFAULT, DELETE,
DELIMITED, DELIMITER, DEPENDING, DESCENDING, DESTINATION,

15 February 2018 Appendix B - Reserved Word List



682 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

DETAIL, DISABLE, DISC, DISK, DISPLAY, DISPLAY-OF, DIVIDE,
DIVISION, DOWN, DUPLICATES, DYNAMIC

E E, EBCDIC, EC, ECHO, EGI, ELSE, EMI, EMPTY-CHECK, ENABLE, END,
END-ACCEPT, END-ADD, END-CALL, END-CHAIN, END-COMPUTE,
END-DELETE, END-DISPLAY, END-DIVIDE, END-EVALUATE, END-IF,
END-MULTIPLY, END-OF-PAGE, END-PERFORM, END-READ,
END-RECEIVE, END-RETURN, END-REWRITE, END-SEARCH,
END-START, END-STRING, END-SUBTRACT, END-UNSTRING,
END-WRITE, ENTRY, ENTRY-CONVENTION, ENVIRONMENT,
ENVIRONMENT-NAME, ENVIRONMENT-VALUE, EO, EOL, EOP,
EOS, EQUAL, EQUALS, ERASE, ERROR, ESCAPE, ESI, EVALUATE,
EXCEPTION, EXCEPTION-FILE, EXCEPTION-FILE-N, EXCEPTION-
LOCATION, EXCEPTION-LOCATION-N, EXCEPTION-OBJECT,
EXCEPTION-STATEMENT, EXCEPTION-STATUS, EXCLUSIVE, EXIT,
EXP, EXP10, EXPANDS, EXTEND, EXTERN, EXTERNAL

F F, FACTORIAL, FACTORY, FALSE, FD, FILE, FILE-CONTROL, FILE-ID,
FILLER, FINAL, FIRST, FIXED, FLOAT-BINARY-128, FLOAT-BINARY-
32, FLOAT-BINARY-64, FLOAT-DECIMAL-16, FLOAT-DECIMAL-34,
FLOAT-EXTENDED, FLOAT-INFINITY, FLOAT-LONG, FLOAT-NOT-A-
NUMBER, FLOAT-SHORT, FOOTING, FOR, FOREGROUND-COLOR,
FOREGROUND-COLOUR, FOREVER, FORMAT, FORMATTED-
CURRENT-DATE, FORMATTED-DATE, FORMATTED-DATETIME,
FORMATTED-TIME, FORMFEED, FRACTION-PART, FREE, FROM,
FULL, FUNCTION, FUNCTION-ID, FUNCTION-POINTER

G GENERATE, GET, GIVING, GLOBAL, GO, GOBACK, GREATER, GRID,
GROUP, GROUP-USAGE

H HEADING, HIGHEST-ALGEBRAIC, HIGHLIGHT, HIGH-VALUE, HIGH-
VALUES

I ID, IDENTIFICATION, IF, IGNORE, IGNORING, IMPLEMENTS,
IN, INDEX, INDEXED, INDICATE, INHERITS, INITIAL, INI-
TIALISE, INITIALISED, INITIALIZE, INITIALIZED, INITIATE,
INPUT, INPUT-OUTPUT, INSPECT, INSTALLATION, INTEGER,
INTEGER-OF-BOOLEAN, INTEGER-OF-DATE, INTEGER-OF-DAY,
INTEGER-OF-FORMATTED-DATE, INTEGER-PART, INTERFACE,
INTERFACE-ID, INTERMEDIATE, INTO, INTRINSIC, INVALID,
INVOKE, I-O, I-O-CONTROL, IS

J JUST, JUSTIFIED

K KEPT, KEY, KEYBOARD

L LABEL. LAST, LC ALL, LC COLLATE, LC CTYPE, LC MESSAGES,
LC MONETARY, LC NUMERIC, LC TIME, LEADING, LEFT, LEFT-

Appendix B - Reserved Word List 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 683

JUSTIFY, LEFTLINE, LENGTH, LENGTH-AN, LENGTH-CHECK, LESS,
LIMIT, LIMITS, LINAGE, LINAGE-COUNTER, LINE, LINE-COUNTER,
LINES, LINKAGE, LOCALE, LOCALE-COMPARE, LOCALE-DATE,
LOCALE-TIME, LOCALE-TIME-FROM-SECONDS, LOCAL-STORAGE,
LOCK, LOG, LOG10, LOWER, LOWER-CASE, LOWEST-ALGEBRAIC,
LOWLIGHT, LOW-VALUE, LOW-VALUES

M MAGNETIC-TAPE, MANUAL, MAX, MEAN, MEDIAN, MEMORY,
MERGE, MESSAGE, METHOD, METHOD-ID, MIDRANGE, MIN, MINUS,
MOD, MODE, MODULE-CALLER-ID, MODULE-DATE, MODULE-
FORMATTED-DATE, MODULE-ID, MODULE-PATH, MODULES,
MODULE-SOURCE, MODULE-TIME, MONETARY-DECIMAL-POINT,
MONETARY-THOUSANDS-SEPARATOR, MOVE, MULTIPLE,
MULTIPLY

N NAME, NATIONAL, NATIONAL-EDITED, NATIONAL-OF, NATIVE,
NEAREST-AWAY-FROM-ZERO, NEAREST-EVEN, NEAREST-TOWARD-
ZERO, NEGATIVE, NESTED, NEXT, NO, NO-ECHO, NONE, NORMAL,
NOT, NOTHING, NULL, NULLS, NUMBER, NUMBER-OF-CALL-
PARAMETERS, NUMBERS, NUMERIC, NUMERIC-DECIMAL-POINT,
NUMERIC-EDITED, NUMERIC-THOUSANDS-SEPARATOR, NUMVAL,
NUMVAL-C, NUMVAL-F

O OBJECT, OBJECT-COMPUTER, OBJECT-REFERENCE, OCCURS, OF,
OFF, OMITTED, ON, ONLY, OPEN, OPTIONAL, OPTIONS, OR, ORD,
ORDER, ORD-MAX, ORD-MIN, ORGANISATION, ORGANIZATION,
OTHER, OUTPUT, OVERFLOW, OVERLINE, OVERRIDE

P PACKED-DECIMAL, PADDING, PAGE, PAGE-COUNTER, PARA-
GRAPH, PERFORM, PF, PH, PI, PIC, PICTURE, PLUS, POINTER,
POSITION, POSITIVE, PREFIXED, PRESENT, PRESENT-VALUE,
PREVIOUS, PRINT, PRINTER, PRINTER-1, PRINTING, PROCEDURE,
PROCEDURE-POINTER, PROCEDURES, PROCEED, PROGRAM,
PROGRAM-ID, PROGRAM-POINTER, PROHIBITED, PROMPT,
PROPERTY, PROTECTED, PROTOTYPE, PURGE

Q QUEUE, QUOTE, QUOTES

R RAISE, RAISING, RANDOM, RANGE, RD, READ, RECEIVE, RECORD,
RECORDING, RECORDS, RECURSIVE, REDEFINES, REEL, REF-
ERENCE, REFERENCES, RELATION, RELATIVE, RELEASE, REM,
REMAINDER, REMARKS, REMOVAL, RENAMES, REPLACE, REPLAC-
ING, REPORT, REPORTING, REPORTS, REPOSITORY, REQUIRED,
RESERVE, RESET, RESUME, RETRY, RETURN, RETURN-CODE,
RETURNING, REVERSE, REVERSED, REVERSE-VIDEO, REWIND,
REWRITE, RF, RH, RIGHT, RIGHT-JUSTIFY, ROLLBACK, ROUNDED,
ROUNDING, RUN

15 February 2018 Appendix B - Reserved Word List



684 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

S S, SAME, SCREEN, SCROLL, SD, SEARCH, SECONDS, SECONDS-
FROM-FORMATTED-TIME, SECONDS-PAST-MIDNIGHT, SECTION,
SECURE, SECURITY, SEGMENT, SEGMENT-LIMIT, SELECT, SELF,
SEND, SENTENCE, SEPARATE, SEQUENCE, SEQUENTIAL, SET,
SHARING, SIGN, SIGNED, SIGNED-INT, SIGNED-LONG, SIGNED-
SHORT, SIN, SIZE, SORT, SORT-MERGE, SORT-RETURN, SOURCE,
SOURCE-COMPUTER, SOURCES, SPACE, SPACE-FILL, SPACES,
SPECIAL-NAMES, SQRT, STANDARD, STANDARD-1, STANDARD-2,
STANDARD-BINARY, STANDARD-COMPARE, STANDARD-DECIMAL,
STANDARD-DEVIATION, START, STATEMENT, STATIC, STATUS,
STDCALL, STDERR, STDIN, STDOUT, STEP, STOP, STORED-
CHAR-LENGTH, STRING, STRONG, SUB-QUEUE-1, SUB-QUEUE-2,
SUB-QUEUE-3, SUBSTITUTE, SUBSTITUTE-CASE, SUBTRACT, SUM,
SUPER, SUPPRESS, SW0, SW1, SW10, SW11, SW12, SW13, SW14,
SW15, SW2, SW3, SW4, SW5, SW6, SW7, SW8, SW9, SWITCH 0,
SWITCH-0, SWITCH 1, SWITCH-1, SWITCH 10, SWITCH-10, SWITCH
11, SWITCH-11, SWITCH 12, SWITCH-12, SWITCH 13, SWITCH-13,
SWITCH 14, SWITCH-14, SWITCH 15, SWITCH-15, SWITCH 16,
SWITCH-16, SWITCH 17, SWITCH-17, SWITCH 18, SWITCH-18, SWITCH
19, SWITCH-19, SWITCH 2, SWITCH-2, SWITCH 20, SWITCH-20,
SWITCH 21, SWITCH-21, SWITCH 22, SWITCH-22, SWITCH 23,
SWITCH-23, SWITCH 24, SWITCH-24, SWITCH 25, SWITCH-25, SWITCH
26, SWITCH-26, SWITCH-27, SWITCH-28, SWITCH-29, SWITCH
3, SWITCH-3, SWITCH-30, SWITCH-31, SWITCH-32, SWITCH-33,
SWITCH-34, SWITCH-35, SWITCH-36, SWITCH 4, SWITCH-4, SWITCH
5, SWITCH-5, SWITCH 6, SWITCH-6, SWITCH 7, SWITCH-7, SWITCH
8, SWITCH-8, SWITCH 9, SWITCH-9, SWITCH A, SWITCH B, SWITCH
C, SWITCH D, SWITCH E, SWITCH F, SWITCH G, SWITCH H,
SWITCH I, SWITCH J, SWITCH K, SWITCH L, SWITCH M, SWITCH N,
SWITCH O, SWITCH P, SWITCH Q, SWITCH R, SWITCH S, SWITCH T,
SWITCH U, SWITCH V, SWITCH W, SWITCH X, SWITCH Y, SWITCH
Z, SYMBOL, SYMBOLIC, SYNC, SYNCHRONISED, SYNCHRONIZED,
SYSERR, SYSIN, SYSIPT, SYSLIST, SYSLST, SYSOUT, SYSTEM,
SYSTEM-DEFAULT, SYSTEM-OFFSET

T TABLE, TALLYING, TAN, TAPE, TERMINAL, TERMINATE, TEST,
TEST-DATE-YYYYMMDD, TEST-DAY-YYYYDDD, TEST-FORMATTED-
DATETIME, TEST-NUMVAL, TEST-NUMVAL-C, TEST-NUMVAL-F,
TEXT, THAN, THEN, THROUGH, THRU, TIME, TIME-OUT, TIMEOUT,
TIMES, TO, TOP, TOWARD-GREATER, TOWARD-LESSER, TRAILING,
TRAILING-SIGN, TRANSFORM, TRIM, TRUE, TRUNCATION, TYPE,
TYPEDEF

U U, UCS-4, UNBOUNDED, UNDERLINE, UNIT, UNIVERSAL, UNLOCK,
UNSIGNED, UNSIGNED-INT, UNSIGNED-LONG, UNSIGNED-SHORT,

Appendix B - Reserved Word List 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 685

UNSTRING, UNTIL, UP, UPDATE, UPON, UPPER, UPPER-CASE,
USAGE, USE, USER, USER-DEFAULT, USING, UTF-16, UTF-8

V V, VALID, VALIDATE, VALIDATE-STATUS, VAL-STATUS, VALUE, VAL-
UES, VARIABLE, VARIANCE, VARYING

W WAIT, WHEN, WHEN-COMPILED, WITH, WORDS, WORKING-
STORAGE, WRITE

X X"91", X"E4", X"E5", X"F4", X"F5"

Y YEAR-TO-YYYY, YYYYDDD, YYYYMMDD

Z ZERO, ZERO-FILL, ZEROES, ZEROS

————————————————————
End of Appendix B — Reserved Word List

15 February 2018 Appendix B - Reserved Word List





GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 687

Appendix C - GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright c© 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

15 February 2018 Appendix C - GNU Free Documentation License

http://fsf.org/


688 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or pro-
cessing tools are not generally available, and the machine-generated HTML, PostScript
or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document
to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

Appendix C - GNU Free Documentation License 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 689

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

15 February 2018 Appendix C - GNU Free Documentation License



690 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

Appendix C - GNU Free Documentation License 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 691

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

15 February 2018 Appendix C - GNU Free Documentation License



692 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, or
distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Appendix C - GNU Free Documentation License 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 693

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, receipt of a copy of some or all of the
same material does not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation. If the Document specifies that a proxy can decide which future
versions of this License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide
Web server that publishes copyrightable works and also provides prominent facilities
for anybody to edit those works. A public wiki that anybody can edit is an example of
such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the
site means any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license pub-
lished by Creative Commons Corporation, a not-for-profit corporation with a principal
place of business in San Francisco, California, as well as future copyleft versions of that
license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part
of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works
that were first published under this License somewhere other than this MMC, and
subsequently incorporated in whole or in part into the MMC, (1) had no cover texts
or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under
CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is
eligible for relicensing.

15 February 2018 Appendix C - GNU Free Documentation License

http://www.gnu.org/copyleft/


694 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . .Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the three,
merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

————————————————————
End of Appendix C — GNU Free Documentation License

Appendix C - GNU Free Documentation License 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 695

Appendix D - Summary of Document Changes

GnuCOBOL is an ever-evolving tool. While all reasonable attempts will be made to main-
tain the currency of the information in this document, neither the author of this document
nor the authors of the GnuCOBOL software extend any warranties of any kind for this
document or for the information contained therein.

1st Edition - 23 JAN 2010

1. INITIAL RELEASE OF DOCUMENT – corresponds to OpenCOBOL 1.1, 06FEB2009
version.

1st Edition (Rev 1) - 1 APR 2010

1. Elaborated on the use of the GLOBAL clause in data item definitions.

1st Edition (Rev 2) - 17 SEP 2010

1. Corrected "section 0" broken hyperlinks in the document.

2. Introduced documentation for the hitherto undocumented "COBCPY" environment
variable.

2nd Edition - 17 JUL 2012.

1. Updated for version 23NOV2013 of GnuCOBOL 2.0.

2. Corrected a problem with several bogus footnote references.

3. Added an International A4 page layout format version of the document, in addition to
the US Letter page format version.

4. The use of a slash character ("/") in column 7 was documented - this feature has existed
since at least the 06FEB2009 version of OpenCOBOL 1.1, but was undocumented.

5. Added documentation on the DEBUG-ITEM special register.

6. Updated DECLARATIVES documentation to better explain how to use it.

7. A new section was added to the documentation to discuss the ramifications, rules and
capabilities of sub-programming.

8. Documentation was added on the COB SET DEBUG environment variable.

9. The listings of all sample programs are now presented as listings generated by the
GnuCOBOL Interactive Compiler utility (itself included as a sample program). This
not only shows full source listings of the sample programs but complete cross-reference
listings as well.

10. A new sample program – DAY-FROM-DATE – was introduced to illustrate how to
write a user-defined function.

15 February 2018 Appendix D - Summary of Document Changes



696 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

11. A reference to a new figure documenting error codes was added to the EXCEPTION-
STATUS function.

12. Documentation was added to the CLOSE statement to explicitly document how the
last record written to a LINE SEQUENTIAL or LINE ADVANCING file may have a
terminating delimiter sequence written at the time the file is closed.

13. Documentation was added to the WRITE statement to explicitly document how the
ADVANCING options are handled with LINE SEQUENTIAL and the new LINE AD-
VANCING files.

14. Additional documentation on the cobcrun command was added.

15. User-defined functions are now supported.

16. A new built-in subroutine – C$PRINTABLE – was introduced (the COBDUMP sample
program now uses it.

17. LINE ADVANCING files are now supported.

18. Floating-point literals of the form [+-]nn.nnE[+-]nn are now supported.

19. Z"xxxxx" null-delimited alphanumeric literals are now supported.

20. The COPY statement now supports the COBOL2002 standard LEADING and TRAIL-
ING options as well as the "IN/OF library-name" and SUPPRESS PRINTING options.

21. The REPLACE Compiler-Directing Facility (CDF) statement was introduced.

22. Conditional code generation is now supported through the use of >>DEFINE, >>IF,
>>SET, >>SOURCE and >>TURN Compiler-Directing Facility (CDF) directives.

23. The COB LINE TRACE environment variable was renamed to COB SET TRACE.

24. The COB DISPLAY WARNINGS environment variable was introduced.

25. SOURCE-COMPUTER WITH DEBUGGING MODE is now supported.

26. The CHARACTER CLASSIFICATION clause of the OBJECT-COMPUTER clause
is now supported.

27. Mnemonic names are now optional for SWITCH declarations in SPECIAL-NAMES;
Eight new switches (SWITCH-0, SWITCH-9 through SWITCH-15) are now avail-
able; Switches may be specified as SW0 through SW15 as well as SWITCH-0 through
SWITCH-15; a new print channel designation of CSP is now available; SYMBOLIC
CHARACTERS are now supported.

28. The device name DISC may now be used interchangeably with DISK in SELECT
statements.

29. Files may now be SELECTed with the "NOT OPTIONAL" designation in addition to
"OPTIONAL".

30. New USAGE’s of BINARY-INT, BINARY-LONG-LONG and COMPUTATIONAL-6
were introduced.

Appendix D - Summary of Document Changes 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 697

31. The LEFTLINE screen attribute was added to the SCREEN SECTION.

32. New intrinsic functions were introduced:

• MODULE-CALLER-ID

• MODULE-DATE

• MODULE-FORMATTED-DATE

• MODULE-ID

• MODULE-PATH

• MODULE-SOURCE

• MODULE-TIME

33. A new option — WITH KEPT LOCK — was added to the READ verb.

34. The following changes were made to the ACCEPT Statement:

• The TIMEOUT option was added to Format 4.

• The non-functional CONVERSION option was added to Format 4.

• The LINE NUMBER option (a synonym for LINES) and COLS option (a synonym
for COLUMNS) and ESCAPE KEY options were added to Format 6.

• A new format – Format 7 – was introduced.

35. The ALTER verb is now supported [Editorial Comment: this change was made only
because NIST tests need it and not because you should be using it!]

36. Options (mnemonic-name, STDCALL and STATIC) were added to the CALL verb.

37. The non-functional CONVERSION option was added to Format 4 of the DISPLAY
statement.

38. The REVERSED option for the OPEN statement is now supported syntactically, even
though it is non-functional.

39. The READY TRACE and RESET TRACE statements were introduced.

40. A new option – STATUS – was added to the STOP verb.

41. The following built-in named subroutines were added:

• C$CALLEDBY

• C$GETPID

• CBL GET CSR POS

• CBL GET SCR SIZE

42. The following built-in numbered subroutines were added:

• X"E4"

15 February 2018 Appendix D - Summary of Document Changes



698 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

• X"E5"

3rd Edition - 09 APR 2014.

1. The document has been converted to GNU Texinfo format, from which both GNU
"info" and PDF files may be created for distribution.

2. A new document — "Sample Programs" — has been created from the former "Sample
Programs" chapter of this document.

3. A new document — "Quick Reference" — has been introduced to provide a complete
summary of all syntax diagrams.

3rd Edition - 01 MAY 2014.

1. Updated to include RWCS documentation, added with GnuCOBOL 2.1.

2. Removed the "See Also" links from all sections; with the Index now being fully hyper-
linked, the maintenance of these links as well as the document size increase imposed
by them is no longer justified.

4th Edition - Late 2014, Not issued for public use.

5th Edition - Changes July 2017 through Sept 2017 for v2.2 Final.

1. All documents have been updated to use GnuCOBOL instead of GNU COBOL includ-
ing this update list.

2. All documents dated to June 2017 for use with the general release of v2.2.

3. References as to the availability of reportwriter inserted.

4. Amended count of reserved word from 700 to >900.

5. Changed record locking status from 47 to 51. Bug #272.

6. Added in 4.1.4.3 extra switch settings 16-26, A through Z. Bug #302.

7. Updated Appendix B Reserved Work list. from cobc –(lists- intrinsics, mnemonics,
system, reserved).

8. All sections passed through spell checker.

9. Updated cobcrun & cobc –help output. Mods to section 1 & copyright info.

10. 22/07 Added details for ACCEPT OMITTED as 6.17.1.8 including links.

11. 24/04 Reformat order of changes so latest is last in this list instead of push down.

12. 24/07 Added missing ID elements - ID, program-id options.

13. 25/07 Added missing elements for Screen section data, OMITTED in ACCEPT console
& screen, EXCEPTION-STATUS.

14. 25/07 Catch up on bug closures - Bugs Now cleared and closed are - 272, 302, 396-398,
401.

Appendix D - Summary of Document Changes 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 699

15. 27/07 More info added for PROTECT SIZE taken from MF docs.

16. 18/08 Fix comments for bug #97.

17. 07/09 Issued docs for GnuCOBOL Compiler v2.2 Final.

5th Edition, Update 1 - Sept 2017.

1. 09/09 Fix and cleared, Bug #422.

2. 09/09 Change around SPECIAL-NAMES and REPOSITORY as wrong order, Bug
#424.

3. 10/09 Added system library elements CBL GC FORK, GETOPT*, HOSTED*,
NANOSLEEP*, PRINTABLE (Replaces legacy C$PRINTABLE) AND WAITPID
(Replaces legacy C$WAITPID). Note legacy names still supported at least for now
but may well be removed so suggest replace names likewise replace CBL OC xxx*
with CBL GC xxx).

4. 11/09 Added new note in chap. 1 - Introduction regarding non avail of RWCS and ref
to 1.3.13.

5. Renamed usage of CBL OC to CBL GC for CBL GC library routines within CBL GC
sections.

6. Added new entries as 8.1.3 and moved up following 8.1 entries. Likewise for main menu.

7. Added new for 8.2.3 showing runtime.cfg and updated with current default.conf at
same.

8. Adjust 4.1.3 & 4.1.4 as not set up in index of 1 & 4 in right order.

9. Checked and changed menus for incorrect or missing numbering.

10. 14/10 Bug #447 fixed (CDF Replacing trailing == missing.

11. 20/10 Bug #450 Removed example one and refs to COMP-5, added note for the three
usage types trunc applies to and amended the performance test example with extra
resulting figures.

12. 01/11 Added Appendix E for changes since 2009 thanks to Edward Hart (see his gram-
mar document).

13. 07/11 Provided more needed info for -P compiler option.

14. 25/11 Updated heads for 2.3 / Dec2017 & CP to 2018.

15. 28/11 In 1.1 added reference to the GnuCOBOL FAQ.

16. 10/12 Updated heads for 3.0 rc1 24DEC2017, changed remarks for RW in

17. chapters 1.3.13 and 7. showing availability for v3.0.

18. -> 6th Ed. to be issued in Jan 18 for v3.0 final.

6th Edition On release of v3.0 rc1.

15 February 2018 Appendix D - Summary of Document Changes



700 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

1. 17/12 Update description for NUMVAL-C along with missing 2nd & 3rd arguments
and more detail.

2. Added missing third parameter execution-time to functions DATE-TO-YYYYMMDD,
DAY-TO-YYYYDDD, YEAR-TO-YYYY.

3. Added missing functions: FORMATTED-CURRENT-DATE, FORMATTED-DATE,
FORMATTED-DATETIME, FORMATTED-TIME, INTEGER-OF-FORMATTED-
DATE, TEST-FORMATTED-DATETIME and renumbered all functions accordingly
by position in Guide.

4. 18/12 More notes for NUMVAL, NUMVAL-C.

5. NUMVAL-C contains two references for testing descriptions.

6. Removed the ’syntax ref for FINAL CONTROL FOOTINGS at 7.2.

7. Removed incorrect information about a fatal error when opening or other processing
of a file as all errors can be recovered with a Cobol program using file status test or
using a Declarative section.

8. 19/12 Moved current updates section in D and top of manual into a included text file.

9. 20/12 Added comment regard REPORT section clauses and their order.

10. 21/12 Run Spellcheck against manual sources to catch typo’s.

11. Added warning about using WS area only for data referenced within RW.

12. Removed warning in RW notes about CODE IS and COLUMNS are ignored - not any
more.

13. 23/12 Moved chap. 7 - 10 to 9 - 12, 3 - 6 to 4 - 7. Created new ch.2 from 1.3 & new ch.8
from 7.16 to ch. 8. Moved 8.21 to special registers?. Removed report about specific
non-implemented functions in 8.1 that now are. Inserted page breaks in 8.2. Moved
Ch. 7.6 - 7.13 to at end of Ch. 2. NEEDS resorting.

14. 24/12 Added support for SPLIT and SPARSE keys in ISAM (Indexed) type files see
references for RECORD and ALTERNATE KEY clauses. Update ChangeLog.

15. Create index for ’Split Keys’ reference.

16. 25/12 Remove comment from RW chapter about availability as now included.

17. 27/12 Added missing SET LAST EXCEPTION to PG and QR.

18. Added un-implemented functions: BOOLEAN-OF-INTEGER, CHAR-NATIONAL,
DISPLAY-OF, EXCEPTION-FILE-N, EXCEPTION-LOCATION-N, INTEGER-
OF-BOOLEAN, NATIONAL-OF, STANDARD-COMPARE with warning not
implemented.

19. Added missing system functions CBL READ KBD CHAR & CBL SET CSR POS.
Spotted in NEWS file.

20. 29/12 Adjusted format for select idx to reduce width of text.

Appendix D - Summary of Document Changes 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 701

21. 01/01 Update all 3 for 01 Jan 2018.

22. 05/01 Updated contents of runtime.cfg in Chp. 10.

23. 13/01 Updated comments for CBL CHECK FILE EXIST as back to front/wrong.

24. 14/02 For SORT replaced diagram reference of file-name-3 to file-name-2 as wrong.

————————————————————
End of Appendix D — Summary of Document Changes

15 February 2018 Appendix D - Summary of Document Changes





GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 703

Appendix E - Summary of Compiler Changes
since 2009 and version v1-1

To GnuCOBOL Compiler v2.2. There may well be some changes made that are not docu-
mented here.

Taken from Grammar Changelog Sept 2017.

1. General

• 64-bit numbers: fixed bugs in handling of 64-bit numbers (e.g. bug #229).

• ACUCOBOL windows: added detection of ACUCOBOLs window/message box
GUI syntax.

• C API (data): added several functions for getting and setting cob field items.

• C API (files): added cob file external addr, cob file malloc and cob file free.

• C API (screen): added several functions from Micro Focus C to COBOL
API: cob display text, cob sys get char, cob get char, cob get text,
cob display formatted text, cob sys get csr pos, cob sys set csr pos, cobmove,
cobaddstrc, cobprintf and cobgetch (feature requests #148 and #187).

• C API (signals): added cob raise to send signal to signal handlers.

• C compiler support: fixed errors in compilers without designated initializers.

• cobc command-line options: added -O3 to enable more optimisations.

• cobc command-line options: added -Wfatal-error to make the compiler abort on
the first error.

• cobc command-line options: added -Wpossible-overlap to warn items that may
overlap (-Woverlap only warns if items definitely overlap).

• cobc command-line options: added -fmax-errors to set number of errors at which
the compiler aborts.

• cobc command-line options: added -fwinmain to output WinMain instead of main
(feature request #194).

• cobc command-line options: added -t and -T for complete listing support (-t for
80-characters wide listings and -T for 132-characters wide) which includes cross-
references.

• cobc command-line options: added -vvv (like -vv but passes verbose option to the
linker as well) and -### (like -v but commands are not executed).

• cobc command-line options: allow -, i.e. stdin, as a source file.

• COBOL-85 NIST testsuite: tests now refer to $COBC, $COBCRUN and
$COBCRUN DIRECT environment variables instead of directly calling cobc and
cobcrun, allowing the testsuite to run in conjunction with tools like valgrind.

15 February 2018 Appendix E - Summary of Compiler Changes since 2009 and version v1-1



704 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

• COBOL-85 NIST testsuite: tests for obsolete feature flagging are now executed, if
possible.

• Comments: added ACUCOBOL comments: $ as synonym for * in indicator area
and j as synonym for floating comment indicator *>.

• Communication facility: added detection of communication facility syntax.

• configure: added useful error message when help2man, bison and flex are missing
when they are needed.

• curses: fixed compilation errors when configured without curses (bug #90).

• Error messages: error messages are now lowercase, in line with the GNU Coding
Standards (bug #198).

• Error messages: segfaults in the compiler now cause an error message to be dis-
played.

• Error messages: replaced instances of ODO by the clearer OCCURS DEPENDING
ON.

• Expressions: resolve constant expressions and optimise constant decimals at com-
pile time.

• Expressions: added support for IBM OS/VS COBOLs arithmetic.

• Expressions: improved error messages for malformed expressions.

• Indicators: invalid indicators no longer cause compilation to immediately terminate
(feature request #126).

• Information: output compiler version used to build GnuCOBOL and any mathe-
matical libraries used (feature request #169).

• Information: output what a reserved word is an alias for in the list-reserved output
(feature request #214).

• Manpage: added manpage generation and installation.

• Nested programs: Nested programs no longer need to have END PROGRAM.

• National literals: added basic support for national literals.

• Numeric literals: added ACUCOBOL numeric literals: B#.. . for binary, O#.. .
for octal, and X#.. . and H#.. . for hexadecimal.

• Literals: fixed heap corruptions caused by uncommon literals (bug #195).

• Literals: allow concatenation of literal and Boolean literals.

• Memory management: all memory belonging to the parsers and lexers is freed
upon a compiler abend.

• Memory management: fixed memory leaks due to recursive CALLs.

• Microsoft Visual C++: output when compiling with cl.exe is now filtered and tem-

Appendix E - Summary of Compiler Changes since 2009 and version v1-1 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 705

porary files are deleted.

• MinGW: fixed use of wrong directory separator.

• Signals: removed error message on SIGPIPE.

• Signals: added error message for SIGBUS.

• Translations: updated, with new support for German and Italian.

• User-defined functions: function definitions must now end with END FUNCTION.

• User-defined functions: function definitions may no longer be nested in programs
(bug #255).

• Windows support: allow linking with asm files.

• Windows support: added support for DISAM in the batch file which creates dis-
tributables.

• Windows support: fixed environment-setting batch files not working with Mi-
crosoft Visual Studio 2017.

• Windows support: fixed 64-bit environment-setting batch files not checking the
correct directories for binaries and libraries.

2. Configuration options

• Deleted compiler configuration options: eject-statement, cobol85-reserved.

• New compiler configurations: all dialects have been split into standard and strict
dialects, with strict dialects maintaining source compatibility with the dialects
compiler(s).

• New compiler configurations: acu for ACUCOBOL, cobol2014 for COBOL 2014,
rm for RM-COBOL, xopen for X/Open.

• New compiler configuration options: accept-display-extensions, accept-update,
accept-auto, acu-literals, arithmetic-osvs, call-overflow, console-is-crt, constant-01,
constant-78, constant-folding, define-constant-directive, hexadecimal-boolean,
hexadecimal-national-literals, incorrect-conf-sec-order, intrinsic-function,
listingstatements, literal-length, move-figurative-constant-to-numeric, move-
figurativequote-to-numeric, move-ibm, national-literals, no-echo-means-secure,
not-exceptionbefore-exception, numeric-boolean, numeric-literal-length, numeric-
value-for-editeditem, pic-length, program-name-redefinition, program-prototypes,
reference-out-ofdeclaratives (feature request #179), register, renames-uncommon-
levels, reserved, reserved-words, stop-identifier, system-name, title-statement,
use-for-debugging, word-length (feature request #43).

• Registers: compiler configurations can now specify all the registers to generate.

• Registers: added registers not yet implemented by GnuCOBOL as reserved words.

• Renamed compiler configuration options: debugging-line to debugging-mode,

15 February 2018 Appendix E - Summary of Compiler Changes since 2009 and version v1-1



706 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

relaxed-syntax-check to relax-syntax-checks

• Reserved words: compiler configurations can now specify all the reserved words
and context-sensitive words permitted.

• Reserved words: compiler configurations can now specify whether a reserved word
is an alias for another reserved word.

• Runtime configuration: added ability to configure some libcob features at runtime.

• Support options: options which specify if a feature is supported can now take a +

before their argument to indicate it takes effect only if the current level of support
is less strict than ok.

3. Compiler directives

• $ indicator character: added $ as an indicator for compiler directive lines.

• >>IF directive: fixed bug #263, where nested >>IF directives were not handled
correctly.

• New constants: GCCOMP, GnuCOBOL.

• New directives: >>CALL-CONVENTION, >>LISTING, >>PAGE.

• New directives (detection only): *CBL, *CONTROL, TITLE.

• New >>SET phrase: SOURCEFORMAT.

4. Identification division

• Comment paragraphs: fixed invalid parsing of quote characters inside comment
paragraphs (bug #297).

• FUNCTION-ID: added checks for redefinition of function-names.

• INITIAL phrase: fixed premature deallocation of INITIAL programs (bug #52).

• OPTIONS paragraph: added with implementation of DEFAULT ROUNDED
MODE and ENTRY-CONVENTION phrases and recognition of INTERMEDI-
ATE ROUNDING phrase.

• PROGRAM-ID: added checks for redefinition of program-names.

• PROGRAM-ID phrases: permit INITIAL or RECURSIVE before COMMON (bug
#244).

• Program/function-names: warn if program/function-names contain spaces.

5. Environment division

• ASSIGN clause: missing ASSIGN clauses are now detected at compile-time.

• ASSIGN clause: added PRINTER and PRINTER-1 device-names for writing to a
printer.

Appendix E - Summary of Compiler Changes since 2009 and version v1-1 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 707

• ASSIGN clause: added CARD-PUNCH, CARD-READER, CASSETTE, INPUT,
INPUTOUTPUT, MAGNETIC-TAPE and OUTPUT device-names for line se-
quential devices.

• ASSIGN clause: temporarily prohibit BASED and linkage items in ASSIGN US-
ING due to bug #421.

• CALL-CONVENTION phrase: statically calling functions with CALL-
CONVENTION 74 no longer causes linker errors (bug #316).

• CURRENCY phrase: fixed bug #182, where a preceding SWITCH phrase caused
an incorrect duplicate CURRENCY clause error.

• File-control entry: fixed bug #71, where referring to a global constant caused an
internal error.

• File-control entry: fixed bug #331, where using an identifier in a file record qual-
ified with the files name caused an error.

• FUNCTION phrase: added checks for redefinition of function-(prototype-)names.

• FUNCTION phrase: compiler will no longer stop when it encounters a syntax
error.

• LOCK MODE clause: fixed combination of LOCK MODE IS AUTO-
MATIC/MANUAL with LOCK ON MULTIPLE.

• PROGRAM phrase: added support for program-prototype-names.

• SIGN clause: improved syntax checks.

• SWITCH phrase: added check for duplicate on/off clauses (bug #136).

• SWITCH phrase: added new switch names: SWITCH-16 through to SWITCH-36
(feature request #65), SWITCH 1 to SWITCH 26 (and their aliases SWITCH A
to SWITCH Z), UPSI-0 to UPSI-8 (equivalent to SWITCH 0 to SWITCH 8) and
USW-0 to USW-31 (equivalent to SWITCH 0 to SWITCH 31).

6. Data division

• 78-level items: strengthened syntax checks.

• 88-level items: strengthened syntax checks.

• ANY NUMERIC clause: ANY NUMERIC items must now have PIC 9.

• ANY LENGTH clause: ANY LENGTH items may no longer be BY VALUE pa-
rameters (see bug #219).

• ANY LENGTH clause: ANY LENGTH items must now have PIC X or PIC N.

• BLANK clause: fixed bug #143, where BLANK LINE/SCREEN did not colour
line/screen.

• BLANK WHEN ZERO clause: added checks that BLANK WHEN ZERO is not

15 February 2018 Appendix E - Summary of Compiler Changes since 2009 and version v1-1



708 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

specified with PICTURE clauses containing S.

• Constant items: expressions in VALUE clauses now permitted.

• Data description: added a maximum record length.

• Data description: increased maximum size of non-indexed file record to 64 MiB
(maximum size of an indexed file record is 65535 bytes).

• ERASE clause: fixed bug #186, where ERASE EOL and ERASE EOS could be
specified simultaneously.

• FULL clause: added warning for useless FULL clauses on numeric items (feature
request #209).

• HIGHLIGHT and LOWLIGHT clauses: added checks that HIGHLIGHT and
LOWLIGHT are not specified simultaneously.

• Local-storage section: fixed bug #78, where local-storage items where initialised
after file section items.

• LOWLIGHT clause: implemented.

• OCCURS clause: fixed internal compiler when used with SYNC (bug #155).

• OCCURS clause: allow KEY phrase and INDEXED phrase in any order.

• OCCURS clause: fixed bug #167, where overly large numeric literals where ac-
cepted in the OCCURS clause.

• OCCURS clause (depending): require the minimum length to be less than the
maximum length (feature request #99).

• OCCURS clause (depending): disabled nested OCCURS DEPENDING tables due
to bugs.

• OCCURS clause (screen-section): require relative LINE/COLUMN clauses in OC-
CURS entries (bug #83).

• OCCURS clause (unbounded): added by Frank Swarbrick (patch #50).

• PICTURE clause: restricted number of permitted PICTURE strings (bug #232).

• PICTURE clause: improved checks of constant-names referenced in PICTURE
strings.

• RENAMES items: strengthened syntax checks.

• RESERVE clause: allow the optional word AREAS.

• Screen description: permit figurative constants in screen items (bug #108).

• TALLY special register: added.

• USAGE clause: added ACUCOBOLs HANDLE phrases (see feature request #77).

• VALUE clause: VALUE clauses in REDEFINES entries now cause warnings, not

Appendix E - Summary of Compiler Changes since 2009 and version v1-1 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 709

errors, for compatibility.

• Variable records: added checks that the minimum size of a variable record is large
enough to contain the record key.

7. Procedure division

• ACCEPT statement: added ESCAPE as synonym for EXCEPTION.

• ACCEPT statement: permit clauses in any order.

• ACCEPT statement: allow WITH before every screen attribute clause.

• ACCEPT statement: entering control-C now terminates the program.

• ACCEPT statement (screen): fixed failed ACCEPTs caused by a buffer overflow.

• ACCEPT statement (screen): enhanced support for special keys (insert, tab,
delete, alt-delete, etc.).

• ACCEPT statement (screen): fixed bug #161 where screens terminated after en-
tering a few characters in a field.

• ACCEPT statement (screen): added DEFAULT as synonym for UPDATE.

• ACCEPT statement (screen): ERASE and BLANK clauses in screens are now
ignored (bug #192).

• ACCEPT statement (screen): fixed bug #160 where ACCEPT statement
LINE/COLUMN clauses did not work.

• ACCEPT statement (screen): fixed segfault on ACCEPT OMITTED (bug #300).

• ACCEPT statement (screen): added checks that screen attributes are not specified
multiple times or after conflicting attributes.

• ACCEPT statement (screen): fixed some phrases not being recognised without
being preceded by WITH (bug #402).

• ACCEPT statement (screen): fixed the backspace and delete keys not working
and the insert key not toggling between insertion and overwriting.

• ACCEPT statement (screen): cursor now changes with insertion/overwrite mode
(if supported by the terminal).

• ACCEPT statement (screen): a beep is emitted on attempts to insert data into a
full field.

• ADD statement (corresponding): restricted to numeric items (bug #235).

• ADD statement (table): added detection of ADD TABLE.

• Addition of COMP-3 numbers: fixed bug where COMP-3 addition failed.

• Addition of floating-point numbers: fixed incorrect addition of floating-point num-
bers.

15 February 2018 Appendix E - Summary of Compiler Changes since 2009 and version v1-1



710 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

• CALL statement: implemented feature request #101, allowing more arguments to
be provided.

• CALL statement: fixed behaviour when calling cancelled modules.

• CALL statement: added RETURNING NOTHING.

• CALL statement: the generation of C function declarations for static CALLs can
now be disabled.

• CALL statement: added checks for static CALLs referring to C macros.

• CALL statement: warn if a literal containing the program-name contains spaces.

• CALL statement: added detection of NESTED phrase.

• CANCEL statement: fixed crash caused by cancelling a cancelled module.

• Conditions: restricted use of IS (bug #321).

• Conditions: added warnings for always true/false conditions (including the reason
why it is always true/false).

• DESTROY statement: added detection of DESTROY.

• DISPLAY statement: permit clauses in any order.

• DISPLAY statement: allow WITH before every screen attribute clause.

• DISPLAY statement (screen): fixed bug where EC-SCREEN exceptions did not
trigger ON EXCEPTION handler (bug #243).

• DISPLAY statement (screen): fixed bugs in DISPLAY SPACES/ALL X02/ALL
X07.

• DISPLAY statement (screen): added checks that screen attributes are not specified
multiple times or after conflicting attributes.

• DISPLAY statement (screen): DISPLAY OMITTED marked as unfinished; cur-
rently equivalent to DISPLAY LOW-VALUE.

• DISPLAY statement (screen): fixed some phrases not being recognised without
being preceded by WITH (bug #402).

• END DECLARATIVES phrase: fixed bug #88, where an erroneous unreachable
code warning was emitted for code without a main procedure.

• ENTRY statement: suppress incorrect unreachable code warnings.

• Exception handlers: permit NOT ON EXCEPTION/END-OF-PAGE/etc. before
ON EXCEPTION/END-OF-PAGE/etc.

• EXIT statement: added extension RETURNING/GIVING clause for PROGRAM
phrase.

• File I-O: added detection of and handling for error when no disc space is available
for output files.

Appendix E - Summary of Compiler Changes since 2009 and version v1-1 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 711

• File I-O: added RETRY and ADVANCING ON LOCK as pending features.

• File I-O: fixed detection of DISAM file handler.

• FREE statement: NULL addresses no longer cause an exception.

• GOBACK statement: added extension RETURNING/GIVING clause.

• INITIALIZE statement: fixed bug #84, where literals could be passed to INI-
TIALIZE.

• INITIALIZE statement: fixed bug #287, where reference-modified group items
were not treated like elementary items.

• INSPECT statement: fixed bug #47, where clauses were permitted in invalid
orders.

• LENGTH OF phrase: fixed bug #89, where the length of REDEFINES item where
calculated incorrectly.

• LENGTH OF phrase: fixed bug #110, where LENGTH OF was not allowed in
the UNTIL phrase of a PERFORM statement or in a VALUE clause.

• MOVE statement: added more checks for overlapping MOVE statements.

• MOVE statement: fixed truncation of COMP numbers not conforming to the
binary truncate setting (bug #69).

• MOVE statement: fixed bug #344, where trying to MOVE to a procedure-name
caused a segfault.

• MOVE statement: added support for IBMs character-by-character MOVE.

• PERFORM statement: fixed bug #368, where the compiler segfaulted when there
was a PERFORM statement with an empty body and DEBUGGING MODE was
specified.

• Procedure division header: fixed bug #55, where a user-defined function without
parameters failed to compile.

• Procedure division header: disabled the BY VALUE phrase, pending a working
implementation.

• Procedure division header: fixed bug #349, where BY VALUE pointer parameters
lead to code that could not be compiled by older versions of Microsoft Visual C++.

• Procedure division header: RETURNING items must now be declared in the link-
age section.

• Procedure division header: added RETURNING OMITTED.

• Procedure division header: added entry-convention specifiers.

• Procedure division header: now mandatory in function definitions (see bug #271).

• Procedure division header: CHAINING programs may no longer be called by other

15 February 2018 Appendix E - Summary of Compiler Changes since 2009 and version v1-1



712 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

programs (bug #354), per the ACUCOBOL implementation.

• Reference modification: fixed bug #146, where the length of reference-modified
item in an OCCURS DEPENDING table was too long because it was assumed the
OCCURS DEPENDING table was at its maximum size.

• READ statement: a failed second READ of a missing OPTIONAL file now results
in a file status of 46, not 23.

• REWRITE statement: added REWRITE FILE (feature request #170).

• Screen I-O: added detection of situations which raise EC-SCREEN-LINE-
NUMBER, EC-SCREEN-STARTING-COLUMN and EC-SCREEN-ITEM-
TRUNCATED.

• Screen I-O: added support for the LINE 0 and COL 0 extensions.

• Screen I-O: added some ACUCOBOL synonyms (NO ECHO, OFF, REVERSED,
REVERSE, etc.).

• Screen I-O: added detection of ACUCOBOLs non-standard clauses like TAB,
NOECHO, STANDARD, BACKGROUND-HIGH, BACKGROUND-LOW,
BACKGROUND-STANDARD and SIZE.

• SEARCH statement (ALL): fixed bug #314, where SEARCH ALL with an empty
OCCURS DEPENDING table did not exit as soon as possible.

• Segment numbers: added syntax checks.

• SET statement (address): disallowed changing address of non-01/77-level item
(bug #366).

• SET statement (attribute): made HIGHLIGHT ON imply LOWLIGHT OFF and
vice versa.

• SET statement (exception): added.

• SET statement (thread): added detection of ACUCOBOL extension.

• STOP statement (identifier): added (see bug #320).

• STOP statement (literal): fixed segfault.

• STOP statement (thread): added detection of ACUCOBOL extension.

• STRING statement: strengthened syntax checks (bug #259).

• SUBTRACT statement (corresponding): restricted to numeric items (bug #235).

• SUBTRACT statement (table): added detection of SUBTRACT TABLE.

• Tracing: fixed bug #216, where a segfault occurred with a program made from
modules some of which had been compiled with tracing and physical CANCEL
enabled and some of which had not.

• UNSTRING statement: fixed bug #54, where the POINTER value was calculated

Appendix E - Summary of Compiler Changes since 2009 and version v1-1 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 713

incorrectly when the delimiter was longer than one character.

• UNSTRING statement: allow a literal to be the subject of an UNSTRING.

• WRITE statement: added WRITE FILE (feature request #170).

8. Intrinsic functions

• New functions (ACUCOBOL): ABSOLUTE-VALUE (synonym for ABS).

• New functions (COBOL 2014): FORMATTED-CURRENT-DATE,
FORMATTED-DATE, FORMATTED-DATETIME, FORMATTED-TIME,
INTEGER-OF-FORMATTED-DATE, TESTFORMATTED-DATETIME.

• ISO-8601-date-handling functions: added extension SYSTEM-OFFSET as
replacement for last optional argument.

• ISO-8601-date-handling functions: added EC-IMP-UTC-UNKNOWN if a time
format ending in Z is provided but the timezone cannot be found.

• LENGTH function: added detection of PHYSICAL phrase.

• RANDOM function: fixed non-random number generation.

9. Built-in subprograms

• CBL GC FORK: added.

• CBL GC PRINTABLE: renamed from C$PRINTABLE.

• CBL GC WAITPID: added.

• CBL SET CSR POS: added (feature requests #148 and #187).

• CBL READ KBD CHAR: added (feature requests #148 and #187).

—————————————————————————–
End of Appendix E — Summary of Compiler Changes since 2009 and version v1.1

15 February 2018 Appendix E - Summary of Compiler Changes since 2009 and version v1-1





GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 715

Index

"
" (Quote) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

&
& (Literal Concatenation) . . . . . . . . . . . . . . . . . . . . . . 38

’
’ (Apostrophe) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

*
* (Multiplication) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
* Directives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
* In Column 7 (Comment) . . . . . . . . . . . . . . . . . . . . . 36
** (Exponentiation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
*> (Comment) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

+
+ (Addition) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
+ (Unary Sign Retention) . . . . . . . . . . . . . . . . . . . . . . 46

,
, (Punctuation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

–
- (Character in Words/Names) . . . . . . . . . . . . . . . . . . 9
- (Subtraction) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
- (Unary Sign Reversal) . . . . . . . . . . . . . . . . . . . . . . . . 46
- In Column 7 (Continuation) . . . . . . . . . . . . . . . . . . 38
-b Compiler Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . 644
-conf Compiler Switch . . . . . . . . . . . . . . . . . . . . . . . . 619
-debug Compiler Switch . . . . . . . . 245, 424, 425, 511
-fdebugging-line Compiler Switch . . . . . . 36, 93, 245
-ffold-call Compiler Switch . . . . . . . . . . . . . . . . . . . . 626
-ffold-copy Compiler Switch . . . . . . . . . . . . . . . 78, 619
-fintrinsics Compiler Switch . . . . . . . . . . . . . . . . . . . 405
-fintrinsics=ALL Compiler Switch . . . . . . . . . . . . . 106
-fixed Compiler Switch . . . . . . . . . . . . . . . . . . 30, 78, 79
-foptional-file Compiler Switch . . . . . . . . . . . . . . . . 110
-free Compiler Switch . . . . . . . . . . . . . . . . . . . 30, 78, 79
-fsyntax-extension Compiler Switch . . . . . . . . . . . 104
-ftrace Compiler Switch . . . . . . . . . . . . . 355, 357, 627
-ftraceall Compiler Switch . . 357, 424, 425, 511, 627
-g Compiler Switch . . . . . . . . . . . . . . . . . . 424, 425, 511
-I Compiler Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . 618
-m Compiler Switch . . . . . . . . . . . . . . . . . 615, 625, 644
-o Compiler Switch . . . . . . . . . . . . . . . . . . . . . . . 614, 624

-O Compiler Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . 639
-O2 Compiler Switch . . . . . . . . . . . . . . . . . . . . . . . . . . 639
-Os Compiler Switch . . . . . . . . . . . . . . . . . . . . . . . . . . 639
-Wobsolete Compiler Switch . . . . . . . . . . . . . . . . . . . . 88
-x Compiler Switch . . . . . . . . . . . . . 614, 624, 644, 674

.

. (Punctuation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

/
/ (Division) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
/ In Column 7 (Comment) . . . . . . . . . . . . . . . . . . . . . 36

;
; (Punctuation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

>
>>CALL-CONVENTION . . . . . . . . . . . . . . . . . . . . . . 68
>>D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
>>D (Debugging Line) . . . . . . . . . . . . . . . . . . . . . . . . . 36
>>DEFINE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
>>DISPLAY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
>>ELIF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
>>ELSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
>>END-IF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
>>IF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
>>LEAP-SECONDS . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
>>LISTING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
>>PAGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
>>SET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
>>SOURCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
>>TURN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

^
^ (Exponentiation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

(Character in user-defined words) . . . . . . . . . . . . . . 9

0
01-Level Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6
66-Level Data Items . . . . . . . . . . . . . . . . . . . . . . . . . . 157

15 February 2018 Index



716 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

7
77-Level Data Items . . . . . . . . . . . . . . . . . . . . . . . . . . 158
78-Level Data Items . . . . . . . . . . . . . . . . . . . . . . . . . . 159

8
88-Level Data Items . . . . . . . . . . . . . . . . . . . . . . . . . . 160

A
A Sample Screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
ABS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406
ACCEPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
ACCEPT FROM COMMAND-LINE . . . . . . . . . . 259
ACCEPT FROM CONSOLE . . . . . . . . . . . . . . . . . 258
ACCEPT FROM DATE/TIME . . . . . . . . . . . . . . . 267
ACCEPT FROM ENVIRONMENT . . . . . . . . . . . 261
ACCEPT FROM EXCEPTION-STATUS . . . . . 271
ACCEPT FROM Runtime-Info . . . . . . . . . . . . . . . 269
ACCEPT FROM Screen-Info . . . . . . . . . . . . . . . . . 268
ACCEPT OMITTED . . . . . . . . . . . . . . . . . . . . . . . . . 270
ACCEPT screen-data-item . . . . . . . . . . . . . . . . . . . . 262
ACCESS MODE DYNAMIC . . . . . . . . . . . . . 119, 121
ACCESS MODE RANDOM . . . . . . . . . . . . . 118, 121
ACCESS MODE SEQUENTIAL . . . . 114, 117, 121
ACOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407
ADD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
ADD CORRESPONDING . . . . . . . . . . . . . . . . . . . . 276
ADD GIVING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
ADD TO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
Additional Reference Sources . . . . . . . . . . . . . . . . . . . . 3
ADDRESS OF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
ADVANCING PAGE . . . . . . . . . . . . . . . . . . . . . . . . . 403
AFTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
AFTER ADVANCING . . . . . . . . . . . . . . . . . . . . . . . . 403
AFTER EXCEPTION CONDITION . . . . . . . . . . 244
ALL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106, 235, 399
ALL INTRINSIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
ALL OTHER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62, 109
ALLOCATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
Alphabet-Name-Clause . . . . . . . . . . . . . . . . . . . . . . . 101
Alphabetic Data Item . . . . . . . . . . . . . . . . . . . . . . . . . 671
Alphabetic Data Items . . . . . . . . . . . . . . . . . . . . . . . . 199
ALPHABET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
ALPHABETIC . . . . . . . . . . . . . . . . . . . . . . . . . . . 50, 321
ALPHABETIC-LOWER . . . . . . . . . . . . . . . . . . . . . . . 50
ALPHABETIC-UPPER . . . . . . . . . . . . . . . . . . . . . . . . 50
Alphanumeric Data Item . . . . . . . . . . . . . . . . . . . . . . 671
Alphanumeric Data Items . . . . . . . . . . . . . . . . . . . . . 199
Alphanumeric Literal . . . . . . . . . . . . . . . . . . . . . . . . . 671
Alphanumeric Literal (Hexadecimal) . . . . . . . . . . . 38
Alphanumeric Literal (Zero-Delimited) . . . . . . . . . 38
Alphanumeric Literals . . . . . . . . . . . . . . . . . . . . . . . . . 37
ALPHANUMERIC . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
ALPHANUMERIC-EDITED . . . . . . . . . . . . . . . . . . 321
ALSO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72, 306
Alternate Entry Points . . . . . . . . . . . . . . . . . . . . . . . . 643

ALTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
ALTERNATE RECORD KEY . . . . . . . . . . . . . . . . 121
An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 588
AND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
ANNUITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408
ANY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
ANY LENGTH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Area "A" (Columns 8-11) . . . . . . . . . . . . . . . . . . . . . . 31
Area "B" (Columns 12-72) . . . . . . . . . . . . . . . . . . . . . 31
ARGUMENT-NUMBER . . . . . . . . . . . . . . . . . 259, 294
ARGUMENT-VALUE . . . . . . . . . . . . . . . . . . . . . . . . 259
Arithmetic Expressions . . . . . . . . . . . . . . . . . . . . . . . . 46
ASCENDING KEY . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
ASCII . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
ASIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409
AT END . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
AT END + NOT AT END . . . . . . . . . . . . . . . . . . . . 246
ATAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410
AUTHOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
AUTO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
AUTO-SKIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
AUTOTERMINATE . . . . . . . . . . . . . . . . . . . . . . . . . . 164

B
BACKGROUND-COLOR . . . . . . . . . . . . . . . . . . . . . 165
BASED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
BEEP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
BEFORE ADVANCING . . . . . . . . . . . . . . . . . . . . . . 403
BELL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
Binary Truncation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 636
BLANK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
BLANK WHEN ZERO . . . . . . . . . . . . . . . . . . . . . . . 170
BLINK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
BLOCK CONTAINS . . . . . . . . . . . . . . . . . . . . . . . . . 131
BOOLEAN-OF-INTEGER . . . . . . . . . . . . . . . . . . . . 507
Built-In System Subroutines . . . . . . . . . . . . . . . . . . 516
BY CONTENT . . . . . . . . . . . . . . . . . . . . . . . . . . 284, 650
BY REFERENCE . . . . . . . . . . . . . . 238, 284, 649, 650
BY VALUE . . . . . . . . . . . . . . . . . . . . . . . . . 239, 284, 650
BYTE-LENGTH . . . . . . . . . . . . . . . . . . . . . . . . . 154, 411

C
C Main Programs Calling

GnuCOBOL Subprograms . . . . . . . . . . . . . . . . . . 659
C$CALLEDBY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518
C$CHDIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519
C$COPY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 520
C$DELETE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521
C$FILEINFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 522
C$GETPID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523
C$JUSTIFY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524
C$MAKEDIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525
C$NARG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 526
C$PARAMSIZE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527
C$PRINTABLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528

Index 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 717

C$SLEEP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529
C$TOLOWER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 530
C$TOUPPER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531
Called Program . . . . . . . . . . . . . . . . . . . . . . . . . . 641, 671
Called Program Considerations . . . . . . . . . . . . . . . 650
Calling Program . . . . . . . . . . . . . . . . . . . . . . . . . 641, 671
Calling Program Considerations . . . . . . . . . . . . . . . 649
CALL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
CALL-CONVENTION . . . . . . . . . . . . . . . . . . . . . . . . . 97
CANCEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
Case Insensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
CBL AND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 532
CBL CHANGE DIR . . . . . . . . . . . . . . . . . . . . . . . . . 533
CBL CHECK FILE EXIST . . . . . . . . . . . . . . . . . . 534
CBL CLOSE FILE . . . . . . . . . . . . . . . . . . . . . . . . . . . 535
CBL COPY FILE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 536
CBL CREATE DIR . . . . . . . . . . . . . . . . . . . . . . . . . . 537
CBL CREATE FILE . . . . . . . . . . . . . . . . . . . . . . . . . 538
CBL DELETE DIR . . . . . . . . . . . . . . . . . . . . . . . . . . 539
CBL DELETE FILE . . . . . . . . . . . . . . . . . . . . . . . . . 540
CBL EQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541
CBL ERROR PROC . . . . . . . . . . . . . . . . . . . . . . . . . 542
CBL EXIT PROC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544
CBL FLUSH FILE . . . . . . . . . . . . . . . . . . . . . . . . . . . 546
CBL GC FORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 547
CBL GC GETOPT . . . . . . . . . . . . . . . . . . . . . . . . . . 549
CBL GC HOSTED . . . . . . . . . . . . . . . . . . . . . . . . . . . 552
CBL GC NANOSLEEP . . . . . . . . . . . . . . . . . . . . . . 555
CBL GC PRINTABLE . . . . . . . . . . . . . . . . . . . . . . . 556
CBL GC WAITPID . . . . . . . . . . . . . . . . . . . . . . . . . . 557
CBL GET CSR POS . . . . . . . . . . . . . . . . . . . . . . . . . 558
CBL GET CURRENT DIR . . . . . . . . . . . . . . . . . . 559
CBL GET SCR SIZE . . . . . . . . . . . . . . . . . . . . . . . . 560
CBL IMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 561
CBL NIMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 562
CBL NOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563
CBL NOT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 564
CBL OPEN FILE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565
CBL OR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 566
CBL READ FILE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 567
CBL READ KBD CHAR . . . . . . . . . . . . . . . . . . . . 568
CBL RENAME FILE . . . . . . . . . . . . . . . . . . . . . . . . 569
CBL SET CSR POS . . . . . . . . . . . . . . . . . . . . . . . . . 570
CBL TOLOWER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 571
CBL TOUPPER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 571
CBL WRITE FILE . . . . . . . . . . . . . . . . . . . . . . . . . . . 572
CBL XOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573
CDF - Compiler Directing Facility . . . . . . . . . . . . . 67
CHAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412
CHAR-NATIONAL . . . . . . . . . . . . . . . . . . . . . . . . . . . 508
Class Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Class-Definition-Clause . . . . . . . . . . . . . . . . . . . . . . . 103
CLASSIFICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
CLOSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
COB-CRT-STATUS . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
COB CC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 615
COB CFLAGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 615

COB CONFIG DIR . . . . . . . . . . . . . . . . . . . . . . . . . . 615
COB CONFIG DIR Environment Variable . . . . 619
COB COPY DIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 616
COB DISPLAY WARNINGS . . . . . . . . . . . . . . . . . 627
COB LDADD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 616
COB LDFLAGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 616
COB LIBRARY PATH . . . . . . . . . . . . . . . . . . . . . . . 627
COB LIBRARY PATH

Environment Variable . . . . . . . . . . . . . . . . . . 626, 645
COB LIBS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 616
COB LOAD CASE . . . . . . . . . . . . . . . . . . . . . . . . . . . 627
COB LOAD CASE Environment Variable . . . . 645
COB PHYSICAL CANCEL . . . . . . . . . . . . . . . . . . 627
COB PHYSICAL CANCEL

Environment Variable . . . . . . . . . . . . . . . . . . 285, 645
COB PRE LOAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . 627
COB PRE LOAD

Environment Variable . . . . . . . . . . . . . . . . . . 283, 645
COB SCREEN ESC . . . . . . . . . . . . . . . . . . . . . . . . . . 628
COB SCREEN ESC Environment Variable . . . 264
COB SCREEN EXCEPTIONS . . . . . . . . . . . . . . . 628
COB SCREEN EXCEPTIONS

Environment Variable . . . . . . . . . . . . . . . . . . . . . . 264
COB SET DEBUG . . . . . . . . . . . . . . . . . . . . . . . . . . . 627
COB SET DEBUG Environment Variable . . . . 245
COB SET TRACE . . . . . . . . . . . . . . . . . . . . . . . . . . . 627
COB SET TRACE

Environment Variable . . . . . . . . . . . . . . . . . . 355, 357
COB SORT MEMORY . . . . . . . . . . . . . . . . . . . . . . . 628
COB SORT MEMORY

Environment Variable . . . . . . . . . . . . . . . . . . . . . . 378
COB SWITCH n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 628
COB SWITCH n Environment Variable . . . . . . 104
COB SYNC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 628
COB TRACE FILE . . . . . . . . . . . . . . . . . . . . . . . . . . 628
cobc - The GnuCOBOL Compiler . . . . . . . . . . . . . 607
COBCPY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 616
COBCPY Environment Variable . . . . . . . . . . . . . . 618
cobcrun - Command-line Execution . . . . . . . . . . . 625
Cobol Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
CODE-SET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Collating Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 671
COLLATING SEQUENCE . . . . . . . . . . . 94, 109, 334
Color Palette . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Color Palette and Video Attributes . . . . . . . . . . . . . 23
Column 7 (Indicator Area) . . . . . . . . . . . . . . . . . . . . . 31
Columns 1-6 (Sequence Number Area) . . . . . . . . . 30
Columns 12-72 (Area "B") . . . . . . . . . . . . . . . . . . . . . 31
Columns 73-80 (Program Name Area) . . . . . . . . . . 31
Columns 8-11 (Area "A") . . . . . . . . . . . . . . . . . . . . . . 31
COLUMN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
COLUMNS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
Combined Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 56
COMBINED-DATETIME . . . . . . . . . . . . . . . . . . . . 413
Combining GnuCOBOL and C Programs . . . . . . 655
COMMAND-LINE . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

15 February 2018 Index



718 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

COMMIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
Common Clauses on Executable Statements . . . 246
COMMON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Compilation Group . . . . . . . . . . . . . . . . . . . . . . 614, 671
Compilation Time Environment Variables . . . . . 615
Compilation Unit . . . . . . . . . . . . . . . . . . . . . . . . 613, 671
Compiler Configuration Files . . . . . . . . . . . . . . . . . . 619
Compiler Switches, -b . . . . . . . . . . . . . . . . . . . . . . . . . 644
Compiler Switches, -conf . . . . . . . . . . . . . . . . . . . . . . 619
Compiler Switches, -debug . . . . . . 245, 424, 425, 511
Compiler Switches, -fdebugging-line . . . . 36, 93, 245
Compiler Switches, -ffold-call . . . . . . . . . . . . . . . . . . 626
Compiler Switches, -ffold-copy . . . . . . . . . . . . . 78, 619
Compiler Switches, -fintrinsics . . . . . . . . . . . . . . . . 405
Compiler Switches, -fintrinsics=ALL . . . . . . . . . . 106
Compiler Switches, -fixed . . . . . . . . . . . . . . . 30, 78, 79
Compiler Switches, -foptional-file . . . . . . . . . . . . . . 110
Compiler Switches, -free . . . . . . . . . . . . . . . . 30, 78, 79
Compiler Switches, -fsyntax-extension . . . . . . . . . 104
Compiler Switches, -ftrace . . . . . . . . . . . 355, 357, 627
Compiler Switches, -ftraceall . . . 357, 424, 425, 511,

627
Compiler Switches, -g . . . . . . . . . . . . . . . 424, 425, 511
Compiler Switches, -I . . . . . . . . . . . . . . . . . . . . . . . . . 618
Compiler Switches, -m . . . . . . . . . . . . . . . 615, 625, 644
Compiler Switches, -o . . . . . . . . . . . . . . . . . . . . 614, 624
Compiler Switches, -O . . . . . . . . . . . . . . . . . . . . . . . . 639
Compiler Switches, -O2 . . . . . . . . . . . . . . . . . . . . . . . 639
Compiler Switches, -Os . . . . . . . . . . . . . . . . . . . . . . . 639
Compiler Switches, -Wobsolete . . . . . . . . . . . . . . . . . 88
Compiler Switches, -x . . . . . . . . . . . 614, 624, 644, 674
Compiling Programs . . . . . . . . . . . . . . . . . . . . . . . . . . 607
COMPUTE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
COMPUTE Versus

ADD-SUBTRACT-MULTIPLY-DIVIDE . . . . 669
CONCATENATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414
Concurrent Access to Files . . . . . . . . . . . . . . . . . . . . . 62
Condition Names . . . . . . . . . . . . . . . . . . . . . . . . . . 49, 160
Conditional Expressions . . . . . . . . . . . . . . . . . . . . . . . . 49
CONFIGURATION SECTION . . . . . . . . . . . . . . . . . 92
CONSOLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
CONSOLE IS CRT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
CONSTANT . . . . . . . . . . . . . . . . . . . . . . 74, 78, 134, 174
Contained Subprograms . . . . . . . . . . . . . . . . . . . . . . . 641
CONTENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
Continuation (- in Column 7) . . . . . . . . . . . . . . . . . . 38
CONTINUE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
Control Break . . . . . . . . . . . . . . . . . . . . . . . . . . . . 587, 671
Control Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 672
Control Footing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 672
Control Heading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 672
Control Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . 586, 672
Control Hierarchy (Revisited) . . . . . . . . . . . . . . . . . 601
CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
CONVERSION . . . . . . . . . . . . . . . . . . . . . . . . . . 262, 296
CONVERTING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
Copybook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13, 672

Copybook Naming Conventions and Usage . . . . 667
Copybooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
COPY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
CORRESPONDING . . . . . . . . . . . . . . . . . . . . . . . . . . 248
COS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415
COUNT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399
CRT STATUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
CRT STATUS Codes . . . . . . . . . . . . . . . . . . . . . . . . . 265
CURRENCY SIGN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
CURRENCY-SYMBOL . . . . . . . . . . . . . . . . . . . . . . . 416
current character pointer . . . . . . . . . . . . . . . . . . . . . . 386
CURRENT-DATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417
CURSOR IS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

D
D In Column 7 (Debugging Line) . . . . . . . . . . . . . . 36
Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 588
Data Definition Principles . . . . . . . . . . . . . . . . . . . . . 126
Data Description Clauses . . . . . . . . . . . . . . . . . . . . . 161
Data Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Data Item . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14, 673
Data Item Coding and Naming Conventions . . . 662
DATA DIVISION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
DATA RECORD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
DATE-COMPILED . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
DATE-MODIFIED . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
DATE-OF-INTEGER . . . . . . . . . . . . . . . . . . . . . . . . . 418
DATE-TO-YYYYMMDD . . . . . . . . . . . . . . . . . . . . . 419
DATE-WRITTEN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
DAY-OF-INTEGER . . . . . . . . . . . . . . . . . . . . . . . . . . 420
DAY-TO-YYYYDDD . . . . . . . . . . . . . . . . . . . . . . . . . 421
DB HOME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 629
DB HOME Environment Variable . . . . . . . . . . . . . . 64
DEBUG-ITEM Special Register . . . . . . . . . . . . . . . 245
DEBUGGING MODE . . . . . . . . . . . . . . . . . . . . . . . . . 93
DECIMAL POINT IS COMMA . . . . . . . . . . . . . . . . 97
DECLARATIVES . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
DEFAULT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
DEFINED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
DELETE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
DELIMITED BY . . . . . . . . . . . . . . . . . . . . . . . . 387, 399
DELIMITER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399
DEPENDING ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
DESCENDING KEY . . . . . . . . . . . . . . . . . . . . . . . . . 364
Detail Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 673
Detail Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 673
detail report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313, 314
Direct Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 624
DISPLAY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
DISPLAY screen-data-item . . . . . . . . . . . . . . . . . . . 296
DISPLAY UPON COMMAND-LINE . . . . . . . . . 294
DISPLAY UPON device . . . . . . . . . . . . . . . . . . . . . . 292
DISPLAY UPON ENVIRONMENT-NAME . . . 295
DISPLAY-OF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509
DIVIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
DIVIDE BY GIVING . . . . . . . . . . . . . . . . . . . . . . . . . 302

Index 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 719

DIVIDE INTO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
DIVIDE INTO GIVING . . . . . . . . . . . . . . . . . . . . . . 300
Division . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 673
Divisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Divisions Organize Programs . . . . . . . . . . . . . . . . . . . 13
DUPLICATES . . . . . . . . . . . . . . . . . . . . . . 333, 376, 380
Dynamic Subprogram . . . . . . . . . . . . . . . . . . . . 644, 673
Dynamic vs Static Subprograms . . . . . . . . . . . . . . . 643
Dynamically Loaded Subprograms . . . . . . . . . . . . 626

E
E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422
Elementary Item . . . . . . . . . . . . . . . . . . . . . . . . . . 14, 673
ELSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
EMPTY-CHECK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
END-OF-PAGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404
Entry-point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 673
Entry-point Name . . . . . . . . . . . . . . . . . . . . . . . . . . . . 673
ENTRY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
Environment Variables, COB CONFIG DIR . . 619
Environment Variables,

COB LIBRARY PATH . . . . . . . . . . . . . . . . 626, 645
Environment Variables, COB LOAD CASE . . . 645
Environment Variables,

COB PHYSICAL CANCEL . . . . . . . . . . . 285, 645
Environment Variables,

COB PRE LOAD . . . . . . . . . . . . . . . . . . . . . 283, 645
Environment Variables, COB SCREEN ESC . . 264
Environment Variables,

COB SCREEN EXCEPTIONS . . . . . . . . . . . . . 264
Environment Variables, COB SET DEBUG . . . 245
Environment Variables,

COB SET TRACE . . . . . . . . . . . . . . . . . . . . 355, 357
Environment Variables,

COB SORT MEMORY . . . . . . . . . . . . . . . . . . . . 378
Environment Variables, COB SWITCH n . . . . . 104
Environment Variables, COBCPY . . . . . . . . . . . . . 618
Environment Variables, DB HOME . . . . . . . . . . . . 64
Environment Variables, LANG . . . . . . 416, 465, 466,

467, 468
Environment Variables,

LD LIBRARY PATH . . . . . . . . . . . . . . . . . . . . . . 614
Environment Variables, PATH. . . . . . . . . . . . 626, 645
Environment Variables, TEMP . . . . . . . . . . . 132, 379
Environment Variables, TMP . . . . . . . . . . . . 132, 379
Environment Variables, TMPDIR . . . . . . . . 132, 379
Environment Variables: Compilation-Time . . . . 615
Environment Variables: Run-Time . . . . . . . . . . . . 626
ENVIRONMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
ENVIRONMENT DIVISION . . . . . . . . . . . . . . . . . . 91
ENVIRONMENT-NAME . . . . . . . . . . . . . . . . . . . . . 261
ENVIRONMENT-VALUE . . . . . . . . . . . . . . . . . . . . 261
EOL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
EOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
ERASE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
Error Exception Codes . . . . . . . . . . . . . . . . . . . . . . . . 426

Error Type Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426
ERROR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384
ESCAPE KEY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
EVALUATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
EVENT STATUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
EXCEPTION STATUS . . . . . . . . . . . . . . . . . . . . . . . 269
EXCEPTION-FILE . . . . . . . . . . . . . . . . . . . . . . . . . . . 423
EXCEPTION-FILE-N . . . . . . . . . . . . . . . . . . . . . . . . 510
EXCEPTION-LOCATION . . . . . . . . . . . . . . . . . . . . 424
EXCEPTION-LOCATION-N . . . . . . . . . . . . . . . . . 511
EXCEPTION-STATEMENT . . . . . . . . . . . . . . . . . . 425
EXCEPTION-STATUS . . . . . . . . . . . . . . . . . . . . . . . 426
Executable File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 674
Executing Dynamically-Loadable Libraries . . . . 625
Execution Thread . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 674
EXIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
EXP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428
EXP10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429
EXTEND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
EXTERNAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
EXTERNAL Data Items . . . . . . . . . . . . . . . . . . . . . . 651

F
FACTORIAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430
FALSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Figurative Constants . . . . . . . . . . . . . . . . . . . . . . 39, 674
File OPEN Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
File Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
File Status Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
File-Based SORT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
File/Sort-Description . . . . . . . . . . . . . . . . . . . . . . . . . 130
FILE SECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
FILE STATUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
FILE-SECTION-Data-Item . . . . . . . . . . . . . . . . . . . 134
Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
FILLER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
FINAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
FIRST DETAIL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Fixed Format Mode . . . . . . . . . . . . . . . . . . . 29, 79, 674
FOLDCOPYNAME . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
FOOTING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
FOOTING AT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
FOREGROUND-COLOR . . . . . . . . . . . . . . . . . . . . . 179
FOREVER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
Format of Program Source Lines . . . . . . . . . . . . . . . 29
FORMATTED-CURRENT-DATE . . . . . . . . . . . . 431
FORMATTED-DATE . . . . . . . . . . . . . . . . . . . . . . . . 432
FORMATTED-DATETIME . . . . . . . . . . . . . . . . . . 433
FORMATTED-TIME . . . . . . . . . . . . . . . . . . . . . . . . . 434
FRACTION-PART . . . . . . . . . . . . . . . . . . . . . . . . . . . 435
Free Format Mode . . . . . . . . . . . . . . . . . . . . . 29, 79, 674
FREE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
FROM . . . . . . . . . . . . . . . . . . . . . . . . . 180, 356, 359, 402
FROM CRT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
FULL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
FUNCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

15 February 2018 Index



720 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

FUNCTION-ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
FUNCTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405

G
Generated Report Pages . . . . . . . . . . . . . . . . . . . . . . 595
GENERATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
GIVING . . . . . . . . . . . . . . . . . . . . . . . 335, 379, 384, 390
GLOBAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
GLOBAL Data Items . . . . . . . . . . . . . . . . . . . . . . . . . 651
Glossary of Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 671
GNU Free Documentation License . . . . . . . . . . . . 687
GnuCOBOL Main Programs

CALLing C Subprograms . . . . . . . . . . . . . . . . . . . 658
GnuCOBOL Run-Time Library

Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 655
GnuCOBOL Statements . . . . . . . . . . . . . . . . . . . . . . 258
GO TO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
GO TO DEPENDING ON . . . . . . . . . . . . . . . . . . . . 317
GOBACK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
Group Item . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14, 674
GROUP INDICATE . . . . . . . . . . . . . . . . . . . . . . . . . . 183

H
HEADING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Hexadecimal Alphanumeric Literal . . . . . . . . 38, 674
Hexadecimal Numeric Literal . . . . . . . . . . . . . . 37, 675
HIGH-VALUE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
HIGHEST-ALGEBRAIC . . . . . . . . . . . . . . . . . . . . . 436
HIGHLIGHT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
How RWCS Builds Report Pages . . . . . . . . . . . . . . 584

I
I-O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
IDENTIFICATION DIVISION . . . . . . . . . . . . . . . . . 87
Identifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 675
IF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
IGNORING LOCK . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Imperative Statement . . . . . . . . . . . . . . . . . . . . . . . . . 675
Independent Subprograms . . . . . . . . . . . . . . . . . . . . 641
Independent vs Contained vs

Nested Subprograms . . . . . . . . . . . . . . . . . . . . . . . . 641
INDEXED BY . . . . . . . . . . . . . . . . . . . . . . . . . . . 195, 364
Indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 665
Indicator Area (Column 7) . . . . . . . . . . . . . . . . . . . . . 31
INITIAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89, 646
INITIALIZE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
INITIALIZED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
INITIATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
Inline PERFORM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346
INPUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
INPUT PROCEDURE . . . . . . . . . . . . . . . . . . . . . . . . 377
INPUT-OUTPUT SECTION . . . . . . . . . . . . . . . . . 108
INSPECT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
INSTALLATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

INTEGER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437
INTEGER-OF-BOOLEAN . . . . . . . . . . . . . . . . . . . . 512
INTEGER-OF-DATE . . . . . . . . . . . . . . . . . . . . . . . . . 438
INTEGER-OF-DAY . . . . . . . . . . . . . . . . . . . . . . . . . . 439
INTEGER-OF-FORMATTED-DATE . . . . . . . . . 440
INTEGER-PART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441
Interfacing to Other Environments . . . . . . . . . . . . . 40
Interfacing With The OS . . . . . . . . . . . . . . . . . . . . . . 607
INTO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351, 353, 358
Intrinsic Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 675
Intrinsic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
INTRINSIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Introducing COBOL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
INVALID KEY + NOT INVALID KEY . . . . . . . 250

J
JUSTIFIED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

K
KEY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195, 334, 353

L
LABEL RECORD . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
LANG Environment Variable . . 416, 465, 466, 467,

468
Language Reserved Words . . . . . . . . . . . . . . . . . . . . . . . 9
LAST CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
LAST DETAIL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
LD LIBRARY PATH . . . . . . . . . . . . . . . . . . . . . . . . . 616
LD LIBRARY PATH Environment Variable . . 614
LEADING . . . . . . . . . . . . . . . . . . . . . . . . 70, 72, 214, 502
LEFTLINE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
LENGTH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154, 442
LENGTH-AN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443
LENGTH-CHECK . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
Level Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 675
LINAGE IS n LINES . . . . . . . . . . . . . . . . . . . . . . . . . 131
LINAGE-COUNTER Special Register . . . . 132, 404
LINE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
LINE ADVANCING . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
LINE-COUNTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
LINE-COUNTER Special Register . . 146, 326, 394,

585
LINES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
LINES AT BOTTOM . . . . . . . . . . . . . . . . . . . . . . . . . 131
LINES AT TOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
LINKAGE SECTION . . . . . . . . . . . . . . . . . . . . . . . . . 140
Literal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 675
Literal Concatenation (&) . . . . . . . . . . . . . . . . . . . . . . 38
Literals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Literals (Alphanumeric) . . . . . . . . . . . . . . . . . . . . . . . . 37
Literals (Numeric) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
LOCAL-STORAGE SECTION . . . . . . . . . . . . . . . 138

Index 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 721

LOCALE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
LOCALE Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
LOCALE-COMPARE . . . . . . . . . . . . . . . . . . . . . . . . 444
LOCALE-DATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445
LOCALE-TIME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446
LOCALE-TIME-FROM-SECONDS . . . . . . . . . . . 447
Locating Copybooks . . . . . . . . . . . . . . . . . . . . . . . . . . 618
LOCK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113, 286
LOCK MODE IS AUTOMATIC . . . . . . . . . . . . . . . 64
LOCK MODE IS MANUAL . . . . . . . . . . . . . . . . . . . 64
LOCK ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
LOG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448
LOG10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449
LOW-VALUE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
LOWER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
LOWER-CASE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450
LOWEST-ALGEBRAIC . . . . . . . . . . . . . . . . . . . . . . 451
LOWLIGHT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

M
Main program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 676
Main Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 641
Marking Changes in Programs . . . . . . . . . . . . . . . . 661
Matching C Data Types with

GnuCOBOL USAGE’s . . . . . . . . . . . . . . . . . . . . . . 657
MAX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452
MEAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453
MEDIAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454
MEMORY SIZE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
MERGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
MIDRANGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
MIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456
MOD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457
MODE IS BLOCK . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
MODULE-CALLER-ID . . . . . . . . . . . . . . . . . . . . . . . 458
MODULE-DATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459
MODULE-FORMATTED-DATE . . . . . . . . . . . . . 460
MODULE-ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461
MODULE-PATH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462
MODULE-SOURCE . . . . . . . . . . . . . . . . . . . . . . . . . . 463
MODULE-TIME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464
MONETARY-DECIMAL-POINT . . . . . . . . . . . . . 465
MONETARY-THOUSANDS-SEPARATOR . . . 466
MOVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
MOVE CORRESPONDING . . . . . . . . . . . . . . . . . . 337
multiple record locking . . . . . . . . . . . . . . . . . . . . . . . . . 64
MULTIPLE FILE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
MULTIPLY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
MULTIPLY BY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
MULTIPLY GIVING . . . . . . . . . . . . . . . . . . . . . . . . . 340

N
National Character set . . . . . . . . . . . . . . . . . . . 198, 676
NATIONAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
NATIONAL-EDITED . . . . . . . . . . . . . . . . . . . . . . . . 322
NATIONAL-OF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513
NATIVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Negated Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
NEGATIVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Nested Subprograms . . . . . . . . . . . . . . . . . . . . . . . . . . 642
NEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192, 351
NEXT GROUP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
NEXT PAGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189, 192
NEXT SENTENCE . . . . . . . . . . . . . . . . . . . . . . . 60, 319
NO ADVANCING . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
NO OTHER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
NO REWIND . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286, 342
NO-ECHO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
NOFOLDCOPYNAME . . . . . . . . . . . . . . . . . . . . . . . . 78
NORMAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384
NOT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
NOT INVALID KEY . . . . . . . . . . . . . . . . . . . . . . . . . 250
NOT ON EXCEPTION . . . . . . . . . . . . . . . . . . . . . . . 251
NOT ON OVERFLOW . . . . . . . . . . . . . . . . . . . . . . . 251
NOT ON SIZE ERROR . . . . . . . . . . . . . . . . . . . . . . 252
NULL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Numeric Data Item . . . . . . . . . . . . . . . . . . . . . . . . . . . 676
Numeric Data Items . . . . . . . . . . . . . . . . . . . . . . . . . . 199
Numeric Edited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
Numeric Edited Data Item . . . . . . . . . . . . . . . . . . . . 676
Numeric Literal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 676
Numeric Literal (Hexadecimal) . . . . . . . . . . . . . . . . . 37
Numeric Literals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
NUMERIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50, 322
NUMERIC SIGN TRAILING SEPARATE . . . . . 99
NUMERIC-DECIMAL-POINT . . . . . . . . . . . . . . . 467
NUMERIC-EDITED . . . . . . . . . . . . . . . . . . . . . . . . . . 322
NUMERIC-THOUSANDS-SEPARATOR . . . . . 468
NUMVAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469
NUMVAL-C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470, 472
NUMVAL-F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474

O
OBJECT-COMPUTER . . . . . . . . . . . . . . . . . . . . . . . . 94
OCCURS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
OFF STATUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
OMITTED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50, 239
ON EXCEPTION + NOT ON EXCEPTION . . 250
ON OVERFLOW + NOT ON OVERFLOW . . . 251
ON SIZE ERROR + NOT ON

SIZE ERROR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
ON STATUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
OPEN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
OPTIONAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110, 239
OR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
ORD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475

15 February 2018 Index



722 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

ORD-MAX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 476
ORD-MIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477
ORGANISATION INDEXED . . . . . . . . . . . . . . . . . . 17
ORGANISATION LINE SEQUENTIAL . . . . . . . . 14
ORGANISATION RELATIVE . . . . . . . . . . . . . . . . . 16
ORGANISATION SEQUENTIAL . . . . . . . . . . . . . . 15
ORGANIZATION INDEXED . . . . . . . . . . . . . 17, 120
ORGANIZATION LINE SEQUENTIAL . . . 14, 116
ORGANIZATION RELATIVE . . . . . . . . . . . . 16, 118
ORGANIZATION SEQUENTIAL . . . . . . . . . 15, 114
OUTPUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
OUTPUT PROCEDURE . . . . . . . . . . . . . . . . 335, 379
overflow condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
OVERLINE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
OVERRIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

P
Page Footing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 676
Page Heading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 677
PAGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
PAGE LIMITS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
PAGE-COUNTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
PAGE-COUNTER Special Register . . 146, 326, 394
PARAMETER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
PATH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 629
PATH Environment Variable . . . . . . . . . . . . . 626, 645
perform scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
PERFORM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
PI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478
PICTURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150, 198
POINTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
POSITIVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Predefined Compilation Variables . . . . . . . . . . . . . 617
PRESENT WHEN . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
PRESENT-VALUE . . . . . . . . . . . . . . . . . . . . . . . . . . . 479
PREVIOUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
Primary Entry-Point . . . . . . . . . . . . . . . . . . . . . . . . . . 677
PRINTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
PRINTING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Procedural PERFORM . . . . . . . . . . . . . . . . . . . . . . . 344
Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 677
Procedure name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 677
Procedure Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
PROCEDURE DIVISION . . . . . . . . . . . . . . . . . . . . 237
PROCEDURE DIVISION CHAINING . . . . . . . . 240
PROCEDURE DIVISION RETURNING . . . . . . 242
PROCEDURE DIVISION Sections

and Paragraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
PROCEDURE DIVISION Sections

Versus Paragraphs . . . . . . . . . . . . . . . . . . . . . . . . . . 667
PROCEDURE DIVISION USING . . . . . . . . . . . . 238
Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 590, 677
Program Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . 636
Program Name Area (Columns 73-80) . . . . . . . . . . 31
Program Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

PROGRAM-ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Programmer Productivity . . . . . . . . . . . . . . . . . . . . . . . 6
Programming Style Suggestions . . . . . . . . . . . . . . . 661
PROMPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
PROTECTED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
Punctuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Q
Qualification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 677
Qualification of Data Names . . . . . . . . . . . . . . . . . . . 43
QUOTE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

R
Random READ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352
RANDOM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480
RANGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482
READ ONLY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Readability of Programs . . . . . . . . . . . . . . . . . . . . . . . 10
READ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
READY TRACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
Record . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134, 677
Record Locking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
RECORD CONTAINS . . . . . . . . . . . . . . . . . . . . . . . . 132
RECORD DELIMITER . . . . . . . . . . . . . . . . . . . . . . 109
RECORD IS VARYING . . . . . . . . . . . . . . . . . . . . . . 132
RECORD KEY . . . . . . . . . . . . . . . . . . . . . . . . . . 121, 291
RECORDING MODE . . . . . . . . . . . . . . . . . . . . . . . . 131
Recursive Subprogram . . . . . . . . . . . . . . . . . . . . . . . . 652
Recursive Subprograms . . . . . . . . . . . . . . . . . . . . . . . 652
RECURSIVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
REDEFINES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
REEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
Reference Modifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
REFERENCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
Relation Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
RELATIVE KEY . . . . . . . . . . . . . . . . . . . 118, 119, 291
RELEASE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356
REM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483
REMAINDER . . . . . . . . . . . . . . . . . . . . . . . . . . . 301, 303
REMARKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
RENAMES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
REPLACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
REPLACING . . . . . . . . . . . . . . . . . . . . . 70, 71, 322, 327
Report Footing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 677
Report Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 678
Report Group Definitions . . . . . . . . . . . . . . . . . . . . . 147
Report Heading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 678
Report Writer Features . . . . . . . . . . . . . . . . . . . . . . . . 26
Report Writer Usage Notes . . . . . . . . . . . . . . . . . . . 581
REPORT IS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
REPORT SECTION . . . . . . . . . . . . . . . . . . . . . . . . . . 143
REPORT SECTION Data Items . . . . . . . . . . . . . . 149
REPOSITORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
REQUIRED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
Reserved Word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 678

Index 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 723

Reserved Word List . . . . . . . . . . . . . . . . . . . . . . . . . . . 681
Reserved Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9, 681
RESERVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
RESET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
RESET TRACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
RETURN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
RETURN-CODE Special Register . . 283, 384, 517,
518, 519, 520, 521, 522, 523, 525, 527, 532, 533, 534,
535, 536, 537, 538, 539, 540, 541, 542, 544, 559, 561,
562, 563, 564, 565, 566, 567, 569, 572, 573, 641, 646,

647, 648
RETURNING . . . . . . . . . . . . . . . . . . 278, 284, 384, 646
REVERSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484
REVERSE-VIDEO . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
REVERSED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
REWRITE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
ROLLBACK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
ROUNDED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
Run Time Environment Variables . . . . . . . . . . . . . 626
Running Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 624
RUN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384
RWCS Lexicon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 581

S
SAME RECORD AREA . . . . . . . . . . . . . . . . . . . . . . 123
SAME SORT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
SAME SORT-MERGE . . . . . . . . . . . . . . . . . . . . . . . . 123
Screen Formatting Features . . . . . . . . . . . . . . . . . . . . 22
SCREEN CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . 96
SCREEN SECTION . . . . . . . . . . . . . . . . . . . . . . . . . . 151
SCROLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
Search Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362
SEARCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362
SEARCH ALL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
SECONDS-FROM-FORMATTED-TIME . . . . . 485
SECONDS-PAST-MIDNIGHT . . . . . . . . . . . . . . . . 486
SECURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
SECURITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
SEGMENT-LIMIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
SELECT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Sentence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58, 678
SEPARATE CHARACTER . . . . . . . . . . . . . . . . . . . 214
Sequence Number Area (Columns 1-6) . . . . . . . . . 30
Sequential READ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
SET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76, 367
SET ADDRESS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
SET ATTRIBUTE . . . . . . . . . . . . . . . . . . . . . . . . . . . 374
SET Condition Name . . . . . . . . . . . . . . . . . . . . . . . . . 372
SET ENVIRONMENT . . . . . . . . . . . . . . . . . . . . . . . 367
SET Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
SET LAST EXCEPTION . . . . . . . . . . . . . . . . . . . . . 375
SET Program-Pointer . . . . . . . . . . . . . . . . . . . . . . . . . 368
SET Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
SET UP/DOWN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
Sharing Data Between Calling and

Called Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 649

SHARING . . . . . . . . . . . . . . . . . . . . . . . . . . . 62, 113, 343
Sign Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
SIGN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487
SIGN IS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
Simple GO TO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
Simple MOVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
single record locking . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
SIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488
So What is GnuCOBOL? . . . . . . . . . . . . . . . . . . . . . . . 7
SORT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
SORT STATUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Sorting and Merging Data . . . . . . . . . . . . . . . . . . . . . 19
Source Line Format, Fixed . . . . . . . . . . . . . . . . . 29, 79
Source Line Format, Free . . . . . . . . . . . . . . . . . . . 29, 79
SOURCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
SOURCE IS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
SOURCE-COMPUTER . . . . . . . . . . . . . . . . . . . . . . . . 93
SPACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Sparse Keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Special Data Items . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Special Registers . . . . . . . . . . . . . . . . . . . . . . . . . 255, 678
Special Registers, DEBUG-ITEM . . . . . . . . . . . . . 245
Special Registers, LINAGE-COUNTER . . 132, 404
Special Registers, LINE-COUNTER . . . . . 146, 326,

394, 585
Special Registers, PAGE-COUNTER . . . . 146, 326,

394
Special Registers, RETURN-CODE . . . . . . 283, 384,
517, 518, 519, 520, 521, 522, 523, 525, 527, 532, 533,
534, 535, 536, 537, 538, 539, 540, 541, 542, 544, 559,
561, 562, 563, 564, 565, 566, 567, 569, 572, 573, 641,

646, 647, 648
SPECIAL-NAMES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Split Keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
SQRT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489
STANDARD-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
STANDARD-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
STANDARD-COMPARE . . . . . . . . . . . . . . . . . . . . . 514
STANDARD-DEVIATION . . . . . . . . . . . . . . . . . . . . 490
START . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58, 678
Static Subprogram . . . . . . . . . . . . . . . . . . . . . . . 644, 678
STATIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
STATUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384
STDCALL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
STDERR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
STDIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
STDOUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
STEP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
STOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384
STORED-CHAR-LENGTH . . . . . . . . . . . . . . . . . . . 491
String Allocation Differences Between

GnuCOBOL and C . . . . . . . . . . . . . . . . . . . . . . . . . 656
String Manipulation Features . . . . . . . . . . . . . . . . . . 19
STRING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
Structured Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Sub-Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . 641

15 February 2018 Index



724 GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide

Subprogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 641, 678
Subprogram Arguments . . . . . . . . . . . . . . . . . . . . . . . 649
Subprogram Execution Flow . . . . . . . . . . . . . . . . . . 645
Subprogram Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 641
Subroutine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 641, 678
Subroutine Execution Flow . . . . . . . . . . . . . . . . . . . 645
Subscripting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 665
SUBSTITUTE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492
SUBSTITUTE-CASE . . . . . . . . . . . . . . . . . . . . . . . . . 493
SUBTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388
SUBTRACT CORRESPONDING . . . . . . . . . . . . 392
SUBTRACT FROM . . . . . . . . . . . . . . . . . . . . . . . . . . 388
SUBTRACT GIVING . . . . . . . . . . . . . . . . . . . . . . . . 390
SUM OF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
Summary of Compiler Changes since

2009 and version v1-1 . . . . . . . . . . . . . . . . . . . . . . . 703
Summary of Document Changes . . . . . . . . . . . . . . 695
Summary Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 679
summary report . . . . . . . . . . . . . . . . . . . . . . . . . . 313, 314
SUM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494
SUPPRESS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69, 394
SUPPRESS WHEN . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Switch-Definition-Clause . . . . . . . . . . . . . . . . . . . . . . 104
Switch-Status Conditions . . . . . . . . . . . . . . . . . . . . . . 53
SWITCH-n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
SWn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Symbolic-Characters-Clause . . . . . . . . . . . . . . . . . . . 105
SYNCRONIZED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
Syntax Diagram Conventions . . . . . . . . . . . . . . . . . . . 27
SYSERR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
SYSIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
SYSIPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
SYSLIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
SYSLST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
SYSOUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
SYSTEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 574

T
Table Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table SORT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
Table Subscripting versus Table Indexing . . . . . . 665
TALLYING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
TAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495
TEMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 629
TEMP Environment Variable . . . . . . . . . . . . 132, 379
TERMINATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395
TEST-DATE-YYYYMMDD . . . . . . . . . . . . . . . . . . 496
TEST-DAY-YYYYDDD . . . . . . . . . . . . . . . . . . . . . . 497
TEST-FORMATTED-DATETIME . . . . . . . . . . . . 498
TEST-NUMVAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499
TEST-NUMVAL-C . . . . . . . . . . . . . . . . . . . . . . . . . . . 500
TEST-NUMVAL-F . . . . . . . . . . . . . . . . . . . . . . . . . . . 501
The Anatomy of a Report . . . . . . . . . . . . . . . . . . . . . 582
The Anatomy of a Report Page . . . . . . . . . . . . . . . 583
The Cobol Language - Advanced Techniques . . . 42

The Cobol Language - The Basics . . . . . . . . . . . . . . . 9
THRU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
TIMEOUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
TIMES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
TMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 616, 629
TMP Environment Variable . . . . . . . . . . . . . . 132, 379
TMPDIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 616, 629
TMPDIR Environment Variable . . . . . . . . . . 132, 379
TO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
TRAILING . . . . . . . . . . . . . . . . . . . . . . . 70, 72, 214, 502
TRANSFORM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396
TRIM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502
Turning PHYSICAL Page Formatting Into

LOGICAL Formatting . . . . . . . . . . . . . . . . . . . . . . 604
TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

U
UNDERLINE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
UNLOCK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397
UNSIGNED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
UNSTRING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398
UNTIL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
UNTIL EXIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
UPDATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
UPON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216, 292
UPON CRT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
UPON CRT-UNDER . . . . . . . . . . . . . . . . . . . . . . . . . 296
UPPER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
UPPER-CASE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503
USAGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
Use of Periods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Use of VERB/END-VERB Constructs . . . . . . . . . 60
USE AFTER STANDARD ERROR

PROCEDURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
USE BEFORE REPORTING . . . . . . . . . . . . . . . . . 244
USE FOR DEBUGGING . . . . . . . . . . . . . . . . . . . . . 245
User-Defined Function . . . . . . . . . . . . . . . . . . . 641, 679
User-Defined Function Execution Flow . . . . . . . . 647
User-Defined Names . . . . . . . . . . . . . . . . . . . . . . . . . . 679
User-Defined Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
USER NAME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
USING . . . . . . . . . . . . . . . 233, 238, 284, 304, 334, 377

V
VALUE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234, 304, 322
VALUE OF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
VARIANCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 504
VARYING . . . . . . . . . . . . . . . . . . . . . . . . . . 196, 347, 362
Verb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60, 679

Index 15 February 2018



GnuCOBOL 3.0 rc1 [01Jan2018] Programmer’s Guide 725

W
WHEN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306, 364
WHEN OTHER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
WHEN-COMPILED . . . . . . . . . . . . . . . . . . . . . . . . . . 505
Why YOU Should Learn COBOL . . . . . . . . . . . . . . . 4
WITH DEBUGGING MODE . . . . . . . . . . . . . . . . . . 36
WITH FILLER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
WITH IGNORE LOCK . . . . . . . . . . . . . . . . . . . . . . . . 65
WITH KEPT LOCK . . . . . . . . . . . . . . . . . . . . . . . . . . 65
WITH LOCK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65, 343
WITH NO LOCK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
WITH TEST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
WITH WAIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
WORKING-STORAGE SECTION . . . . . . . . . . . . 136
WRITE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402

X
X"91" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 575
X"E4" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 577
X"E5" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 577
X"F4" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 578
X"F5" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 579

Y
YEAR-TO-YYYY . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506

Z
Zero-Delimited Alphanumeric Literals . . . . . 38, 679
ZERO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39, 52

15 February 2018 Index




	Amendment Changes for Programmers Guide
	1. Introduction
	1.1. Additional Reference Sources
	1.2. Introducing COBOL
	1.2.1. Why YOU Should Learn COBOL
	1.2.2. Programmer Productivity

	1.3. So What is GnuCOBOL?

	2. Cobol Fundamentals
	2.1. The Cobol Language - The Basics
	2.1.1. Language Reserved Words
	2.1.2. User-Defined Words
	2.1.3. Case Insensitivity
	2.1.4. Readability of Programs
	2.1.5. Divisions Organize Programs
	2.1.6. Copybooks
	2.1.7. Structured Data
	2.1.8. Files
	2.1.9. Table Handling
	2.1.10. Sorting and Merging Data
	2.1.11. String Manipulation Features
	2.1.12. Screen Formatting Features
	2.1.12.1. A Sample Screen
	2.1.12.2. Color Palette and Video Attributes

	2.1.13. Report Writer Features
	2.1.14. Data Initialization
	2.1.15. Syntax Diagram Conventions
	2.1.16. Format of Program Source Lines
	2.1.17. Program Structure
	2.1.18. Comments
	2.1.19. Literals
	2.1.19.1. Numeric Literals
	2.1.19.2. Alphanumeric Literals
	2.1.19.3. Figurative Constants

	2.1.20. Punctuation
	2.1.21. Interfacing to Other Environments

	2.2. The Cobol Language - Advanced Techniques
	2.2.1. Table References
	2.2.2. Qualification of Data Names
	2.2.3. Reference Modifiers
	2.2.4. Arithmetic Expressions
	2.2.5. Conditional Expressions
	2.2.5.1. Condition Names
	2.2.5.2. Class Conditions
	2.2.5.3. Sign Conditions
	2.2.5.4. Switch-Status Conditions
	2.2.5.5. Relation Conditions
	2.2.5.6. Combined Conditions
	2.2.5.7. Negated Conditions
	2.2.6. Use of Periods
	2.2.7. Use of VERB/END-VERB Constructs
	2.2.8. Concurrent Access to Files
	2.2.8.1. File Sharing
	2.2.8.2. Record Locking


	3. CDF - Compiler Directing Facility
	3.1. >>CALL-CONVENTION
	3.2. COPY
	3.3. REPLACE
	3.4. >>DEFINE
	3.5. >>IF
	3.6. >>SET
	3.7. >>SOURCE
	3.8. >>TURN
	3.9. >>D
	3.10. >>DISPLAY
	3.11. >>PAGE
	3.12. >>LISTING
	3.13. >>LEAP-SECONDS
	3.14. * Directives

	4. IDENTIFICATION DIVISION
	5. ENVIRONMENT DIVISION
	5.1. CONFIGURATION SECTION
	5.1.1. SOURCE-COMPUTER
	5.1.2. OBJECT-COMPUTER
	5.1.3. SPECIAL-NAMES
	5.1.3.1. Alphabet-Name-Clause
	5.1.3.2. Class-Definition-Clause
	5.1.3.3. Switch-Definition-Clause
	5.1.3.4. Symbolic-Characters-Clause

	5.1.4. REPOSITORY

	5.2. INPUT-OUTPUT SECTION
	5.2.1. SELECT
	5.2.1.1. ORGANIZATION SEQUENTIAL
	5.2.1.2. ORGANIZATION LINE SEQUENTIAL
	5.2.1.3. ORGANIZATION RELATIVE
	5.2.1.4. ORGANIZATION INDEXED

	5.2.2. SAME RECORD AREA
	5.2.3. MULTIPLE FILE


	6. DATA DIVISION
	6.1. Data Definition Principles
	6.2. FILE SECTION
	6.2.1. File/Sort-Description
	6.2.2. FILE-SECTION-Data-Item

	6.3. WORKING-STORAGE SECTION
	6.4. LOCAL-STORAGE SECTION
	6.5. LINKAGE SECTION
	6.6. REPORT SECTION
	6.6.1. Report Group Definitions
	6.6.2. REPORT SECTION Data Items

	6.7. SCREEN SECTION
	6.8. Special Data Items
	6.8.1. 01-Level Constants
	6.8.2. 66-Level Data Items
	6.8.3. 77-Level Data Items
	6.8.4. 78-Level Data Items
	6.8.5. 88-Level Data Items

	6.9. Data Description Clauses
	6.9.1. ANY LENGTH
	6.9.2. AUTO
	6.9.3. AUTO-SKIP
	6.9.4. AUTOTERMINATE
	6.9.5. BACKGROUND-COLOR
	6.9.6. BASED
	6.9.7. BEEP
	6.9.8. BELL
	6.9.9. BLANK
	6.9.10. BLANK WHEN ZERO
	6.9.11. BLINK
	6.9.12. COLUMN
	6.9.13. CONSTANT
	6.9.14. EMPTY-CHECK
	6.9.15. ERASE
	6.9.16. EXTERNAL
	6.9.17. FALSE
	6.9.18. FOREGROUND-COLOR
	6.9.19. FROM
	6.9.20. FULL
	6.9.21. GLOBAL
	6.9.22. GROUP INDICATE
	6.9.23. HIGHLIGHT
	6.9.24. JUSTIFIED
	6.9.25. LEFTLINE
	6.9.26. LENGTH-CHECK
	6.9.27. LINE
	6.9.28. LOWLIGHT
	6.9.29. NEXT GROUP
	6.9.30. NO-ECHO
	6.9.31. OCCURS
	6.9.32. OVERLINE
	6.9.33. PICTURE
	6.9.34. PRESENT WHEN
	6.9.35. PROMPT
	6.9.36. PROTECTED
	6.9.37. REDEFINES
	6.9.38. RENAMES
	6.9.39. REQUIRED
	6.9.40. REVERSE-VIDEO
	6.9.41. SECURE
	6.9.42. SIGN IS
	6.9.43. SOURCE
	6.9.44. SUM OF
	6.9.45. SYNCRONIZED
	6.9.46. TO
	6.9.47. TYPE
	6.9.48. UNDERLINE
	6.9.49. USAGE
	6.9.50. USING
	6.9.51. VALUE


	7. PROCEDURE DIVISION
	7.1. PROCEDURE DIVISION USING
	7.2. PROCEDURE DIVISION CHAINING
	7.3. PROCEDURE DIVISION RETURNING
	7.4. PROCEDURE DIVISION Sections and Paragraphs
	7.5. DECLARATIVES
	7.6. Common Clauses on Executable Statements
	7.6.1. AT END + NOT AT END
	7.6.2. CORRESPONDING
	7.6.3. INVALID KEY + NOT INVALID KEY
	7.6.4. ON EXCEPTION + NOT ON EXCEPTION
	7.6.5. ON OVERFLOW + NOT ON OVERFLOW
	7.6.6. ON SIZE ERROR + NOT ON SIZE ERROR
	7.6.7. ROUNDED

	7.7. Special Registers
	7.8. GnuCOBOL Statements
	7.8.1. ACCEPT
	7.8.1.1. ACCEPT FROM CONSOLE
	7.8.1.2. ACCEPT FROM COMMAND-LINE
	7.8.1.3. ACCEPT FROM ENVIRONMENT
	7.8.1.4. ACCEPT screen-data-item
	7.8.1.5. ACCEPT FROM DATE/TIME
	7.8.1.6. ACCEPT FROM Screen-Info
	7.8.1.7. ACCEPT FROM Runtime-Info
	7.8.1.8. ACCEPT OMITTED
	7.8.1.9. ACCEPT FROM EXCEPTION-STATUS

	7.8.2. ADD
	7.8.2.1. ADD TO
	7.8.2.2. ADD GIVING
	7.8.2.3. ADD CORRESPONDING

	7.8.3. ALLOCATE
	7.8.4. ALTER
	7.8.5. CALL
	7.8.6. CANCEL
	7.8.7. CLOSE
	7.8.8. COMMIT
	7.8.9. COMPUTE
	7.8.10. CONTINUE
	7.8.11. DELETE
	7.8.12. DISPLAY
	7.8.12.1. DISPLAY UPON device
	7.8.12.2. DISPLAY UPON COMMAND-LINE
	7.8.12.3. DISPLAY UPON ENVIRONMENT-NAME
	7.8.12.4. DISPLAY screen-data-item

	7.8.13. DIVIDE
	7.8.13.1. DIVIDE INTO
	7.8.13.2. DIVIDE INTO GIVING
	7.8.13.3. DIVIDE BY GIVING

	7.8.14. ENTRY
	7.8.15. EVALUATE
	7.8.16. EXIT
	7.8.17. FREE
	7.8.18. GENERATE
	7.8.19. GOBACK
	7.8.20. GO TO
	7.8.20.1. Simple GO TO
	7.8.20.2. GO TO DEPENDING ON

	7.8.21. IF
	7.8.22. INITIALIZE
	7.8.23. INITIATE
	7.8.24. INSPECT
	7.8.25. MERGE
	7.8.26. MOVE
	7.8.26.1. Simple MOVE
	7.8.26.2. MOVE CORRESPONDING

	7.8.27. MULTIPLY
	7.8.27.1. MULTIPLY BY
	7.8.27.2. MULTIPLY GIVING

	7.8.28. OPEN
	7.8.29. PERFORM
	7.8.29.1. Procedural PERFORM
	7.8.29.2. Inline PERFORM
	7.8.29.3. VARYING

	7.8.30. READ
	7.8.30.1. Sequential READ
	7.8.30.2. Random READ

	7.8.31. READY TRACE
	7.8.32. RELEASE
	7.8.33. RESET TRACE
	7.8.34. RETURN
	7.8.35. REWRITE
	7.8.36. ROLLBACK
	7.8.37. SEARCH
	7.8.38. SEARCH ALL
	7.8.39. SET
	7.8.39.1. SET ENVIRONMENT
	7.8.39.2. SET Program-Pointer
	7.8.39.3. SET ADDRESS
	7.8.39.4. SET Index
	7.8.39.5. SET UP/DOWN
	7.8.39.6. SET Condition Name
	7.8.39.7. SET Switch
	7.8.39.8. SET ATTRIBUTE
	7.8.39.9. SET LAST EXCEPTION

	7.8.40. SORT
	7.8.40.1. File-Based SORT
	7.8.40.2. Table SORT

	7.8.41. START
	7.8.42. STOP
	7.8.43. STRING
	7.8.44. SUBTRACT
	7.8.44.1. SUBTRACT FROM
	7.8.44.2. SUBTRACT GIVING
	7.8.44.3. SUBTRACT CORRESPONDING

	7.8.45. SUPPRESS
	7.8.46. TERMINATE
	7.8.47. TRANSFORM
	7.8.48. UNLOCK
	7.8.49. UNSTRING
	7.8.50. WRITE


	8. FUNCTIONS
	8.1. Intrinsic Functions
	8.1.1. ABS
	8.1.2. ACOS
	8.1.3. ANNUITY
	8.1.4. ASIN
	8.1.5. ATAN
	8.1.6. BYTE-LENGTH
	8.1.7. CHAR
	8.1.8. COMBINED-DATETIME
	8.1.9. CONCATENATE
	8.1.10. COS
	8.1.11. CURRENCY-SYMBOL
	8.1.12. CURRENT-DATE
	8.1.13. DATE-OF-INTEGER
	8.1.14. DATE-TO-YYYYMMDD
	8.1.15. DAY-OF-INTEGER
	8.1.16. DAY-TO-YYYYDDD
	8.1.17. E
	8.1.18. EXCEPTION-FILE
	8.1.19. EXCEPTION-LOCATION
	8.1.20. EXCEPTION-STATEMENT
	8.1.21. EXCEPTION-STATUS
	8.1.22. EXP
	8.1.23. EXP10
	8.1.24. FACTORIAL
	8.1.25. FORMATTED-CURRENT-DATE
	8.1.26. FORMATTED-DATE
	8.1.27. FORMATTED-DATETIME
	8.1.28. FORMATTED-TIME
	8.1.29. FRACTION-PART
	8.1.30. HIGHEST-ALGEBRAIC
	8.1.31. INTEGER
	8.1.32. INTEGER-OF-DATE
	8.1.33. INTEGER-OF-DAY
	8.1.34. INTEGER-OF-FORMATTED-DATE
	8.1.35. INTEGER-PART
	8.1.36. LENGTH
	8.1.37. LENGTH-AN
	8.1.38. LOCALE-COMPARE
	8.1.39. LOCALE-DATE
	8.1.40. LOCALE-TIME
	8.1.41. LOCALE-TIME-FROM-SECONDS
	8.1.42. LOG
	8.1.43. LOG10
	8.1.44. LOWER-CASE
	8.1.45. LOWEST-ALGEBRAIC
	8.1.46. MAX
	8.1.47. MEAN
	8.1.48. MEDIAN
	8.1.49. MIDRANGE
	8.1.50. MIN
	8.1.51. MOD
	8.1.52. MODULE-CALLER-ID
	8.1.53. MODULE-DATE
	8.1.54. MODULE-FORMATTED-DATE
	8.1.55. MODULE-ID
	8.1.56. MODULE-PATH
	8.1.57. MODULE-SOURCE
	8.1.58. MODULE-TIME
	8.1.59. MONETARY-DECIMAL-POINT
	8.1.60. MONETARY-THOUSANDS-SEPARATOR
	8.1.61. NUMERIC-DECIMAL-POINT
	8.1.62. NUMERIC-THOUSANDS-SEPARATOR
	8.1.63. NUMVAL
	8.1.64. NUMVAL-C
	8.1.64B. NUMVAL-C
	8.1.65. NUMVAL-F
	8.1.66. ORD
	8.1.67. ORD-MAX
	8.1.68. ORD-MIN
	8.1.69. PI
	8.1.70. PRESENT-VALUE
	8.1.71. RANDOM
	8.1.72. RANGE
	8.1.73. REM
	8.1.74. REVERSE
	8.1.75. SECONDS-FROM-FORMATTED-TIME
	8.1.76. SECONDS-PAST-MIDNIGHT
	8.1.77. SIGN
	8.1.78. SIN
	8.1.79. SQRT
	8.1.80. STANDARD-DEVIATION
	8.1.81. STORED-CHAR-LENGTH
	8.1.82. SUBSTITUTE
	8.1.83. SUBSTITUTE-CASE
	8.1.84. SUM
	8.1.85. TAN
	8.1.86. TEST-DATE-YYYYMMDD
	8.1.87. TEST-DAY-YYYYDDD
	8.1.88. TEST-FORMATTED-DATETIME
	8.1.89. TEST-NUMVAL
	8.1.90. TEST-NUMVAL-C
	8.1.91. TEST-NUMVAL-F
	8.1.92. TRIM
	8.1.93. UPPER-CASE
	8.1.94. VARIANCE
	8.1.95. WHEN-COMPILED
	8.1.96. YEAR-TO-YYYY
	8.1.97. BOOLEAN-OF-INTEGER
	8.1.98. CHAR-NATIONAL
	8.1.99. DISPLAY-OF
	8.1.100. EXCEPTION-FILE-N
	8.1.101. EXCEPTION-LOCATION-N
	8.1.102. INTEGER-OF-BOOLEAN
	8.1.103. NATIONAL-OF
	8.1.104. STANDARD-COMPARE

	8.2. Built-In System Subroutines
	8.2.1. C$CALLEDBY
	8.2.2. C$CHDIR
	8.2.3. C$COPY
	8.2.4. C$DELETE
	8.2.5. C$FILEINFO
	8.2.6. C$GETPID
	8.2.7. C$JUSTIFY
	8.2.8. C$MAKEDIR
	8.2.9. C$NARG
	8.2.10. C$PARAMSIZE
	8.2.11. C$PRINTABLE
	8.2.12. C$SLEEP
	8.2.13. C$TOLOWER
	8.2.14. C$TOUPPER
	8.2.15. CBL_AND
	8.2.16. CBL_CHANGE_DIR
	8.2.17. CBL_CHECK_FILE_EXIST
	8.2.18. CBL_CLOSE_FILE
	8.2.19. CBL_COPY_FILE
	8.2.20. CBL_CREATE_DIR
	8.2.21. CBL_CREATE_FILE
	8.2.22. CBL_DELETE_DIR
	8.2.23. CBL_DELETE_FILE
	8.2.24. CBL_EQ
	8.2.25. CBL_ERROR_PROC
	8.2.26. CBL_EXIT_PROC
	8.2.27. CBL_FLUSH_FILE
	8.2.28. CBL_GC_FORK
	8.2.29. CBL_GC_GETOPT
	8.2.30. CBL_GC_HOSTED
	8.2.31. CBL_GC_NANOSLEEP
	8.2.32. CBL_GC_PRINTABLE
	8.2.33. CBL_GC_WAITPID
	8.2.34. CBL_GET_CSR_POS
	8.2.35. CBL_GET_CURRENT_DIR
	8.2.36. CBL_GET_SCR_SIZE
	8.2.37. CBL_IMP
	8.2.38. CBL_NIMP
	8.2.39. CBL_NOR
	8.2.40. CBL_NOT
	8.2.42. CBL_OPEN_FILE
	8.2.43. CBL_OR
	8.2.44. CBL_READ_FILE
	8.2.45. CBL_READ_KBD_CHAR
	8.2.46. CBL_RENAME_FILE
	8.2.47. CBL_SET_CSR_POS
	8.2.48. CBL_TOLOWER
	8.2.49. CBL_TOUPPER
	8.2.50. CBL_WRITE_FILE
	8.2.51. CBL_XOR
	8.2.52. SYSTEM
	8.2.53. X"91"
	8.2.54. X"E4"
	8.2.55. X"E5"
	8.2.56. X"F4"
	8.2.57. X"F5"


	9. Report Writer Usage Notes
	9.1. RWCS Lexicon
	9.2. The Anatomy of a Report
	9.3. The Anatomy of a Report Page
	9.4. How RWCS Builds Report Pages
	9.5. Control Hierarchy
	9.6. An Example
	9.6.1. Data
	9.6.2. Program
	9.6.3. Generated Report Pages

	9.7. Control Hierarchy (Revisited)
	9.8. Turning PHYSICAL Page Formatting Into LOGICAL Formatting

	10. Interfacing With The OS
	10.1. Compiling Programs
	10.1.1. cobc - The GnuCOBOL Compiler
	10.1.2. Compilation Time Environment Variables
	10.1.3. Predefined Compilation Variables
	10.1.4. Locating Copybooks
	10.1.5. Compiler Configuration Files

	10.2. Running Programs
	10.2.1. Direct Execution
	10.2.2. Executing Dynamically-Loadable Libraries
	10.2.2.1. cobcrun - Command-line Execution
	10.2.2.2. Dynamically Loaded Subprograms

	10.2.3. Run Time Environment Variables
	10.2.4. Program Arguments

	10.3. Binary Truncation

	11. Sub-Programming
	11.1. Subprogram Types
	11.2. Independent vs Contained vs Nested Subprograms
	11.3. Alternate Entry Points
	11.4. Dynamic vs Static Subprograms
	11.5. Subprogram Execution Flow
	11.5.1. Subroutine Execution Flow
	11.5.2. User-Defined Function Execution Flow

	11.6. Sharing Data Between Calling and Called Programs
	11.5.1. Subprogram Arguments
	11.6.1.1. Calling Program Considerations
	11.6.1.2. Called Program Considerations

	11.6.2. GLOBAL Data Items
	11.6.3. EXTERNAL Data Items

	11.7. Recursive Subprograms
	11.8. Combining GnuCOBOL and C Programs
	11.8.1. GnuCOBOL Run-Time Library Requirements
	11.8.2. String Allocation Differences Between GnuCOBOL and C
	11.8.3. Matching C Data Types with GnuCOBOL USAGE's
	11.8.4. GnuCOBOL Main Programs CALLing C Subprograms
	11.8.5. C Main Programs Calling GnuCOBOL Subprograms


	12. Programming Style Suggestions
	12.1. Marking Changes in Programs
	12.2. Data Item Coding and Naming Conventions
	12.3. Table Subscripting versus Table Indexing
	12.4. Copybook Naming Conventions and Usage
	12.5. PROCEDURE DIVISION Sections Versus Paragraphs
	12.6. COMPUTE Versus ADD-SUBTRACT-MULTIPLY-DIVIDE

	Appendix A - Glossary of Terms
	Appendix B - Reserved Word List
	Appendix C - GNU Free Documentation License
	Appendix D - Summary of Document Changes
	Appendix E - Summary of Compiler Changes since 2009 and version v1-1
	Index

